

Cathodoluminescence of Rare Earth Ions inSemiconductors and Insulators

Leon Maurer

International Materials Institute for New Functionality in Glass and Lehigh University

Department of Physics REU

Q: What is Cathodoluminescence(CL)?

Q: What is Cathodoluminescence(CL)? A: Light emission caused by electron bombardment. Q: What are the rare earth ions (REIs) in question?

Q: What is Cathodoluminescence(CL)? A: Light emission caused by electron bombardment. Q: What are the rare earth ions (REIs) in question? A: Rare earth atoms have been doped into our sample andassume ^a +3 ionization state.

Q: What is Cathodoluminescence(CL)?

A: Light emission caused by electron bombardment.

Q: What are the rare earth ions (REIs) in question?

 A: Rare earth atoms have been doped into our sample andassume ^a +3 ionization state.

For the curious:

Q: Are rare earth elements rare?

 A: Not particularly – they are all significantly moreabundant than gold.

Q: Are rare earth elements "earth"?

A: No, "earth" is an archaic word for oxide.

Applications

Electrically pumped lasers, light sources, and light amplifiers

- **6** REIs are already used in optically pumped lasers
- **EXELS** have consistent emissions in the visible spectrum independent of host material
- **6** create a display from different REIs in same host Wide Bandgap Semiconductors
	- Transparent to visible light ෧
	- Efficient REI emission Ions can be electrically excited෧
	- Can use semiconductor tricks can make PN෧ junctions to inject electrons $- p. 3/14$

Interaction with the beam

Interaction with the beam

- Collisions create electron hole pairs6
- Electron Energy $=20$ KeV ෧
- 620 nm Photon Energy ≈ 2 eV ෧

What do we see?

Questions

- Is the process efficient? What is the limiting factor?෧
- How do the REIs become excited?෧
	- Directly by beam electrons hitting the REIs?
	- Electron hole pairs transferred from the base Δ material?
	- Is there an intermediate trap? Δ

The Model

- ² Energy Level System \bullet
- N total lons, N_e excited, and N_g in the ground state $\bf 6$
- p pump rate, k decay rate, $\tau=\frac{1}{k}$ $\frac{1}{k}$ decay time constant 6 \boldsymbol{k}

$$
\frac{d}{dt}N_e = pN_e - kN_g = pN_e + kN_e - kN
$$

$$
\frac{d}{dt}N_e = -kN_e
$$

The Model

- ² Energy Level System6
- N total lons, N_e excited, and N_g in the ground state $\bf 6$
- p pump rate, k decay rate, $\tau=\frac{1}{k}$ $\frac{1}{k}$ decay time constant 6 \boldsymbol{k}

$$
\frac{d}{dt}N_e = pN_e - kN_g = pN_e + kN_e - kN
$$

$$
\frac{d}{dt}N_e = -kN_e
$$

Solutions:

$$
N_e = \frac{pN}{p+k} \left(1 - e^{-(p+k)t} \right)
$$

$$
N_e = \frac{pN}{p+k} e^{-kt}
$$

The Model and Spot Mode

In spot mode, the beam just dwells on one spot. If we wait ^a moment:

$$
N_e \approx \lim_{t \to \infty} \frac{pN}{p+k} \left(1 - e^{-(p+k)t} \right) = \frac{pN}{p+k}
$$

The Model and Spot Mode

In spot mode, the beam just dwells on one spot. If we wait ^a moment:

$$
N_e \approx \lim_{t \to \infty} \frac{pN}{p+k} \left(1 - e^{-(p+k)t} \right) = \frac{pN}{p+k}
$$

However, this only really tells us about the ratio $\frac{k}{n}$ $p^{\,\text{-}}$

$$
N_e \approx \frac{pN}{p+k} = \frac{N}{1+\frac{k}{p}}
$$

Spot Mode and Saturation

- Output saturates efficiency is not the limiting factor෧
- Intensity is less than for photoluminescence (PL) –෧ fewer REIs are being excited
- That rules out direct excitation and direct host transference ෧

The Model and Line Mode

- The beam only shines on ^a spot part of the time. ෧
- Finding the steady state is done numerically. ෧
- The frequency of the scan is varied. ෧
- The time average is fit to the data, determining $k.$ ౷

Does The Model Work?

- $k = 1.46 * 10^6$ $6 p = 1.60 * 10^7$
- $\tau = 6.82 * 10^{-5}$ seconds is similar to the relaxation time of Eu
- This does not show evidence for ^a trap6

REIs in Insulator – Er in Glass

- Shows ^a drop compared to Er in semiconductors. ෧
- Indicates that direct excitation is not the mechanism at ෧ work.
- We're still investigating this material. $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ ෧

Conclusion and Summary

- **6** Difference in intensity between CL and PL, and dependence on host material, suggests direct excitation is not at work.
- **6** However, the measured time constant is similar to that of Eu, meaning that if there is ^a trap, it is faster.
- **6** Still, something besides the number of REIs and the efficiency must be the limiting factor – traps are likelyto be it.
- More measurements are needed taking data is slowwith the current setup.