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Introduction

General Instructions and Helpful Hints

Physics is an experimental science. In this laboratory, we hope you gain a realistic
feeling for the experimental origins, and limitations, of physical concepts; an awareness of
experimental errors, of ways to minimize them and how to estimate the reliability of the
result in an experiment; and an appreciation of the need for keeping clear and accurate
records of experimental investigations.

Physics is also a social activity. We expect you will find it useful to discuss all phases of
the experiment with your lab partners. During set-up, establish the purpose of each piece
of apparatus; during data-taking, cooperate to choose who does what, and critique the
data as it is taken (is it as expected?); during analysis, perform calculations independently,
and then compare results to check each others’ work; when drawing conclusions, debate
the reliability of the results, and what may fairly be concluded from them.

Maintaining a clearly written laboratory notebook is crucial. This lab notebook, at a
minimum, should contain the following:

1. Heading of the Experiment: Copy from the manual the number and name of the
experiment.
Include both the current date and the name(s) of your partner(s).

2. Original data: Original data must always be recorded directly into your notebook
as they are gathered. “Original data” are the actual readings you have taken. All
partners should record all data, so that in case of doubt, the partners’ lab notebooks
can be compared to each other. Arrange data in tabular form when appropriate.
A phrase or sentence introducing each table is essential for making sense out of the
notebook record after the passage of time.

3. Housekeeping deletions: You may think that a notebook combining all work would
soon become quite a mess and have a proliferation of erroneous and superseded
material. Indeed it might, but you can improve matters greatly with a little house-
keeping work every hour or so. Just draw a box around any erroneous or unnecessary
material and hatch three or four parallel diagonal lines across this box. (This way
you can come back and rescue the deleted calculations later if you should discover
that the first idea was right after all. It occasionally happens.) Append a note to
the margin of box explaining to yourself what was wrong.

We expect you to keep up your notes as you go along. Don’t take your notebook
home to “write it up” – you probably have more important things to do than making
a beautiful notebook. (Instructors may permit occasional exceptions if they are
satisfied that you have a good enough reason.)

4. Remarks and sketches: When possible, make simple, diagrammatic sketches (rather
than “pictorial” sketches” of apparatus. A phrase or sentence introducing each
calculation is essential for making sense out of the notebook record after the passage
of time. When a useful result occurs at any stage, describe it with at least a word
or phrase.

5. Graphs: There are three appropriate methods:
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A. Affix furnished graph paper in your notebook with transparent tape.

B. Affix a computer generated graph paper in your notebook with transparent
tape.

C. Mark out and plot a simple graph directly in your notebook.

Show points as dots, circles, or crosses, i.e., ·, ◦, or ×. Instead of connecting points
by straight lines, draw a smooth curve which may actually miss most of the points
but which shows the functional relationship between the plotted quantities. Fasten
directly into the notebook any original data in graphic form (such as the spark tapes
of Experiment M4).

6. Units, coordinate labels: Whenever you write down a physical quantity, always write
down its units. Likewise, whenever you make a graph, always label the abscissa
(horizontal coordinate) and ordinate (vertical coordinate), so that the reader (who
might be yourself at a later time) knows what has been graphed.

7. Final data, results and conclusions: At the end of an experiment some written
comments and a neat summary of data and results will make your notebook more
meaningful to both you and your instructor. The conclusions must be faithful to
the data. It is often helpful to formulate conclusion using phrases such as “the
discrepancy between our measurements and the theoretical prediction was larger
than the uncertainty in our measurements.”

COMPLETION OF WORK
Plan your work so that you can complete calculations, graphing and miscellaneous

discussions before you leave the laboratory. Your instructor will check each completed
lab report and will usually write down some comments, suggestions or questions in your
notebook. Approach your instructor the way you would approach a senior colleague, who
can help deepen your understanding and “feel” for the subject.
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Errors and Uncertainties

Reliability estimates of measurements greatly enhance their value. Thus, saying that the
average diameter of a cylinder is 10.00±0.02 mm tells much more than the statement that
the cylinder is a centimeter in diameter. The reliability of a single measurement (such as
the diameter of a cylinder) depends on many factors:

FIRST, are actual variations of the quantity being measured, e.g. the diameter of
a cylinder may actually be different in different places. You must then specify where the
measurement was made; or if one wants the diameter in order to calculate the volume,
first find the average diameter by means of a number of measurements at carefully selected
places. Then the scatter of the measurements will give a first estimate of the reliability of
the average diameter.

SECOND, the micrometer caliper used may itself be in error. The errors thus intro-
duced will of course not lie equally on both sides of the true value so that averaging a large
number of readings is no help. To eliminate (or at least reduce) such errors, we calibrate
the measuring instrument: in the case of the micrometer caliper by taking the zero error
(the reading when the jaws are closed) and the readings on selected precision gauges of
dimensions approximately equal to those of the cylinder to be measured. We call such
errors systematic, and these cause errors in accuracy.

THIRD, Another type of systematic error can occur in the measurement of a cylin-
der: The micrometer will always measure the largest diameter between its jaws; hence if
there are small bumps or depressions on the cylinder, the average of a large number of
measurements will not give the true average diameter but a quantity somewhat larger.
(This error can of course be reduced by making the jaws of the caliper smaller in cross
section.)

FINALLY, if one measures something of definite size with a calibrated instrument,
one’s measurements will vary. For example, the reading of the micrometer caliper may vary
because one can’t close it with the same force every time. Also the observer’s estimate of
the fraction of the smallest division varies from trial to trial. Hence the average of a number
of these measurements should be closer to the true value than any one measurement.
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Characterization of Uncertainties

The experimenter cannot immediately determine the cause of the variation of a set of
measurements. A simpler task is to characterize this variation.

Consider the data below. Column 1 represents 10 readings of the diameter of a cylinder
taken at one place, so that variations in the cylinder do not come into consideration. The
mean of these 10 readings turns out to be 9.9427 mm. Column 2 gives the magnitude
(absolute) of each reading’s deviation from the mean.

Measurements Deviation from Mean
9.943 mm 0.0003
9.942 0.0007
9.944 0.0013
9.941 0.0017
9.943 0.0003
9.943 0.0003
9.945 0.0023
9.943 0.0003
9.941 0.0017
9.942 0.0007

How should one state the results of these measurements in a scientific fashion?
A quick way to estimate the reliability of a set of measurements is to calculate the

average deviation from the mean. Expressed algebraically, the mean is x̄ =
∑
xi/n,

and the average deviation from the mean is = (
∑
|xi − x̄|)/n), where n is the number of

measurements taken and xi is the ith measurement.
A more formal measure of the reliability of a set of measurements is the standard

deviation σ (also known as the “root mean square deviation”). You calculate σ as

σ =

√√√√ 1

(n− 1)

n∑
i=1

(xi − x̄)2

Note that if you make one measurement of some quantity x, then n = 1 and x̄ = x1 in the
above equation: the standard deviation of your measurement is

√
0/0, which is undefined.

You don’t know how reliable your measurement is.
Assuming you make more than one measurement, σ tells you the typical deviation from

the mean you will find for an individual measurement. It depends on your experimental
technique. If you make more measurements, σ cannot be expected to change much.

However, the more measurements you make, the more accurately you can expect to
know the value of the mean. The uncertainty of the value of the mean is called the
standard deviation of the mean σµ, and in general it is less than σ:

σµ = standard deviation of the mean =
σ√
n

=
1√
n

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2

The process of taking more measurements in order to minimize σµ is often referred to as
“gathering statistics”.

One states one’s results as mean ± standard deviation of the mean. From the
data above, the diameter of the cylinder was measured to be 9.9427 ± 0.0004 mm.
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Error Distribution and Error Bars

For a wide variety of measurements it may be assumed that the error distribution is
“normal”: the probability of a given error ε is proportional to e−ε

2
. If the error distribution

is normal, then on average 68% of a large number of measurements will lie closer than σ
to the true value.

The purpose of the error bars shown on a graph in a technical report is as follows: if
the reader attempts to reproduce the results in the graph using the procedure described
in the report, the reader should expect his or her results to have a 50% chance of falling
with the range indicated by the error bars.

If the error distribution is normal, the error bars should be of length ±0.6745σ.

For a clear discussion of the theory of errors, as it relates to experimental measurements
in the physical sciences, see P.R. Bevington and D.K Robinson, Data Reduction and Error
Analysis for the Physical Sciences, 3rd ed., McGraw Hill 2003, p. 11.
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Propagation of Uncertainties

Let R = f(x, y, z) be a result R which depends on measurements of three different quan-
tities x, y, and z. The uncertainty ∆R in R which results from an uncertainty ∆x in the
measurement of x is then

∆R =
∂f

∂x
∆x ,

and the fractional uncertainty in R is

∆R

R
=

∂f
∂x

f
∆x .

In most experimental situations, the errors are uncorrelated and have a normal distribu-
tion. In this case the uncertainties add in quadrature (the square root of the sum of the
squares):

∆R

R
=

√√√√( ∂f
∂x

f
∆x

)2

+

(
∂f
∂y

f
∆y

)2

+

(
∂f
∂z

f
∆z

)2

.

Some examples:

A.) R = x + y. If errors in x and y each have a normal or Gaussian distribution
and are independent, they combine in quadrature:

∆R =
√

∆x2 + ∆y2 .

Note that if R = x− y, then ∆R/R can become very large if x is nearly equal to y. Hence
avoid, if possible, designing an experiment where one measures two large quantities and
takes their difference to obtain the desired quantity.

B.) R = xy. If the measurement errors have a normal distribution and are independent,
the relative errors combine in quadrature:

∆R

R
=

√
(
∆x

x
)2 + (

∆y

y
)2 .

Note the same result occurs for R = x/y.
C.) Consider the density of a solid (Exp. M1):

ρ =
m

πr2L

where m = mass, r = radius, L = length, are the three measured quantities and ρ =
density. Hence

∂ρ

∂m
=

1

πr2L

∂ρ

∂r
=
−2m

πr3L

∂ρ

∂L
=
−m
πr2L2

.

If the errors have normal distribution and are uncorrelated, then

∆ρ

ρ
=

√(
∆m

m

)2

+

(
2

∆r

r

)2

+

(
∆L

L

)2
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Significant Figures

Suppose you have measured the diameter of a circular disc and wish to compute its area
A = πd2/4 = πr2. Let the average value of the diameter be 24.326± 0.003 mm; dividing
d by 2 to get r we obtain 12.163± 0.0015 mm with a relative error ∆r

r of 0.0015
12 = 0.00012.

Squaring r (using a calculator) we have r2 = 147.938569, with a relative error 2∆r/r =
0.00024, or an absolute error in r2 of 0.00024 × 147.93 · · · = 0.036 ≈ 0.04. Thus we can
write r2 = 147.94 ± 0.04, any additional places in r2 being unreliable. Hence for this
example the first five figures are called significant.

Now in computing the area A = πr2 how many digits of π must be used? A pocket
calculator with π = 3.141592654 gives

A = πr2 = π × (147.94± 0.04) = 464.77± 0.11 mm2

Note that ∆A
A = 2∆r

r = 0.00024. Note also that the same answer results from π = 3.1416,
but that π = 3.142 gives A = 464.83 ± 0.11 mm2 which differs from the correct value by
0.06 mm2, an amount comparable to the estimated uncertainty.

A good rule is to use one more digit in constants than is available in your measure-
ments, and to save one more digit in computations than the number of significant figures
in the data. When you use a calculator you usually get many more digits than you need.
Therefore at the end, be sure to round off the final answer to display the correct
number of significant figures.

SAMPLE QUESTIONS

1. How many significant figures are there in the following numbers?

(a) 976.45

(b) 4.000

(c) 10

2. Round off each of the following numbers to three significant figures.

(a) 4.455

(b) 4.6675

(c) 2.045

3. A function has the relationship Z(A,B) = A+B3 where A and B are found to have
uncertainties of ±∆A and ±∆B respectively. Find ∆Z in term of A, B and the
respective uncertainties assuming the errors are uncorrelated.

4. What happens to σ, the standard deviation, as you make more and more measure-
ments? what happens to σ, the standard deviation of the mean?

(a) They both remain same

(b) They both decrease

(c) σ increases and σ decreases

(d) σ approachs a constant and σ decreases
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M-1 Errors & Motion

M-1a Measurement and Error

OBJECTIVES:
The major objectives of M-1a are to develop a basic understanding of what it means
to make an experimental measurement, and to provide a methodology for assessing
random and systematic errors in this measurement process. In addition this lab will
introduce you to the PASCO interface hardware and software.

THEORY:
How long is one second? The formal definition–the second is the duration of
9,192,631,770 periods of the radiation corresponding to the transition between the
two hyperfine levels of the ground state of the Cesium-133 atom–is unhelpful for
everyday affairs. In this lab you will test your ability to internalize the one second
time interval by flicking your finger back and forth through an infrared beam sensor
once per second. The duration of each full cycle (back and forth, approximately
2 seconds) will be simultaneously recorded, plotted and tabulated by the PASCO
interface software.

Your goal in this experiment is to learn to distinguish systematic and random
errors, and assess the size of the systematic and random errors in your data set.
SYSTEMATIC ERRORS: These are errors which affect the accuracy of a measure-
ment. Typically they are reproducible so that they always affect the data in the
same way. For instance, if a clock runs slowly, its measurement of some duration
will be less than the true duration.
RANDOM ERRORS: These are errors which affect the precision of a measurement.
A process itself may have a random component (as in radioactive decay) or the
measurement technique may introduce noise that causes the readings to fluctuate.
If many measurements are made, a statistical analysis will reduce the uncertainty
from random errors by averaging.

APPARATUS:

⇒ A PASCO photogate and stand: This device emits a narrow infrared beam in the
gap and occluding the beam prevents it from reaching a photodetector. When the
beam is interrupted the red LED should become lit.

⇒ A PASCO 850 Universal Interface monitors the photogate output vs time and can
be configured to tabulate, plot and analyze this data.

PROCEDURE:

To configure the experiment you should refer to Fig. 1 below. Adjust the photogate
so that one member can easily and repetitively flick his/her finger through the gap.
Insert the phone-jack cable from the photogate into the DIGITAL INPUT #1 socket.

To launch the Pasco interface software, Capstone, you will need to click on the
“Experiment M-1a” file in the PASCO/Physics201 folder on the desktop. Fig. 2
below gives a good idea of how the display should appear.

You will note that a “dummy” first data set already exists on start-up showing a
typical data run. In the table you can view all of the data points and the statistical
analysis, including mean and standard deviation. In addition there should be a plot
of this data and a histogram.
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Figure 1: A schematic of the M-1a components and layout.

SUGGESTED PROCEDURE:

1. Start recording data by clicking on the “Record” icon and practice flicking a
finger back and forth so that a two second interval appears in the window. The

Record icon has now changed to the “Stop” icon ; click the Stop icon when done.
Since the program started with one set of data, this will produce a second set.

2. Each run gets its own data set in the “Data Summary” tab under the Tools
Palette. (If there are any data sets in existence you will not be able to reconfigure
the interface parameters or sensor inputs.) A data set can be deleted by selecting
the data set and clicking the red X to the right of the name. You can select which
data set is displayed on a particular graph by clicking on the Data Summary icon
that appears on that graph.

Figure 2: The PASCO Capstone display window
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3. Once you are comfortable with the procedure then click on the Record icon, cycle a
finger back and forth over fifty times, then click on the Stop icon. DO NOT watch
the time display while you do this, since you want to find out how accurately and
precisely you can reproduce a time interval of 2 s using only your mind.

4. What is the mean time per cycle? What is the standard deviation? The mean t and
standard deviation σ are given by:

t =
N∑
i=1

ti/N and σ =

√√√√ N∑
i=1

(ti − t)2/[N − 1] .

Click on the Statistics icon to ask PASCO to calculate the mean and standard
deviation of the data. Is your mean suggestive of a systematic error?

5. Look at the Histogram of the data. Does your data qualitatively give the appear-
ance of a normal distribution (a Gaussian bell curve)?

6. For analyzing and quantifying random errors, you need to assess how a data set is
distributed about the mean. The standard deviation σ is one common calculation
that does this. In the case of a normal distribution approximately 68% of the data
points fall within ±1σ of the mean (90% within ±2σ). Is your data consistent with
this attribute?

7. Assessing the possibility of systematic behavior is somewhat more subtle. In general
σ is a measure of how much a single measurement fluctuates from the mean. In
this run you have made fifty presumed identical measurements. A better estimate of
how well you have really determined the mean is to calculate the standard deviation
of the mean σ = σ/

√
N . After recording σ in your lab book, can you now observe

any evidence that there is a systemic error in your data? Answer this same question
with respect to the first “sample” data set.

8. OPTIONAL: Systematic errors can sometimes drift over time. In the best-case
scenario they drift up and down so that they average out to zero. (Clearly it would
be better if they could be eliminated entirely.) With respect to t and σ for the first
25 and second 25 cycles do you observe any systematic trends? Click on the Data

Highlight icon . Dragging the mouse will highlight a subset of the data. The
mean, σ, and other statistical attributes will appear at the bottom of the table.
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M-1b Errors and the Density of a Solid

OBJECTIVES:

To learn about systematic and random errors; to understand significant figures; to
estimate the reliability of one’s measurements; to propagate uncertainties; and to
calculate the reliability of the final result.

NOTE: This experiment illustrates the earlier section on Errors and Uncertainties.
The accuracy of your estimate of reliability will show whether you have mastered
the material in this section.

APPARATUS:

Metal cylinders of varying sizes; micrometer; vernier calipers; precision gauge
blocks; precision balance.

PRECAUTIONS:

Avoid dropping the metal cylinders, or deforming them in any other way.

Avoid damage to the precision screw of the micrometer by turning only the ratchet
knob to open or close the jaws.

The caliper has a lock which lets you preserve a reading—be sure to disengage the
caliper lock before using.

Improper weighing procedures may damage the precision balance. Consult your
instructor if in doubt.

In handling the gauge blocks avoid touching the polished surfaces since body acids
are corrosive.

INTRODUCTION:

First read the material on Errors and Uncertainties and Significant Figures in the
lab manual Introduction. Since density is the mass per unit volume, you must
measure the mass (on a balance), and compute the volume (hπr2 = hπd2/4) from
measurements of the cylinder’s diameter d and height h. Any one of three length-
measuring devices may be used. These include a micrometer, a vernier caliper
and/or a simple metric ruler. The micrometer will permit the highest precision
measurements but using one can be cumbersome, especially when reading the vernier
scale. All methods will demonstrate the aforementioned objectives. Your instructor
will give you guidance in choosing an appropriate measurement device.

THE MICROMETER:

Record the serial number of your micrometer. Then familiarize yourself with the
operation of the caliper and the reading of the scales: work through Appendix A
on the Micrometer. Note that use of the ratchet knob in closing the jaws insures
the same pressure on the measured object each time. Always estimate tenths of the
smallest division. Some micrometers have verniers to assist the estimation.
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THE VERNIER CALIPER:

The vernier scale was invented in 1631 by Pierre Vernier. Work through Appendix
A for practice reading a vernier scale. Experiment with one of the large verniers in
the lab until you are confident you can use it correctly.

Precautions on use of the calipers:

1. Unclamp both top thumbscrews to permit moving caliper jaws.

2. Open caliper to within a few mm of the dimension being measured.

3. Close right thumbscrew to lock position of lower horizontal knurled cylinder, which
executes fine motions of caliper jaw. Never over tighten!

CALIBRATION:

1. Zero Error: For those using the calipers: wipe the caliper jaws with cleaning
paper. Close the jaws and make a reading. Record the reading, separate the jaws,
close them again, and make another reading. Continue in this way until you have
recorded five readings. The mean of these readings is the zero error. The variation
of the readings gives you an estimate of the reproducibility of caliper measurements.

For those using the micrometers: follow the same procedure above; refer to Appendix
A for instruction on how to read the zero error.

2. Measure all four calibration gauge blocks (6, 12, 18 and 24 mm): Set the gauge
blocks on end, well-in from the edge of the table, and thus freeing both hands to
handle the caliper. Record the actual (uncorrected) reading. A single measurement
of each block will suffice.

3. Plot a correction curve for your measuring device: plot errors as ordinates and
nominal blocks sizes (0, 6, 12, 18, and 24 mm) as abscissa. Normally the correction
will not vary from block to block by more than 0.003 mm (for the micrometer). If
it is larger, consult your instructor.

DENSITY DETERMINATION:

1. Make five measurements (should be in millimeters) of the height and five of the
diameter. Since our object is to determine the volume of the cylinder, distribute
your measurements so as to get an appropriate average length and average diameter.
Avoid any small projections which would result in a misleading measurement. If not
possible to avoid, estimate their importance to the result. Record actual readings
and indicate, in your lab book, how you distributed them.

2. Calculate the average length, average diameters and the respective standard devia-
tion.

3. Use your correction curve to correct these average readings. If you were to use the
uncorrected values, how much relative error would this introduce?

4. Weigh the cylinder twice on the electronic balance; estimate to 0.1 mg.
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5. From the average dimensions and the mass, calculate the volume and density. Make
a quantitative (refer to the Propagation of Uncertainties section on page 7) estimate
of the uncertainty in the density. The sample worksheet asks for both the maximum
and minimum values. You should use, as your starting point:

Density(ρ±∆ρ) = ρ(h±∆h, d±∆d,m±∆m) =
m

π(d/2)2 h

6. Compare the density with the tabulated value. Tabulated values are averages over
samples whose densities vary slightly depending upon how the material was cast and
worked; also on impurity concentrations.

7. Summarize the data and results in your notebook. Also record your result on the
blackboard. Is the distribution of blackboard values reasonable, i.e. is it a “normal”
distribution (refer to the section on page 6)?

To test how accurately you can estimate a fraction of a division, estimate the frac-
tions on the vernier caliper before reading the vernier. Record both your estimate
and the vernier reading.

Link to the world’s premier institution devoted to improving the accuracy of mea-
surements:

National Institute of Science & Technology at http://www.nist.gov/
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Experiment 1b Worksheet

1.
CALIBRATION TABLE

Micrometer Serial # =
MEASUREMENTS

Zero gap 1 = ±
2 =
3 =
4 =
5 =

Mean±σ= ±
Gauge block 6 mm

12 mm
18 mm
24 mm

2. Make a plot of Gauge block thickness (x-axis) versus Micrometer reading.
Next fit the data to a line; this generates a correction curve where
Corrected value = actual × slope + intercept
slope =
intercept =

3. Now for the unknown value:

CYLINDER Height (± ) Width (± ) Mass (± )
1=
2=
3=
4=
5=

Mean±σ = ± ± ±
Corrected Mean±σ= ± ± ±

Density =
Max. Density =
Min. Density =

4. Final result, density = ±

5. Cut and tape this into your lab notebook.

6. Answer the following questions in your notebook.
A. Identify two sources of systematic error and give their magnitude.
B. Identify two examples of random error and give their magnitude.
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M-1c Motion, Velocity and Acceleration

OBJECTIVES:

The two objectives of this exploratory computer lab are: become familiar with
the PASCO interface hardware and software; develop an intuition for Newtonian
mechanics by experimenting with 1-D motion.

THEORY:

The motion of an object is described by indicating its distances x1 and x2 from a
fixed reference point at two different times t1 and t2. From the change in position
between these two times one calculates the average velocity (remember velocity is a
vector, and specifies direction) for the time interval:

average velocity ≡ v =
x2 − x1

t2 − t1
=

∆x

∆t
m/s

The acceleration of an object may be calculated by finding its velocity v1 and v2 at
two different times t1 and t2. From the change in velocity between t1 and t2 one
calculates the average acceleration for the time interval:

average acceleration ≡ a =
v2 − v1

t2 − t1
=

∆v

∆t
m/s2

FUNDAMENTAL CONCEPTS OF LINEAR MOTION:

1. The equation that describes the motion of an object that moves with constant ve-
locity is: x = A+B · t.
If you make a plot of x versus t, you find that it describes a straight line. The letter
A indicates the position of the object at time t = 0. The letter B is the slope of the
line, and is equal to the velocity of the object. So we can rewrite this x = x0 + v · t.

2. The equation that describes the motion of an object that moves with constant ac-
celeration is: x = x0 + v0 · t+ 1

2at
2 and v = v0 + at.

So we can rewrite this as: x = A + Bt + Ct2 and v = B + 2Ct. A indicates the
position of the object at time t = 0. B is the the velocity of the object at time t = 0,
and is the slope of the graph at this time. C is equal to half the acceleration.

PRECAUTIONS:

In order for the motion sensor to work properly it must be pointed in such away
that it “sees” the vane, and doesn’t “see” the front of the cart; that means that
it must be pointed slightly upwards. The motion sensor tends to “see” the closest
reflecting surface. In addition the minimum range is approximately 20 cm.

Make sure you do not drop the carts or allow them to roll off the table.
This damages the bearings and drastically increases the friction.
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APPARATUS

⇒ A PASCO motion sensor; this device emits a series of short pulses of sound, and
receives a series of echoes reflected from a nearby object. The length of the time
interval between the emission and the reception of the sound pulse depends on the
distance to the reflecting object.
This method of locating an object is the same as the one used by bats to find flying
insects or by navy ships to locate submarines.

⇒ A PASCO Interface; this converts the time interval between the emission and re-
ception of the sound pulse to digital form, i.e., numbers that can be stored by the
computer. Connect yellow plug to digital channel 1.

⇒ PASCO dynamic track with magnetic bumpers; cart with reflecting vane; meter
stick; one or two steel blocks.

PROCEDURE:

Your instructor will demonstrate how to configure the experiment. To initiate the
PASCO interface software you will need to double click the “Experiment M-1c” file
in the PASCO/Physics201 folder on the desktop. Fig. 1 below shows how the display
should appear. All three measured quantities, position, velocity, and acceleration,
are displayed simultaneously. Since velocity is determined from the position data
and acceleration from the velocity the “scatter” in the data will become progressively
more pronounced.

Figure 1: The PASCO Capstone display format

EXPERIMENT I: BASIC OPERATION AND MOTION SENSOR CALIBRATION:

1. To start the data acquisition click on the Record icon . To stop it click on the

same icon which will now become the Stop icon . Each run gets its own data set

in the Data Summary tab under the Tools Palette. If there are any data sets



M-1 ERRORS & MOTION 18

in existence you will not be able to reconfigure the interface parameters or sensor
inputs, unless you clear (delete) all data.

2. With the data acquisition started move the cart to and fro and watch the position,
velocity and acceleration displays.

3. Stop the data acquisition.

4. Click on the Zoom-to-Fit icon on one of the plots. Click on the Data Highlight

icon and the Zoom-to-Fit icon to zoom in to particular regions of interest.

Use Ctrl-Z to get back to the original plot area. Click on the Crosshair icon

and move about within a plot window. Click on the Statistics icon to bring up
statistics for a given set of data. Make sure that all members of the group have an
opportunity to test these components. It will facilitate the rest of the course if the
basic operations on the software interface are understood by everyone!

5. Delete the data set by clicking on the red ‘X’ next to RUN #1 item in the Data

Summary tab under the Tools Palette.

6. Start the data acquisition and find the closest distance to the motion sensor at which
it still functions. This value is supposed to be close to 20 cm. If it is much larger,
re-aim the motion sensor.

7. Configure the distances so that when the cart nearly touches the near magnetic
bumper the motion sensor still records accurately.

8. Measure the position at two distances approximately 0.8 m apart and compare the
printed centimeter scale with the motion sensor readout. By how much do the
readings differ?

EXPERIMENT II: INCLINED PLANE AND MOTION:

1. Raise the side of the track closest to the position sensor using one of the supplied
blocks.

2. Find an appropriate release point that allows the cart to roll down the track slowly
enough that it bounces off the magnetic bumper without striking it.

3. Click the Record button and release the cart, letting it bounce three or four times,
and then click the Stop button.

4. Qualitatively describe the shape of the three curves: position, velocity and acceler-
ation and discuss how they evolve with time.

5. Obtain a hard copy of this data by pressing CTRL-p.

6. Label/identify the various key features in the various curves by writing directly on
the hard copies. Paste the graphs in your note book.

QUESTIONS: (to be discussed as a group)

1. Does the velocity increase or decrease linearly with time when the cart is sliding
up/down the track?
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2. When the velocity is close to zero can you observe any nonlinear oscillations in the
data? Can you think of a reason for any deviations from linearity?

3. Why does the cart bounce less high with each subsequent bounce?

4. Is the collision with the magnetic bumper or the residual friction in the bearing the
most likely source of loss?

5. Can you think of a method using your data to determine which of these two proposed
mechanisms is the most likely culprit?

EXPERIMENT III: MOVING THE CART BY HAND:

1. Remove the block so that the track is no longer raised.

2. Start a new data set (by clicking the Record button) and try to move the cart back
and forth at constant velocity using your hand from the side.

3. Using the cross hair estimate the velocity in either m/s or cm/s.

4. Repeat step 2, but now try to obtain (for a limited time) a constant acceleration.

EXPERIMENT IV: ACCELERATION AT g (9.8 m/s2):

1. Have one member of the group stand carefully on a chair and hold the position sensor
facing downward above a second member’s head, while the second member holds a
notebook above his or her head.

2. Start a new data set and have the student holding the notebook jump up and down
a few times.

3. Stop the recording and determine whether free-fall yields a constant acceleration
close to the accepted value.

4. Try to measure the acceleration by making fits to data. First use the Data Highlight

icon to choose a range of data. Then click on the Fit icon to get at the
pull-down menu. You have three choices: fit a quadratic function to the position
data, fit a straight line to the velocity data, or find the mean of the acceleration.
Which method seems least accurate? Which seems most accurate?
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M-4 Acceleration in Free Fall

OBJECTIVE: To measure g, the acceleration of gravity; to propagate uncertainties.

APPARATUS:

Free fall equipment: cylindrical bobs (identical except in mass) which attach to paper
tape for recording spark positions; spark timer giving sparks every 1/60 second;
cushion; non-streamline bobs to study air resistance (by adding a front plate).

INTRODUCTION:

As shown in the figure below, the spark timer causes sparks to jump from sharp
point A (flush with the convex surface of the plastic insulator) through the falling
vertical paper tape to the opposite sharp point B flush with the other insulator
surface. As the bob (plus paper tape) undergoes free fall, sparks from A to B mark
the paper tape’s position every 1/60 second. These data give the bob’s acceleration
in free fall, g, if air resistance is negligible. Air resistance will be considered later.

EXPERIMENTAL SUGGESTIONS:

1. Position spark timer chassis near table
edge and with the convex surfaces (A
and B) extended beyond table edge. Put
cushion on floor directly under A and B.

2. Select the heaviest bob (no front plate).
Insert one end of about a meter of pa-
per tape between the two halves of the
cylindrical bob and fasten together with
thumb screw.

3. Insert paper tape between A and B.
Hold the tape end high enough (ver-
tically) above A and B that the bob
just touches below A and B (and is cen-
tered). Start the spark and immediately
release tape plus bob. Discard any part
of tape which fell through the spark gap
after bob hit the cushion.

A B

bob

cushion

4. Fasten sparked tape to table top with masking tape. Place a meter stick on its side
(on top of tape) so that ends of the mm graduations touch the dot track on the tape;
this minimizes any parallax error (see Appendix B).

5. Ignore the first spark dot; then mark and measure the position of every other of
the first 24 dots, thus using 1/30 s as the time interval instead of 1/60 s.
Estimate the dot positions to 0.1 mm, and assume this is your uncertainty,
δr = 0.1 mm. Don’t move the meter stick between readings! Tabulate as in
sample below.

6. Check the measurement set by remeasuring the tape after moving the meter
stick so that the recorded dot positions will be different. The differences
should be the same. How close are they?
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EXAMPLE OF TABULAR FORM FOR DATA:

Dot Time Position Average velocity Average acceleration
i t(i) r(i) v(i) a(i)

sec cm cm/sec cm/sec2

δt = δr = δv = δa =

0 t(0) a — —
1 t(1) b b− a (c− b)− (b− a)
2 t(2) c c− b (d− c)− (c− b)
3 t(3) d d− c (e− d)− (d− c)
4 t(4) e e− d (f − e)− (e− d)
5 t(5) f f − e (g − f)− (f − e)
6 t(6) g g − f (h− g)− (g − f)
7 t(7) h h− g (i− h)− (h− g)
8 t(8) i i− h (j − i)− (i− h)
9 t(9) j j − i (k − j)− (j − i)

10 t(10) k k − j (l − k)− (k − j)
11 t(11) l l − k (m− l)− (l − k)
...

...
...

...
...

SUGGESTIONS ON HANDLING DATA:

1. Analysis may be conveniently done using Excel.

2. Record your estimates of the uncertainties in measurement: δt, the uncertainty in
the times of the sparks; δr, the uncertainty in the positions of the dots on the paper.

3. Let t = 0 represent where your readings start (the actual starting value is arbitrary).
Tabulate the readings, r(i), on the meter stick at the end of each time interval as in
column 3 above.

4. Calculate the average velocity, v in each interval; then calculate the average accel-
eration, a during each interval, as shown in the table.

5. Calculate the uncertainty in each measurement of v and a by using the appropriate
technique described in “Propagation of Uncertainties” on page 7, and record it in
your table.

6. Define 〈a〉 to be the average of all the readings in the “average acceleration” column.
Find 〈a〉. This “average of the average” is more accurate than fluctuations in the
a column might indicate. Explain why. (Hint: Are the values independent? See
suggestion 8, below.)

7. With 1/30 s as the time interval, plot r vs time, v vs time, and a vs time. Note
that for v the value is the average of v between to adjacent rows, i and i + 1, and
therefore equals the instantaneous v at the middle of the interval.

8. Plot velocity as a function of time. Fit a straight line to the plot; equate the slope
of the fit to the acceleration, and the uncertainty in the slope to the uncertainty in
the acceleration. This approach is a better way of using all the data than the above
numerical one since averaging the a column involves summing the a column and in
such a sum all readings except (b− a) and (m− l) drop out!
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ERROR ANALYSIS:

Spark timing errors are negligible. However, spark position errors are not. The spark
in the spark timer does not follow the same path every time. Assume the deviation of
the path of a particular spark from the mean spark path is characterized by σ = 0.5
mm. Thus the computed value of (b − a) would be subject to an error ∼ 0.7 mm.
This is in excess of the 0.1 mm measurement uncertainty.

However, successive measurements of v are correlated: since v(1) ∝ b−a and v(2) ∝
c − b, a fluctuation in b will always push v(1) and v(2) apart. This in turn means
the uncertainty calculated for the slope of v̄ will be larger than it really is.

Calculate the slope using only every other v(i) because v(1), v(3), v(5) etc. use in-
dependent data. Estimate the uncertainty in the slope. Compare to the uncertainty
in the slope calculated in step 8 above.

Calculate g, the free-fall acceleration of the bob, using whichever method gives the
smallest uncertainty, and record both g and the uncertainty.

QUESTION:

The local value of g has been measured to be 9.803636 ± 0.000001 m/s2.1 Is the
discrepancy between this value of g and your value of g larger or smaller than the
uncertainty in your value of g?

OPTIONAL EXPERIMENTS

A. EQUIVALENCE OF GRAVITATIONAL AND INERTIAL MASS:

Galileo showed (crudely) that the acceleration of falling bodies was independent of
the mass. Check Galileo’s experiment by measuring the free-fall acceleration of the
light plastic bob (identical in size and shape to the heavy metal bob), and comparing
it to the free-fall acceleration of the heavy metal bob.

Is the difference between the two measurements of the free-fall acceleration larger
than the uncertainties in both, or smaller than the uncertainty in either, or some-
where in between?

B. EFFECT OF AIR RESISTANCE:

The effect of air resistance is small for streamlined objects at low velocities, but can
become large for non-streamlined objects, such as a parachute. To quantify it, first
make both bobs non-streamlined by inserting into the bottom of the bob the banana
plug holding a small flat plate. Then repeat the experiment for the non-streamlined
bobs. Since the force of air resistance, f(v), is a function of only velocity if the
size, shape and roughness are the same, then f(v) on the two bobs will be almost
the same since their velocities are similar. The net force on the falling body is then
F = mg − f(v). Hence

a =
F

m
=
mg − f(v)

m
= g − f(v)

m

1Wollard and Rose, “International Gravity Measurements”, UW Geophysical and Polar Research Cen-
ter, (1963) p. 211 and p. 236.
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and

〈a〉 ≈ g −
(

1

m

)
〈f(v)〉 .

Thus if we measure 〈a〉 for bobs identical except in mass and plot 〈a〉 against 1/m,
we should obtain a straight line. The slope of this line is the force 〈f(v)〉 due to air
resistance, and the extrapolation of the line to (1/m) = 0 gives g.
To improve the accuracy of your measurements of 〈f(v)〉 and g, pool your data
with other lab groups.

C. MEASUREMENT OF REACTION TIME BY FREE FALL:

(1) Have your partner hold the vertical meter stick while you place your thumb and
forefinger opposite the 50 cm mark but not grasping it. When your partner
releases the stick, grab it as soon as possible. From the distance through which
the 50 cm mark fell, calculate the time of free fall of the meter stick. This is
your “reaction time”.

(2) With thumb and forefinger, grasp a vertical meter stick at the 50 cm mark.
Release and grab it again as quickly as possible. From the distance through
which the 50 cm mark fell, calculate the time of free fall of the meter stick.
This is your “time scale for coordinated movement”. Compare this time to
your reaction time. Why might the two be different?

OPTIONAL QUESTIONS:

1. Estimate the effect on your value of g of the air’s buoyant force, Fa. For air density,
use ρ = 1.2 kg/m3 and for brass density (bob), ρbob = 8700 kg/m3.

Hints: Fa = ρambobg/ρbob (why?); a = g[1− (ρa/ρbob)] (why?)

2. According to universal gravitation, the moon accelerates the bob with a value am of

am = GMm
r2

= 6.67×10−11m3/s2kg(7.34×1022kg)
(3.84×108m)2

= 0.000033 m/s2

where G is the constant of universal gravitation, Mm is the mass of the moon, and
r is the distance between the moon and the bob. Since this am is 33 times the
uncertainty quoted for the local g value, why doesn’t the measurement indicate the
position of the moon at the time of measurement?

Hint: Remember the acceleration g in an orbiting earth satellite provides the cen-
tripetal acceleration for the circular motion but does not appear as “weight” of an
object in the satellite. While to first order the moon and sun effects are negligible,
there are detectable tidal effects in the earth (≈ 10−7 g) which one corrects for in
the absolute measurements. See Handbuch der Physics, Vol XLVIII, p. 811; also
Wollard and Rose, p. 183.
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H-3 Latent heat of vaporization of liquid-N2

OBJECTIVE:

To measure the heat of vaporization of liquid nitrogen, Lv, at its boiling point
(Tb = 77 K at standard atmospheric pressure).

APPARATUS:

Dewar flask; liquid nitrogen (ask for help in getting it from a large storage De-
war in room 4329 Chamberlin Hall); aluminum cylinder on a long thread; double
pan balance; calorimeter plus water jacket for thermal ballast (as in H-2a); timer;
thermocouple-type digital thermometer; selection of slotted masses; coffee pot for
hot water.

PRECAUTIONS:

Liquid N2 is fascinating to work with. However, keep in mind the following simple
safety precautions.

1. Never stopper a flask of liquid N2 with an unperforated stopper. This
can result in a dangerous explosion with risk of major injury. Stu-
dents found attempting this will be referred to the Dean of Students
for disciplinary action.

2. Have a perforated stopper on the Dewar throughout the experiment to prevent
condensation of moisture from the air on the inside of the flask.

3. Avoid prolonged contact of liquid N2 with your skin. The insulating
vapor layer may disappear and severe frost-bite may result.

INTRODUCTION:

When one lowers an aluminum cylinder of mass mAl, that is at room temperature,
Tr, into liquid N2 at its boiling temperature, Tb, the cylinder cools to Tb. The heat
given off during this cooling, QAl, will vaporize a mass mN of liquid N2.

You might expect to find Lv, of the nitrogen by setting

mNLv = QAl = mAlcAl(Tr − Tb) .

This method fails because cAl is not constant over the ∼ 220◦C temperature range
between Tr and Tb. See figure 1.

We can avoid this difficulty by noting that QAl is also the heat needed to warm the
same aluminum cylinder to from Tb to Tr. You can measure this heat by placing the
cold aluminum cylinder (at temperature Tb) in a “calorimeter” that contains water
and observing the change in temperature of the water, −∆T , –provided that the
final temperature of the water, Tf , is room temperature, Tr. It is hard to arrange
for Tf to end up exactly at room temperature, but if Tf is close to Tr, one can
accurately correct the calorimeter data for the small additional heat term, namely
mAlcAl(Tr − Tf ), since over the small Tr − Tf interval, cAl = 0.212 cal/g/K is
constant.

SUGGESTIONS ON PROCEDURE:

1. To maximize sensitivity (i.e. to get a large temperature change in the water) use
only enough water (∼125-150 grams) in the calorimeter to cover the metal cylinder.
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Figure 1: Specific heat capacity of Al vs. temperature.

2. The calorimeter is designed to thermally isolate the water from the surroundings.
The inner vessel of the calorimeter is mounted within, but thermally isolated from,
a surrounding water jacket, which is close to room temperature. The isolation isn’t
perfect, so here will be some small amount of heat flow between the calorimeter and
the jacket. To minimize the net heat exchange with the water jacket, you will want
to make the initial water temperature as far above the jacket temperature as you
expect it to end up below the jacket temperature after the water in the inner vessel
has been cooled by your Al cylinder. (The jacket temperature will remain fairly
constant during the experiment.) Estimate roughly the proper initial water and
calorimeter temperature. [Use the measured mass of the aluminum cylinder, mAl,
its specific heat (0.212 kcal/kg◦C) and the b.p. of liquid N2, Tb = 77 K. For this
rough calculation, assume that the specific heat of Al is constant with temperature.]
Determine the water mass, mw, and appropriate starting temperature.

3. Place the flask containing liquid nitrogen (plus perforated stopper) on one pan of
a balance and record the mass each minute for 10 minutes. (Why is the mass
decreasing?)

4. Record the temperature of the metal cylinder, TR, and then lower it (by a thread)
gently to the bottom of the flask. Replace the stopper (perforated) on the top of
the flask and continue recording the total mass each minute until it shows a slow
steady decrease.

5. Record the initial temperature, Ti, of the calorimeter, which you have chosen so
cleverly in section 2. Transfer the cold metal cylinder into the calorimeter, and
note the calorimeter temperature every two minutes (while gently stirring). Record
the mass of the flask of liquid N2 on alternate minutes. When the calorimeter
temperature has reached a slow steady rate of change and the mass of the flask of
liquid N2 is falling at a slow steady rate, discontinue the readings.
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6. Plot the mass of the flask plus nitrogen as a function of time. For the minutes that
the cylinder of metal was in the flask, subtract the mass of the cylinder. See the
figure for a typical plot.

t

m

a
b

c
d

e

f

g

How much of the N2 mass change
was caused by the heat from the
cylinder? If a-b and c-d were paral-
lel, it would be the vertical distance
between these lines. But c-d ordi-
narily has a smaller slope than a-b,
possibly because the evaporation of
liquid nitrogen between b and c has
cooled the upper part of the flask.

Hence we use the average of the two rates of fall by drawing a vertical line through
e, (the midpoint of line b-c). Then f-g estimates the mass, mN , evaporated by the
heat from the cylinder.

7. The final temperature, Tf , of the Al cylinder in the calorimeter usually will not
be quite the same as the initial temperature (= Tr) of the cylinder before it was
lowered into the liquid nitrogen.

Hence QAl will be the heat to warm the Al cylinder in the calorimeter to Tf plus
the mass of the cylinder × (specific heat of aluminum) × (Tr − Tf ).

Specifically if:

Lv = latent heat of vaporization of nitrogen
mN = mass of nitrogen evaporated by heat from the cylinder
mAl, cAl= mass and specific heat of Al cylinder

Ti = initial temperature of water and calorimeter
mw, cw = mass and specific heat of water
mc, cc = mass and specific heat of calorimeter and stirrer

ht = heat capacity of immersed part of thermometer,

then, if we neglect ht:

QAl = mNLv = (mwcw + mccc)(Ti − Tf ) + mAlcAl(Tr − Tf ) .

Calculate Lv from the above relation. The accepted value is 47.8 kcal/kg.

OPTIONAL:

1. Calculate the apparent specific heat of the Al block by use of

cAl =
Q

mAl(Tr − Tb)

and your data. How does your result compare with the accepted value of cAl = 0.212
kcal/kg? Explain. (See Introduction).

2. Observe (but do not touch) the following items after immersion in liquid N2: rubber
(get a piece from the instructor), pencil eraser.

3. Pour a little liquid N2 onto the floor. Explain the behavior of the small droplets of
liquid N2.
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M-11b Air Track Collisions

OBJECTIVE: To study conservation of energy and momentum in collisions.
APPARATUS:

Air track; assorted slotted masses; air supply; hose; gliders; photogates & support
stands; PASCO interface and computer.

PRECAUTIONS: The soft aluminum gliders and track surfaces dam-
age easily: Don’t drop!
With the air pressure on, use a glider to check that the track is level, and
free of high friction areas from scratches or plugged air holes.
All collisions must be free from any glider contact with the rail. In gen-
eral speeds which are too slow are overly influenced by residual friction
and air track leveling errors. On the other hand, speeds which too high
invariably cause pitch and yaw motions of the gliders which increase the
likelihood of physical contact with the track. You should perform a num-
ber of preliminary trials to discern which speeds work best.
Good alignment of the needle assembly is a necessity.

SUGGESTIONS:

1. Use the large gliders whenever possible. Small ones often tilt upon impact and hence
give excessive friction.

2. Turn on the air supply and experiment with the gliders. Adjust the leveling screw
so that the nominal cart acceleration is minimized. Adjust the air flow so the gliders
move freely without rocking side to side.

3. Make sure that the photogates are plugged into the first two phone jack inputs in
the PASCO interface module. Also set the two photogates approximately 40 to 50
cm apart and so that they track the 10-cm-long stripe in the picket fence.

4. Start the PASCO software by double-clicking “Experiment M11” in the
PASCO/Physics 201 folder on the desktop. The monitor should now look as shown
in Figure 1 below. Be sure to check the “Flag Length” constant for BOTH photo-
gates in the setup window. It should be set to 10 cm.

5. To start the data acquisition, click Record. To stop it, click Stop. Each time a glider
passes the photogate an entry will appear in the appropriate table column. NOTE:
The photogates measure the speed but do NOT sense the direction of motion. You
are responsible for the latter.

6. The results of this experiment are very technique-sensitive. Take a single glider and
practice sending it through both photogates until you are able to get reasonably
equivalent speed readings from both photogates. Check the behavior by launching
the glider from both ends and record, in your lab book, the speed measured in four
or five satisfactory trials. Do not delete the data, because it will be useful in the
“Measurement of Friction” section later. Estimate the precision associated with a
pair of velocity measurements, and show how this will affect your momentum and
kinetic energy measurements.
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Figure 1: The Pasco Capstone display for M11.

EXPERIMENT I: ELASTIC COLLISIONS, ONE CART INITIALLY AT REST

1. Choose gliders of equal mass (or make them approximately the same by fastening
weights on one). Set them on the track as in the figure below. Read step 2, and
predict what will happen before attempting.

2. With glider #1 at the end of track and glider #2 at rest near the center, give #1 a
push toward glider #2. After the collision, stop glider #2 before it bounces back.

Perform multiple trials until you achieve consistent results and record a few of them.

Check conservation of momentum and energy in the impact. In equation,

m1u1 +m2u2 = m1v1 +m2v2,

call velocities to the right positive, those to the left negative.

3. Comment on how well these two quantities are conserved and, if your results seem
poorer than expected, suggest possible sources of error.

4. Devise a method for determining how elastic is a rubber band collision and record
your results.

Suggested tabulations:

Glider: #1 #2 Velocity Readings: #1 #2

mass Before impact (u)

length After impact (v)
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Figure 2: Sketch of the glider configuration for elastic collisions.

Before Impact After Impact

u1 = u2 = v1 = v2 =

m1u1 = m2u2 = m1v1 = m2v2 =

1
2m1u2

1 = 1
2m2u2

2 = 1
2m1v2

1 = 1
2m2v2

2 =

change in momentum = ; % change in momentum = .

change in energy = ; % change in energy = .

EXPERIMENT II: ELASTIC COLLISIONS, BOTH CARTS INITIALLY MOVING

Perform the same procedure as Exp. I (steps 1, 2 and 3), except start both gliders
from opposite ends of the air track and with considerably different (but not too large
or too small) velocities.

EXPERIMENT III: INELASTIC COLLISIONS

Repeat Exp. II but for inelastic collisions by attaching cylinders with needle and
wax inserts. Note that the needle must lines up exactly with the insert or there will
be significant sideways motion when the two gliders strike.

elastic
spade wax

elastic
spade

needle

Figure 3: Sketch of the glider configuration for inelastic collisions.
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EXPERIMENT IV:

Increase m1 by adding masses and repeat Exp. I.

MEASUREMENT OF FRICTION:

Estimate the frictional force between the glider and track by using the velocity data
recorded before Exp. I. From any net decrease in velocity you should be able to obtain
the frictional force. Does this information help you understand the experimental
data?
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M-7 Simple Pendulum

OBJECTIVES:

1. To measure how the period of a simple pendulum depends on amplitude.

2. To measure how the pendulum period depends on length if the amplitude is small
enough that the variation with amplitude is negligible.

3. To measure the acceleration of gravity.

APPARATUS:

Basic equipment: Pendulum ball, with bifi-
lar support so ball swings in a plane parallel
to wall; protractor; infrared photogate and
mount; single pan balance.

Computer equipment: PASCO interface
module; photogate sensor (plugged into
DIGITAL input #1).

NOTE:The period is the time for a com-
plete swing of the pendulum. For the
most sensitivity the start and stop of the
photogate timer should occur at the bottom
of the swing where the velocity is maximum.

L

Fig. 1: Side view of pendulum ball
and bifilar support.

SUGGESTED EXPERIMENTAL TECHNIQUE:

1. Adjust the infrared photogate height so that the bob interrupts the beam at the
bottom of the swing. (Make sure the PASCO interface is on and that the phone
plug is connected to Digital Input 1.) The red LED on the photogate lights up when
the bob interrupts the beam. Rotating the photogate may help you to intercept the
bob at the bottom of the swing (but perfect alignment is not essential).

2. To initiate the PASCO interface software double click the “Experiment M-7” file in
the PASCO/Physics201 folder on the desktop. There will be just a single table for
recording the measured period.

3. Start the pendulum swinging and then start the data acquisition by clicking the

Record icon . Let the bob swing for about 17 periods. Click on the Statistics icon

, and view the statistics the computer calculates. Does it calculate the standard
deviation, or the standard deviation of the mean? See the “Characterization of
Uncertainties” section on page 5 for the distinction between the two. Record the
mean, the standard deviation, and the standard deviation of the mean.

REQUIRED INVESTIGATIONS:

1. Period vs Length: The period of the pendulum for small oscillations (for θ in radians,
θ � 1) is T = 2π

√
L/g, where L is the length from the support to the center of the

bob.
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For small oscillations, measure how T changes with L. Try five lengths from 0.10
m to 0.50 m. Change lengths by loosening the two spring-loaded clamps above
protractor. Make sure to note θ for each length.

Plot the square of the measured period, (T 2), versus length (L), and extend the
curve to L = 0. Add error bars. Plot the theoretical prediction that T 2 = (2π)2L/g
on the same graph. Is the discrepancy between measurement and prediction less
than the uncertainty of the measurement?

2. Measurement of g: With pendulum length at its maximum, measure L and T for
small-amplitude oscillations. Determine g, the acceleration of gravity.

Calculate the uncertainty in your determination of g. Note that ∆g =

g
√

(∆L/L)2 + (2∆T/T )2 (see the “Errors and Uncertainties” section of this man-

ual).

Is the accepted value of g = 9.803636±0.000001 m/s2 within the uncertainty of your
measurement?

See the “optional calculations” section below for possible real-life effects that one
must take into account if one wants to be as accurate as possible

3. Period vs Amplitude: For a pendulum of length L = 0.5 m, determine the depen-
dence of period on angular amplitude. Use amplitudes between 5 and 50 degrees. Be
careful when measuring the angle: to avoid parallax (see Appendix B on page 55)
effects, position your eye so the two strings are aligned with each other when reading
the protractor.

The amplitude of the swing will decrease slowly because of friction, so keep the
number of swings that you time small enough that the amplitude changes by well
under 5◦ during the timing. This effect is especially apparent at large amplitudes.

For each group of swings timed, record the average angular amplitude and the stan-
dard deviation in a table in your lab book.

The theoretical prediction for the period of an ideal pendulum as a function of
amplitude θ is:

T = T0

(
1 +

1

22
sin2 θ

2
+

1(32)

22(42)
sin4 θ

2
+ · · ·

)
where T0 = 2π

√
(L/g) and θ is the angular amplitude. This gives:

θ(deg) T/T0 (T − T0)/T0

5 1.0005 0.05
10 1.0019 0.19
15 1.0043 0.43
20 1.0077 0.77
25 1.0120 1.20
30 1.0174 1.74
35 1.0238 2.38
40 1.0313 3.13
45 1.0400 4.00
50 1.0498 4.98
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Plot your measurements of period as a function of angular amplitude. Include error
bars. Plot the theoretical prediction on the same graph. Is the discrepancy between
measurement and prediction less than the uncertainty of the measurement?

4. Compound Pendulum: There is a bar that you can swing
into place which will give half the swing at length L1 + L2

and the other half of the swing at length L2. The bar should
be positioned so the right face just touches the string when
the pendulum is at rest and hangs freely. In your lab book
first estimate the period of the motion (explain your logic)
and then conduct the experiment (stating the steps in your
experiment). Is your measured value close to what you
expected?

OPTIONAL CALCULATIONS (these pertain to item 3 above):

1. Show that the buoyant force of air increases the period to

T = T0

(
1 +

ρair
2ρbob

)
where T0 is the period in vacuum and ρ is the density. Test by
swinging simultaneously two pendula of equal length but with
bobs of quite different densities: aluminum, lead, and wooden
pendulum balls are available. (Air resistance will also increase
T a comparable amount. See Birkhoff, “Hydrodynamics,”
p. 155.)

2. The finite mass of the string, m, decreases the period to

T = T0

(
1− m

12M

)
where M is the mass of the bob (S.T. Epstein and M.G. Ols-
son, American Journal of Physics 45, 671, 1977). Correct
your value of g for the mass of the string.

L

L

1

2

1
2

3

Fig. 2: A compound
pendulum.

3. The finite size of a spherical bob with radius r increases the period slightly. When
L is the length from support to center of the sphere, then the period becomes (see
Tipler, “Physics” 4nd ed. p. 436, problem 67):

T = T0

√
1 +

2r2

5L2
' T0

(
1 +

r2

5L2

)
.

What is the resulting percent error in your determination of “g”?

NOTE: For a comprehensive discussion of pendulum corrections needed for an accurate
measurement of g to four significant figures, see R. A. Nelson and M. G. Olsson,
American Journal of Physics 54, 112, (1986).
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M-5 Projectile Motion

OBJECTIVE: To find the initial velocity and predict the range of a projectile.
APPARATUS:

Ballistic pendulum with spring gun and plumb bob, projectile, single pan balance,
elevation stand.

PART I. BALLISTIC PENDULUM INTRODUCTION:

protractor

spring guncatcher

Figure 1: The spring gun.

Figure 2: A side view of the catcher

A ballistic pendulum is a device commonly used to determine the initial velocity
of a projectile. A spring gun shoots a ball of mass m into a pendulum catcher of
mass M (See Figures 1 and 2). The catcher traps the ball; thereafter the two move
together. Linear momentum is conserved, so the momentum of ball before impact
equals the momentum of ball plus catcher after impact:

mu = (m+M)V (1)

where u = ball’s velocity before impact and V = initial velocity of combined catcher
plus ball.
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To find V , note that motion after impact conserves mechanical energy. Hence the
kinetic energy of the ball plus catcher at A in Fig. 2, just after impact, equals the
potential energy of the two at the top of the swing (at B). Thus

1

2
(M +m)V 2 = (M +m)gh . Hence, V =

√
2gh . (2)

ALIGNMENT:

If properly aligned, the suspension for the pendulum (see Figs. 1 and 2) prevents
rotation of the catcher. The motion is pure translation. To ensure proper alignment,
adjust the three knurled screws on the base so that

a. the plumb bob hangs parallel to the vertical axis of the protractor;

b. the uncocked gun axis points along the axis of the cylindrical bob. You may
need to adjust the lengths of the supporting strings.

PROCEDURE:

1. Measure m, M and the length L of the pendulum (see Figure 2).

2. Cock the gun and fire the ball into the catcher. Record the maximum angular
deflection of the pendulum. Repeat your measurements until you are confident in
your result to within one degree.

3. Find the maximum height h = L− L cos θ of the pendulum.

4. Calculate the initial velocity of the ball, u, as it leaves the gun.

5. Estimate the uncertainty in u. Hint: Since the largest uncertainty is likely ∆V , then
∆h is important. While h is a function of the measured L and θ, the uncertainty in
the angle measurement, ∆θ, will probably dominate. Estimate the uncertainty in u
by calculating u for θ+ ∆θ and for θ−∆θ. Remember to use absolute, not relative
errors when propagating errors through addition (see “Propagation of Uncertainties”
on page 7). Also make sure to use θ in radians.

PART II. RANGE MEASUREMENTS HORIZONTAL SHOT:

1. After finding u (the velocity of the ball leaving the gun), predict the impact point
on the floor for the ball when shot horizontally from a position on the table.

2. To check your prediction experimentally:

(i) Use the plumb bob to check that the initial velocity is horizontal.

(ii) Measure all distances from where the ball starts free fall (not from the cocked
position). All measurements refer to the bottom of the ball, so x = 0 corre-
sponds to one ball radius beyond the end of the gun rod. Check that the gun’s
recoil does not change x.

(iii) Tape a piece of paper to the floor at the calculated point of impact, and just
beyond the paper place a box to catch the ball on the first bounce.

(iv) Record results of several shots. (The ball’s impact on the paper leaves a visible
mark.) Estimate the uncertainty in the observed range.

(v) Is the observed range (including uncertainty) within that predicted?



M-5 PROJECTILE MOTION 36

R

h

3. Work backwards from the observed range to calculate the initial velocity u. Compare
this u to the u calculated in Part I.

4. Do the two u’s agree to within the uncertainty of the u calculated in Part I?

ELEVATED SHOT:

1. Use the stand provided to elevate the gun at an angle above the horizontal. This
angle can be read with the plumb bob and protractor as 90◦ - protractor reading.
For the elevated gun, be sure to include the additional initial height above the floor
of the uncocked ball.

2. Before actually trying a shot at an angle, again predict the range but use the value
of u which you found from item 3 of the horizontal shot procedure.

3. Make several shots, record the results and compare with predictions.

QUESTION:

From the measured values of u and V in Part I of this experiment, calculate the ki-
netic energy of the ball before impact, 1

2mu
2, and of the ball and pendulum together

after impact, 1
2(m+M)V 2. What became of the difference?

OPTIONAL:

1. Derive the result that for momentum to be conserved,
KEbefore impact

KEafter impact

=
m+M

m

Is this supported by your data?

2. Find the spring constant k of the gun from 1
2mu

2 = 1
2kx

2.
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M-12b Simple Harmonic Motion and Resonance (Air
Track)

This lab introduces the harmonic oscillator, and several phenomena pertaining thereto.

OBJECTIVES:

1. To study the period of the simple harmonic oscillator as a function of oscillation
amplitude.

2. To investigate whether Hooke’s Law holds for real springs.

3. To observe the transfer of energy from potential energy to kinetic energy, and back
again, as the phase of oscillation changes.

4. To observe the exponential decay of amplitude of the damped harmonic oscillator.

5. To investigate the phenomenon of resonance in the damped, driven harmonic oscil-
lator.

THEORY:

The restoring force F on a mass m attached to a “simple” one-dimensional spring
is proportional to the displacement from equilibrium: F = −k(x − x0), where k is
the spring constant (or “stiffness”) in N/m, x0 is the position of equilibrium (no net
force) and x is the actual position of the object. This is Hooke’s Law.

The equation of motion of the simple spring-mass system, F = ma = −k(x− x0), is
a 2nd order differential equation:

a =
d2x′

dt2
= − k

m
(x′) ,

where x′ ≡ x− x0. The most general solution for this equation may be given as

x′(t) = C1 cos(ω0t) + C2 sin(ω0t) ,

where ω0 ≡
√
k/m. In mathematics the adjective “harmonic” has the meaning

“capable of being represented by sine or cosine function”, so the spring-mass system
is often referred to as a harmonic oscillator. ω0 is the natural frequency of the
harmonic oscillator. C1 and C2 are arbitrary initial displacement parameters.

Alternatively the general solution may be written

x′(t) = A sin(ω0t+ φ0) ,

where φ0 is the starting phase and A is the amplitude.

The general solutions written above are time dependent and periodic. When the
phase varies by 2π (when one period T = 1/f = 2π/ω0 has elapsed), both the po-
sition, x′(t+T ) = x′(t), and velocity, v′(t+T ) = v′(t) return to their previous values.

Total energy (TE) is conserved in harmonic oscillation. As time passes kinetic energy
(KE) is transformed to potential energy (PE) and back again. Thus at any time t:

TE = constant = KE(t) + PE(t) =
1

2
m[v′(t)]2 +

1

2
k[x′(t)]2 .
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APPARATUS:

Basic equipment: Air track; assorted slotted masses; air supply; hose; adjustable
stop; glider; springs; timer; photogate & support stand; Hooke’s law apparatus.

Computer equipment: PASCO interface; photogate; motion sensor; speaker with
driver stem; power amplifier module.

PRECAUTIONS:

The soft aluminum gliders and track surfaces damage easily: Don’t drop!
With the air pressure on, check that the glider moves freely, and that the track is
level, and free of high-friction areas from scratches or plugged air holes.

Figure 1: Sketch of the air track configuration for Expt. 0.

EXPERIMENT 0: EQUIPMENT SETUP AND CHECKOUT:

1. Choose two springs of similar lengths.

2. Attach the springs to the air track as in the diagram above, setting the adjustable
end stop so that the springs are neither stretched beyond their elastic limits nor
capable of sagging onto the track as the glider oscillates (oscillation amplitudes ≤
20 cm will be requested below).

3. Choose the horizontal position of the photogate so the timing plate just cuts off the
beam when glider is in the equilibrium position (x− x0 = 0). The photogate phone
jack should be in the PASCO input 1.

4. Turn on the air supply and increase the blower speed until the the force of friction
appears to be small.

5. Displace the glider from equilibrium and then release it. Use your natural time-
keeping ability to estimate the period of oscilllation.

6. Initiate the Pasco software by double-clicking the “Experiment M-12 Part I” file in
the PASCO/Physics201 folder on the desktop.

7. Displace the glider from equilibrium, release it, and click Record. Let the glider
oscillate for about 10 periods. Click Stop.

8. Compare the mean period calculated by the computer to your estimate from above.
Do you trust the computer’s calculation?
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9. Click on the “Glider Period (Small Amplitude) (s)” button near the top of the data
table. Note that there are two choices for “Custom Timer”: “Glider Period (Small
Amplitude)” and “Glider Period (Large Amplitude)”.

10. Inspect the “Timer Setup” window, in particular the “Timing Sequence” section,
which gives the algorithm for how the computer calculates the glider period. Com-
pare the timing sequences of the two custom timer measurements noted in the last
step.

11. What is the minimum amplitude of oscillation that requires use of the Glider Period
(Large Amplitude) custom timer, and what is special about this amplitude?

EXPERIMENT I: DEPENDENCE OF PERIOD ON AMPLITUDE:

1. Use the computer to measure the period for oscillation with initial amplitudes of
4 cm, 8 cm, 12 cm, 16, and 20 cm: acquire data for 10 oscillations for each initial
amplitude. Use the appropriate custom timer for each measurement. If any period
measurements seem untrustworthy, reject them and take another dataset.

2. Make a table with the following columns: “initial amplitude of oscillations A (cm)”;
“mean period T (s)”; “standard deviation of the mean σT (s)”. Recall the distinction
between “standard deviation” and “standard devation of the mean” (see “Charac-
terization of Uncertainties” on page 5). Which of the two does the Pasco software
tell you?

3. The theory presented in the “Theory” section predicts that period is independent
of amplitude. Does your data support this? Frame your answer using the formal
language of error analysis, e.g. “The discrepancies between the five measurements
of mean amplitude are of the same order as the uncertainties in each measurement
(as characterized by the standard deviation of the mean), so therefore yes, the
experimental measurements are consistent with the theoretical prediction that period
is independent of amplitude.”

EXPERIMENT II: DOES HOOKE’S LAW HOLD FOR REAL SPRINGS?:

1. Make two sketches in your lab book, of the glider at equilibrium and after a dis-
placement from equilibrium.

2. Show that the effective force constant for two identical springs of force constant k
on either side of an oscillating mass is 2k.

3. Let us try to verify whether real springs satisfy Hooke’s Law, F = −k(x − x0).
Choose one of your two springs, hang it vertically from the Hooke’s Law apparatus,
and set the vertical scale so that the “zero” mark aligns with the bottom end of the
spring.

4. Make a table with columns “mass m (g)”, “weight F (N)”, “elongation x−x0 (cm)”.
Your first row of data should have zeroes in all three columns.

5. Starting with 2 g, add 5 g masses to the bottom of the spring, and measure the
elongation x − x0 of the spring for successively larger masses, until the elongation
exceeds the 14.5 cm range of the vertical scale.
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6. Plot the data using Excel in such a way that the slope of a straight line fit to the
data is k.

7. Inspect the plot: do all data points fall neatly on a straight line?
If “yes”: fit a straight line to the points, and write down “k” as given by the fit.
If “no”: is it possible that if a data point or range of data points were excluded,
the remainder could be well fit by a straight line? If it is, fit a straight line to the
remainder points, and write down k as given by the fit, as well as the range of values
of F which went into this determination of k.

8. Measure the mass m of the glider.

9. Using these measurements of k and m, calculate the period of the glider in the setup
for Expt. 1. Compare to what was actually observed: of the three quantities involved
in the comparison (T as measured in Expt. 1, m and k found here) identify the one
that has the greatest uncertainty, estimate that uncertainty, and then compare it to
the discrepancy between T and 2π

√
m/k. Which is larger, the uncertainty or the

discrepancy?

EXPERIMENT III: MEASURING x(t):

As mentioned in the “Theory” section, the general solution of the equation of motion
of the harmonic oscillator may be written

x′(t) = A sin(ω0t+ φ0) ,

which implies

v′(t) = Aω0 cos(ω0t+ φ0) = Aω0 sin(ω0t+ φ0 +
π

2
)

where A is the amplitude and ω0 the natural angular frequency, as before, and φ0

is the starting phase. Notice that the velocity has a phase shift of π
2 relative to the

displacement.

This means that kinetic energy of motion (1/2mv′2) is transferred into potential
energy (1/2 kx′2) and back again.

To capture this cyclic process we will again use the PASCO interface, replacing the
photogate with the motion sensor.

1. Remove the timing plate and attach an aluminum vane to the glider. Measure the
mass of this glider and predict the new natural frequency.

2. See setup picture above. Place the motion sensor approximately 60 cm from the
vane, collinear with the direction of oscillatory motion. Point the motion sensor at
the vane and tilt it about 10◦ upwards, and orient the vane so that its normal points
toward the motion sensor. Make sure the yellow phone jack is in Digital Input 1 and
the black phone jack is in Digital Input 2.
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Figure 2: Photo of setup for Expt. III.

3. Double click on the “Experiment M-12 Part III” file in the PASCO/Physics201 folder
on the desktop.

4. Displace the glider approximately 20 cm from equilibrium to initiate the oscillatory
motion. Click on the the Record icon to start your data acquisition. The graph will
simultaneously display both absolute position and velocity versus time.

5. Inspect the position measurement for “outlier” data points which indicate faulty
measurement. If any appear, stop the data acquisition, reorient the motion sensor
and/or the aluminum vane, and try again.

6. Practice a few times to make sure you can reliably obtain outlier-free, smoothly-
varying sinusoidal curves. Then run the data acquisition for just over five cycles.

7. Determine the initial phase (i.e., at t = 0), and the equilibrium position (x0).

8. Use the Data Highlight feature of the graph toolbar to better view a single full

cycle by highlighting the desired data and then clicking the Zoom-to-Fit button .

9. Using the cross-hair option to read out the relevant time, position and velocity,
make a table as below and fill in the missing entries. Identify units.

time phase( ω0t+ φ0 ) x′(t) v′(t) KE PE TE
0

π/4 ( 45 deg)
π/2 ( 90 deg)
3π/4 (135 deg)
π (180 deg)

10. Is the total energy a constant of the motion?

11. What fraction of the initial energy is lost after five full cycles?

EXPERIMENT IV: DAMPING OF THE MOTION:

We expect that by this point in the lab you have seen the the amplitude of the
motion diminishes over time. This suggests there might be friction. To our model
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from the “Theory” section, add a velocity-dependent friction force Ffriction = mRv′,
where R is the drag coefficient, so that the equation of motion becomes

F = ma = −kx′ −mRv′ .

This is still a linear, second-order differential equation, so the solution can still be
written with two free parameters, as in the “Theory” section, and turns out to be

x′(t) = Ae−Rt/2 sin(ωt+ φ) ,

where ω =
√
k/m−R2/4. The graph below shows an example of this “exponential

damping”.

Figure 3: Exponential damping: R=0.344 s−1, ω = 5.17 s−1.

1. Displace the cart by approximately 20 cm from equilibrium, let it go, and click
Record. Make sure the position measurement is reliably free from outliers.

2. Once the position measurement is reliably free of outliers, start over: displace the
cart by 20 cm from equilibrium, let it go, and click Record. Keep recording data
until the amplitude of the motion has reduced to 10 % of what it was initially. This
should take a few minutes.

3. Use the Data Highlight button to select as much data as possible, then click the

button and choose the Damped Sine fit to estimate the drag coefficient, R. If
there are outliers, the fit may be visibly poor.

4. State the mathematical condition that the approximation ω ∼
√
k/m is valid. Is

this condition satisfied by your values of R and
√
k/m?
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EXPERIMENT V: RESONANCE:
In the real world an oscillator is often set oscillating by an external driving force which

continues to drive the oscillator as the oscillator moves. Suppose the driving force is
Fd cosωdt, where Fd is a constant, and there is damping as in the previous section. The
new equation of motion is then:

F = ma = −kx′ −mRv′ + Fd cosωdt or
Fd
m

cosωdt =
d2x′

dt2
+R

dx′

dt
+
k

m
x′ .

As we know from the previous section, in the absence of the driving force the sys-
tem exhibits exponentially damped oscillations. If the driving force has a frequency ωd
sufficiently close to the natural oscillation frequency

√
k/m, energy may be fed into the

oscillator faster than the damping can take it away, and the amplitude of oscillation may
become very large. This is called “resonance”.

The exact solution of the equation of motion of the damped, driven oscillator is te-
dious. Since we are interested only in resonance, we assume oscillatory solutions (the
“underdamped” case) and can quickly find solutions of the form

x′ = Atransiente
−(R/2)t sin(

√
k/m−R2/4t+φ1)+

Fd
m [(k/m− ω2

d)
2 + ω2

dR
2]1/2

cos(ωdt−φ2),

where the first term is the transient solution, identical to the damped harmonic oscillator
described in the last section, and the second term is the steady-state solution. At “large”
times t� 2/R, the transient solution has decayed away, and only the steady-state solution
remains, so that

x′(t� 2/R) ∼ Fd
m [(k/m− ω2

d)
2 + ω2

dR
2]1/2

cos(ωdt− φ2) .

The decay of the transient is illustrated in the figure below. As long as the amplitude of
the transient is similar to the amplitude of the steady-state term, one observes a “beat”
between the two frequencies.

Figure 4: Transient decay:
√
k/m = 0.824 Hz, ωd = 0.810 Hz

Suppose that ωd can be varied while k, m, and R remain fixed. Observe that if
ωd =

√
k/m, the steady state amplitude A ≡ Fd

m [(k/m−ω2
d)2+ω2

dR
2]1/2

reaches its maximum

value, Amax, which can be written Amax = (Fd/k)(
√
k/m/R) . The first element in this
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product is the extension x − x0 the force Fd would produce if it were statically applied.
The second element is a dimensionless number which could be much greater than one if
the damping is small (as it is in the air track system). This is why resonance is important!

In this lab we will only investigate the amplitude of the steady-state solution as a
function of driver frequency. If

√
k/m� 2/R, we expect this to be sharply peaked about

ωd =
√
k/m, as sketched in the figure below.

Figure 5: Sketch of the relative steady-state amplitude squared vs driver frequency.

1. Detach the fixed spring end stop and place the speaker as shown in the picture
below. Loop the spring through the small slot in the speaker driver stem using the
same considerations for the spring extension as in the previous experiments.

Figure 6: Photo of air track setup with motion sensor and speaker.

2. Make sure the speaker power leads are plugged into the red and black outputs of
the Pasco 850.

3. Double click on the “M-12 Experiment IV” file in the PASCO/Physics201 folder on
the desktop.

4. On the 850 Output 1 section of the “Signal Generator” window (see figure below),
set “frequency” to your best estimate of

√
k/m, and set “amplitude” to 1 V. Make

sure “Waveform” is set to “Sine”. Click the “On” button when you are ready to
take data. NOTE: The nominal step sizes for adjusting the amplifier frequency and

voltage are larger than you will want. To alter the step size use the buttons.

5. With maximum blower airflow, displace the cart approximately 20 cm from equi-
librium to initiate the oscillatory motion. Click the Record icon to start data ac-
quisition. Verify the data is free of outliers. If not, reorient motion sensor and/or
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Figure 7: Pasco software Signal Generator window.

aluminum vane. You may need to give the glider a push to keep the amplitude near
20 cm. Once outliers are gone, stop taking data.

6. Make a table with three columns: “Driver Frequency ωd (Hz)”, “Steady-state Am-
plitude A (m)”, “Steady-state Frequency (Hz)”.

7. Displace the cart approximately 20 cm from equilibrium to initiate the oscillatory
motion. Click Record, and wait long enough (likely several minutes) for the transient
to decay. While you are waiting, look for “beating” between the driver frequency and
the natural frequency. Once the transient has decayed to nothing, record data for

another 30 seconds. Highlight these last 30 seconds of data, click the button,
and choose the “Sine” option to fit a sinusoid to them. The software lets you choose
data points to exclude; if there are outliers, use the software to exclude them. Verify
the steady-state amplitude and frequency returned by the fit seem reasonable, and
record them in the table.

8. Set the amplifier frequency 0.01 Hz steps above and below resonance and record data
until you achieve steady-state behavior. Repeat for 0.10 Hz and (if time permits)
0.40 Hz steps.

9. Does the “Steady-state frequency” returned by the fits match the driver frequency?

10. Plot the relative amplitude squared (A/Amax)2 vs frequency offset (ωd −
√
k/m).

Estimate the full width at half maximum for this curve: it should equal R from
Expt. IV.

11. Write down one example of resonance that you have experienced in ordinary life.
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S-1 Transverse Standing Waves on a String

OBJECTIVE: To study propagation of transverse waves in a stretched string.

INTRODUCTION:

A standing wave in a string stretched between two points is equivalent to superposing
two traveling waves on the string of equal frequency and amplitude, but opposite
directions. The distance between nodes (points of minimum motion) is one half
wavelength, (λ/2). Since the ends of the string are fixed, the only allowed values of
λ are are λk = 2L/k, k = 1, 2, 3 . . .

The wave velocity, v, for a stretched string is v =
√
F/µ where F = tension in

the string and µ = mass per unit length. But v = fλ and hence only certain
frequencies are allowed:

fk =

√
F/µ

λk
. (1)

N

A

N

N N

A

N

First mode

Second mode

Fourth modeN N

Figure 1: The Modes of a String

λ

2

λ

Figure 2: A close-up

PART A: Waves from a mechanical driver (i.e. a speaker)

APPARATUS:

Basic equipment: Pasco interface; electrically driven speaker; pulley & table clamp
assembly; weight holder & selection of slotted masses; black Dacron string; electronic
balance; stroboscope.

The set-up consists of an electrically driven speaker which sets up a standing wave
in a string stretched between the speaker driver stem and a pulley. Hanging weights
on the end of the string past the pulley provides the tension.

The computer is configured to generate a digitally synthesized sine wave (in volts
versus time) with adjustable frequency and amplitude (max: ∼10 V).
PASCO interface: This transforms the digital signal into a smooth analog signal.
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Precautions: Decrease the amplitude of the signal if the speaker makes a rattling
sound. The generator is set to produce sine waves; do not change the waveform.

Note: Although the speaker is intended to excite string vibrations only in a plane,
the resultant motion often includes a rotation of this plane. This arises from non-
linear effects since the string tension cannot remain constant under the finite ampli-
tude of displacement. [See Elliot, Am. J Phys. 50, 1148, (1982)]. Other oscillatory
effects arise from coupling to resonant vibrations of the string between pulley and
the weight holder; hence keep this length short.

Bridge
Speaker

L

Table

Figure 3: The apparatus

PROCEDURE: CHECKING EQUATION (1)

1. Procure a length of string about 1.5 meters long.

2. Carefully weigh the string, and calculate µ. Note this in your lab notebook.

3. Set up the speaker, bridge, pulley and string as in the above figure. Make the
distance, L, between the bridge and the pin of the speaker be about 1.2 m, and
measure it accurately using the two meter ruler; record this in your lab notebook.

4. Place the sheet of paper provided on the table; this will make it easier to see the
vibration of the string.

5. Double click on the “Experiment S-1” file in the PASCO/Physics202 folder on the
desktop. The display will appear as shown in Fig. 4.

6. You will see that the computer is set to produce a 60 Hz sine wave with an amplitude
of 2 V . To start the string vibrating click the “On” button.

7. Click on the up/down arrow in order to change the amplitude or the frequency of
the signal.

NOTE: The nominal step sizes for adjusting the amplifier frequency and voltage

may be much too large. To alter the step size use the buttons. To alter the

current or voltage use the buttons. You can also change the value directly by
clicking the mouse cursor in the numeric window and entering a new value with
keyboard number entry.



S-1 TRANSVERSE STANDING WAVES ON A STRING 48

Figure 4: The Pasco Capstone display.

8. Stop the signal generator, put a 200 g mass on the mass hanger and restart the signal
generator. Record the total mass and tension in your lab notebook. In the next few
steps you’ll keep the tension in the string constant and look for the frequencies of
different modes.

9. Measure the frequency f2 of the k = 2 mode using the following method. Once you
have observed the k = 2 mode, decrease the voltage to the smallest value at which
you can clearly see it.

10. Next, decrease the frequency until the mode is too small to see. Then, increase
the frequency in 1 Hz steps, noting the frequency at which the mode amplitude is
maximum. Continue increasing the frequency until the mode amplitude is again too
small to see. Then, decrease the frequency by 1 Hz steps, and note when the mode
amplitude is maximum. Once you have done this, discuss with your lab partners
what is the best choice for f2.

11. (Optional) Use the stroboscope to confirm f2 (note the stroboscope is calibrated in
cycles per minute, not Hz). The value should be close to 70 Hz.

12. Find and record the frequencies f3, f4, f5,...of as many higher-order modes as you
can.

13. Find and record f1. Be especially careful to use the lowest possible voltage, because
the mode amplitude can become large.
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14. Divide the various frequencies fk by k and enter the values in a table. Calculate the
average value of fk/k.

QUESTION:

Q1: Use this average value of fk/k to calculate the mass per unit length of the
string. How does it compare with your measurement?

15. Choose six masses between 100 g and 1 kg and enter the values in a data table.

16. Determine the resonant frequency of the second mode of the string under these
different tensions and record your results. (Hint: increasing the mass by a factor of
two increases f2 by nominally a factor of

√
2.)

17. Plot a graph of frequency versus mass, m, and include the zero value.

18. Plot a graph of frequency versus
√
m and again include the zero value.

QUESTIONS:

Q2: Which of the two graphs can be fitted with a straight line? A parabola? Why?

Q3: From the slope of the graph having the linear relationship obtain the mass per
unit length of the string.

Q4: Which of the three methods of estimating the mass per unit length of the string
seems most accurate?

FOR FURTHER INVESTIGATION:

Vibrations on a circular membrane are made visible here:

http://www.acs.psu.edu/drussell/Demos/MembraneCircle/Circle.html
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S-2 Velocity of Sound in Air

OBJECTIVE:

To calculate the velocity of sound from measurement of the wavelength in air for
sound of a certain frequency.

APPARATUS:

Resonance tube with arrangement for varying water level (use only distilled water);
rubber tipped hammer; tuning fork; Hg thermometer.

INTRODUCTION:

For a closed tube, resonance occurs at tube lengths of an odd multiple of one-fourth
wavelength, i.e. at λ/4, 3λ/4, 5λ/4 etc.

SUGGESTIONS:

1. Find the positions of the water level in the tube for the first three of these
resonances. Use these readings to calculate the speed of sound, v = |~v|. Initially
have enough water that you can raise the level above the first resonance position.
The tuning fork frequency is on the fork.

Since the effective end of the resonance tube is not at the tube’s end, do
not use the position of the tube’s top in your calculations, but rather take
differences between the other readings.

2. Sound waves in gases have a speed v =
√
γRT/M . (Recall the formula for the speed

of sound on a string, v =
√
T/µ (e.g., Lab S-1)). Correct your value of v to 0◦C

(T = 273.16 K) and compare with that accepted for dry air at 0◦C: 331.29 ± .07 m/s,
[Wong, J. Acoust. Soc. Am., 79, 1559, (1986)]. For humid air see 3. below.

3. We quantify proportions in gas mixtures by the pressure each gas contributes to the
total pressure. This is called the “partial” or “vapor” pressure. Think of the speed
as resulting from an average < γ/M >,

< γ/M > = [(γa/Ma)Pa + (γw/Mw)Pw] /(Pa + Pw) ,

so that

vdry ∼= vhumid
√

(γa/Ma)/ < γ/M > ,

where γair = 1.40, γw = 1.33, Pa is the partial pressure of air, Pw is the vapor
pressure of water, Ma ∼ 29 kg and Mw = 18 kg.

How should the vapor pressure of water, Pw, in the tube affect the speed?

OPTIONAL: Humidity changes will affect tuning of what musical instruments?

4. What effect does atmospheric pressure have on the velocity of sound in dry air?
(Assume air at these pressures is an ideal gas.)

5. Viscosity and heat conduction in the tube may reduce v by ∼0.1%. See N. Feather,
“The Physics of Vibrations and Waves”, Edinburgh Univ. Press, (1961), p. 110-120;
this reference also has a delightful historical account (including Newton’s famous
goof).
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A Appendices

A Precision Measurement Devices

Vernier Calipers:

outside calipers

0
1 2 3 4 5

1 2 3 4 5 6 7 8 9 10 11 12 13

INCH

mm

cenco
3

8 9

inside calipers

vernier scale

depth gauge

fixed scale

Figure 1: The vernier caliper

A vernier caliper consists of a fixed scale and a moving vernier scale. In a metric
vernier the fixed scale is marked in centimeters and millimeters, the vernier scale is
nine millimeters long, and is divided into ten parts each 0.9 millimeters long. The
distances of each line from the first are therefore 0.9, 1.8, 2.7, . . . ,mm or generally:
di = 0.9 × i, where di is the distance between the zero line and the ith line of
the vernier scale. If the vernier caliper is closed, so that the two jaws touch each
other, the zero of the fixed scale should coincide with the zero of the vernier scale.
Opening the jaws 0.03 cm = 0.3 mm will cause the fourth line (the three line which
is a distance of 2.7 mm from the zero line of the of the vernier scale) to coincide
with the 3 mm line of the fixed scale as shown below.

0
1

Figure 2: The vernier reads 0.03 cm

Below is another example of vernier reading; the arrow shows which mark on the
vernier scale is being used.

9 10

Figure 3: The vernier reads 9.13 cm
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EXERCISES:

A. Close the vernier and observe that the first vernier mark coincides with the zero of
the centimeter scale.

B. Open the jaws of the vernier very slowly and observe how the different vernier marks
coincide successively with the millimeter marks on the fixed scale: the first mark
coincides with the 1 mm mark on the fixed scale; then the second mark coincides
with the 2 mm mark on the fixed scale; then the third mark coincides with the 3
mm mark on the fixed scale and so on.

C. Estimate the dimension of an object using a meter stick and then use the vernier
caliper to measure the dimension precisely.

D. In the four examples of Fig. 4 determine the actual reading.

3 4 4 5

a) b)

6 7 1 2

c) d)

Figure 4: Test cases

Micrometer:

A micrometer can measure distances with more precision than a vernier caliper. The
micrometer has a 0.5 mm pitch screw, this means that you read millimeters and half
millimeters along the barrel. The sleeve is divided into 50 divisions corresponding
to one hundredth of a millimeter (0.01 mm) or 10 µ each. The vernier scale on the
micrometer barrel has ten divisions, marked from 2 to 10 in steps of two. The “zero”
line is not marked ‘0’, but is longer than the others. The vernier allows you to read to
the nearest thousandth of a millimeter, i.e., to the nearest micron (0.001 mm = 1 µ).

Precaution:

Great care must be taken in using the micrometer caliper; a ratchet
knob is provided for closing the caliper on the object being mea-
sured without exerting too much force. Treat the micrometer with
care, ALWAYS close the calipers using the ratchet knob, this pre-
vents tightening the screw too strongly. Closing the calipers too hard
damages the precision screw.
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Mitutoyo
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Figure 5: The micrometer calipers

Below are two examples of micrometer reading. The arrow shows which mark on
the vernier scale is being used.
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Figure 6: The micrometer reads 20.912 mm
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Figure 7: The micrometer reads 3 µ

Fig. 7 introduces “zero error”, which occurs when the micrometer doesn’t read zero
even though anvil and spindle are touching. The zero line on the barrel is barely
visible, and the vernier reads 0.003 mm = 3 µ; the zero error is ε0 = 3µ.
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A negative zero error, as shown below, requires a moment of thought.
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Figure 8: The micrometer reads -4 µ

In Fig. 8 the zero line on the barrel of the micrometer is obscured by the sleeve,
(the “zero” line on the sleeve is above the “zero” line on the barrel) this corresponds
to a reading of -0.5 mm; the vernier reads 0.496 mm the zero error is then ε0 =
−0.5 + 0.496 = −0.004mm = −4 µ.
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B PARALLAX and Notes on using a Telescope

1. PARALLAX:

To do quantitative work in optics one must understand parallax and how it may be
eliminated. PARALLAX is defined as apparent motion of an object caused by actual
motion of the observer.

As the observer moves left and right, object 1
appears to move to the left and right of object
2. The amount by which object 1 appears to
move is proportional to the distance between
object 1 and object 2. If object 1 comes in
front of object 2, the direction of its apparent
motion reverses.

eye

2

1

Try this with two fingers.

Note that if object 1 is an image and object 2 a cross hair, the absence of parallax
shows that the cross hairs are in the plane of the image.

2. Focusing a Telescope for Parallel Rays:

O = objective lens

E= eye piece.  It

may be a single

C=cross-hairs

eye

lens or several

E

lens.

C

TB

O

The eyepiece E slides back and forth in the tube T and one should first adjust the
eyepiece to give a clear image of the cross hairs. Then move the tube T back and
forth in the barrel B until the image of a distant object, formed by the objective
O, falls on the plane of the cross hairs. The test for this is the absence of parallax
between the cross hairs and image.

The rays from a distant object are nearly parallel. For viewing a distant object, use
an open window if the window glass is not accurately plane. Otherwise poor image
formation may result. You can check by trying it both ways. At night use a distant
object in the hallway.

The telescope, now focused for parallel rays, will stay so as long as the distance
between O and C is unchanged. One may still adjust the eyepiece position to suit
the observer.

3. Finding an Image in a Telescope:

If you have trouble finding an image in a telescope, locate the image first with your
unaided eye, and then pull the telescope in front of your eye, aligning it with your
line of sight. With high magnification it is difficult to find the image in the telescope
because the alignment must be nearly perfect before the image appears in the field
of view. The eye has a rather large field of view so that the image will be visible
over a range of positions.


