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Prefai:e

One of the pleasures of teaching electronics is that few people doubt its importance
and usefulness. We live in a society replete with radios, televisions, computers, and a
plethora of other electronic gadgets. A knowledge of electronics is vital to a variety of
occupations and useful to many more. No truly educated person can completely
neglect the study of electronics.

This book came about as a result of a course taught in the Physics Department at
the University of Wisconsin in Madison. The students in the course are mostly Juniors
majoring in physics or engineering, and it is assumed they have had a good
introductory physics course and a course in calculus. No previous knowledge of
electronics is assumed.

The more advanced mathematical techniques (differential equations, complex
variables, and Fourier analysis) are explained in some detail where they are first
encountered, and students with no previous exposure to these topics should be able to
understand them without great difficulty.

The book divides naturally into two parts. The first part (Chapters | to 5) covers
linear circuits. The second part (Chapters 6 to 12) covers nonlinear circuits.

The flavor of the text changes somewhat after Chapter 5, moving from a careful
pedogogical treatment of linear circuit analysis techniques to a broad survey of some
of the more important applications of the various nonlinear components. The goal is
to make the student comfortable with the relatively straightforward analysis of linear
circuits before launching into the more eémpirical, but more interesting and useful,
aspects of nonlinear circuits. A too hasty treatment of linear circuits seems to be a
considerable handicap to students as they advance to the more difficult topics.

The first two chapters cover the fundamentals of direct-current (dc) circuits,
Chapter 3 introduces the basic linear alternating-current (ac) components — the
capacitor and the inductor — and then discusses transient circuits (i.e., circuits in

-which the sources are dc but are turned on or off abruptly). The equations describing

such circuits are the simplest type of differential equations, and even students with no
previous exposure to differential equations are able to learn to quickly solve such
problems. Chapter 4 deals with sinusoidal ac circuits. The time-domain sclution of
one simple case is presented using differential equations, but the student is quickly
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introduced to the use of complex impedance as a shortcut to reduce such ac circuits to
circuits for which the techniques of dc circuit analysis can be used. Chapter 5
concludes the discussion of linear circuits with an introduction to Fourier methods
and distributed circuits, with emphasis on transmission lines and waveguides. This
chapter is mathematically the most difficult of the book, requiring integration of
complex variables, but the emphasis is on the physical ideas rather than the
mathematical methods.

In Chapter 6 the diode and its applications to rectifier circuits are covered.
Chapters 7 and 8 deal with the basic nonlinear active components — vacuum tubes,
field effect transistors, and bipolar transistors. The emphasis on vacuum tubes runs
counter to the trend in modern electronics books, but it reflects my feeling that their
operation is easier for the students to understand than semiconductors. Furthermore,
vacuum tubes are far from being replaced in devices such as oscilloscopes, televisions,
and high-power radio transmitters In Chapter 9 the operational amplifier is
discussed, which is rapidly becoming the workhorse of analog electronics. The
discussion of operational amplifiers is used as an opportunity to treat the important
practical subjects of negative feedback, gain-bandwidth product, noise, and circuit
isolation. Chapter 10 contains a collection of other useful nonlinear devices and
circuits that the student is likely to encounter. Chapter 11 deals with digital and logic
circuits that form the building blocks of digital computers. To treat this important
and rapidly developing field in the depth that it deserves would have required a book
considerably longer than I was willing to write. Consequently, this chapter should be
viewed as the barest introduction to digital electronics. Most electronics textbooks
conciude with a discussion of the digital computer as the most sophisticated
application of electronics, and rightly so. It seemed a shame, though, for the student
to complete a course such as this without knowing how a radio or television works.
Consequently, a brief chapter at the end describes communications systems,
including radar, in a very general way.

The text was originally intended to contain just enough information for the
average student to absorb comfortably in a one-semester course. During subsequent
revisions, topics were added here and there, and a certain selectiveness would
probably now be required. The student might be encouraged to read the entire book,
but certain sections, such as the whole of Chapters 5 and 12 and most topics in
Chapter 10, could be touched on lightly or not at all without great loss of continuity.

Problems are an integral part of learning any technical subject such as
electronics, and each chapter contains a number of problems designed to test and in
many cases expand the student’s knowledge of the subject. Problems in which the
student can find the right equation and just plug in the numbers are largely avoided.
The problems span a considerable range of difficulty. Answers to the odd-numbered
problems are included in Appendix K, and a Solutions Manual for the text is
available for instructors.

The course is designed to be accompanied by a laboratory. Although electronics
can be taught strictly from a book, there is no substitute for the kind of hands-on
experience that a laboratory provides. At this level, the equipment required is very
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modest and represents an excellent investment in the quality of teaching. Appendix L
contains a number of suggested laboratory experiments that have been used for many
vears in my course at the University of Wisconsin.

I am indebted to Professor Stewart Prager for a careful reading of an early
version of the manuscript and for numerous helpful suggestions. Additional sugges-
tions were provided by Tom Lovell, Kevin Miller, Don Holly, and Mike ZarnstorfF.
The laboratory experiments were in large part inherited from Professor Wilmer
Anderson. The tedious task of typing the many revisions of the manuscript was
capably performed by Mike Seldomridge and Kay Shatrawka. Finally, to my
students, who have taught me more about electronics than they realize, I want to
dedicate this book.

Madison Wisconsin J. C. Sprott
April, 1981
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chapter 1
dc Circuit
Components

1.1 Current and Voltage

The study of electronics is largely a study of the behavior and relationship of two
quantities — current and veoltage. It is crucial, therefore, that the meanings of
current and voltage be clearly understood.

Current is defined as the amount of electrical charge crossing a surface per unit
time. In the International System, abbreviated as SI, from the French (formerly
MKS), the unit of current is called the ampere (abbreviated amp or A) and is equal
to 1 coulomb per second:

1A=1Gfs -

Electrical currents are usually carried by electrons. By historical accident, the charge
of the electron (—e) was defined as being negative and is given by

e=1.6x10""C

Therefore, the electrical current always flows in a direction opposite to the direction
in which the electrons move. In the study of electronics, one rarely worries about
what electrons are doing, and it is usually more convenient to imagine positive
charges which flow in the same direction as the current. A current of 1 A requires
6.2 x 10'8 electrons to cross a surface during each second. Since this number is'so
large, we normally don’t notice the quantization of currents.

Voltage is defined as the amount of energy required to move a unit of electrical
charge from one place to another. In the SI system, the unit of voltage is called the
volt (abbreviated V) and is equal to one joule per coulomb:

1V=1]J/C

The use of “V” for both an algebraic quantity and a unit of voltage is a potential -
source of confusion in expressions such as V=5 V. (Remember: the algebraic
quantity is in italic.) Implicit in the definition is the fact that only voltage
differences have meaning. To say that a certain point in an electrical circuit has a
voltage of 12 V is meaningless unless one designates a point in the circuit as a reference
(zero voltage) point. Often such a reference point is referred to as a ground, because
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it is usually connected to a metal case or chassis which encloses the circuit and is in
turn connected electrically to the earth. The symbol for a connection to ground is i
Circuits are often grounded as a safety precaution to ensure that those parts of a circuit
that the user is likely to touch are at the same voltage as the ground on which he or she
is standing.

Electrical energy has to be supplied to move a positive charge (to make a current
flow) toward a point with a higher (more positive) voltage. Current will tend to flow
of its own accord from a high voltage to a lower voltage point, and in so doing will
dissipate (convert into other forms) electrical energy. Other terms which are often
used instead of voltage are potential and electromotive force (emf).

A common analogy which is useful for visualizing the concepts of voltage and
current is a water system in which a pump raises a mass m of water to a water tower at
height 4 above the ground from which it flows back to ground level. The energy
required to raise the water to the tower is given by mgh where g is the acceleration due
to gravity (g=29.8 m/s?). The gravitational potential (potential energy per unit
mass) is proportional to the height above the ground and is analogous to the voltage
in an electrical circuit. The flow rate, kilograms per second, is analogous to the
current in an electrical circuit.

1.2 Resistance

If a rod of material has a voltage difference ¥ between its ends, a current / will flow
through the rod. The current will flow from the high voltage end toward the end at
lower voltage. To a very good approximation, the voltage and current are
proportional:

V=IR | (1.1)

where the proportionality constant R is called the resistance. Equation 1.1 is called
Ohm’s law, although on close examination it is never precisely obeyed. The
resistance R has units of volts per amp which we call an ohm (abbreviated Q):

1Q=1V/A

Typical resistor values range from about 1  to about 1 MQ (equal to 10° ohms). A
related quantity is the conductance G, defined as 1/R. The unit of conductance is the
siemens (formerly called mho) and is abbreviated U.

There is a vast difference between the resistance of different materials. Materials
with very low resistance such as silver, copper, aluminum, and other metals are called
conductors. Materials with very high resistance such as glass, rubber, and air are
called insulators. A perfect or ideal conductor is one in which R = 0, and so accord-
ing to equation 1.1, an ideal conductor cannot have any voltage difference between
its ends, even though a large current may be flowing through it. Certain metal alloys
at temperatures near absolute zero (—273°C) are ideal conductors and are called
superconductors. A perfect or ideal insulator is one in which R is infinite (or G = 0);
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hence no current will flow, even though a large voltage difference may exist. The only

ideal insulator is a perfect vacuum.
Some materials such as carbon have medium resistance and can be used to form

electrical circuit elements called resistors. Composition resistors are produced by
mixing small grains of carbon in an insulating resin and molding the composite into a
short cylinder with conducting copper leads attached to each end. These leads are
called terminals. By varying the amount of carbon, resistance values ranging from a
few ohms to many megohms can be made. Resistors with resistance less than about
100 kQ can be made using a coil of wire of some poorly conducting alloy such as
manganin (copper, manganese, and nickel). Such wire-wound resistors are more
expensive, but they have higher stability and heat dissipation capabilities. The
resistance value is commonly indicated by a color code as described in figure 1.1.

Biack
Brown
Red
Orange
e Yellow
Green
Blue
Violet
Gray
Tolerance gg:;'
. digit digit 10" Silver

. : No color

§% tolerance
10% tolerance
20% tolerance

I N=OONDPNAON—O

Flg. 1.1 Resistor color code. The third band indicates the power of 10 by which the first two
digits are multiplied. A resistor with yellow-violet-red-silver would be 4700 Q +10%.

Real resistors don’t precisely obey Ohm’s law. When current passes through a
resistor, it gets hot, and its resistance changes slightly. Also, the current does not
change instantly when the voltage is abruptly changed, and vice versa. It is,
nevertheless, useful to define an ideal resistor as one in which Ohm’s law is exactly
obeyed. An electrical circuit containing such ideal components can be analyzed in a
systematic manner and usually behaves in a way that adequately approximates the
behavior of the corresponding circuit with real components.

The symbols used to represent ideal resistors are shown in figure 1.2. Variable

WW

(a)

—A

(b)

(c)

Fig. 1.2 Symbols for ideal resistors. (a)
Fixed. (b) Variable. (¢) Potentiometer.
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resistors are sometimes called potentiometers (‘“‘pot” for short). Note that a
potentiometer is a three-terminal device in which the resistance between two of the
terminals is fixed, but the resistance between the third terminal and either end is
variable. The volume control in a radio receiver is a potentiometer with a logarithmic
taper (the angle of rotation is approximately proportional to the logarithm of the
resistance). Most potentiometers, especially those found on scientific instruments,
have a linear taper. A logarithmic taper is used for volume controls, because the ear
has an approximately logarithmic response; that is, every doubling of the acoustic
energy leads to a constant increment in perceived loudness.

1.3 Power

The ratio V/[I is the resistance. The product VI is called the power. From the
definitions of voltage and current, we see that power has units of volt-amps or
joules/seconds and is called a watt (abbreviated W):

1W=1VA=1]js

Power is the time rate of change of the electrical energy of the charged particles as
they move through an electrical circuit. Since energy is conserved in nature, electrical
energy can be produced only by depleting some other form of energy, such as
chemical energy in a battery or mechanical energy in a generator. Electrical energy
can be dissipated only by converting it to some other form such as heat, light, or
sound. A resistor converts electrical energy into-heat, and the rate at which this
happens is the power,

P=IV=PR=V?*R (1.2)

where the last two forms are derived from Ohm’s law. The amount of power that a
resistor can safely dissipate without overheating is dependent, among other things, on
its physical size. A typical resistor with a diameter about the size of a pencil can safely
dissipate about 1 W of power.

1.4 Sources

Before proceeding further with our study of electronics we must consider sources of
electrical power and their properties. We have already mentioned batteries that store
energy in chemical form and convert it into usable electrical energy on demand and
generators that convert mechanical energy into electrical energy. Other examples are
solar cells that convert light into electricity, thermocouples that convert heat into
electricity, and microphones that convert sound into electricity. The most common
type of source that is encountered is the power supply which converts one form of
electrical energy into another. These sources often have a rather complicated
relationship between the voltage and current they are able to supply. Therefore, it is
useful to consider ideal sources which have well-prescribed mathematical properties.
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These ideal sources represent limiting cases of real sources and are called the voltage
source and the current source. The symbols we will use for these sources are shown
in figure 1.3. The ideal voltage source has the property that the voltage across its

(a) (b)

Fig. 1.3 (a) Ideal voltage source. ()
Ideal current source.

terminals is constant (¥) no matter what current flows through it. The ideal current
source has the property that the current through it is constant (I) no matter what
voltage appears between its terminals. In the ideal voltage source, the symbols + and
— only indicate which terminal is at the higher voltage. Since any reference can be
chosen as zero volts, we don’t know whether a terminal is positive or negative until we
examine the circuit to which the source is connected and determine what point in the
circuit is being used as the reference (ground). o

A battery is a reasonable approximation to a voltage source, and, in fact,
batteries are sold according to their voltage rating (1.5, 6, 9, and 12 V are common
examples). But in reality, the voltage across the terminals of a battery will decrease
when a current flows out of its positive terminal. Conversely, the voltage will increase
when current flows into its positive terminal, as when an automobile battery is being
charged. Since a real battery does not behave in an ideal manner, we will reserve a
special symbol for it, as indicated in figure 1.4(a). A better approximation to a real
battery is an ideal voltage source connected to an ideal resistor, as shown in
figure 1.4(b). As a current / flows out of the positive terminal of the source, it flows
through the resistor 7 (called the internal resistance or the source resistance)

1%

+

Al

(a) (b)

Fig. 1.4 (a) Battery. (b) Real source ap-
proximated by an ideal voltage source and
an ideal resistor.
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producing a voltage drop /7 in the resistor so that the voltage at the terminals of the
source/resistor combination is given by

V=V —1Ir (1.3)

For I=0, the full voltage V¥, appears, but the voltage decreases to zero and can even
go negative if a sufficiently large current is produced by other sources in the circuit.
- When a battery “runs down,” the voltage ¥, decreases, but equally important, the
internal resistance increases, until, finally, no power can be delivered to the circuit to
which the battery is connected. Most batteries, such as the carbon-zinc dry cell used
in flashlights and portable radios, run down gradually. Mercury batteries maintain a
nearly constant voltage and resistance throughout most of their life and then stop
providing power very abruptly. Nickel-cadmium batteries share the same property
and have the additional advantage of being rechargeable.

Equation 1.3 suggests how a reasonable approximation to a current source can be
made. Solving equation 1.3 for I gives

If V, is made very large (V, > V), then
I~Vjr

and the voltage source/resistor combination produces a nearly constant current of
magnitude V,/r. A real source such as a battery thus has properties intermediate
between an ideal voltage source and an ideal current source. These relationships are
illustrated in figure 1.5, in which we plot the voltage across a resistor, an ideal voltage

(b)

(d)

(c)

(a)

Fig. 1.5 Voltage as a function of current for
(a) resistor, (b)ideal voltage source, (c) ideal
current source, and (d) real source.
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source, an ideal current source; and a battery as a function of the current flowing
through them. Any combination of ideal resistors and ideal sources will produce a
straight line on such a graph. For this reason, these components are said to be linear,
and circuits which contain only linear components are called linear circuits. The
equations that describe the voltage and current in such circuits will always be linear
equations, and hence the solutions are straightforward. In a resistor, the current
always flows from positive to negative, but in a source, the relative direction of
current and voltage can be either the same or opposite, depending on the rest of the
circuit. By convention, the current is considered positive when it flows out of the
positive terminal of a voltage source.

We are now ready to consider the simplest possible electrical circuit, as shown in
figure 1.6. It consists of an ideal voltage source connected to an ideal resistor with
ideal conductors. Recall that every point on an ideal conductor is at the same voltage,
and so the resistor in figure 1.6 must have a voltage V across its terminals with the

LN

Fig. 1.6 Ideal voltage source connected
to ideal resistor.

higher voltage at the top. From Ohm’s law, a current /= V/R must then flow
downward through the resistor. For dc circuits, charge cannot accumulate at any
point in the circuit, and so the same current must flow in a clockwise direction
everywhere around the loop. A general feature of circuits is that currents can only
flow in loops that are closed. In fact, that’s why they’re called circuits! Note that in
this circuit, the current flows from negative to positive through the source, which will
always be the case for circuits that contain a single source. But for circuits with two or
more sources, one source can cause current to flow backward through another source,
as is the case when a battery is being charged.

In the circuit of figure 1.6, the source produces an electrical power equal to V1.
This power is transmitted to the resistor without loss. The power dissipated in the
resistor is also ¥/ or V?/R (equation 1.2). Note that as R approaches zero, the current
and power both go to infinity. A real source cannot provide infinite power, and the
internal resistance causes the voltage to drop as the current increases. Similarly, an
ideal current source connected to aresistor will produce a voltage V' = IR across a
resistor, and the power (I*R) will approach infinity as the resistor is made large.
Therefore, just as it is unwise to connect the terminals of a battery (voltage source)
together, it is unwise to leave the terminals of a current source unconnected. In one
case, a large current flows. In the other, a large voltage develops.

Circuits are often protected from the damage that could result from large
currents by means of a fuse. A fuse is a low-resistance conductor that melts and
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breaks the circuit when the current exceeds a prescribed value. It is then discarded
and replaced. Fuses are commonly available with ratings ranging from a small
fraction of an ampere to several hundred amperes. The symbol for a fuse is -OV0O- . A
closely related device is a circuit breaker which mechanically breaks the circuit
when the current exceeds a prescribed value. The advantage of the circuit breaker is
that it can be manually reset. Large voltages can be protected against by the use of
devices called transient suppressors or thyrites. These devices have very high
resistance up to some value of voitage at which the resistance drops abruptly. Note
that none of these protective devices is linear, but in normal use the nonlinear
behavior does not occur, and they can usually be treated simply as ideal conductors
or insulators.

1.5 Circuit Reduction

The analysis of an electrical circuit normally consists of determining the current
and/or voltage at one or more points in the circuit. A complicated electrical circuit
can often be analyzed by reducing the circuit to a simpler circuit for which the
solution is known. Consider, for example, the circuit in figure 1.7. The two resistors

Fig. 1.7 Resistors in series add according
to R=R,+ R,.

R, and R, are said to be connected in series. The sum of the voltage drops across
each resistor must equal the voltage of the source:

V=v,+V,

Since the same current / flows through each resistor, Ohm’s law can be applied to
each resistor to give

V=IR, + IR, =I(R,+R,)
The sum R, + R, is called the equivalent resistance for resistors in series:
R=R,+R, (1.4)

The circuit of figure 1.7 can thus be reduced to the simpler circuit of figure 1.6 by
using the equivalent resistance. The voltage drop across one of the series resistors, say
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R,, can be determined from the current / using Ohm'’s law:

RV _ RV

V=R === =R +r&,

(1.5)

This equation is called the voltage divider relation, and is extremely useful. It says
that for resistors in series, the voltage divides in proportion to the resistance.
Another example is shown in figure 1.8 in which the two resistors are connected

Fig. 1.8 Resistors in parallel add according to
1/R=1/R,+ |/R,.

in parallel. In this case, the current / divides between the two resistors in such a way
that

I=1,+1,

By applying Ohm’s law and using the fact that the same voltage V appears across

each resistor we obtain
LA (LS S
R, R, R, R,
The equivalent resistance for resistors in parallel is thus determined from
1 1 1
—=—t — (1.6)
R R, R, :
For the special case of two resistors in parallel, equation 1.6 can be written in the
convenient form
R= RIRZ
R, +R,

Equations 1.4 and 1.6 can be generalized to any number of resistors:

R=Y R, (series)

1 1
z- ; E. (parallel)

The current through one of the resistors, say R,, can be determined from the voltage
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V using Ohm’s law:

vV IR R,I
[[=—=—=—°‘_ (1.7)
R, R, R TR,
This equation is called the current divider relation. Note the similarity of equation
1.7 and equation 1.5, but notice that in the current divider, the current in resistor 1 is
proportional to R, rather than to R, as was the case with the voltage divider.
Sources can also be connected in series or parallel as indicated in figure 1.9.

X
(@) ®)

Fig. 1.9 (a) Voliage sources in series add. ()
Current sources in parallel add.

Voltage sources in series add according to
V=v+V,

Current sources in parallel add according to
I=1+1,

Ideal voltage sources cannot be connected in parallel unless they have the same
voltage. Similarly, ideal current sources cannot be connected in series unless they
have the same current.

Sources can also be connected in series or parallel with resistors. The case of a
resistor in series with a voltage source has already been considered in section 1.4. A
resistor in parallel with a voltage source has no effect on the circuit to which it is
connected, since the voltage produced by an ideal voltage source is independent of the
current drawn from the source. For a similar reason, a resistor in series with a current
source has no effect on the rest of the circuit.

The case of a resistor in parallel with a current source is more interesting,
however. In figure 1.10, a current equal to I, —/ must flow downward through
resistor 7, so that the voltage V is

V=(I,—IDr
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X

Fig. 1.10 A resistor in parallel with a
current source is undistinguishable from
the same resistor in series with a voltage
source V, = I.

This equation is identical to equation 1.3, provided we set
V=l

with 7 the same in the two circuits. The circuit in figure 1.10 is therefore
indistinguishable from the circuit in figure 1.4() if the above conditions are satisfied.
The ability to switch back and forth between these two representations is a powerful
tool for circuit analysis by successive reduction. For example; the circuit in
figure 1.11(a) can be reduced to the circuit in figure 1.11(4) which is just a voltage
divider.

Ry
MW
T CIP r § R,
, (a) R,
YWWWA YWWWA
Ir &VP § R,
)

Fig. 1.11 The circuit in (a) is equivalent
to thatin (4), which is just a voltage divider.
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Occasionally, a circuit will possess a certain symmetry that greatly simplifies its
analysis. Consider, for example, the problem of determining the equivalent resistance
of the combination of resistors shown in figure 1.12. Since no two resistors are either

16 Q 49
A B
49 10

Fig. 1.12 Example of a circuit whose
symmetry can be exploited to yield an
equivalent resistance of 4 Q.

in series or parallel, circuit reduction cannot be applied. Imagine, however, that the
3-Q resistor were missing. Then the circuit becomes two voltage dividers, and any
voltage applied between the two terminals will divide in such a way that points 4 and
B are at the same voltage. Consequently, the 3-Q resistor can be put back in the
circuit without having any effect, since no current will flow through it. In fact, the
equivalent resistance of the circuit is the same if the 3-Q resistor were replaced with a
resistor of any value. As an exercise, one might verify by circuit reduction that the
equivalent resistance of the circuit in figure 1.12 is 4 Q either with the 3-Q resistor
replaced by an infinite resistance (no connection between points 4 and B).or with it
replaced by a zero resistance (points 4 and B-connected by a perfect conductor).
Another type of circuit whose analysis can be greatly simplified is one in which a
given pattern of circuit elements is repeated indefinitely. One link in the chain can be
removed and the remaining chain is indistinguishable from the original chain. This
analysis technique is actually quite useful for the distributed circuits which are
described in Chapter 5. An example of this type of circuit is given in problem 1.9.

1.6 Meters

Meters are devices that measure current or voltage. An ideal ammeter has zero
resistance and hence has no voltage drop across its terminals. An ideal voltmeter
has infinite resistance and hence draws no current from the circuit to which it is
connected. The ammeter produces a reading proportional to the current through its
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- terminals. The voltmeter produces a reading proportional to the voltage across its
terminals. The symbols for ideal meters are shown in figure 1.13. An ideal ammeter
can be connected in series with a circuit without disturbing it. An ideal voltmeter can

(a) (b)

Fig. 1.13 (a) Ideal ammeter. () Ideal
voltmeter.

be connected in parallel with a circuit without disturbing it. An ideal meter consumes
no power, since either [ or V is always zero.

Just as real sources are intermediate between ideal voltage and current sources,
real meters are intermediate between ideal ammeters and ideal voltmeters. A
common type of meter is the D’Arsonval galvanometer, in which a current
through an electromagnet produces a torque that rotates a spring-loaded needle
through an angle that is proportional to the current. The coil of the electromagnet
has some resistance, and hence a small voltage drop occurs when current flows.
Figure 1.14 shows two equivalent representations of a real meter in terms of ideal

|

[

(a) (b)

Fig. 1.14 Equivalentrepresentations of real
meters. (a) Ammeter. () Voltmeter.

circuit components. Voltmeters are usually made by placing a large resistor 7 in series
with a galvanometer, as shown in figure 1.14(a). In such a case, the ammeter will
read a current /= VJr, and it can be labeled to indicate the voltage V. A real meter
always consumes power, since the product V/ is never exactly zero.

The sensitivity of a galvanometer is expressed in terms of the current required
to produce a full-scale reading. A large sensitivity means a small current is required,
- and so the sensitivity is defined as the inverse of the current required for a full-scale
reading. From Ohm’s law, the units of inverse current are ohms per volt. The
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sensitivity expressed in this way is a very useful number, because it tells how much
resistance must be placed in series with a meter to use it as a voltmeter. For example,
a typical galvanometer has a sensitivity of 20,000 /V and an internal resistance of
5000 Q. In order to make such a meter read 10 V full scale, a total series resistance of
200 kQ is required. But the galvanometer already has 5000 €2, and so an additional
resistance of 195 kQ should be placed in series with the galvanometer.

A galvanometer can also be used to measure currents larger than would normally
produce a full-scale reading. This is done by placing a resistor (called a shumt) in
parallel with the meter to form a current divider, as shown in figure 1.15. If the

I

Sr

Fig. 1.15 A shunt (R) placed in pérallel
with a galvanometer permits a large current
(1) to be measured.

galvanometer has a sensitivity of 20,000 Q/V, the meter reads full scale when
I=50 pA. If we want the meter to read full scale when I, =1 A, the current divider
relation (equation 1.7) requires that R be chosen so that

_ LR
TR+
For 7= 5000 Q, the solution is
Ir
R= ~0.25Q
L=1 25

Perhaps the most useful piece of electronic test equipment is the multimeter or
volt-ohm-milliammeter (VOM), which typically consists of a sensitive galvan-
ometer labeled with numerous scales and a variety of resistors that can be inserted in
series or parallel by a range setting on the instrument in order to permit various full
scale readings for voltage and current. Several ohm scales are also usually provided
for measuring resistors (see problem 1.20). More sophisticated instruments in-
corporate a vacuum tube (vacuum tube voltmeter, or VTVM) or an FET (see
Chapter 7) so that the meter is more nearly ideal. A type of vacuum tube or FET
voltmeter with an exceedingly high internal resistance (often X 10'* Q) is called an
electrometer. A particularly convenient device is the digital voltmeter (DVM) or
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digital multimeter (DMM) in which the voltage and other quantities are
displayed directly as a number, usually with three or four digits.

A real meter always perturbs the current or voltage that is being measured. The
more nearly ideal the meter, the less the perturbation. This does not mean that
accurate measurements cannot be made with a real meter. If the internal resistance r
of the meter is known, the effect of the meter can be taken into account, and
the voltage or current in the absence of the meter can be inferred by analysis of the
circuit to which it is connected.

The quality of a meter is specified by three independent parameters. The internal
resistance determines how nearly ideal the meter is and hence how much it perturbs
the circuit being measured. The sensitivity is a measure of the current required to
produce a full-scale reading. The accuracy is a measure of how nearly the meter
reading corresponds to the actual current or voltage at its terminals. A meter that is
accurate at one point on its scale but inaccurate at another point is said to lack
linearity. An ideal meter can be quite inaccurate, especially if it has been abused.
Similarly, a meter can be perfectly accurate but quite nonideal.

Finally, note that an ideal ammeter connected in parallel with an ideal voltage
source is a contradiction. Similarly, an ideal voltmeter cannot be connected in
parallel with an ideal current source. Any attempt to make such a connection with
real sources and meters will Ifkely result in damage to the meter, the source, or both.

1.7 Summary

In this chapter the fundamental concepts of current and voltage have been defined.
The ratio V/I is the resistance. The product VI is the power. The five basic, linear,
ideal, dc circuit components have been introduced: resistor, voltage source, current
source, ammeter, and voltmeter. The technique of analyzing circuits by circuit
reduction has becn introduced. The rules for applying this technique are summarized
in figure 1.16.

The perceptive reader will notice that voltage and current play a symmetric role
in many of the discussions in this chapter, as do series and parallel. Any statement in
this chapter that contains the words ‘“‘voltage” and “series” will also be true if
“voltage” is replaced with ‘“‘current” and “‘series’ with ‘“‘parallel,” and vice versa.
These terms are called conjugate pairs. Many more such conjugate pairs are
introduced in the following chapters. The reader should be alert for these, as they
simplify the study of electronics and add to its beauty.

17

Ry T R=R, +R,
v R,V (a)
R, =R+ R
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h l R, (b)
Ryl

|
T =10 %
] i

r (c)
V=1Ir
r
<:> |4 r (d)
1
V=1

Fig. 1.16 Summary of circuit reduction rules.

Problems

1.1 Calculate the average velocity of the electrons in a copper wire of 1 mm
diameter carrying a current of 1 A. The density of free electrons in copper is 8.5
x 1028 electrons/m?‘.

1.2 If 1000 kg of water falls from a height of 10 m and its potential energy is
converted to electrical energy with an efficiency of 10%, how many coulombs of
charge can be raised through a voltage of 100 V?

1.3  How much electrical power can be produced by a hydroelectric power plant if
1000 kg of water per second falls through a height of 10 m and its energy is converted
to electricity with an efficiency of 109/?

1.4  Find the equivalent resistance of the circuit shown below:
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R,= 1000

~AMW—
R, =108
—AMM—1 —
Ry =258
A~

1.5  Find the equivalent resistance of the circuit shown below:

Ry=15kQ R, =25k

——AA———AA—

Ry=1 kS

YWWWA

1.6 Find the equivalent resistance of the circuit shown below:

O

1.7  For the circuit below in which all the resistors are 1 £, calculate the equivalent
resistance between points A and B. '

=]

1.8  For the circuit below, calculate the equivalent resistance between points 4
and B.

6 Q 4Q

1Q

Problems 1 7



1.9 Find the equivalent resistance R of the circuit below which extends indefinitely
to the right with all resistors equal to R,:

R, Ry R, Ry
— MW A

F— Ry Ro Ry

O
1.10 Calculate the current /, in the circuit below:

R, = 400 Q

MWW

R, = R, =
I 2 3
5v ’l, 200 © 300 ©

1.11  C(Calculate the voltage ¥, in the circuit below:

Ry=2Q Ry=4Q
MW — MWW '—T—
wAT R,=1Q R =505 V,

1.12  For the circuit in problem 1.11 calculate the power produced by the current
source and the power dissipated by R,.

'1.13  In the circuit below, each of the resistors is rated for a maximum dissipation of
2 W. What size fuse should be used to protect the resistors from damage?

R =2Q

R, =50Q°
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1.15 Calculate the voltage ¥, in the circuit below:

R,=108Q Ry =30
AMW— AV~
: : 1
10V R,=10Q R,=28 Vs e

1.16 In the circuit below, the current [ is measured with a real ‘ammeter (not
shown) with a 100-Q internal resistance. If the meter reads 0.5 A, what is the current
in the absence of the meter?

+ \ . ' . .
I Al
é L R= 4009
1.17 In the circuit below, the voltage V, is measured with a.10-V full-scale

voltmeter that consists of a resistor in series with a 1000 Q/V galvanometer. What
voltage V, is required to make the voltmeter read 5 V?

" Ry= 3k

R,= 25 kQS %

1.18 In each of the circuits below, the voltmeters are non-ideal, with a sensitivity of
20,000 Q per volt and read 8 V on the 10-V scale, and the ammeters are nonideal and
have internal resistances of 5000 Q and read 160 uA. Calculate the values of R, and

R,.
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1.19 A galvanometer with 20,000 Q per volt sensitivity and 5000 Q internal
resistance is used with an appropriate series or parallel resistor to make measurements
in the circmit below. (a} If the galvanometer is used as a voltmeter to measure V, and
the meter reads 0.5 V on a 1-V full-scale range, what is the voltage V of the source?
(b) If the galvanometer is used as an ammeter to measure / and the meter reads,
50 uA on a 100-pA full-scale range, what is the voltage V of the source?

v) Ry =20 kQ% v

| /TN +

1.20 The circuit below is commonly used as part of a VOM to measure an unknown
resistance R. The procedure is to first set R =0 and adjust R, for full-scale deflection
of the meter (50 gA). Then the unknown R is placed in the circuit and the current is
measured without disturbing R,. Show that the reading on the meter is independent
of the voltage V so that a battery of unknown condition can be used without losing -
accuracy. What value of R will give a meter deflection of 1/2 scale if R, > R, ? Repeat

for 1/10 scale and 9/10 scale.

S+

=5V ‘ R
- Rr=120
W
50 uA F
K S R2

1.21 An ammeter with a 1-A full-scale range and an internal resistance of 0.1 Q is
connected in parallel with a 12-V battery that has an internal resistance of 0.2 Q.
Calculate the current that flows through the ammeter, and describe what is likely to
happen to the meter and to the battery.

1.22 The circuit below is called an Ayrton shunt. If the ammeter is ideal with a
full-scale reading of 1 4A, what current must flow between terminal 1 and ground to
produce a full-scale reading of the meter? Repeat for terminals 2, 3, and 4.
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To— .
-
o
0.9R
‘ 2 1 uA FS
0.09R ’ C
3 =
0.009R
4
0.001R

1.23 Real meters can be connected in series or parallel to permit readings outside
the normal range of the meters. Suppose you had two VOM’s, each capable of
reading up to 1000 V and 1 A. If meter 1 has a 20,000 Q/V galvanometer and meter
2 has a 5000 Q/V galvanometer, show how you would connect the meters to read a
voltage of 1100 V, and calculate the reading of each meter.
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chapter 2

Circuit_
Theorems

2.1 Kirchhoff’s Laws

As useful as the circuit-reduction techniques of the last chapter are, some circuits
require a more sophisticated analysis. For example, the circuit shown in figure 2.1

A
———
I
1, § R, 1211 §R2
+ R5
® B—AWA—C
—_—
_ 7
Ll &R, 14*1/ § R,
D

Fig. 21 The Wheatstone bridge is an
example of a circuit that cannot be ana-
lyzed by simple circuit reduction.

cannot be analyzed by simple circuit reduction. This circuit is called 2 Wheatstone
bridge, and it has a number of important applications which will be discussed later.
The most general method for analyzing circuits makes use of Kirchhoff®s laws. The
use of Kirchhoff’s laws has the virtue that it always works whether the circuit contains
linear or nonlinear elements, no matter how complicated. Kirchhoff’s laws form the
basis for all the theorems to be discussed in this chapter.

Before stating Kirchhofl’s laws, it is useful to define certain terms:

Node: a point where three or more circuit elements are connected together.
"
Branch: acircuit element or series of elements that connect two adjacent nodes.

Loop: a circuit path that begins at a node, passes through one or more nodes,
and ends at the same node at which it started.
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Mesh: a loop that does not contain any branches in its interior (also called an
elementary loop).

These concepts are most easily understood by referring to figure 2.1. This circuit has
four nodes labeled 4, B, C, and D. It has six branches, five containing resistors and one
containing a voltage source. There are a total of seven loops, but only three of these
are meshes (ABC, BCD, and ABD). With these terms clearly in mind, we can state
Kirchhoff’s laws, which follow directly from the definitions of current and voltage:

Kirchhoff’s current law: The sum of the currents flowing into a node is zero.

Kirchhoff’s voltage law: The sum of voltage drops around a loop is zero,

Kirchhoff’s current law is a statement of the conservation of electric charge, because
if the total current flowing into a node were other than zero, an infinite charge would
eventually build up at the node. Kirchhoff’s voltage law is a statement of the
conservation of energy, because if a charge moving around a loop came back to its
starting point at a voltage different from what it had initially, its energy would have
changed. 7

For the example in figure 2.1, Kirchhoff’s current law yields four equations, one
for each node:

I =1+1,
L=L+I,
L+I,=1I,
L+1,=I

These equations are not all independent, however. The fourth equation can be
derived by substituting I, and I, from the middle two equations into the first
equation. It will always be the case that Kirchhoff’s current law gives one extra
equation, and so any one of the nodes can be ignored. The reason for this is that the
current is constrained to flow in closed loops, so that the current flowing into any node
must be zero if the current flowing into all the other nodes are zero.

Kirchhoff’s voltage law yields seven equations, one for each loop, but, again, not
all are independent, because many of the loops are the sum of smaller loops. In fact,
examination of the circuit shows that all the loops can be constructed from various
combinations of meshes, and so there are three independent loop equations, because
there are three meshes:

LR+ LR, —V=0
LR+ LR~ LR,=0
LRy~ IR, —I,R;=0

One can circle a mesh either clockwise or counterclockwise, but either way, the
voltage drop is positive if one goes in the same direction as the arrow and negative if
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one goes opposite to the arrow. The arrows can be drawn in either direction,
however. When the equations are solved, a positive solution for the current in a
branch means the current flows in the direction of the arrow, and a negative solution
means it flows opposite to the arrow. When one goes from negative to positive in a
source, the voltage rises, and hence the voltage drop is negative, irrespective of the
direction of the current.

The number of unknowns in a circuit is always equal to the number of branches,
because if the current in every branch is known, all the voltages can be calculated
from Ohm’s law. For the case in figure 2.1, there are six branches and hence six
unknowns. Kirchhoff’s laws give six independent equations (three current and three
voltage), and so a solution exists. Such will always be the case: '

Number of unknowns = number of branches.
= number of nodes — | + number of meshes

Six linear algebraic equations in six unknowns can be solved by several means, all of
which are somewhat tedious. One way is to eliminate unknowns one at a time by
solving for them in terms of the other unknowns and substituting into the remaining
cquatidns until the system of equations is reduced to a single equation in a single
unknown. That unknown is then calculated, and it can be substituted into the
previous equation, and so on, until all the unknowns are determined. Another way is
by the use of determinants as described in virtually all elementary calculus texts.
Much of the tedium of solving systems of linear algebraic equations has now been
relegated to computers, and a circuit designer with access to such a computer would

“ be well advised to take advantage of its capabilities.

A slight simplification results from using what is called the loop current
technique. In figure 2.2, the Wheatstone bridge is redrawn, but rather than labeling

Ry m %Rd

Fig. 2.2 Analysis of Wheatstone bridge
using the loop current technique.

each branch current, as was done in figure 2.1, we have defined a loop current for
each mesh. The current in a branch is a sum of the loop currents flowing through that

branch:
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I=I,

Li=1,—1
=1y
Li=1,—1.
IL,=1.
Li=1—1

By defining loop currents in this way, Kirchhoff’s current law is automatically
satisfied, since every loop current that flows into a node also flows out of the node.
The result is to reduce the problem to one of solving three equations in three
unknowns. The penalty is that the equations are somewhat more complicated:

(Ly= LR+ (I, —I)Ry, — V=0
(Ly= IR, + (I — IRy — IR, =0
(Ly= IRy — IRy — (Ic — ) Rs =

One final simplification results whenever a branch contains a current source. In
such a case, the current in that branch is known, and the branch can be ignored when
the number of meshes is determined, so that the number of loop equations is reduced
by one. Once the current in every branch is determined, all the voltages can be
simply calculated from Ohm’s law.

2.2 Superposition Theorem

Although the use of Kirchhoff’s laws is the most general way to analyze circuits, the
amount of effort required can usually be greatly reduced by making use of one of the
circuit theorems, to be discussed in the next few pages. These theorems apply only to
linear circuits, but they are nevertheless extremely useful. The first such theorem is
called the superposition theorem, and it is useful whenever a linear circuit
contains more than one source:

Superposition theorem: The current in a branch of a linear circuit is equal to
the sum of the currents produced by each source, with the other sources set
equal to zero.

The proof of the superposition theorem follows directly from the fact that Kirchhoff’s
laws applied to linear circuits always result in a set of linear equations, which can be
reduced to a single linear equation in a single unknown. The unknown branch
current can thus be written as a linear superposition of each of the source terms with
an appropriate coefficient. In fact, the superposition theorem seems so reasonable
that it is often mistakenly applied to nonlinear circuits (see problem 2.6).

The other trap in the application of the superposition theorem involves the
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meaning of setting a source equal to zero. One is often tempted to set a voltage source
equal to zero by removing it entirely from the circuit. Recall, however, that setting a
voltage source equal to zero means that the points in the circuit to which its terminals
were connected must be kept at the same potential. The only way to do this 1s to
replace the voltage source with a conductor (called a shert circuit). A current
source, on the other hand, is set equal to zero by leaving unconnected the points to
which it was connected (called an open circuit). A short circuit causes the voltage to
be zero; an open circuit causes the current to be zero. o
These ideas can best be illustrated by means of an example. In figure 2.3(a) is a
circuit containing a voltage and a current source. Although this circuit could easily be
analyzed by circuit reduction or even by Kirchhoff’s laws, we will use the
superposition theorem to calculate the current /,. First, in figure 2.3(5) we set the
current source equal to zero by removing it. The current in /, due to the voltage

source alone is just ¥ divided by the equivalent resistance:
vV

=g ¥R,

1 2

This current is called the partial current in branch 2 due to sourcel. In
figure 2.3(c) the voltage source has been set equal to zero by short circuiting the

D, 13 O o

I/\+

+

1
V) 2 \1/ R, )

<)

43 OF o

Fig. 2.3 The circuitin (a) can be analyzed using
the supposition theorem by considering the simpler
circuits in (4) and (c).
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points to which it was connected. The resulting circuit is a current divider, and the
resulting partial current given by equation 1.7 is

IR,
L=
R, +R,
The superposition theorem then says that the total current is
' v+ IR
L=5h+1h,= Rl—+R—;

The current in R, could have been determined in a similar manner, with the result:

_ V—1IR,

‘"R, +R,

2.3 Thevenin’'s Theorem

Perhaps the most useful of the circuit theorems is Thevenin’s theorem:

Any linear, two-terminal, dc network can be represented by a voltage source
in series with a resistor.

A network is a group of circuit components (sources, resistors, etc.) connected
together in some fashion. A de (direct current) network is one in which the sources
produce voltages and currents that are constant in time. A two-terminal network is
one in which only two points in the circuit are available for observation and test. A
linear network is one that contains only linear circuit components.

A way to visualize Thevenin’s theorem is to imagine a black box (so as to conceal
its contents) that contains an assortment of ideal sources and ideal resistors of
arbitrary value connected in any complicated fashion. On the outside of the box are
two terminals connected to any two points of the internal circuit. Such a network is
depicted in figure 2.4(a). Thevenin’s theorem says that no matter how complicated

Rr
—f 0
+
Linear
: = ®
network _
—t—0
-————————o
P
(a) (b)

Fig. 24 A linear, two-terminal, dc network (g) can be repre-
sented by a voltage source in series with a resistor ().
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the invisible network is, any measurements on the exposed terminals will be the same
as that which would resuit if the network consisted of a single source and a single series
resistor, as shown in figure 2.4(5). The value of the voltage and resistance will, of
course, depend on what is in the original network, but for a given network, there will
be a unique value of V7 (called the Thevenin equivalent voltage) and R (called
" the Thevenin equivalent resistance).

The proof of Thevenin’s theorem follows directly from the superposition
theorem. If we connect a voltage source to the terminals of the network, as indicated
in figure 2.5(a), and measure the current drawn by the source as the voltage is varied,

Rr
I
— MWV
1 —_—
. + + I +
Linear
: = ® O
network

(a) b)

Fig. 25 The current I is the same function of ¥ for circuit (a)
and circuit () if V7 and Ry are chosen appropriately.

we know all that can be known about the circuit, short of opening the box and
examining its contents. The superposition theorem says that the.current J consists of
two parts, If the external voltage V is set equal to zero, by short circuiting the
terminals, the sources internal to the box will produce a partial current, called the
short circuit current, [;. If the internal sources are set equal to zero, all that is left
in the box is some combination of resistors that can be reduced to a single equivalent
resistance R;. The external source thus produces a partial current in the external
branch given by —V/R;. The negative sign arises because the arrow was drawn info
the positive terminal of the voltage source, in contrast to the usual convention. The
superposition theorem then gives

4
I=lc— %= (2.1)

A circuit that gives exactly this relation of V and [ is the Thevenin equivalent circuit
of figure 2.5(b):

provided V7 is adjusted so that
Vp=IscRy (2.2)

The voltage that appears across the terminals of the network when the current / is
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zero is called the open circuit voltage and is given by

Voc =Vr= IscRy (2.3)

These quantities are indicated on the graph in figure 2.6. Note that a real voltage
source [as in figure 1.4(5)] is just a Thevenin equivalent circuit.

Isc

Slope = ~1/Ry

Fig. 2.6 Graph of I versus V for a linear,
two-terminal, dc network.

A corollary of Thevenin’s theorem is the following:

Any linear, two-terminal, passive, dc network can be represented by a single
equivalent resistor.

By passive, we mean that the network contains no sources. In such a case, the open
circuit voltage, and hence the Thevenin equivalent voltage, is necessarily zero. In
such a case the equivalent resistance is just R.

- Thevenin’s theorem is most useful whenever the current in a particular resistor in
a complicated linear network is to be calculated. We know that the circuit can be
reduced to one in which the resistor whose current is to be calculated is connected to a
Thevenin equivalent circuit. The resulting circuit is just a voltage divider, for which
the solution is known. This fact, by itself, is of limited use, except to encourage us to
apply circuit reduction techniques in an attempt to reduce the circuit to a single source
and a single resistor.

The real usefulness of Thevenin’s theorem comes from the fact that the Thevenin

parameters V. and R can be determined from the open circuit voltage and the short
circuit current?

Vr="Voc (2.4)
R, = Yoc (2.5)
Isc
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Alternately, Ry can be determined by turning off all the sources and calculating the
resistance between the network terminals.

As an example, we will use Thevenin’s theorem to calculate the current in
resistor R in figure 2.1. First, the resistor Ry is removed from the circuit, and the
points B and C become the terminals of a linear, two-terminal, dc network. The two
resistive branches of the resulting network are voltage dividers, and the open circuit
voltage, and hence the Thevenin voltage, is

VR, VR,

Vr=Voc=Vgp—Vep= R+ R, _R2+R4 (2.6)

where the node at D is used as a reference point.
The Thevenin resistance is calculated by setting ¥ =0, in which case the circuit
reduces to the one shown in figure 2.7 which has an equivalent resistance of

R1R3 + R2R4

= 2.7
T"R+R, R,+R, @7)
B
) I
Ry ? R, . § R, § R,
Ot A D
e @ —
Ry g R, R, g Ry
D
Cc
(@ ' ®)
Fig. 2.7 The Thevenin equivalent resistance of the Wheatstone
bridge can be determined by setting ¥ =0 (a) and redrawing the
circuit as in (4).
The current in R; in figure 2.1 is then given by
7,
[j=—T— 2.8
5 RT+ Rs ( )

To derive this result from Kirchhoff’s laws would have required several pages of
algebra.

2.3 Thevenin’s Theorem 31



2.4 - Norton’'s Theorem

A theorem closely related to Thevenin’s theorem is Norton’s theorem:

Any linear, two-terminal, dc network can be represented by a current source
. . . 1
in parallel with a resistor.

The proof of Norton’s theorem has already been provided in section 1.5, where it
was shown that the relation between ¥ and [ is the same for a voltage source with a
series resistor and a current source with a parallel resistor. Norton’s theorem thus
follows directly from Thevenin’s theorem.-

Norton’s theorem is used in the same way as Thevenin’s theorem. The Norton
equivalent current (Iy) for the network is obtained by short circuiting the
terminals:

Iy=1I (2.9)
and the Norton equivalent resistance (R,) is obtained from
V,
Ry= -2 (2.10)

ISC

Note that in the two representations of a network, the following relations hold:
Rr=Ry, (2.11)
« Vp= IRy (2.12)

Thevenin’s theorem allows a circuit to be reduced to a voltage divider; Norton’s
theorem allows a circuit to be reduced to a current divider. Whenever one theorem is
useful, the other is equally useful. The choice is largely one of taste.

As an example of the use of Norton’s theorem, consider the circuit in
‘figure 2.8(a). If we wish to calculate the current in R,, we can remove R, and replace
it with a short circuit. Since R, has no voltage across it and hence no current through
it, the short circuit current and hence the Norton equivalent current is

vV

IN=ISC=F
1

© 4 I = O wE R

(a) (b)

Fig. 2.8 The circuit in (a) can be reduced to a Norton equivalent circuit
in (b) which is a current divider.
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The Norton equivalent resistance is found by setting ¥ equal to zero, which leaves R,
and R; in parallel:

R.R
R — 143
NT R+ R,

Replacing the network with a Norton equivalent circuit and replacing R, give the
circuit in figure 2.8(b), which is just a current divider. The current in /, is then given
by the current divider relation:
= IR, _ VR,
" RytR, RR,*RRyTRR,

One might attempt to solve this problem also by circuit reduction in order to verify
the above result and to compare the amount of work required.

2.5 Reciprocity Theorem

The final theorem that we will consider is called the reciprocity theorem:

The partial current in branch 1 of a linear, dc circuit produced by a voltage
- source in branch 2 is the same as the partial current that would be produced
in branch 2 by the same source if it were placed in branch 1.

The theorem is illustrated in figure 2.9, which shows a network with two pairs of

Linear h2

@ « O !

circuit

()]

1
a Linear

1 ® @& O

circuit

(a)

Fig. 2.9 The reciprocity theorem says that
the partial current [y, in circuit (a) is the same
as the partial current [,; in circuit (8).
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terminals. A pair of terminals will be referred to as a pert. Since the theorem involves
only the partial currents produced by the external sources, a corollary of the
reciprocity theorem is the following:

In a linear, dc circuit with a single voltage source and an ammeter, the
ammeter reading will remain the same if the ammeter and voltage source are
interchanged.

It is assumed that both the voltage source and the ammeter are ideal. An alternate
form of the reciprocity theorem is the same as the abave but with ‘“voltage source”
replaced by “current source” and “ammeter” replaced by ‘‘voltmeter.”

Rather than prove the reciprocity theorem in its most general form, we will prove
it for a special case which will also serve to illustrate its usefulness. First, consider a
linear, three-terminal, passive dc network. The three terminals can be paired off in
three ways. Each pair of terminals must satisfy Thevenin’s theorem and hence be
representable as an equivalent resistance. Any circuit we can concoct that has the
same three equivalent resistances as the actual circuit will be indistinguishable from it
in terms of any external measurements we can make. The simplest representation for
a three-terminal network must then countain three resistors, and there are only two
ways these resistors can be connected. Figure 2.10 shows the so-called A-connection

B C B C

Rg Re

A A
(a) h)

Fig. 210 Representations of a three-terminal, dc, passive network. (a) A-
connection. () Y-connection.

and the Y-connection. The resistance between each combination of terminals can be
calculated for the two circuits:

Ry(R + R,) 2
=3 72 py
Ras R, +R,+ R, Rat Ry
R(R,+R,)
R = 1 2 3 = + '1
TR ¥R, TR, Ry+ R L (2.13)
- ¢ A

47 R, +R,* R,
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With a bit of algebra, the A-Y transformation can be derived from the above:

_ R2R3
AT R+ R, "R,
Ry— RiRs
R, + R,+ R,

RIRZ
Re=——F7"70
R+ R,*+ R,

R,

_RRy+ R, R+ RR. N

-~

> (2.14)

R,

2. — RaRot R R+ RyRc

\ (2.15)

2 RB

& Rafst R,Rc+ RoRe

3 RC

7

The equivalence of the A- and Y-connection is sometimes a useful circuit reduction

technique (see problem 2.12).

A three-terminal network is a special case of a two-port network in which two of
the terminals are common. In the two-port representation, the A- and Y-connections -
are called the n-network and the T-metwork, respectively. These networks are
shown in figure 2.11. Now suppose that such a passive, two-port network is connected
to a pair of voltage sources and a pair of ammeters, as shown in figure 2.12. The

: R, Rp Re¢
® R, R, @ @ Ry @
O _ _ < O= _ 0
(a) (b)

Fig. 2.11 Two-port network with a common terminal. (¢) n-network. (b) T-network.

L

I
{7\
\J,

o)
2

Fig. 212 Circuit for determining the R-parameters of a

network with two ports.
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superposition theorem says that the current in each branch is a superposition of the
partial currents produced by each of the two sources:
W ¥

+

Li=I,+1,=-1
1 11 12 R“ R12

, . ’ (2.16)
L=lyt by =gt >
: 21

The constants R,,, R,,, R,,, and R,, are called the R-parameters of the circuit.
Inspection of equation 2.16 shows that the R-parameters are given by

1 a3l
—=_u 2.17
R, 9V, @17)

)

The R-parameters are often written as a square matrix:

[Ru Rlz]
Ry, R;,
Networks with n-ports can be described by an n Xn matrix of R-parameters.

One use of the reciprocity theorem is to reduce the amount of work required to
calculate the R-parameters for a circuit. Since a source at port | produces the same
partial current at port 2 as the same source at port 2 would produce at port 1, the
ratio /,,/V, is the same as the ratio /,,/V,. This is equivalent to saying that Ry =R;;.

More generally, for a multiport network, the matrix of R-parameters is diagonally
symmetric:

R;=R,; (2.18)

As an example, we will calculate the R-parameters for the n-network in
figure 2.11(a). In order to calculate R,, we set ¥, =0 by short-circuiting the
terminals in parallel with R,. Since R, is the ratio of the voltage at port | to the
current at port 1 with port 2 shorted, it is just given by the parallel combination of R,
and R;:

R\R,

Ru=r vk,

Similarly, R,, is determined by short-circuiting port 1 and calculating the resistance
as seen by port 2:

RIRZ‘
Ru=R vk,

R,, is determined by placing a voltage source at 1 and an ammeter at 2. In such a
circuit, neither R, nor R, affects the reading of the meter, and the ratio of current
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measured to voltage applied is
Ry =R,

By the same argument, R, is also equal to R,, and so the reciprocity theorem (R,
= R,,) is satisfied.

2.6 Wheatstone Bridge

Before concluding the discussion of dc circuits, we will return to the Wheatstone
bridge circuit mentioned earlier in the chapter. In figure 2.13, the Wheatstone bridge
circuit of figure 2.1 is redrawn in a more customary manner, with resistor R; omitted.

Fig. 2.13 Wheatstone bridge circuit.

Any network that can be drawn in such a diamond arrangement with a source
connected at opposite nodes is called a bridge circuit. Bridge circuits are very useful
in electronics. The Wheatstone bridge is one in which the bridge contains only
resistors. The Wheatstone bridge is useful for making accurate resistance measure-
ments, but it exemplifies a more general technique called the null method which is
used throughout science and engineering for making highly accurate measurements.

Consider the general problem of measuring accurately the value of a resistor. The
simplest method would be to place a known voltage across the resistor and with an
ammeter measure the current drawn. But sources of accurately known voltage and
meters of high accuracy (say, better than ~19%,) are quite expensive. On the other
hand, resistors of 0.1%, or better accuracy are easily manufactured, and they retain
their accuracy indefinitely if not grossly abused. The Wheatstone bridge thus allows
an unknown resistor to be compared with a standard resistor in such a way that its
value can be determined to an accuracy that approaches that of the standard.

It has already been shown (section 2.3) that the circuit of figure 2.13 is
equivalent to a Thevenin equivalent circuit with Thevenin parameters:

VT=V( Ry Ry )
R,+R, R,+R, (2.19)
Ry— RiRs . RaRs

TR, +*R, R,*R,
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The Thevenin equivalent voltage V. is zero whenever
R, R,
R+ Ry, R, +R,

which can be rewritten as
‘ R,R,=R,R, (2.20)

Equation 2.20 is called the balance condition or null condition, and whenever it is
satisfied the bridge is said to be balanced or nulled. The significance of the balance
condition is that a meter placed across the output terminals of the bridge will read
zero whenever equation 2.20 is satisfied, and it doesn’t matter whether the meter is a
voltmeter or an ammeter or anything between. Furthermore, the meter need not be -
accurate, but it should have high sensitivity. Similarly, the voltage source need be
neither ideal nor accurately known, but its voltage should not be too low.

In practice, two of the resistors, say, R, and R,, would be matched to high
precision so that

R =R,

One of the resistors, say, R5, would be a highly accurate variable resistor, and the last
resistor, R,, would be the unknown. The variable resistor would be adjusted until a
galvanometer across the output of the bridge reads zero, at which point its value
would just equal the value of the unknown. Since variable resistors of high accuracy
are not common, a suitable substitute for R, would be a fixed resistor of high accuracy
with a resistance slightly greater than required to balance the bridge. Another resistor
of high value could then be added in parallel with it to achieve a balance. The value
of this parallel resistor need not be known to such a high precision, since it contributes
only slightly to the resistance of Rj.

Another use of a bridge circuit is to measure a small change in a quantity.
Suppose we wish to determine how much the resistance of a resistor changes as a
function of temperature. We could take a balanced Wheatstone bridge and keep all
its resistors at a constant temperature except for one. If that one resistor, say, R,, were
heated up so that its resistance changed by an amount dR;, a voltmeter at the output
of the bridge would read a voltage

yop(_RstoR, R
°" "\R,+*R,* R, R,*+R,

If, for simplicity, we take all resistors to be the same,

R =R,=R;=R,

+
I{,=V<R SR l)

the output voltage is

2R+ 6R 2

_1,(1+3RR
T2 \1+6R2R
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using the useful relation,

ORY\" néR
14 —) ~1+ — .
( - ) 1+ — (2.21)
for |6R| € R, the output voltage is seen to be proportional to éR:
1 _OR
V,>~—-V— 2.22
A (222)

One could thus easily measure the fractional change in resistance 6R/R versus
temperature. Most resistors have a very small variation of resistance with tempera-
ture (<0.1%/°C), but resistors especially made to exhibit a high-temperature
coefficient of resistance are called thermistors. A Wheatstone bridge consisting of
three high-precision resistors and a thermistor could be used as a thermometer with
an appropriately calibrated meter at its output.

2.7 Summary

In this chapter, techniques were introduced which simplify the analysis of circuits. In
analyzing a circuit, one usually first does obvious circuit reduction such as combining
resistors or sources that are in series or parallel. If the remaining circuit contains more
than one source, the superposition theorem will probably be useful. Otherwise, either
Thevenin’s or. Norton’s theorem should probably be used. Multiterminal resistor
networks are completely described by a matrix of R-parameters, and the reciprocity
theorem simplifies the calculation of these parameters.

It is important to remember that the above theorems apply only to linear
circuits. The last half of the book is filled with circuits for which these techniques fail
miserably. For such circuits, Kirchhoff’s laws may provide the only way to proceed.
For linear circuits, the use of Kirchhoff’s laws is seldom the easiest way to analyze a
circuit. But for a computer or for a persistent human being who would rather
manipulate a lot of algebra instead of a few circuit symbols, they should always
provide an answer. '

Problems

2.1 For the circuit below, write a set of independent current and voltage
equations:
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2.2 Use the loop current technique to calculate the current I in figure 2.1 for the
special case in which Ry =0.

2.3  For the circuit in figure 2.3(a), use Kirchhoff’s laws to write an independent
set of current and voltage equations, and solve these equations for the current Z,.

2.4  If the following equations are meshes of a certain circuit, can the circuit be
reconstructed? If it can, then reconstruct it showing the direction of the currents and
voltages. Write any other equations that are necessary for solving all the currents in
the circuit.

Vy=Ir,+ LR, + LR,
LR,+ [R,+ I,LR,— LR, =0
LR, + I,Rg=0

IRy~ LR, =0

V,=1Ig,+ I,Ry — I,R,

2.5 Use the superposition theorem to calculate the current /5 in the circuit in
problem 2.1, assuming V; =30V, V,=10V, R, =R, =100Q, R;=50Q, and
Ry=Rs=200Q.

26 A certain incandescent lamp has a nonlinear characteristic that can be
approximated by ¥ = 280 /%, Calculate the current in the lamp in the circuit below
using Kirchhoff’s voltage law, and compare your answer with the (incorrect) result of
using the superposition theorem.

@

2.7  Calculate the Thevenin parameters of the circuit in problem 2.1 as seen by the
resistor R, using the values given in problem 2.5. Use these values to calculate the
current in I, for Ry =50 Q. ‘

2.8 Find the Thevenin equivalent of the circuit to the left of terminals AB below.
What current will flow through terminals AB if they are shorted together?

100 ©
AWW— 0 A -
200
2009% + 100
3v
-_0 B
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2,9  For the circuit below, show that the maximum power will be dissipated in R if
R = R, This result is extremely useful in the design of circuits that must deliver the
maximum possible power.

MWW
+
ER
2.10 Determine the Norton equivalent current and the Norton equivalent re-

sistance for the circuit in figure 2.3(a) as seen by the resistor R,. Use Norton’s theorem
to determine the current /,.

2.11  Find the Norton parameters for the circuit below. What is the output voltage
Voc?

128 }
4Q + Voc

20V

2,12 Find the equivalent resistance R of the circuit shown below:

19

R ——>

o

‘213 Calculate the R-parameters for the T-network in figure 2.11(5).

214 Calculate the R-parameters for the network below:

1kQ 2kQ
o= AMA— -“WW —
® %2kﬂ 2 kQ )
O _ -0

215 Construct a four-terminal network (two ports) consisting of three resistors
connected in a m-network and having the following R-parameters:
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5Q 10Q

10Q 8Q
2,16 Calculate values of R;, R,, and R, below such that the voltage across the load :
resistor R, would be one-tenth the value it would have if the network in the box were
omitted and such that the resistance seen by the source and by the load are the same

as they would have been without the network. Such a circuit is called a T-pad, and it
is useful for voltage attenuation.

R, = 50 © R, R,

v) R, R, =50Q

b /7N +

T — pad

2.17 If the Wheatstone bridge in figure 2.1 is balanced, what is the resistance as
seen by the source?
2.18 In the bridge circuit below, calculate the balance condition.

219 Draw the Thevenin equivalent circuit and calculate the values of V. and Ry

for the circuit below.
0.1 P/ o

O

2.20 The potentiometer circuit shown below provides a null method for
comparing an unknown voltage ¥ with a known voltage Vs provided by a standard
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cell. The voltage can be determined to high accuracy, without causing a current to
flow in either the unknown source or the standard cell, by first adjusting for a null
reading on the meter with the standard cell connected (a,) and then readjusting it for
a null with the unknown connected («,). Derive an expression for ¥, and show that
the result is independent of Vg, 7, r,, and R.

(1— a R r

O—w—

aR 1

Vgor Vv

-0

2.21 Shown in {(a) below is a linear resistor network with three ports in which
currents flow as indicated. With the network connected as shown in (4), calculate the
current fg.. With the network connected as shown in (¢), calculate the voltage V.

= —
I, = 100 mA L= 20 mA

— @
+
10V ® ® ll, = 30 mA
(a)
av
+ _
I @ | —
+
'scl ® ® &V
(b)
av
+ _
so—d | @ I —
+
Voo @ ® 5V
— O —— pu— -
(c)
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chapter 3

Transient
Circuits

3.1 Time-Dependent Sources and Meters

In this chapter, we begin a study of circuits in which the currents and voltages vary in
time. Most of the ideas encountered in the study of dc circuits remain valid for time-
dependent circuits, but a number of new concepts will be encountered. Linear, dc
circuits are described by linear, algebraic equations; whereas linear, time-dependent
circuits are described by linear differential equations. Fortunately, for most of the
cases of interest, these equations can be solved in a straightforward manner. In this
chapter we will be concerned with a special case of time-dependent circuits in which
the sources are dc but are turned on or off abruptly. Such circuits are called transient
circuits, since the voltages and currents throughout the circuit readjust to a new dc
value in a brief but nonnegligible time interval immediately following the change in
state of the source. The initial condition is a dc circuit; the final condition is a
different dc circuit; but the interval in between, while the circuit is readjusting to the
new conditions, may exhibit complex behavior.

Perhaps the simplest way to turn a source on or off is by means of a switch.
Figure 3.1(a) shows a voltage source connected to a resistor through a switch. The

c/c N O—
(——0

® > ® 0 <

(a) (b)

Fig. 3.1 Switches are useful for producing an abrupt change in a voltage
or current. (a) Single-throw switch. () Double-throw switch.

switch is shown in its open position. If at some instant of time, say ¢ =0, the switch is
closed, a current will immediately begin to flow with a value given by Ohm’s law:

“_{0 t<0
()= VIR 20
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This is an example of a single-pole, single-throw switch. Figure 3.1(5) shows an
example of a single-pole, double-throw switch which at time ¢ = 0 disconnects the
resistor from ¥, and connects it to ¥,. In practice, it is never possible to disconnect
one circuit at precisely the same time another circuit is connected. To know for
certain which will happen first, switches are made in two types. A shorting switch
connects one circuit before disconnecting the other. A nonshorting switch
disconnects one circuit before connecting the other. This difference is sometimes of
great importance. For example, if the switth in figure 3.1(4) were a shorting type, an
infinite current would flow through the switch briefly while the two sources are in
parallel. In a circuit with real sources of low internal resistance, the large current
could weld the switch contacts together and perhaps damage the sources as well.
More complicated switches having multiple poles (controlling several circuits
simultaneously) and multiple-throw (more than two positions) are quite common. A
switch that can be remotely activated by energizing an electromagnet is called a
relay or contractor.

" ‘Whereas the basic device for measuring dc voltages and currents is the
D’Arsonval galvanometer, the basic device for measuring time-dependent voltages
and currents is the oscilloscope. The heart of the oscilloscope is the cathode ray
tube (CRT) shown schematically in figure 3.2, A filament (z) provides heat, which

(e)

—SH+L
i o

Fig. 3.2 Cathode ray tube. {(a) Filament. (6) Cathode. (¢)
Control grid. (d) Focusing électrodes. (¢) Deflection plates.
(f) Fluorescent screen.

boils electrons off the cathode (5). A control grid (¢) controls the intensity of the
electron beam, which is focused by other electrodes (). The beam can be deflected in
either of two dimensions by deflection plates (¢), and it finally strikes the fluorescent
screen (f), causing it to emit light at a spot. The position of the spot can be moved up
and down by varying the voltage on the vertical deflection plates or right and left by
varying the voltage on the horizontal deflection plates. In this way the variation of
one voltage as a function of another can be displayed graphically on the CRT screen.
If the horizontal plates are connected to a voltage that increases linearly with time, a
plot of the voltage at the vertical deflection plates as a function of time can be
produced. Special trigger circuitry is usually provided to synchronize the horizontal
sweep of the beam with the closing of a switch or with some feature of a repetitive
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waveform. The oscilloscope is thus basically a voltmeter with a high internal
resistance (typically 1 MQ), but it can also be used as an ammeter with an appropriate
low-resistance shunt.

3.2 Capacitors

All the circuits-encountered so far respond to time-varying sources in exactly the same
way as they do to dc sources, namely, the currents and voltages everywhere in the
circuit readjust instantly to any changes in the sources. All the equations written
down so far are correct if we interpret all the variables as instantaneous quantities
that may vary from one instant to the next. If that were the whole story, we would
now be finished with the study of time-dependent circuits. However, two new circuit
components enter the picture, and they greatly enhance the usefulness of electrical
circuits. The first of these is called the capacitor (or condenser in older texts).
To understand the operation of a capacitor, imagine two large, parallel,
conducting plates of area 4 separated a small distance 4 by an insulator which might
be air but more typically is a dielectric such as paper, glass, plastic, oil, mica, or
ceramic. Such a configuration is shown in figure 3.3. Ifa voltage Vis applied between

— ]
+
+

Area A>/- T+

Electric
~ field

Fig. 3.3 A parallel plate capacitor.

the plates, an electric field E = V/d will be produced. From Gauss’s law, each plate
‘must contain an equal and opposite electric charge given by

y
Q=sAE=8—dI—/ (3.1)

where ¢ is the permittivity of the di€lectric. Free space has a permittivity given by
o =8.85x 10712 C?/N-m?
From the definition of current,

_dQ _eddV

3.
dt d dt (3-2)
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The constant e4/d is called the capacitance:

A :
C=-"— 3.3
: (33)
In the SI system, the unit of capacitance is the farad (abbreviated F), and is equal to

1C/V:
1F=1C/V

Typical capacitor values range from about 1 picofarad (pF, 10712 farads) to about
1000 microfarads (1000 uF, 1073 F).

Although the above derivation applies only to a particular configuration in
which two large, parallel plates are separated by a small distance, any two
conducting electrodes separated by an insulator will have a capacitance. The
capacitance can be calculated exactly in only a few special cases such as the above.
The capacitance is always the ratio of the charge on one of the electrodes to the
voltage applied between the electrodes:

C= g’ (3.4)
vV
A circuit element constructed in this way constitutes a- capacitor, and from
equation 3.2, we see that the relationship of the current through the capacitor to the
voltage across its terminals is given by
dav
I=C— (3.5)
dt
Although a real capacitor does not precisely obey the above equation, for a variety of
reasons, we will define an ideal capacitor as one in which equation 3.5 holds exactly.
Note the similarity to an ideal resistor in which Ohm’s law is exactly satisfied. The
symbols for an ideal capacitor are shown in figure 3.4. The quantity C dV/dt has

1l
1t

Ny
1

o,

av
€

(@) b)
Fig. 3.4 Symbols for ideal capacitors.
(a) Fixed. (&) Variable.

units of current and is called a displacement current, although it does not
correspond to a flow of charge.
An ideal capacitor has several curious properties. First, note that if a constant
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voltage is placed across its terminals, equation 3.5 says that the current is zero. In a dc
circuit, a capacitor thus behaves like an open circuit. On the other hand, if we try to
change the voltage abruptly, the quantity dV/dt, and hence the current /, is infinite.
Real circuits cannot have infinite currents, and so the voltage across a capacitor
cannot change abruptly. In other words, for transients a capacitor behaves like a
voltage source. A capacitor with zero voltage behaves transiently like a short circuit.
Finally, energy cannot be dissipated in a capacitor. It can only be stored in the electric
field, for later recovery. The energy stored in a capacitor is easily calculated:

dv
W= j VIdt= [ch dt= jCVdV:%CVz (3.6)

A capacitor with stored energy is said to be charged. A capacitor without stored
energy (V' =0) is said to be discharged. : ‘

To conserve space, capacitors are usually made with numerous layers of
conducting foil (usually aluminum) sandwiched between thin layers of insulation.
Alternate layers of the foil are then connected together to provide the two terminals.
The insulating material is carefully chosen according to its permittivity, breakdown
voltage, and resistive power loss. The relative permittivity, &/¢, is also called the
dielectric constant. It varies typically from 2 for teflon to over 10° for some types of
ceramic. The breakdown voltage for most dielectrics is several hundred volts
per mil (1 mil=0.001 inch). Capacitors are rated according to the voltage that
can safely be applied across their terminals. Some dielectrics such as teflon and
mica have extremely low power loss. Insulators with a large relative permittivity,
such as some types of ceramic and most liquids, unfortunately have significant
power loss.

The electrolytic capacitor is an especially compact design that uses aluminum
or tantalum plates immersed in a semiliquid chemical compound which forms a thin,
insulating, oxide layer on one of the electrodes. In addition to having a relatively high
power loss, the electrolytic capacitor must be used in a circuit in which the sign of the
voltage across its terminals is always the same (usually indicated by a + or — on the
case of the capacitor). Such a capacitor is said to be polarized. Furthermore, the
value of capacitance will vary considerably with voltage, temperature, age, and so on,
for an electrolytic capacitor. But the cost per joule of energy storage capability is
usually lower for an electrolytic capacitor than for any other type.

3.3 Inductors

A circuit element that behaves exactly opposite to the capacitor is the inductor,
often called a coil or choke. To understand the operation of an inductor, imagine a
circular coil of wire of area 4 with a constant number of turns per unit length (M)
and a length long compared with its diameter. Such a coil, shown in figure 3.5, is
called a solenoid. If a current / flows through the coil, Ampere’s law allows us to
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field
Fig. 3.5 A solenoidal inductor.

calculate the magnetic flux:

®=BA =___[,L]Vl'IA (3.7)

where y is the permeability of the material on which the coil is wound. For most
materials (iron is a well-known exception) the permeability is close to the per-
meability of free space:

Ho=4m x 1077 NJA?

From Faraday’s law, the voltage across the terminals of the coil is given by

db  uN?4 dl
V= N— = = 3.8
N dt i dt (3.8)
The constant uN24/! is called the inductance:
2
L= “'A; 4 (3.9)

In the SI system, the unit of inductance is called the henry (abbreviated H) and is
equal to one weber (a unit of magnetic flux; see Appendix D) per ampere:

1H=1W/A

Typical inductor values range from about 1 uH (107 H) to about 1 H.

As with capacitance, the above derivation applies only to a particular coil
configuration, but the concept of inductance is a very general one. All real
components, including capacitors and resistors, have a certain inductance. Reccll
that a wire-wound resistor is very similar to the solenoid described above. The
inductance is always the ratio of the magnetic flux linkage (V@) to the current:

_Ne
T

An ideal circuit component that contains only inductance is called an inductor, and
from equation 3.8 we see that the relationship of voltage across the terminals of an
inductor to the current through it is given by

dl

=7 11
/4 Ldl (3.11)

(3.10)
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(a) (b)

Fig. 3.6 Symbols for ideal inductors. (a)
Fixed. () Variable.

The symbols for an ideal inductor are shown in figure 3.6.

Like the capacitor, an ideal inductor has several curious properties. If a constant
current passes through the inductor, equation 3.11 says that the voltage is zero. Ina
dc circuit, an inductor behaves like a short circuit. On the other hand, if ¥ is to be
finite, the current cannot change abruptly. For transients, the inductor thus behaves

like a current source. Like a capacitor, an inductor cannot dissipate energy, but can

only store it in the magnetic field. The energy stored in an inductor is
di Ly o2
W= |IVdt= ILa'_tdt: Llidi=35LI (3.12)

To conserve space, inductors are often wound on a toroidal iron core. Iron has a
relative permeability, u/u,, on the order of 1000. Unfortunately, an inductor with
an iron core is far from ideal. To begin with, iron is an electrical conductor, and when
a time varying current flows in the winding, a current is induced in the iron. This
eddy current gives rise to resistive losses in addition to those of the wire used for the
winding. Eddy currents can be reduced by laminating the iron and separating the
laminations with an insulating varnish or shellac. Still better, the iron can be ground
into a powder and mixed with an insulating binder. Some oxides of iron, nickel, and
cobalt, called ferrites, also have a high relative permeability and a low electrical
conductivity and thus have found widespread use in compact toroidal inductors.

A second difficulty with iron is that its permeability is not constant, but varies
with the strength of the magnetic field and hence with the current in the windings. In
fact, at sufficiently high magnetic fields, the core will saturate and its relative
permeability will drop to a value near unity. Not only that, but the magnetic field in
the iron depends on the past history of the current in the winding. This property of
remanence is essential in a permanent magnet, but in an inductor it-gives rise to
additional losses, called hysteresis losses.

Variable inductors are -usually made in the form of a short solenoid with a
powdered iron or ferrite slug that can be screwed into or out of the form on which the
coil is wound. Sometimes the slug is made of a conducting material such as brass,
which has a relative permeability near unity, in which case eddy currents flow on the
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outside of the slug and eliminate magnetic flux from the center of the coil, reducing its
effective area.

It is possible for the eddy current and hysteresis losses to be so large that the
inductor behaves more like a resistor. Furthermore, there is always some capacitance
'between the turns of the inductor, and under some circumstances an inductor may
act like a capacitor. This is a characteristic of all real circuit components. Whether a
given component behaves more like a resistor, capacitor, or inductor depends on how
it is made and how fast the voltages and currents are changing in time.

Both the ideal capacitor and the ideal inductor are, like the ideal resistor, linear
components, since doubling the voltage doubles the current and vice versa. Note that
we have now accumulated quite an assortment of conjugate pairs, as listed below:

voltage/current
series/parallel
loop/node

open/short
capacitance/inductance

charge/flux linkage

The existence of such pairs is a direct result of the symmetry of Maxwell’s equations,
which describe all electromagnetic phenomena.

3.4 Inductors and Capacitors in Combination

Just as circuit-reduction techniques are extremely useful with dc circuits, it is often
possible to simplify circuits that contain more than one inductor or capacitor.
Consider first the case of two inductors in series, as shown in figure 3.7(a). Since the

L,

L,

1
L=L+ L, L

(a) (b)

Fig. 3.7 Inductorsin series (a) and parallel (5)
add just as resistors do.
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same current / must flow through both inductors, the total voltage drop is

ar | dl dI
V=L, —+ L,—=(L,+ L,) —
ldt 2dl ( 1 Z)dt

Two inductors in series are therefore equivalent to a single inductor with an
equivalent inductance given by

L=L,+1, (3.13)

Now consider the case of two inductors in parallel as shown in figure 3.7(5). Since the
same voltage V appears across each, the total current is

1 1 1,1
I=— |Vdt+ — |Vdt={—+—]) | Vat
Ll.[ LZJ (Ll LZ)J

Two inductors in parallel are therefore equivalent to a single inductor with an
equivalent inductance given by

1
_t,1 (3.14)
L LI

As with resistors, these relations can be generalized:

L= z L; (series)

1 1
7= Z L_. (parallel)

Now consider the case of two capacitors in parallel, as shown in figure 3.8(a).
Since the same voltage V appears across each, the total current is

av av av
I=C,—+C,—=(C, +C,)—
ldl 2 dt ( 1 2) dt
L
0 Lo
=G
C=C+C, %=¢1?—1+c_12
(a) (b

Fig. 3.8 Capacitors in parallel (a) and series (5) add
opposite to the way resistors do.
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Two capacitors in parallel are therefore equivalent to a single capacitor with an
equivalent capacitance given by

C=C,+¢ (3.15)

Finally, consider the case of two capacitors in series as shown in figure 3.8(). Since
the same current / must flow through both capacitors, the total voltage drop is

1 1 1,1
Ve=— |Idt+ — [Idt= |+ =) |1t
CIJ CZJ (Cl CZ)Jv

Two capacitors in series are therefore equivalent to a single capacitor with an

equivalent capacitance given by
11,1 (3.16)
c ¢ G

These relations can be generalized to give:

C= Z C, (parallel)

1 1 .
-=) — series
c=g b

All these relations can easily be remembered simply by recalling that inductors
combine the same way resistors do, but capacitors combine in the opposite (inverse)
way. Similarly, one can form inductive and capacitive voltage and current dividers,
provided the sources are time-dependent (see problem 3.4).

3.5 Series RC Circuit

We are now ready to consider circuits in which capacitors and inductors are
combined with one another and with resistors. Since all these components are linear
and since the relation of ¥ and 7 for capacitors and inductors involve derivatives, the
equations that result when Kirchhoff’s laws are applied to such circuits are linear
differential equations. The next few pages will review the techniques for solving such
equations.

Consider first the transient circuit shown in figure 3.9(a) in which the source is

v o

A~
\ =C

t

(a) (b)

Fig. 3.9 In the transient series RC circuit in (a) in which the switch is closed at ¢ =0, the
voltages adjust to a new equilibrium as indicated in (b).
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P p—

T,

dc, but at time ¢ = 0 the switch is closed and remains closed until the circuit reaches a
new equilibrium condition. Applying Kirchhoff’s voltage law to the single loop that is
formed after the switch is closed gives

Lo
V=IR+ — |Ild!
:|

As the first step in solving such an equation, we always eliminate any integrals by
differentiating each term:

dl 1

O0=R—+ =1

a C
where we have used the fact that ¥ is a constant in this particular example. The next
step always is to rewrite the equation in a standard form, in which all terms containing
the unknown (/ in this case) appear on the left of the equal sign with the highest
derivative written first and without any multiplicative constants:

This is an example of a linear, first-order, homogeneous differential equation. It
is linear because the unknown appears only once to the first power in each term. It is
first order because thé highest derivative is the first, and it is homogeneous because
the right-hand side, which would contain any terms not dependent on the unknown /,
is zero.

The solution to all linear, first order, homogeneous differential equations is of the
form

1=

where the constant o is determined by substituting the solution back into the
differential equation and solving the resulting algebraic equation:

at —=0

In this case the solution is

The constant I, is determined from the initial condition at ¢ = 0. The initial condition
is easily determined from the fact that the voltage across a capacitor cannot change
abruptly, and thus if the capacitor has zero voltage before the switch is closed, it will

also have zero voltage immediately after the switch is closed. The capacitor initially

behaves like a short circuit, and the initial current is
vV

10)=lp=
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Therefore, the complete solution for the transient series RC circuit for an initially
discharged capacitor is
14
I=— ¢k (3.17)
R
The quantity RC is called the time constant, 1, for the circuit, since it has units of
time and represents a characteristic time for the circuit to reach a new equilibrium
condition after the switch is closed.
Once the current is known, the voltage across the resistor and capacitor can be
easily determined:

Ve=IR = Ve /RC

1 t
Ve=— J Idt=V (1 —¢ YRC)
Clo
A graph of these quantities is shown in figure 3.9(6). Whenever a result such as the
above is obtained, it is always wise to check the limits ¢ =0 and ¢ = oo to make sure
that the result agrees with what one would expect for the appropriate dc circuits:

oy .
1{0) =R I(c0) =0
Ve(0)y=V = Vp(0)=0
Ve(0) =0 Ve(o) =V

Inspection of the circuit shows that these values are just what one would expect, since
a capacitor initially (¢ € RC) behaves like a short circuit, but after a long time
(t> RC) it behaves like an open circuit.

3.6 Series RL Circuit

The next example of a transient circuit is the series RL circuit shown in
figure 3.10(a). As was the case for the series RC, the source is dc and the switch is
closed at +=0 and remains closed until the circuit readjusts to a new equilibrium.

R
—AMVW\~ v
v
™
L
(a) (&)

Fig. 3.10 In the transient series RL circuit in (2) in which the switch is closed at ¢ =0, the
voltages adjust to a new equilibrium as indicated in (5).

o

ot
Os

t
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KirchhofPs voltage law gives for ¢ > 0:

d
V=IR+ L al
dt
Rewriting in the standard form gives
a kv
dt L L

This is an example of a linear, first-order, nonhomogeneous differential equation,
since the right-hand side is not zero. The solution to a linear, nonhomogeneous
equation always consists of two parts:

I=1,+1,

The first part is called the homogeneous solution, and it is just the solution of the
equation with the right-hand side set equal to zero: ,

dl, R
a'_th +. I L,=0
We already know that such a linear, first-order, homogeneous equation has a solution
I =1
.where a in this case is given by
a= -
L

If the term on the right-hand side of the nonhomogeneous equation is a constant
independent of time, the particular solution, , is also a constant, and its value can
be easily determined by substituting into the original equation:

It is true that for whatever particular solution one finds to the equation, the homo-
geneous solution can always be added, since it gives zero when substituted into the
left-hand side of the equation. It is usually needed, however, to satisfy the initial
conditions. Putting the two parts of the solution together gives:

I=[ R+ K
R

The time constant 7 for an RL circuit is given by T = L/R in the same way that 7= RC
for an RG circuit. All that remains is to calculate the constant ;. To do that, we note
that the current through an inductor cannot change abruptly, and the current just
before the switch was closed was zero, and so

|14
oYy=1,+ —=0
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which gives

14
I, = ——
° R
The final solution for the current in a transient RL circuit is then
vV
1=E(l — ¢ RULy (3.18)

The voltage across the resistor and inductor are easily calculated:
Vr=IR=V (1 —¢ R/
V,=L— = Ve Rk
A graph of these quantities is shown in figure 3.10(4). The values of initial and.final

currents agree with what one would expect for the dc circuits in which the inductor is
initially an open circuit but becomes a short circuit after a long time:

10) =0 I(c0) =£
Va(0) =0 Va(oo) =V
Vy0)=V V,(0) =0

The reader should note the similarity of the RL and RC circuit behavior.

3.7 Series RLC Circuit

We now begin consideration of circuits that contain both a capacitor and an
inductor. Such circuits are called resonant circuits. One of the simplest of such
circuits is the series RLC circuit shown in figure 3.11. An even simpler circuit would
result if the resistor were omitted, but there is always some resistance in a real series
LC circuit, and so it would behave like the circuit of figure 3.10 in the limit of small
resistance. We could also consider a series RLC circuit with a source, but that would
only change the initial conditions. The general behavior of the circuit is the same with
or without sources. .

i | .
S/

Fig. 3.11 Series RLC circuit.

58 Transient Circuits



Assume that the capacitor is charged to a voltage ¥, and then at { =0 the
switch is closed. Kirchhoff’s voltage law gives for ¢ > 0:

1
L ra+ m+ 1% =0
c i

Rewriting in standard form gives

d*I  Rdl | 1

—+ =+ —=1=0

dt Lda LC
This is an example of a linear, second-order, homogeneous differential equation. It
is reasonable to guess that the solution is of the same form as for the first-order,

homogeneous differential equation encountered earlier:
—_ 7 '
I=Ie
Substituting into the differential equation gives

o+ Ea + Lo
L Lc
Note that a solution of the form ¢* always reduces a linear, homogeneous differential
equation to an algebraic equation in which first derivatives are replaced by @ and
second derivatives by o2, and so forth. A linear, second-order, homogeneous,
differential equation then becomes a quadratic algebraic equation, and so on. This
particular algebraic equation has the following solutions:

R R? 1
al=——+ 72 T
2L 41> LC
(3.19)
R R? 1
0y == — — —

oL \4L? IC

Since either value of « represents a solution to the original differential equation, the
most general solution is one in which the two possible solutions are multiplied by
arbitrary constants and added together:

I=1e"+ L
The constants /, and I, must be determined from the initial conditions. An nth order
differential equation will generally have n constants which must be determined from
the initial conditions. In this case the constants can be evaluated from a knowledge of

1(0) and d1}d(0). Since the current in the inductor was zero for ¢ <0, and since it
cannot change abruptly, we know that

1(0)=0
Since the current is initially zero, the voltage across the resistor must be zero, and so
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the initial voltage across the inductor is the same as across the capacitor. Hence

dI V,

a9

From these relations, we get

Vo

l == =—
! 2 (ay —ay)L

The solution for the current in the series RLC circuit is thus

I= L/ (e#F — &%) (3.20)
(g —a)L
where a, and a, are given by equation 3.19.
The solution in equation 3.20 has a quite different character, depending on
whether the quantity under the square root in equation 3.19 is positive, zero, or
negative. We will consider the three cases in turn:

Case 1. Overdamped

For R? > 4L|C the quantity under the square root is positive, and both values of « are
negative with |a,| > |a, |. The solution is the sum of a slowly decaying positive term
and a more rapidly decaying negative term of equal initial magnitude. The solution is
sketched in figure 3.12(a). An important limiting case is the one in which R? > 4L/C.
In that limit the square root can be approximated as

R_2 1 R | 4L R 1
41> LC 2L R*C 2L RC

and the corresponding values of a are

1 R
oy = — R0 and %==7
Then the current in equation 3.20 is
Ve
I~ 22 (e7RE —7H0%) (3.21)

In this limit the current rises very rapidly (in a time ~L/R) to a value near V,/R and
then decays very slowly (in a time ~RC) back to zero. Such a circuit closely
resembles the RC circuit studied earlier (figure 3.9), as would be expected, since L
was assumed small at the outset (compared to R2C/4).

Case 2. Critically Démped

For R? =4L/C, the quantity under the square root is zero and a; = a,. Equation 3.20
is then zero divided by zero, which is undefined. Therefore, the method of solution
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R? > 4L/C

/ (a)

I R? = 4L/C

(b)

R? < 4L/C

(c)

Fig. 3.12 Current versus time for a series
RLC circuit. (a) Overdamped. (b)
Critically damped. (¢) Underdamped.

outlined above fails. A more productive approach is to let

R? 1

*=\ar T ic
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and take the limit of equation 3.20 as ¢ 0. Then

a1=—£+s and a2=—£—6
2L 2L
and equation 3.20 becomes
o X —et
I= 28_L e 2L (¢ —e ")
Using the expansion
Fxltx

for |x] €1, the above equation becomes

R
JERC,

(3.22)

The same result could have been derived using I'Hépital’s rule (see Appendix E).
This equation is sketched in figure 3.12(4). The shape of the curve is not very different
from the overdamped case, except that it approaches zero as fast as possible without
overshooting the ¢ axis and going negative.

Case 3: Underdamped

For R? < 4L/C, the quantity under the square root is negative, and & can be written as

RZC
where

A jis used for the square root of —1 in electronics because the more usual symbol, , is
reserved for currents. Now it will be useful to define another symbol, w, which we call

the angular frequency:
2
\/—_ [1— R—q— (3.23)

Note that for R? < 4L/C, the angular frequency is

=~

8- 3
o

and this approximation will usually suffice for most cases of interest. With these
substitutions, equation 3.20 becomes
Vo -R . .
IT= =2 ¢ 2L (¢#o — g Iot)

%l
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We now make use of the mathematical identity

e =cosf+ sinf (3.24)
to express the current as follows:

_ Yo —rya
| I= o ¢ sin wt | (3.25)
This solution is of a very different form than the others, since it is oscillatory, with the
oscillation amplitude decaying exponentially in time, as shown in figure 3.12(c).
Although w is referred to as the angular frequency, note that it has units of radians
per second, and it is related to the usual frequency f which has units of cycles per
second or hertz (abbreviated Hz) by

w=2nf (3.26)
Similarly, the period of oscillation is
12
T=-=2" (3.27)
S o

It is instructive to consider what happens to the energy in an underdamped,
series RLC circuit. At =0, all the energy is stored in the capacitor. As the current
increases, energy is dissipated in the resistor and stored in the inductor until one-
quarter of a cycle has elapsed, at which time there is no energy left in the capacitor.
But as time goes on, the energy in the inductor decreases, and the energy in the
capacitor increases until one-half cycle has elapsed, at which time all the energy
except that dissipated in the resistor is back in the capacitor. The energy continues to
slosh back and forth, until it is eventually all dissipated by the resistor. The damping
of an RLC circuit involves the conversion of ordered energy (CV? and 1LP) into
disordered, thermal energy in the resistor, and so is just what would be expected from
the second law of thermdynamics.

The quality factor of a resonant circuit is defined as the energy stored divided
by the average energy dissipated per radian of oscillation:

w
=— (3.28)

p

where

1 (T
P=—1| PR
-] rra

It is left as an excercise (problem 3.12) to show that for a series RLC circuit the Q is
given approximately by

Q== (3.29)

3.7 Series RLC Circuit 63



Yet another equivalent definition of Q is the number of radians required for the
stored energy to decay to l/e of its original value. A series LC circuit without any
resistance would have an infinite Q and would oscillate forever without damping.
Real inductors always have some resistance, and circuits with Q greater than a few
hundred are very difficult to construct.

The type of differential equation that describes the series RLC circuit is a very
important one, because it appears with different variables in many areas of science
and engineering. More generally, the system described by such an equation is called a
damped harmonic oscillator. The shock absorbers on an automobile, for
example, are part of a mechanical harmonic oscillator which is designed to be nearly
critically damped. A thorough understanding of the series RLC circuit will provide
considerable insight into a wide variety of such phenomena.

3.8 Summary

Transient circuits are circuits in which the sources are dc but are turned on or off
abruptly. Transient circuits that contain only resistors behave in the same way as they
would for dc. Two additional linear circuit components, the capacitor and the
inductor, play important roles in transient circuits. The ideal inductor is defined by
the relation

dl

V=1=
dt

and the ideal capacitor is defined by the relation

dv
I=Cc—
d

in the same way that an ideal resistor is defined by Ohm’s law,
V=IR

Inductors in series and parallel can be combined in the same way as resistors.
Capacitors are combined in the opposite (inverse) way. Circuits that contain
capacitors and inductors can be analyzed using Kirchhoff’s laws, which lead to a set
of simultaneous linear differential equations. For transient circuits, the solution
consists of a homogeneous part that is proportional to ¢* and a particular part thatisa
constant. The differential equations can be reduced to algebraic equations from
which the values of @ can be determined. Constants will always appear in the
solutions, and these will have to be determined from the initial conditions. The initial
conditions are obtained from the circuit using the fact that the voltage across a
capacitor and the current through an inductor cannot change abruptly.
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Problems

3.1 Suppose two strips of conducting foil | meter long x 1 cm wide are alternated
with strips of insulator 0.1 mm thick and relative permittivity of 10, and that the strips
are rolled up into a cylinder with many layers. Calculate the capacitance.

3.2 Calculate the capacitance of two parallel plates each with an area of 100 cm?
separated by a distance of 5 mm in air. What would the capacitance be if a 4-mm-
thick conducting sheet were inserted between the plates?

3.3  Suppose an insulated wire with 1-mm diameter is close wound in a single layer
on a l-cm diameter x 10-cm-long iron core with a relative permeability of 1000.
Calculate the inductance. :
3.4  In the capacitive voltage divider below, the voltage ¥ varies in time. Calculate
the voltage ¥, across capacitor C,.

1 /\+

L.
S

3.5 Calculate the current I{¢) and the voltage V() across the capacitor in
figure 3.9(a), assuming the capacitor has an initial voltage Vy.

3.6 In the circuit below, the switch is initially in position 1. At ¢ =0, the switch is
moved to position 2. At ¢=1s, the switch is moved to position 3. Calculate ¥(¢) for
1> 0, and sketch the result.

R, = 100 kS

C=1uF==

he— (R —

3.7  In the circuit below, the switch has been open for a long time, and then at =0
itis closed. Determine the current [ and voltage V; just after the switch is closed (¢=0)
and after a long time (t— 0).
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3.8  For the series RC circuit of figure 3.9, calculate the energy dissipated by the
resistor and the energy stored in the capacitor as a function of time, and show that as
t — o, the energy stored is equal to the energy dissipated, for any values of R and C.
Assume the capacitor is initially discharged.

3.9  After being open for a long time, the switch in the circuit below is closed at
t=0. Calculate the current /; as a function of time for ¢ > 0.

— A
v) _ R, 'Ll L

LTN\+

3.10 For the circuit in problem 3.9, assume the switch has been closed for a long
time, and then at ¢ =0 it is opened. Calculate the voltage ¥} across the inductor as a
function of time for t=20. If V=10V, R, =10 Q, and R, = 1 k€, what is the peak
value of ¥, ?

3.11 Before the switch in the circuit below is closed, the capacitor C, is charged to a
voltage V;(0), and C, is discharged, V,(0) =0. Calculate the final voltages ¥(0c0)

RGN
M 1

3.12 Show that for a series RLC circuit, the Q is given by wL/R for Q > 1.

3.13 Determine the differential equation that describes the current / in the circuit
below, and indicate the appropriate initial conditions if the switch is closed at t=0.
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3.14 In the parallel RLC circuit below, the capacitor has an initial voltage ¥y, and
the switch is closed at ¢ = 0. Solve for the voltage ¥ as a function of time if R*> 4L/C.

o T

L Vv

v

3.15 After being open for a long time, the switch in the circuit below is closed at
t=0. Write a set of linearly independent equations that completely specify the
behavior of the circuit, and combine these equations into a single differential
equation with I as the only unknown.

11
1
(o]
x

3.16 In the circuit below, the switch has been open for a long time and then is closed
at ¢ =0. Calculate I, and F as a function of time for ¢ > 0.

Ry

AMM—

80

: R, S 209
+ 1000S Ry
o
1oV V)

100 pF 7] T

3.7 In the circuit below, the current increases linearly with time starting at 1=0
such that /=0 for ¢ <0 and /=0.01 ¢ for ¢ > 0. Find the voltage across the capacitor
and the voltage across the inductor if at =0 the capacitor is discharged.
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“LC=501.1F

1O

3.18 In the circuit below, the capacitor is initially charged to 1000 V, and both
switches are open. At t=0, switch §, is closed. When the current in the inductor
reaches its peak value, switch S, is closed. Sketch the voltage across the capacitor and
the current through the inductor as a function of time, and show values of voltage,
current, and time on your sketch. What would happen if S, were closed at a different
time? Such a circuit is called a crowbar, and it is useful for producing intense, nearly
constant, magnetic fields.

o o

S

€=01F L 52{ L=1mH
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chapter 4

Sinusoidal
Circuits

4.1 Basic Definitions

In this chapter we will consider circuits in which the sources are sinusoidal functions
of time. Such circuits are of particular importance because of the ease of producing
sinusoidal time variations (as, for example, in the transient RLC circuits discussed in
the preceding chapter), and because more complicated time variations can be treated
as a superposition of sine waves (see the next chapter). The application of Kirchhofl’s
laws to such circuits will produce nonhomogeneous differential equations, but for
linear circuits these equations can be transformed into complex, linear, algebraic

. equations.

Consider the circuit in figure 4.1(a) in which a sinusoidal voltage source,

T A

DI

Vp cos wt é\;)

(a) b)

Fig. 4.1 A sinusoidal voltage source connected to a resistor (a) produces a
current as in (5).

V, cos wt, is connected to a resistor R. Whether we choose a cosine or a sine dependence
for the voltage is arbitrary, since the shape of the waves are identical, and the only
difference is in what we call ¢ = 0. The cosine is more convenient, however, for what
will follow. According to Ohm’s law, the current in the circuit has a sinusoidal time
dependence given by

_ Vycoswt

- R
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The voltage and current are shown in figure 4.1(5). The period is the time required
for the wave to repeat itself, and is given by
' I 2r
T=-=— (4.1)
f o
The power dissipated by the resistor is a function of time. Of more interest is the
average power. Since one cycle is representative of all others, we can average the power
over a period to get

(T
P=—1| PR
- | rra

_ 1 [T V§cos? o Ve

T)o, R T 2R
This result looks very similar to the usual definition of power in a dc circuit
{(equation 1.2) except for the factor of two. It is useful to define a root mean square

(rms) voltage given by
1 T 5 1/2
Vs =| = Ve(t)de 4.2
- [T L 0 ] (+2)

For a sinusoidal voltage, the rms value is given by V, = Volﬁz0.707 Vo- The
significance of the rms voltage is that if such a voltage is applied to a resistor, the same
power will be dissipated as for a dc voltage of the same value:
N
P=-= 4.3
f (+3)

Thus when we say that a voltage is 115 V ac, we usually mean that its value is given
by 115 /2 cos wt.

A more interesting case occurs when the voltage source is connected to a
capacitor, as shown in figure 4.2(a). From the definition of an ideal capacitor, we can
calculate the current:

dav
1=C-E = —wCV, sin w!

N AN/
NY

(a) ()]

Fig. 4.2 A sinusoidal voltage source connected to a capacitor (a)
produces a current as in (5).

Vo cos wt
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The current has a maximum value (when sin w¢= —1) of
I, = wCV,

but the maximum current does not occur at the same time as the maximum voltage.
The voltage and current are sketched in figure 4.2(6). The ratio of peak voltage to
peak current is like a resistance, since it has units of ohms, and it is called the
reactance:

b

=% (4.4)

X

The reactance of a capacitor is thus
1

-— (4.5)

Xc
The reciprocal of reactance is called susceptance, and, like conductance, is
measured in units of siemens.
Note that the dc limit corresponds to setting @ =0, since cos(0) = 1, and for such
a case the capacitive reactance is infinite, and the capacitor behaves like an open
circuit. On the other hand, at high frequencies (w — ), the capacitive reactance is
zero, and the capacitor behaves like a short circuit. Note also that the current can be
expressed in terms of a cosine by ‘

I= —I,sin wt=1I, cos(wt+ ¢)

where ¢ is called the phase of the current relative to the applied voltage. For the
above case, the phase is 90° (n/2 rads). Note that phase, like voltage, is a relative
quantity and that it can only be defined for two sinusoidal waves of the same
frequency.

The energy that flows into the capacitor per unit time averaged over a cycle can
be calculated in the same manner as for the resistor:

_ 1 (T 1 (7
P=—7:‘[0]th=—?J.ow-CV(2,coswtsinwldt

From the symmetry of the sine and cosine functions, we see that the energy that flows
into the capacitor during the first and third quarter cycles is just balanced by the
energy that flows out of the capacitor during the second and fourth quarter cycles, so
that P=0. The capacitor neither dissipates nor permanently stores energy under
such conditions, but just retains it temporarily and gives it back to the circuit a
quarter cycle later.

Not surprisingly, an inductor behaves just the opposite of a capacitor. A circuit
with a sinusoidal voltage source and an inductor is shown in figure 4.3(a). From the
definition of an ideal inductor, we can calculate the current:

1 v, .
I—ZJth_BZSInw'
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(a) (b)

Fig. 4.3 A sinusoidal voltage source connected to an inductor (a)
produces a current as in ().

In performing an indefinite integral such as the above, there will, in general, be an
arbitrary constant of integration that must be added to the result. In this case the
constant would be the initial current in the inductor, which we take equal to zero.
The voltage and current are sketched in figure 4.3(5). The current has a maximum
value

-
, °" wL
and the reactance of an inductor is thus
X, =0l : (4.6)

In the dc limit (w = 0), the inductive reactance is zero, and the inductor behaves like
a short circuit. At high frequencies (w — o0), the inductive reactance is infinite, and
the inductor behaves like an open circuit. The dc-limiting behavior of the capacitor
and the inductor can easily be remembered by recalling their physical construction.
As with the capacitor, the current in the inductor can be expressed in terms of a cosine
by

I=1Isin wt =1, cos (wt+ ¢)

but in this case the phase is —90° (—n/2 rads). In a capacitor the current leads the
voltage by 90°. In an inductor, the current lags the voltage by 90°. A useful way to
remember this result, usually found in textbooks in which the symbol £ is used for
voltage instead of V, is with the phrase “ELI the ICE man,” where L indicates an
inductor and C a capacitor. As with the capacitor, the inductor does not dissipate
power, but merely stores energy for release back to the circuit a quarter-cycle later.

4.2 Time-Domain Solutions

We are now ready to consider more challenging sinusoidal circuits such as the series
RC circuit in figure 4.4(a). Applying Kirchhoff’s voltage law to this circuit gives

1
Vycoswt=IR+ ¢ Jldt
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Vp cos we

(a) (b)

Fig. 4.4 In the sinusoidal series RC circuit in ia), the current leads
the voltage by a phase ¢ = tan™!(1/wRC), as shown in (b).

As with transient circuits, we differentiate to eliminate any integrals and write the
resulting equation in the standard form:

i"{ + 1 = — als) sin wt

dt RC R

This is a linear, first-order, nonhomogeneous differential equation similar to those
encountered in the preceding chapter, except that the driving term on the right-hand
side has a time dependence. In general, such an equation will have both an
homogeneous and a particular solution. The homogeneous solution is needed to
satisfy the initial condition when the source is first turned on. However, if we assume
that the source has been on for a long time (much longer than t = RC in this case), the
transients, which decay exponentially, will have died away, and we need only be
concerned with the particular solution. We might guess that the particular solution is
either a sine or a cosine, but a quick inspection shows that neither of those, by itself,
will satisfy the equation. A solution containing a bit of each is required:

I=1 sin wt+ I, cos a

Substituting the above into the differential equation gives

1 1 oV,
Lo cos wt — Lw sin wt+ 7o lisinott 2= coswt = — —R—osin wt
The only way this equation can be satisfied for all values of ¢ is if the coefficients of the

sine and cosine terms separately add together:

1
To+—1=0
@O oot
1 V.
Lo+ —1,=—-—2
297 Rt R

A simple way to see this is to consider the cases ¢ = 0 and w¢ = n/2 for which the sine
and cosine terms, respectively, vanish. Solving these two linear equations for /; and I,
gives:
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I wCV,
' o?RACP
' w?RC?V,

L= R+ /

The solution of the original differential equation is thus

wCV,
I= ——5—5— (wRC cos wt —sin wt
wZRZCZ + 1 ( )
Note that in the limiting cases of R = 0 and X, = 0, the above equation reduces to the
results derived earlier for the circuits containing only a capacitor and only a resistor.
The current can also be written in terms of the cosine function alone by using the
following trigonometric identity:

A cos wt — Bsin wt = \/A*+ B? cos(wt+ ¢) (4.7)
where
B
=t -1
¢ =tan ¥

The quantity tan ™" (B/A) is called the inverse tangent of B/4 and is an angle whose
tangent is B/4. The result is

cv,
T=—— 0 cos(wt+ ¢)

VORI |

¢=tan"! <w—11i’6>

A graph of the current and voltage for ®RC = 1 is shown in figure 4.4(4). The voltage
across the resistor and capacitor can now be determined:

where

WRCY,
V =IR= —OCOS (Dt+
R ,/w2R202+ 1 (w+ )
1
Ve= ldt= ————=sin(wt+ ¢)

/ 2R202+

In performing the above indefinite integral for ¥, the constant of integration,
which in this case corresponds to the initial voltage on the capacitor, has been taken
equal to zero. If the capacitor had an initial voltage, it would decay to zero in a time
7 = RC. The neglect of the constant of integration in such a case is thus equivalent to
the neglect of the homogeneous part of the solution, which is always justified after a
sufficient time has lapsed and the circuit has reached a steady state.
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The method of solution outlined above is called a time-domain solution, since
the time dependences were carried throughout the calculation. Any linear differential
equation with a sinusoidal driving term will have a solution that is just the sum of a
term proportional to the sine and a term proportional to the cosine, and the
coefficients of the terms can be determined as shown. However, for more complicated
circuits, this method of solution can become very tedious. Fortunately, a shortcut
exists, and that will be the subject of the next section.

4.3 Frequency-Domain Solutions

The example in the previous section illustrates an important property of linear
circuits with a single sinusoidal source, namely, that the voltages and currents
everywhere in the circuit are also sinusoidal with the same frequency as the source,
but that the phase will vary throughout the circuit. Since linear circuits with several
sinusoidal sources of different frequencies can be analyzed using the superposition
theorem, the above principle is very useful. What it means is that we need not go to
the trouble of calculating the time dependence of the unknown current or voltage,
since we know that it will always be of the form cos(w¢+ ¢). All we need do is
calculate the peak value and phase of the unknown. Such a method of solution is
called a frequency-domain solution, since the equations will contain the angular
frequency w but not the time ¢.

A convenient method of analyzing circuits in the frequency domain makes use of
the mathematics of complex numbers. It should be emphasized at the outset that
currents and voltages are always real. When we write them with real and imaginary
components, we are only introducing a mechanism for keeping track of the phase.
The final answer must always be converted back to a form that does not contain any
imaginary numbers.

Suppose we have a voltage source that produces a voltage ¥V, cos wt. We can
represent this voltage as the real part of a vector of length ¥, at an angle wt from the
real axis in the complex plane, as shown in figure 4.5. The real part of such a vector
will always be the length of the projection of that vector on the horizontal axis. The
vector voltage is written as

V="Vye"

and it rotates counterclockwise with angular frequency . All the other voltages and
currents in the circuit containing such a source can also be similarly represented as
vectors in the complex plane. Their length will correspond to their maximum value,
their real part to their instantaneous value, and their angle with respect to the source
vector will correspond to their phase. Since all the vectors rotate with the same
frequency, it suffices to take a snapshot of the scene at any convenient time, since we
know that at time ¢ later, the whole scene will just be rotated through an angle wt.
Such a snapshot is called a phasor diagram, since the angles of the vectors represent
phases. We usually choose to take the snapshot at time ¢ =0, when the source voltage
V, ¢ lies along the real axis and the real part of ¥ has its maximum value of V.
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Flg. 4.5 A sinusoidal voltage V can be
represented as a rotating vector in the
complex plane.

If we apply a voltage Vye/*" to each of the three basic linear circuit components,
we can.calculate the current in each:

V .
Resistor: [=—= Yo el
R

R

dv .
Capacitor: [ = CI =jwCVye"

Inductor: /=~ j Vdt= ,ﬁ— et
L JoL

In each case the current has the same time dependence (¢/**), but only in the case
of the resistor does the phasor lie along the real axis. The capacitor current lies along
the positive imaginary axis, and the inductor current lies along the negative
imaginary axis (since 1/j = —j). As the phasor diagram rotates in time, the current in
the capacitor always leads the voltage by 90°, but the current in the inductor always
lags the voltage by 90°.

The ratio of voltage to current in this representation is independent of time (the
¢’®* will cancel), but it will, in general, be a complex number, and it will be a function
of frequency. This complex ratio is called the impedance, and it has units of ohms.
For the three basic linear circuit components the impedance is given by:

Resistor: =R
Capacitor: = | [jwC (4.8)
Inductor: =jwl

For a resistor, the impedance is a real number equal to the resistance. For a capacitor
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or inductor, the impedance is an imaginary number with a magnitude equal to the
reactance.

Capacitors and inductors, then, obey a relationship very similar to Ohm’s law
(equation 1.1), and it is sometimes called ac Ohm’s law:

Vv=1IZ (4.9)

The ac Ohm’s law reduces to the dc Ohm’s law for circuits that contain only resistors,
but for circuits with capacitors and inductors, the voltages and currents become
complex numbers.

The reciprocal of impedance is called admittance. Like conductance and
susceptance, admittance is measured in siemens. Note that admittance, like imped-
ance, is a complex number, and that the angle that the admittance vector makes with
the real axis is equal and opposite to the angle that the corresponding impedance
vector makes with the real axis (see problem 4.2).

The usefulness of the impedance concept is. that all of the circuit-reduction
techniques and circuit theorems for dc circuits can be applied to linear sinusoidal ac
circuits if the impedances of the various components are substituted into the
equations as if all the components were resistors. One need never solve a differential
equation for steady-state, linear, sinusoidal circuits. The equations will be complex
algebraic equations, and the solution will be a complex number corresponding to a
vector in the complex plane. The length of the vector will be the peak value of the
quantity, and the angle that it makes with the real axis will be the phase.

As an example, consider the circuit in figure 4.6, in which a sinusoidal voltage,

R

p Yo
Vpel®* L
d ¢

I
@ )

Fig. 4.6 The circuit in () has a phasor diagram as in (4) where ¢
= tan"! (—wL/R).

represented by Vye!®!, is applied to a series RL circuit, Treating the resistor and
inductor like two resistors and using ac Ohm’s law, we can immediately write the
phasor current: ' '

fy=—T0
°7 R+ oL

Whenever a complex expression has a j in its denominator, we always multiply
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and divide by the complex conjugate of the denominator. (The complex conjugate is
the same expression with j replaced by —j):

[ = Vo R—joL\ (R—joL)V,
°T R+joL \R—joL) R*+ w?L?
This trick will always reduce the expression to one of the form 4 + jB, which can be
written as
A+ jB= /A*+ B*J* (4.10)
where
B
= -1 R
¢=tan y

A is the real part of the complex number, and B is the imaginary part. For the above
case, the phasor current is

Iy= o e
where
—wl
=t -1
p=tan”

Transformation back to the time domain, after the result has been expressed in
the form of equation 4.10, is always accomplished by simply replacing ¢/ with
cos (wt+ ¢), which in this case gives

17
I=—2—cos(wt+ @)

A phasor diagram of the voltage and current is shown in figure 4.6(5). Note that the
current lags the voltage by an amount intermediate between the case of a resistor
alone (0°) and an inductor alone {—90°). The consideration of such limiting cases
will help ensure that the sign of the phase has the correct value.

A useful quantity in ac circuits is the power factor, defined as the ratio of the
power dissipated by an impedance to the apparent power that would result from
multiplying the rms voltage by the rms current. It is given by the cosine of the phase
angle between the voltage and the current or by the ratio of the real part to the
magnitude of the impedance:

Re(J)
Rl

The magnitude of a complex number is the square root of the sum of the squares of its
real and imaginary parts:

Power factor = =cos ¢

IR1=/(Reg)*+ (ImQ)>
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It can also be determined by multiplying the number by its complex conjugate and
taking the square root.

The power factor is a fraction less than unity and is often expressed as a
percentage. In power distribution systems a power factor near 1009, is desired to’
provide the consumer with the maximum useful power while minimizing the ohmic
losses in the transmission lines.

4.4 Series RLC Circuit

As another example of a frequency-domain solution, we will analyze the important
case of a series RLC circuit connected to a sinusoidal voltage source, as shown in
figure 4.7(a). The phasor current is just the source voltage divided by the total
impedance:

I,= Vo
°" R+ joL+ 1[joC

R
MWWy T
2
’NY
V el @ L
Wo
i
Ll -zl
c 2
(a) b)
Fig. 4.7 The series RLC circuit in (a) exhibits resonant behavior as shown

in (4).

Multiplying and dividing by the complex conjugate of the denominator gives

L= [R—jloL = l/wC)]Vo _ Vo I
R*+ (wL—1/00)®  /R?+ (wL - 1jwC)?
where
1/wC— ol
— -1
¢ =tan ( R )
In the time domain, the current is
¥V,
I= 0 cos(awt+ ¢)

VR + (0L — 1oC)?
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Note that when R is small, the magnitude of the phasor current |1;| is large whenever
 is equal to the angular resonant frequency,

- (4.11)

Wy =
o] \/E

For w = w,, the phase @ is zero, the current I is ¥,/R, and the circuit looks purely
resistive. What has happened is that the impedances of the inductor (jwl) and
capacitor (1/jwC) exactly cancel, and their series combination acts like a short circuit..
Below resonance (@ < ) the circuit looks capacitive, and above resonance (@ > @)
the circuit looks inductive. The magnitude and phase of the current are shown in
figure 4.7(). The smaller the resistance becomes, the narrower and higher becomes
the curve of the current in figure 4.7(b). In fact, the width, Aw, of the curve at the
points where the current is l/ﬁ (~709%,) of its peak value (called the half-power.
points, since P = I*R) is another measure of the Q of the circuit. It will be left as a
problem (4.5) to show that for Q > 1, the Q is given by

Wy

~ 4.12
A (4.12)

Q

Although the capacitor and inductor combination behaves like a short circuit at
resonance, this does not mean that no voltage appears across them individually. In
fact, from the value of the current in the circuit, we can easily calculate the voltage
across all three components at resonance:

Ve =1R =V, cos wyt

dl wolL
V,=L—=—-"2"V si
(3 Z R Vo sin wgt
1 wol .
V?=(—: jm:% V, sin gt

The voltage across the resistor is the same as the source voltage, but the inductor and
capacitor have equal and opposite voltages 90° out of phase with the source and
larger than the source voltage by a factor wyL/R. Hence another interpretation of Q
is the ratio of the voltage across one of the reactive components to the voltage across
the resistance in a resonant, sinusoidal, series, RLC circuit. The fact that a sinusoidal
voltage can be greatly magnified by such a simple circuit often comes as a shocking
revelation!

One should note the relative algebraic simplicity of the sinusoidal series RLC
circuit as compared to the transient series RLC circuit described in section 3.7. This
comparison illustrates the great usefulness of the impedance concept and serves as an
apt reward for one who is not frightened by the use of complex numbers. Note,
however, that impedance is a purely sinusoidal concept, and so it should not be
applied to the transient circuits of the previous chapter.
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4.5 Filter Circuits

Linear circuit components can be used to construct circuits that pass certain

frequencies while rejecting others. Such circuits are called filters, and their uses are

numerous. We will consider here several common examples of filter circuits.
Consider first the - ries RL circuit in figure 4.8(a) in which a voltage ¥, = V'

)

L
© 0000/ °
Vm R Voul
we = R/L
[og O

(a)

0
A
{(dB)
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40
wl/we
| 0.1 1.0 10 100
0 T T T
¢
_I
2
d)

Fig. 4.8 The low-pass filters in (¢) and (4)
produce an attenuation {¢) and phase (d) that
vary with frequency.
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is applied at the input. The output voltage can be calculated using the voltage divider
relation:

. RV,  R*—jwRL

om=R+ij = R2+CD2L2 Vi

in

The ratio of the magnitudes of the two voltages is

Vot R ]

7 =‘\/RZ+ 0’2 J1+ (@LIR)?

For @ small (€R/L), the inpﬁt voltage appears at the output unattenuated,

(Voue = Vin), but for w large (> R/L), very little output voltage appears. Such a circuit
is called a low-pass filter, and the quality R/L is called the angular cutoff

frequency,

We=— 4.13
since it is the angular frequency at which the output voltage drops to 1/ \/—2- (half
power) of the input value.

The series RC circuit in figure 4.8(4) can be analyzed in the same way with the
result:

|2

out

Vi

in

1
~ /17 (@RC)?

This circuit behaves exactly the same, except the angular cutoff frequency is

1
" RC

The ratio |V, /V;,| is called the attenuation and is often expressed in
dimensionless units called decibels (abbreviated dB):

W (4.14)

out

V:

Agp = —20 logy, (4.15)

An attenuation of 10 dB thus means that the power delivered to the load (which is pro-
portional to V%) is reduced by a factor of 10. An attenuation of 20 dB would correspond
to a power reduction of 10> =100, and so on. A graph of 4 versus the normalized
angular frequency wjwy for the circuits described above is shown in figure 4.8(c). The
point at which @ = @ is called the 3-dB point, sinced = 20 log,o \/5 ~ 3 dB. At high
frequencies, 4 increases by ~6 dBjoctave or 20 dB/decade. An octave is a musical
term meaning a factor of 2 in frequency. A decade is a factor of 10. A change in sound
level of 1 dB is about the smallest change that can be detected by the human ear. Note
that decibels add, so’ that if a circuit with 10 dB of attenuation is followed by a circuit
with 20 dB of attenuation, the total attenuation is 30 dB, provided the second circuit
does not alter the attenuation of the first.
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=1

Another interesting quantity is the phase of the output relative to the input for
the two circuits. For both cases the phase is

¢=tan" ' —2 (4.16)
W¢
For w € w, the phase shift is negligible, but for w » wy, it approaches —90°. At w
= @, the phase shift is —45°. The phase as a function of w/w. is plotted in
figure 4.8(d).
The opposite behavior is produced by the circuit in figure 4.9(a), for which the

C
o—| o
V, R Vour
we = 1/RC
[ -0
(a)
R
—AMA o
Vin L le
we = R/L
O— -0
b)
w/we
0 0.1 1.0 10 100
A I Z | L
(dB)
20—
40
(c)
L
2
[
0 ] ] ]
0.1 1.0 10 100
wlwe
(d)

Fig. 49" The high-pass filters in (a) and (5)
produce an attenuation (¢) and phase (d) that
vary with frequency.
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output voltage is

RV, w?R*C? + jwRC

v .
wT R¥ 1jwC 1+ w’RCE "

The ratio of output to input voltage is

Vow| _ wRC
Vil 1+ 0?*R3C?

For w. = 1/RC, the above expression becomes

Voul
V.

mn

i
N ot

The circuit in figure 4.9(b) gives the same result provided

R
We= —
L
In these cases the phase shift is
¢ =tan"12C @)
() i

which is opposite to the low-pass filter. These circuits are called high-pass filters,
and their attenuation and phase .are plotted in figure 4.9(c) and (d).

More complicated filter circuits can be constructed which have almost any
desired attenuation and phase characteristics, although a phase shift inevitably occurs
whenever the attenuation varies with frequency. Two common examples are the
resonant filter (problem 4.10) and the notch filter (problem 4.11). The art of
filter design is highly developed, and digital computers are often used to optlmlze the
design of filters for special applications.: :

4.6 Integrators, Differentiators, and Attenuators

The simple low- and high-pass filter circuits in the previous section can be used to
produce an output voltage that approximates the integral or derivative of the input
voltage. For example, applying Kirchhoff’s current law to the RC circuit in
figure 4.8(5) gives

Via—V, v,

in out —_ C out
‘ R dt
IfV,,, < V,,, the term on the left is approximately ¥, /R, and the above expression can

be integrated to give?

1
Ve = RCJ.V dt (4.18)
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Such a circuit is called an RC integrator. The circuit in figure 4.8(a) also produces
an output proportional to the integral of the input (provided V,,, < V) given by

R
Vo= JV dt (4.19)

RC integrators are more common than RL integrators, because capacitors are
usually cheaper, smaller, and more nearly ideal than inductors. In both cases it is
important that V,,, be kept small, and this is achieved by making the time constant
(RC or L|R, respectively) very long compared to the period or duration of the signal
that is to be integrated.

In a similar manner the circuits in figure 4.9 can be used to produce an output
voltage that approximates the derivative of the input voltage. Applying Kirchhoff’s
current law to the RC circuit in figure 4.9(a) gives

(Vi = Vo) _ Vou

in

dt R
IfV, < Vm, the above expression becomes

out

Cc

av,

dt
Such a circuit is called an RC differentiator. Similarly, the RL circuit in
figure 4.9(b) also produces an output proportional to the derivative of the input

(provided V,,, < V;,) given by

Vo = RC—= (4.20)

L dav,,
OI.II R dt
V.

" . is kept small compared with ¥ by making the time constant (RC or L|R) very
short compared to the period or duratlon of the signal that is to be differentiated. It is
important to realize that the integrator and differentiator work for any time
dependent waveform and not just for sine waves. One should verify, however, that the
low-and high-pass filters of the previous section do integrate and differentiate sine
waves in the appropriate limit.

Often it is desirable to attenuate a sinusoidal voltage by an amount that is
independent of frequency. It will be shown in the next chapter that this is equivalent
to reducing the size of a nonsinusoidal voltage without distorting its shape. In theory,
one could simply use a resistive voltage divider, since its output voltage is independent
of frequency. In practice, there is always some stray capacitance in a real circuit, and
eventually a frequency is reached at which the voltage divider behaves like either a
low- or a high-pass filter. This difficulty can be overcome by using the circuit in
figure 4.10 which is called 2 compensated attenuator. At low frequencies the
circuit behaves like an ordinary resistive voltage divider, but at high frequencies the
capacitive reactance dominates, and the circuit behaves like a capacitive voltage
divider. It is left as ‘an exercise (problem 4.19) to show that the attenuation' is
independent of frequency, provided

R,C, =R,C, (4.22)

(4.21)
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Fig. 410 In the compensated attenuator, the
attenuation is independent of frequency provided
R,Cy =R,C,.

In practice, one of the capacitors is usually variable, so that the attenuator can be
adjusted to compensate for any stray capacitance.

Such compensated attenuators are often used at the input of an oscilloscope to
raise the input resistance and lower the input capacitance so as to make the
oscilloscope into a more nearly ideal voltmeter. A necessary penalty, however, is a
decrease in sensitivity of the oscilloscope to input voltage. Such tradeoffs of two
desirable quantities are commonly encountered in electronic circuit design.

4.7 Transformers

The list of circuit components considered so far is relatively short: sources, meters,
resistors, capacitors, and inductors. In this section we introduce a new linear circuit
component called the transformer. It differs from all the others in that it is a four-
terminal rather than a two-terminal device. A transformer is nothing more than two
inductors placed close enough together that some of the magnetic flux of one inductor
links the other.

Imagine two inductors wound on the same laminated iron core, as shown in
figure 4.11. Iron is used to increase the inductance of the windings and to ensure that
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Fig. 411 A transformer can be made by winding two
inductors on the same iron core.
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most of the magnetic flux is shared by both windings. The iron is laminated to reduce
the eddy currcnts that would otherwise flow in the conducting iron. Eddy-current
Josses increase with the square of the frequency and with the square of the thickness of
the laminations. By contrast, hysteresis losses (see section 3.3) are proportional to
frequency. Transformers are normally designed so that the ohmic losses in the
windings and the core losses are comparable at the highest frequency that is to be
used. At high frequencies (R 100 kHz), a ferrite or air core would normally be used.
Usually, transformers are made with the windings directly on top of one another
rather than as shown in figure 4.11 to ensure good coupling between the windings.

If we arbitrarily designate one of the windings as the primary and connect it to
an ac voltage source, V;,, a magnetic. flux is produced in the iron core:

b= Jz‘ﬁ dt
‘NP

where V, is the number of turns on the primary. But according to Faraday’s law, this
flux produces a voltage in the other winding (called the secondary) given by

where N, is the number of turns on the secondary. Combining the above two
equations gives

Vi N,
ow _ Mg 4.93
VN, (4.23)

A transformer thus has the property of producing an output voltage proportional to
the input voltage with a proportionality constant that is independent of frequency

and equal to the turns ratio.
If the secondary is open circuited, the primary current is given by

Vin
Iy —-ijp ‘ (4.24)
where L, is the primary inductance. This current is called the magnetizing
current, and it is usually small in a properly designed transformer. Since I, always
becomes large at very low frequencies (w—0), a transformer is inherently an ac
device. It is useful to define an ideal transformer as one in which equation 4.23 holds
exactly and in which the primary inductance is sufficiently large that the magnetizing
current is negligibly small for the frequencies of interest. The symbols for an ideal
transformer are shown in figure 4.12.
One use for a transformer is for impedance matching. Imagine that the
secondary of an ideal transformer is connected to a resistor R, and the primary to a
sinusoidal voltage source with an rms value V,. The rms voltage across R, will be

WAL
N

p

V.=
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(a) (b)

Fig. 4.12 Symbols for ideal transformer. (a) Air core.
(6) Iron core.

and the power dissipated by the resistor is
_VE NP2
TR, NR,

Since an ideal transformer cannot dissipate power (for the same reason that an
inductor cannot), the same power must be supplied by the source, so that the rms
current in the source, and hence in the primary, is

_ P MY,
>V, NR,

14

The source therefore thinks it is connected to a resistor with a value

2
R= % - (%) R, (4.25)

P 5

The same result holds for an arbitrary impedance Z; at the secondary:

N 2
Z= (F) 2 (4.26)

Matching the source impedance to the load impedance is important as a means
of transferring the maximum power to the load (see problem 2.9). When the load is
partly reactive, the maximum power is delivered when the source impedance is equal
to the complex conjugate of the load impedance (see problem 4.21). In such a case
the source and load reactances cancel, and the current in the load is maximum.

Real transformers depart from this ideal behavior in a number of ways. In
addition to the finite inductance, the windings also have resistance and capacitance,
and the coupling between windings is never perfect. A more realistic representation of
a transformer in terms of ideal components is shown in figure 4.13, in which C,, R,
and C;, R, represent the capacitance and resistance of the primary and secondary
windings, respectively. The resistor R, represents the core losses. Unlike an ordinary
resistor, its value is dependent on the frequency. The quantity k is called the
coupling coefficient and varies from zero for two isolated inductors to one for an
ideal transformer. It is just the fraction of the magnetic flux produced by the primary
that links the secondary. A well-designed iron core transformer might have & ~ 959%,.
The quantity (1 —£* L)) is called the leakage inductance.

The construction of a real transformer always involves a compromise. One would
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R, (1 -k, Ry

Np N,

Fig. 4.13 Representation of real transformer in terms of ideal
components.

like a large primary inductance to reduce the magnetizing current, but then the
leakage inductance becomes large, since the coupling coefficient is always somewhat
less than one. Transformers can be made that are reasonably ideal over two or three
decades of frequency; which makes them barely suitable for use in high-fidelity audio
equipment. Not shown in figure 4.13, but often of importance, is the capacitance
between the primary and secondary windings. Again, a compromise is required,
because a transformer constructed to have a small leakage inductance will generally
have a large interwinding capacitance. Sometimes transformers are designed with an
interwinding conducting shield that can be grounded to prevent capacitive-coupling
between the primary and secondary. Such a shield will, however, enhance the
capacitance between each winding and ground.

The ability of a transformer to convert ac voltages from one level to another with
negligible (< a few %) loss of power illustrates one of the reasons why ac circuits are
normally preferred over dc circuits in power distribution systems. Since the resistive
power losses in the lines that run from the power plant to the consumer increase with
the square of the rms current, it is a distinct advantage to operate such systems at high
voltages and low currents. Transformers at the power plant increase the voltage to
values in excess of 100 kV, and transformers reduce the voltage at the other end
to values that are safer and more convenient. Alternating currents are also easier to
produce using rotating machines (generators). Although ac voltages are more
convenient for many applications such as synchronous motors (as used in electric
clocks, turntables, and tape drives), it is often necessary to convert the ac to a dc
voltage. Circuits for performing this function are described in Chapter 6.

4.8 Summary

Linear circuits which contain sources that vary sinusoidally in time are described by
linear differential equations that have solutions of the form cos(wt+ @), where @ is
the phase. The simplest way to analyze such circuits is to transform into the frequency
domain where all voltages and currents are represented by stationary vectors, called
phasors, in the complex plane. The length and direction of a phasor specify the
magnitude and phase of the quantity that it represents. In the frequency domain an
inductor is represented by an impedance jwL, and a capacitor is represented by an
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impedance 1/jwC. The rules for combining impedances for ac circuits are the same as
the rules for combining resistances in dc circuits.

These techniques were used to analyze series RC, RL, and RLC circuits. The RC
and RL circuits are useful as filters and as integrators and differentiators. The RLC
circuit can be used as a resonant filter. Compensated attenuators can be made which
have an attenuation that is independent of frequency. A new linear circuit element,
the transformer, was introduced. It is useful for changing the magnitude of an
impedance.

The analysis of sinusoidal ac circuits is, in principle, no more difficult than dc
circuits, except that one calculates with two-dimensional vectors (called phasors)
rather than with scalars. Kirchhofl’s current law for ac circuits says that the sum of
the vector currents flowing into a node is zero. Kirchhoff’s voltage law for ac circuits
says that the sum of the vector voltage drops around a loop is zero. But a vector is just
a set of scalars that represent its componerits. The use of complex numbers is a
convenient way to express the components of a two-dimensional vector. Although the
mathematical expressions are often long and unwieldy, the algebra involved is quite
straightforward.

Problems

4.1  Calculate the current I(¢) for >0 in the circuit in figure 4.4, assuming the
source is turned on abruptly at =0 with the capacitor initially discharged.

4.2 Suppose that the impedance of a circuit is given by ' = 4+ jB. Show that the
admittance ¥ is given by | Y| = 1/|<| and that the angles that 7" and { make with the
real axis are equal and.opposite.

4.3 Calculate the current for the circuit in figure 4.4, using a frequency-domain
solution, assuming the source has been on for a long time.

4.4 Calculate the impedance of the circuit below. At what angular frequency is the
circuit purely resistive?

4.5 Show that equation 4.12 is consistent with an earlier definition of Q = wL/R
for a series RLC circuit provided Q > 1.

4.6  Calculate the peak value of the voltage across the inductor in figure 4.7(a),
assuming V=10V, 0=22x103s"!, R=1Q, L=25mH, and C=1 uF.

4.7  Calculate the phase of the voltage across the inductor relative to the source in
figure 4.7(a) for the values given in problem 4.6.
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4.8  Determine the resistances R, and R, such that the impedance £ in the circuit
below is real for all frequencies. Determine the phase between the driving voltage and
the current through R; at a frequency f = (1000/2x) Hz.

[,

Z —>
L=2mH » C = 80 uF

1

4.9 For the circuit below calculate the Thevenin equivalent voltage and the
Thevenin equivalent impedance. Show how the Thevenin equivalent circuit could be
constructed using individual circuit elements (resistors, inductors, etc.) in series, and

L=,

" indicate the required values.

R =100 2

~“\WN———

Be' % L=1H

4.10 Calculate and sketch the ratio |V, /V,,| and the phase ¢ of the output relative
to the input as a function of angular frequency for the resonant filter shown below:

c L
o= L

LUl
Vln R Vnu!
o 9 Q

4.11  Calculate and sketch the ratio |V, /V,,| and the phase ¢ of the output relative
to the input as a function of angular frequency for the notch filter shown below:

L
Ottt -0
I—
Kn C R Voux
© -0
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4.12 An electric motor has a power factor of 809, and draws an rms current of 10 A
when connected to a 120-V, 60-Hz power line. What value of capacitor should be
placed in parallel with the motor to minimize the current drawn from the line? What
rms current is drawn from the line with the capacitor installed?

4.13 Calculate the 3-dB point w of the low-pass filter shown below:

R
o 'AAAZ J- ' °
Vin A[C RL ‘{!u(
o . . O

4.14 Calculate the 3-dB point @ and the number of dB per decade attenuation for
@ » w, for the filter below: .

4.15 The input circuit of an oscilloscope often has a switch as shown below that
allows only the ac component of a voltage to be observed. Calculate the lower and
upper 3-dB points if the oscilloscope is ac coupled to a source with a 1000-Q internal
resistance.

dc
p———————()

Il ac

o I —1
input 0.01uF Gnp : J_
o - 20 pF:[ MQ v

e

4.16 The circuit below is called an all-pass filter or phase shifter. Calculate
| Voue/ Vil and the phase ¢ of the output relative to the input as a function of angular
frequency. What value does ¢ have for =0, 1/RC, and oo?
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4.17 The circuit below is called a Wien bridge, and it is useful for measuring small
changes in frequency. Calculate the balance conditions.

4.18 The circuit below is called a twin-tee. It is useful because it exhibits resonant
behavior without the use of an inductor. Calculate the frequency f at which the
current [ is zero. What is the phase of [ relative to ¥, for a frequency just below the
resonance?

2 MQ 2 MQ

1 uF
et C.\D 0.5 uF = 05 uF
Il | -

4.19 Show that if R,C, = R,C, in the circuit in figure 4.10, the attenuation is
independent of frequency and is given by the usual voltage divider relation.

4.20 In the circuit below an ideal transformer is used to connect the output of a hi-fi
amplifier to a speaker. The amplifier can be considered as a Thevenin equivalent
circuit with a 200-Q source resistance and the speaker can be considered as an 8-Q
resistive load. What turns ratio will resuit in maximum power delivered to the
speaker? If the amplifier delivers 8 W to the speaker, what is the rms current in the
primary for the above calculated turns ratio?

(20002 output)

Amplifier ”

_

Np Ng Speaker (8%2)
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4.21 Calculate the value of L for which the current [/ is in phase with the source
voltage for the ideal transformer shown below. For this value of L calculate the rms
value of the current /.

Ry = 2kQ
MWW
“ C =001 uF ==

4.22 Show that the coupling coefficient of an otherwise ideal transformer can be
determined by connecting the primary to an ac voltage source and measuring the
ratio of the primary current with the secondary open circuited to the primary current
with the secondary short circuited.

4.23 In the circuit below estimate the values of L, and £ required such that the 3-dB
points of ¥ will occur at 20 and 20,000 Hz. (Hint: In the low-frequency limit the
leakage inductance can be ignored. In the high-frequency limit the magnetizing
current can be ignored.)

R =1k (-k)1Lp

MW—— 0000 - —T'

jort 2 Ry =
)
Vye! k2Lp 109 v

4

1Q:1
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chapter 5

Nonsinusoidal and
Distributed Circuits

5.1 Fourier Series

In this chapter we will consider linear circuits in which the sources are time
dependent but not sinusoidal and circuits in which the circuit elements are not
discrete components but where the inductance, capacitance, and resistance are
distributed in a continuous manner. A time-dependent voltage or current is either
periodic or nonperiodic. Figure 5.1 shows an example of a periodic waveform with
period T. The wave is assumed to continue indefinitely in both the +¢ and —¢
directions. A periodic function can be displaced by one period, and the resulting
function is identical to the original function:

Vet T)=V()
A periodic waveform can be represented as a Fourier series of sines and cosines:

" V(z)=529+ Y (a, cos ngt+ b, sin nwy) (5.1)

n=1

where @, is called the fundamental angular frequency,

27

40

|
VERAVARRVARRY

Fig. 5.1 Example of a periodic voltage with period 7.
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2w, is called the second harmonic, and so on. The constants @, and 4, are
determined from

2 (T2
a, = — J- V(t) cos nwgt dt (5.3)
T ) 12

2 Ti2
b,=— J V(¢) sin nwgt dt (5.4)
T ) 12

The constant term a,/2 is the average value of V(¢). The superposition theorem then
allows us to analyze any linear circuit having periodic sources by considering the
behavior of the circuit for each of the sinusoidal components of the Fourier series.
Although most of the examples that we will use have voltage or current as the
dependent variable and time as the independent variable, the Fourier methods are
very general and apply to any sufficiently smooth function, f(t).

For the same reason that it was useful to describe sinusoidal voltages and currents
as complex numbers, it is useful to express a general periodic waveform as a sum of
complex numbers:

V=Y Cem (5.5)
This representation is equivalent to equation 5.1, as can be seen by substituting
¢/ = cos + j sin @ into equation 5.5 (see problem 5.5). By allowing both positive and
negative frequencies (n >0 and n <0), it is possible to choose the C, in such a way
that the summation is always a real number. The value of C, can be determined by
multiplying both sides of equation 5.5 by ¢ /™“®', where m is an integer, and then
integrating over a period. Only the term with m =n survives, and the result is

1 (T2 .
C=% f V(t)e™moot gy (5.6)
~T/2

Note that C_, is the complex conjugate of C,, and so the imaginary parts of
equation 5.5 will always cancel, and the resulting ¥ (¢) is real. The » =0 term has a
pafticularly simple interpretation. It is just the average value of V(¢):

1 T/2
Co=— V(t) dt (5.7)
_ T J—T/Z

and corresponds to the dc component of the voltage. Whether the integrals in the
above expressions are over the interval —T/2 to 7T/2 or some other interval such as 0
to T is purely a matter of convenience, so long as the interval is continuous and has
duration 7.

As an example of a Fourier series, consider the square-wave voltage in
figure 5.2. The constants C, can be determined from equation 5.6 by breaking the
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-

Fig. 5.2 Square wave voltage with period T.

integral into two parts for which V(¢) is constant:

1 0 . 1 T/2
C== —Vo)e "t dt+ — Voe "ot dy
n T J‘_le ( O)e T J‘O of }
— VO (2 _ ejnmoT/Z _ e—jnon/Z)
Jnwo T
Since wy T = 2w, the above equation can be written as
Ve . .
= 0‘ (2_e1m:___e—]mz)
2nny

With the use of equation 3.24, the above equation becomes
Vo
nmy

C =

" (1 — cos nm)

Note that cos nmis +1 forneven (0,2, 4, ...) and —1 fornodd (1; 3, 5, ...}, so that all
the even values of C, are zero. Any periodic function that when displaced in time by
half a period is identical to the negative of the original function:

T
V<t + _-2—) = —V(t)

is said to have half-wave symmetry, and its Fourier series will contain only odd
harmonics. The square wave is an example of such a function. If the wave remained
at + ¥, and —V, for unequal times, the half-wave symmetry would be lost, and its
Fourier series would then contain even as well as odd harmonics.

In addition to its half-wave symmetry, the square wave shown in figure 5.2 is an
odd function, because it satisfies the relation

V(e)=—V(—t)
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This property arises purely out of the choice of where with respect to the wave the

time origin (¢ = 0) is assumed to occur. It is not a fundamental property of the wave. -
For example, if the square wave in figure 5.2 were displaced by a time of 7/4, the

resulting square wave would be an even function, because it would then satisfy the

relation

V(t)=V(—t)

Note that an odd function can have no dc component, since the negative parts exactly
cancel the positive parts on opposite sides of the time axis. The cosine is an even
function, and the sine is an odd function. Any even function can be written as a sum of
cosines (b, = 0 in equation 5.1), and any odd function can be written as a sum of sines
(a,=0 in equation 5.1). Most periodic functions (such as the one in figure 5.1) are
neither odd nor even. The Fourier series calculation can often be simplified by adding
or subtracting a constant to the value of the function or by displacing the time origin
so that the function is even or odd or so that it has half-wave symmetry. One should
practice recognizing these three types of symmetries as they occur throughout the
remainder of the book.

The odd-numpered coefficients of the Fourier series representation of the square
wave are given by

G,
nmy
and the Fourier series is
w
=22 3 L
M) p=— B
nodd

With the use of equation 3.24 and the fact that sin § = —sin(—6) and cos 6 = cos
(—8), the above equation becomes

V(t)=4—1? 2 sin nwgt

n=1 n
nodd

The first three terms of the above series (n = 1, 3, 5) along with their sum are plotted
in figure 5.3. Note that the series, even with as few as three terms, is beginning to
resemble the square wave of figure 5.2.

For waveforms more complicated than a square wave, the integrals are more
difficult to perform, but it is still usually easier to calculate a Fourier series for a
periodic voltage than to solve a differential equation in which the same time-
dependent voltage appears. Furthermore, tables of Fourier series for the most
frequently encountered waveforms are available and provide a convenient shortcut
for analyzing many circuits. Some common waveforms and their Fourier series are
listed in figure 5.4.
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Fig. 5.3 First three terms of the Fourier series for the square wave in

Figure 5.2.
Y Vo
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Fig. 5.4 Fourier series of some common periodic waveforms.

5.2 Square Wave RC Circuit

As an example of how the Fourier series is used to analyze a circuit with a periodic
source, consider the series RC circuit in figure 5.5(g), in which the voltage source is a

R V()

m . Vc(t)

(a) (h)

Fig. 5.5 A square wave applied to a series RC (a) produces a
capacitor voltage as shown in (b). Also shown is the sum of the first
three terms of the Fourier series for Vi (¢).

square wave. Since the source is periodic, the current /(¢) is also periodic with the
same period, and it can be written as a Fourier series:

Iy= Y C,em
Each C, is a phasor current representing one frequency component of the totai
current in the same way that each C, represented a component of the phasor voltage
in the previous section. The relationship between the two phasors is determined by
dividing by the circuit impedance:
—_ CII — C’I
T R+ 1[joC R+ lfnwsC

Ca
Substituting the value of C, derived earlier for the square wave gives

2Vo _ 2(006(1 _jnwoRC) Vo
T n(n?wdR*C*+ 1)

’

¢ =
" am(jR+ 1/nw,C)
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for n odd. For n even, C,,is zero, since C, is zero for even n. The corresponding current
is then
= 2w,CVy
T

5 1 — jnawoRC
n2wiR?C?+ 1

n=—w
n odd

Jjnwot

With the use of equation 3.24, the above current can be written as

, — 4woC, ®  cos nwot+ nweRC sin nwet
- nfwiR*C*+ 1

n

n=1
n odd

The voltage across the resistor and capacitor can be determined from the definition of
an ideal resistor and an ideal capacitor:

4wy RCV, & cos nwgt+ nwoRC sin nwg!

n e nPwiR*C*+ 1
nodd

1
= sin nwyt — WaRC cos nwyt
1 4VO ® n 0 0 0
Vel =5 j I(hdt=—2 3, ol RG]

The sum of the first three terms.of the Fourier series for V(¢ is shown in figure 5.5(b)
for woRC = 1. For nwoRC > 1, this circuit is an integrator, and the voltage across the
capacitor is

=)
4V, COs nWg!
2

V() ~ —
et nwRC n=t n

which has a shape as shown in figure 5.4(5).

Although the square wave was chosen to illustrate the use of a Fourier series in
circuit analysis, circuits with square-wave sources can also be analyzed as transient
circuits. During a half period (such as 0 <t¢< 7/2) when the source voltage is
constant, the voltage across the capacitor in figure 5.5(a) has the form

Vo(t) = A+ Be YRC€
The constants A and B can be determined from
V(o) =A=V,
Vo(T|2) = A+ Be T3¢ = —V(0)=—4—B
The first equation comes from the fact that if the source remains at + ¥, forever, the

capacitor would charge to voltage V. The second equation is required to ensure that
the function has half-wave symmetry. The values of the constants are thus

A=V,

2V,
B=— 1+ ¢ T/2RC
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The capacitor voltage is then

2Vpe VRCE

Ve(t) = Vo — T+, T72RC

for 0 <t< T/2. The waveform repeats itself for ¢> 7/2 with each half cycle
alternating in sign. The voltage determined from the above equation is shown in
figure 5.5() for w,RC=1. ‘

5.3 Fourier Transforms

Voltages and currents that are not periodic can also be represented as a superposition
of sine waves as with the Fourier series, except that instead of a summation over a set
of discrete, harmonically related frequencies, the waves have a continuous spectrum
of frequencies. A nonperiodic function can be thought of as a periodic function with
an infinite period. One must wait forever for the wave to repeat itself. The
fundamental angular frequency, which was wo=2n/T for the Fourier series,
approaches zero as the period approaches infinity, and we will represent it as Aw to
remind us that it is an infinitesimal quantity. The various harmonics are separated by
the infinitesimal Aw, so that all frequencies are present. If we represent V(t) as a
summation, as was done for the Fourier series, we can write

V= Y Cemo= 3 o TA2

n=—aw n=-—co 2n

where we have used the fact that w = nw, and TAw = 2x. Since Aw is infinitesimal,
the summation can be replaced with an integral:

I [® .
Vit)=— J C, T dw
2n J -,
As before, C, is given by

1 ("T/2

C,=— V(t)e i dt
T v -T/2

However, since T is infinite, we can write

o

C,T= V(t)e i dt

¢y T

Although T is infinite, C, 7 may be (and usually is) finite. The quantity C,T, which,
after integration, is only a function of @, is called the Fourier transform of V(¢),
and it is written as V(w). The following two equations are called a Fourier
transform pair:

V(t) lr V(w)e™™ do (5.8)

=§ .
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Viw)= fw V(t)e i dt (5.9)

Note the symmetry of the equations. In fact, ¥ (w) is sometimes defined as C, T/\/Q—n
to make the symmetry even more perfect.

Note also that, like the coefficients of the Fourier series (equation 5.6), the
Fourier transform ¥V (w) is generally a complex quantity, unless ¥ (¢) happens to be an

. even function of time. In fact, if ¥(¢) is an odd function of time, the Fourier transform

V(w) is entirely imaginary. Consequently, it is customary when plotting the Fourier
transform to plot either its magnitude | ¥ (w)| or the square of the magnitude | V(w)|?,
called the power spectrum, as a function of w.

As an example of the meaning of the Fourier transform, consider the nonperiodic
voltage V(!) given by

V() = Voe '
This function is called a gaussian, and it is shown in figure 5.6(a). From

equation 5.9, the Fourier transform can be calculated by completing the square, with
the resuit:

©
V((IJ) — VO J e—tzlrl—jwt dt
©
=Vt \/7? e~ (@20

-2/
(a) (b)

Fig. 5.6 The Fourier transform of a gaussian () is another gaussian () whose width is
inversely proportional to the width of the first.

Note that the Fourier transform of a gaussian happens to be another gaussian, as
shown in figure 5.6(). The gaussian is the only function for which this occurs, but it
serves to illustrate an important property of Fourier transforms. The widths of the two
curves are related in such a way that when one is narrow, the other is broad, and vice
versa. It is a general feature of Fourier transforms that the products of the widths is a
number of order unity. The exact value depends on the functions and on how the
widths are defined. It is generally true that a circuit that attenuates or amplifies a
nonsinusoidal signal without distortion must have a passband at least as wide as the
reciprocal of the fastest time variation represented in the signal. To amplify a 1-usec-
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wide pulse without distortion requires a circuit with a bandwidth of about 1 MHz.
Recall that the RC low-pass filter has a negligible attenuation up to an angular
frequency of 1/RC, and that the circuit responds to an abrupt voltage change ina
time of RC, so that the product of the widths is unity.

As another example we will calculate the Fourier transform of the square pulse
shown in figure 5.7(a) and given by

0  t<—12 and (>1/2
t) =
Vi {VO 72 <1<1)2

From equation 5.9 the Fourier transform is

The magnitude |V (w)] is plotted as a function of w in figure 5.7(b). As before,
most of the Fourier spectrum is a band of frequencies within about 1/t of zero.

vi(e) [V ()i

—7/2 0 7/2 t

(a) (b)
Fig. 5.7 Fourier transform of a square pulse.

It appears that the Fourier transform of even simple functions can be quite
complicated. The Fourier transform of a periodic function consists of narrow spikes
(called delta functons) at harmonically Telated frequencies. The frequency
spectrum of a periodic wave is zero almost everywhere. As with the Fourier series,
tables of Fourier transforms are available that greatly simplify the calculations.

Note that the Fourier-transform method is limited to functions that go to zero at
large negative and positive times so that the integrals are finite. In practice, this is not
a serious limitation, since one can usually integrate to a large but finite time without
introducing significant error. A similar technique for analyzing waveforms that start
or stop abruptly but continue to infinity in either the positive or negative direction
makes use of the Laplace transform, in which e s replaced with the more
general ¢* where « is a complex quantity. The Fourier transform then becomes a
special case of the Laplace transform in which « is purely imaginary.
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5.4 Circuit Analysis with Fourier Transforms

The Fourier transform is used in the analysis of circuits with nonperiodic sources in
the same way that the phasor was used for sinusoidal circuits and the coefficients of
the Fourier series were used for other periodic circuits. As an example, suppose we
wish to calculate the current in a capacitor that has a gaussian voltage as shown in
figure 5.6(a) applied. across its terminals. Figure 5.8(a) shows the circuit. For this

———
I(t)
A vit) ==
(a)
v(t)
t
I(t)
b)

Fig. 5.8 For the circuit in (a) a gaussian
voltage pulse produces a current as shown

in (b).

case, the solution can be written down immediately, without resorting to any Fourier
methods:

v d
() = C— = C— (VeI
() o = C o (Ve )
__% i’o’ (-
T

The result is shown in figure 5.8(5). But just for practice, and to illustrate that it really
works, we will derive the above result using a Fourier transform. We first write the
Fourier transform of V(¢), which was calculated in the previous section:

V(w) = Vot /m e~ @??

From the voltage we can get the Fourier transform of the current using the
impedance:

I(w) = V(@) ' (5.10)
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For the case of a capacitor with a gaussian voltage,
I{w) =ijV0‘C\/7_te—(m/2)2

The current as a function of time is determined using the inverse Fourier transform:

I(t) l 'ro I{w)e™ dew

=2—n Y
_JCVT [
2/ J-w

If we define a new variable,

we ™ @D ot 4o,

wt i
2 T

the above integral can be written as

25CY, @ it [®
I(t) = F0 e (j xe *dx+ ok J e"‘zdx>
\/;1: -® T)-w

The first integral is zero by symmetry, and the second is a frequently encountered
integral with a value \/1_t The final result is, then,
2CV,t
2 ¢

_,2/¢2

I(t) =

which is the same result derived by simply differentiating the voltage.

The use of Fourier transforms for this particular problem is like cracking a peanut
with a sledge hammer. For problems only slightly more complicated, however, the
Fourier transform, cumbersome as it is, provides the easiest method of solution.
Analyzing a circuit by this method consists of three parts: (1) converting to the
frequency domain by calculating the Fourier transform of the sources from
equation 5.9; (2) using the circuit impedances to determine the Fourier transform of
the unknown from equation 5.10; (3) converting back to the time domain by
calculating the inverse Fourier transform of the unknown from equation 5.8.
Although the integrals will be difficult, they will usually be less difficult than solving
the corresponding differential equation with a time-dependent source.

5.5 Spectrum Analyzers

It is often useful to have a device that will display the Fourier transform |V (w)| of a
voltage as a function of frequency. Such a device is called a spectrum analyzer.
Suppose we had an ideal filter circuit with a ratio of | V,,,/¥;,| given by

Vou| _J0 0 <wy—Aw/2 and ©>w,t Aw/2
| wy—Aw/2 <w <w,+ Aw/2

V.

in
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where @, is a constant that we can adjust and Aw < @,. This function is illustrated in
figure 5.9(a). From equation 5.8 the output voltage is

1 [(® ;
Voul(t) = J. Vout(w)ejw‘ dw

2n ) _»
1 . wo+Aw/2 _ )
=— J 7, (@) e/ do
2n wo—Aw/2
1 & jwot
=~ Et_ Vm(w )8" o*Aw
11 1
"iw_'l A @I A
Vn t Va ©
Wy w o w
(a) ) -

Flg. 5.9 The ideal bandpass filter response in (a) can be ai)prox’imated by the
series RLC circuit whose response is shown in (5).

Th~ magnitude of the output voltage is then proportional to the Fourier transform of

Vinl):
Aw | -
Vo] = 5 | Fn(@9)]

By measuring | ¥,,(¢)| as a function of @, one could then determine the Fourier
transform of the input voltage. Such ideal filters are not readily available, however. A
reasonable substitute would be a series RLC circuit, as shown in figure 4.7. If the
output is taken across the resistor (see problem 4.10), the circuit has a bandpass
characteristic as shown in figure 5.9(6). In that case, the angular frequency @y is

1
Wy = ———
° JLIc
and the bandwidth Aw is
w R
Aw====
w 0" L

If the angular frequency w, is varied by changing C while keeping R and L constant,
the magnitude of the voltage across the resistor is proportional to | V(o). If the
frequency is automatically swept over the range of interest, the output signal can be
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displayed on an oscilloscope. One must be careful not to change the frequency too
abruptly, however, since the current in the resonance circuit requires a time ~1/Aw
to build up its steady-state value. When high resolution (small Aw) is desired, slow
sweep rates are required. When high sweep rates are desired, the resolution is
necessarily poor. Commercial spectrum analyzers are somewhat more complicated
than this situation, since they usually contain a superheterodyne (see section 12.5),
but the basic ideas are the same.

5.6 Transmission Lines

Before concluding the discussion of linear circuits, we will consider two examples of
linear circuit components that have properties that are rather different from all the
components studied so far. In the circuits previously encountered, the circuit
elements occurred in discrete lumps connected together by ideal conductors. At high
frequencies where the physical size of the circuit is comparable with the distance
traveled by a light wave during a period of the wave, the stray capacitance and
inductahnce of the circuit cannot be neglected. The capacitance and inductance here
are said to be distributed rather than lumped. In this section we will consider one
important example of a distributed circuit component, the tramsmission line.
Transmission lines come in many forms, but one of the most common is the
coaxial cable shown in figure 5.10. In the coaxial cable the current flows through

A Al R,

Vee for

Fig. 5.10 A coaxial transmission line connecting a sinusoidal
voltage source to a resistor.

the center conductor and returns in the coaxial outer conductor. One virtue of such an
arrangement is that the electric and magnetic fields are confined inside the cable, and
so capacitive and inductive coupling to other parts of the circuit are eliminated. The
coaxial cable, however, unavoidably has a capacitance per unit length of

=G e (5.11)

{ In(b/a)

where 4 is the radius of the inner conductor, 4 is the radius of the outer conductor, and
€ is the permittivity of the medium between the conductors. Similarly, the inductance
per unit length is

p=L_pinlje) (5.12)
l 2n

where p is the permeability of the medium between the conductors.
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A lumped circuit representation of the transmission line is shown in figure 5.11.
If the line is infinitely long (in the x direction), the impedance as viewed from the
terminals on the left can be calculated by removing one of the LC sections, leaving the
impedance unchanged, as shown in figure 5.12. This is equivalent to cutting a short

L'Ax L'Ax L'Ax

N |

Fig. 5.11 Representation of a transmission line in terms of discrete circuit

components.

L'Ax

—— T

o
[

O

Fig. 5.12 Circuit for calculating the im-
pedance of an infinite transmission line.

piece off the end of the line, which, if the line is infinitely long, still leaves one with an
infinitely long line. The input impedance is
ZljwC’ Ax
Zt+1/joC Ax
X
1+ jowC'JAx

2 =joLlAx+

=jwL Ax+

Solving for £ with Ax small gives

Zo=+/LIC (5.13)

This is called the characteristic impedance of the line. The fact that , is a real
number is quite surprising, because it implies that the line behaves like a resistor
despite the fact that it was assumed to have only inductance and capacitance. When a
sinusoidal voltage is applied to the line, a current in phase with the voltage flows at
the input of the line. The source delivers power indefinitely, but for a line without
resistance there is no mechanism for dissipating power. What has happened is that
since the line is infinitely long, it can store an unlimited amount of energy. One might
object that such an infinite line is unphysical, but note that if the line is finite and
terminated with a load resistance equal to 2y, it will behave as if it were infinite. The
ability of a properly terminated transmission line to eliminate the reactance due to
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stray capacitance and inductance at all frequencies is one quality that makes the
transmission line so useful. For a coaxial line, the characteristic impedance can be
determined by substituting equations 5.11 and 5.12 into 5.13 to obtain

L m(t
Zo—h \ﬂ ln<a> (5.14)

A typical coaxial line has a characteristic impedance of ~ 50 Q.

As a sine wave propagates down the line, the phase of the voltage and current
will vary with position along the line. If a voltage Vpe/* is applied at one end of the
line, as shown in figure 5.10, the voltage a distance Ax down the line can be
calculated using the voltage divider in figure 5.12.

V= (l —Jwé Ax) Voej""

0

The phase change A¢ is

A¢ =tan™! (— oL Ax)
<o
Since Ax is small, A¢ can be written as
L Ax
Ap = —Qz;"‘= —w/IC Ax
0

The speed with which a wave proceeds down the line is given by

po= A _ @A 1 (5.15)

.Y Ad  JrC

This is called the phase velocity, since it is the rate at which a point of constant
phase moves. For the coaxial line the phase velocity is
_ 1
v, = ——= (5.16)

which is just the velocity of light in the medium. If the medium is a vacuum (or air,
which has almost the same value of € and u), the velocity is

=3 %108 m/s

c=

1
V Eolo

A typical dielectric used in cables is polyethylene, for which the phase velocity is
about two-thirds the velocity of light or ~20cm/ns. Stray capacitance and
inductance can never be completely eliminated from a circuit. If they could, then a
signal would be able to propagate faster than the velocity of light, which is
impossible.

Since the phase velocity given by equation 5.15 is independent of frequency, it
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follows that the various Fourier components of a nonsinusoidal wave will propagate
at the same speed down the line, and, on reaching the load, will add together togive a
wave of the same shape, except delayed in time. If the phase velocity varies with
frequency, the line is said to have dispersion, and the shape of the wave would be
distorted as it propagated along the line.

If a transmission line is terminated with a resistance other than g, or with an
impedance having a reactive (imaginary) component, the impedance -at the input
will, in general, also have a reactive component and will be a complicated function of
the load impedance, the characteristic impedance, and the electrical length of the
line. Electrical length is a dimensionless number obtained by dividing the line length
by the wavelength corresponding to the frequency in use:

{ wl
- = 5.17
A 2my, ( )

Note that 4 is, in general, different from the free space wavelength, since 7, is usually
different from c. Several special cases are worth considering. For a line with a length
equal to an integral number of half-wavelengths,

l
7= " n=1,2,3,..)
the magnitude of the voltégc and current at the two ends of the line are the same, and
the impedance of the load is reflected back to the source without change. For 2 line
with a length equal to an odd number of quarter-wavelengths,

{ _n
A4

N

(n=1,3,5,...)

the impedance as seen by the source is
R =Rk (5.18)

The result is reasonable when one considers that a short-circuited transmissien line
(Z, = 0) must always have zero voltage and maximum current at the shorted end. A
quarter-wavelength away the voltage is maximum, and the current is zero. Hence a
quarter-wave shorted line looks like an open circuit. Conversely, an open-circuited
line (= o) will have zero current and maximum voltage at the end. A quarter-
wavelength away, the opposite is true, and the line looks like a short circuit. A
transmission line can thus be used like a transformer to alter the impedance of a load,
but the degree of alteration depends on frequency, unlike an ideal transformer.

For a line of arbitrary length, terminated with an arbitrary impedance <, the
input impedancc has a more complicated form:

Ly cos 2mlfA+ jZ sin 2nl[A :
Zo cos 2nlfA+ 5 sin 27l[A

One should verify that the special cases previously discussed are correctly predicted
by equation 5.19. »
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Whenever a transmission line is terminated with an impedance other than J,, a
wave propagating down the line will be partially reflected when it reaches the load.
The reflected wave adds to the incident wave at every position along the line,
producing a standing-wave pattern as illustrated in figure 5.13. The ratio of

e

rms

Fig. 5.13 Illustration of standing waves on an improperly
terminated transmission line. The VSWR is equal to
Vmax/ Vmin'

maximum to minimum rms voltage as a function of position along the line (provided
the line is at least a quarter-wave long) is called the voltage standing wave ratio
(VSWR). The rms current also varies with position, and in fact has the same ratio of
maximum to minimum value as the voltage. A VSWR of 1:1 thus means that the line
is properly terminated and there is no reflected wave. A lossless line terminated with
either a short or open circuit gives total reflection of the wave and so has an infinite
VSWR and thus presents a purely reactive load to the source.

Now imagine that a source at one end of a transmission line produces a wave
(called the forward wave) of voltage V. When the wave reaches the opposite end of
the line at which a load with £ # <, is connected, a reflected wave with voltage Vg
appears and propagates back toward the source. From the definition, the VSWR is
given by

Vet+ Vi

VSWR =
VF - VR

(5.20)

Since the power transported by the two waves is proportional to V2, the VSWR can
also be written in terms of the forward and reflected power as

VSWR = VBt VP (5.21)
VPr=/Px
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With a bit of algebra, the ratio of reflected power to forward power becomes

Py (VSWR—1Y? 5.9
P \VSWR+1 (522)

This reflected power is not lost, however, provided the source impedance is properly
matched to the input impedance of the transmission line. Rather, it is reflected back
again by the source and becomes a part of the forward wave. Note that to achieve an
optimum match of the source to the line in such a case requires that the source
impedance generally be different from the characteristic impedance of the line. In
fact, to achieve maximum power transfer to the load, the source impedance should
equal the complex conjugate of the input impedance of the line. This condition is, in
general, possible at only a single frequency, unless a very elaborate matching network
is employed.

A large VSWR does, however, increase the losses inherent in the line itself. A line
without resistance or dielectric losses could tolerate an infinite VSWR without
affecting the ability of the source to deliver all its power to the load, provided the
breakdown voltage of the line is not exceeded. In a real transmission line, losses occur
because of the conductor resistance and dielectric conductivity. The conductor losses
tend to increase with the square root of the frequency, and the dielectric losses
increase linearly with frequency. Since the mean square voltage and current along
the line increase with increasing VSWR for a constant power delivered to the load, the
line losses become increasingly serious as the VSWR rises. The attenuation of a
transmission line is normally expressed in decibels per unit length fora VSWR of 1:1,
and the variation of attenuation with frequency is usually given. A typical
polyethylene coaxial cable with an outside diameter of ~5mm has a breakdown
voltage of ~2000 V and an attenuation of ~1.5dB/100 ft at 10 MHz, rising to
~20 dB/100 ft at 1000 MHz.

The transmission line is a very important component for the circuit designer,
especially in circuits that operate at high frequencies. Whenever electrical signals
have to be transmitted from one point to another an appreciable fraction of a
wavelength away, the inevitable stray capacitance and inductance can lead to quite
unexpected and often undesirable results. One is therefore well advised to use a
properly terminated transmission line in such a circumstance or at least to use a line of
known, constant impedance and length so that the effect of the stray capacitance and
inductance can be accurately predicted.

5.7 Waveguides

An interesting extension of the transmission line concept, useful at microwave
frequencies ( ~10° — 10'? Hz), is the waveguide. To understand the operation of a
waveguide, consider the parallel plate transmission line shown in figure 5.14(a). As in
a coaxial line the voltage between the conductors and the current in the conductors
varies with position along the line. A voltage that is sinusoidal in time will also vary
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(a)

(b)

(c)

@)

Fig. 5.14 Ifa parallel plate transmission line (a) is attached
to two quarter-wave channels (b), a waveguide configuration
results (¢) in which the electric field is strongest at the center
and falls to zero at the edges (d).

sinusoidally with position along the line with a wavelength A. If the separation 4 of the
conductors is small compared with their width w, most of the electric and magnetic
field energy will reside in the space between the conductors. If the width w is small
compared with the wavelength A; the fields will be nearly constant in a plane
perpendicular to the direction of propagation of the wave, but some of the electric
and magnetic field will fringe out into the regions surrounding the conductors.
Now, if one wanted to-ensure that the fields are entirely confined between the
conductors, use could be made of the fact that a quarter-wave shorted transmission
line looks like an open circuit, and two channel-shaped pieces could be attached to
the edges of the transmission line, as shown in figure 5.14(b), without greatly affecting
the fields near the center of the line. The result, shown in figure 5.14(c), is the basic

1 1 4 Nonsinusoidal and Distributed Circuits



waveguide configuration. Note that the electric field is essentially the same as in the
parallel plate transmission line, except that it goes to zero at the edges, as shown in
figure 5.14(d). The shape of the magnetic field is also shown in figure 5.14(¢).

The lowest frequency that will propagate in such a rectangular waveguide is
called the cutoff frequency, and it occurs when the wavelength is twice the width of
the guide [corresponding to shrinking the width of the center section of figure 5.14(5)

to zero]:
f=a2 (5.23)
2w

For the usual case in which the interior of the guide is empty, the phase velocity v, is
equal to the speed of light, ¢. For frequencies below cutoff, the waves do not propagate
in the guide but decay exponentially with distance along the guide. The wave energy
is mostly reflected back to the source. Note that the thickness  does not affect either
the shape of the electric fields or the cutoff frequency. The thickness does affect the
resistive losses and the power handling capability, however. ’

Actually, the case considered is only one of an infinite number of modes that can

propagate in a waveguide. It is called the TE;, mode, TE means the electric field is
everywhere transverse (perpendicular) to the direction of propagation. The subscript
means that the field varies by one-half wavelength across the width of the guide. The
subscript o means that there is no variation of the electric field in the other direction
perpendicular to the propagation of the wave. The TE, mode is important, because
it is the mode with the lowest cutoff frequency for a given guide (called the dominant
mode), and hence it is the mode that allows the smallest guide for a given frequency.
TM modes can also be produced in which the magnetic field is everywhere transverse to
the direction of propagation. The waves in an ordinary two-wire transmission line,
such as the coaxial cable of the previous section, are TEM waves, since both the
“electric and the magnetic field are transverse to the direction of propagation. TEM
waves can also exist in free space but not in waveguides. Waveguides are usually
designed with d ~ /2 and f, ~0.8 f so that only the dominant mode will propagate
and the attenuation is reduced from the large value that it has near the cutoff
frequency. Nonrectangular waveguides are also frequently encountered, and the
circular waveguide is a particularly common type.

An alternative description of the waveguide operation is to imagine that the
wave, in propagating down the guide, is continually reflected between the side walls
of the guide so that the direction of propagation of the wave is always at an angle 0
with respect to the axis of the guide, as shown in figure 5.15. For the wave electric
field of the dominant mode to go to zero at the boundaries, the angle § must be such
that there is exactly one half-wave across the width w of the guide, so that a crest of
the wave and a trough of the wave occur at opposite sides in the same plane along the
length of the guide. From figure 5.15 it can be seen that

s ow
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A

Axis
of
guide

Fig. 5.15 Diagram showing a wave
propagating at an angle 6 with respect to
the axis of a waveguide.

In the direction parallel to the axis of the guide, the distance between crests and
troughs of the wave is 4,/2, so that

tan 6 = —£&
w

Using the two trigonometric relations,

sin 6

tan 6 =
cos @

and
cos20 =1 —sin?0

one can solve for 4,:

a

A

The quantity 4, is called the guide wavelength, and it is the wavelength that one
would measure along the guide if standing waves were present. Note that A, is always
longer than 4 and that it approaches infinity at the cutoff frequency. For a very large
waveguide (w > 4), the guide wavelength is equal to 4, as if the waveguide were
absent. Note also that the velocity of a point of constant phase moving parallel to the
axis of the guide is greater than the actual phase velocity of the wave by the factor

Agl/4, so that if the guide is empty (v, =c¢), the wave appears to propagate down the
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guide with a velocity greater than the velocity of light. This is a familiar result to
anyone who has watched carefully an ocean wave incident on a beach at a slight
angle. This result does not violate any principle of physics, because information
transmitted down the guide will travel at a slower speed, called the group velocity,
which must not exceed the velocity of light. Finally, it should be pointed out that
since the component of the phase velocity parallel to the axis of the guide is a function

of 4, and hence frequency, the waveguide exhibits dispersion, especially near the
cutoff frequency, and nonsinusoidal waves propagating down the guide do not
maintain their original shape.

One may wonder why a waveguide would be used in place of a coaxial
transmission line. The reason is that, at microwave frequencies, the resistance in the
conductors of a transmission line and the dielectric, which is required to keep the
center conductor out of contact with the outer conductor, produce an unacceptable
attenuation over large distances. One may also wonder how a waveguide is connected
to an ordinary discrete circuit component such as a resistive load. This is usually
done by blanking off the end of the guide and inserting a capacitive stub or inductive
loop at the proper place in the guide to couple to the electric or magnetic field.

5.8 Summary

For linear circuits the superposition theorem allows us to calculate the response of a
circuit to a nonsinusoidal source by representing the source in terms of sine waves.
For a periodic wave the frequencies are discrete and harmonically related. Although
there are an infinite number of terms in the Fourier series, the wave can usually be
adequately approximated with a few of the lowest frequency components.

For a nonperiodic source a continuous spectrum of frequencies is present. The
Fourier transform allows us to calculate this spectrum. Thereafter all calculations are
done in the frequency domain, using the impedance of the circuit components.
Finally, one must convert back to the time domain, using the inverse Fourier
transform. The spectrum analyzer is a device that allows measurement of the Fourier
spectrum of a time-dependent voltage.

The transmission line is a linear circuit component that has distributed
capacitance and inductance. In addition to being a necessity for carrying high-
frequency signals over appreciable distances, transmission lines can also be used as
impedance transformers. At microwave frequencies, a form of tra.smission line called
a waveguide can be used, in which the concepts of voltage and current give way
almost entirely to the more general description in terms of propagating electric and
magnetic fields. '

Problems

5.1 Calculate the Fourier series for the periodic voltage shown below:

Problems 1 17




V()

=3

2 5]

!

%

5.2 (Calculate the rms value of the voltage in problem 5.1.
5.3  Derive the Fourier series for-the waveform shown in figure 5.4(¢).

54 You have a voltmeter calibrated to read rms voltage, but it responds to the
average magnitude of the applied voltage so that it reads correctly only for sine
waves. Ifa square wave voltage is applied to the voltmeter and it reads 1.0 V, what is
the rms value of the square wave?

5.5 Show that equation 5.5 is equivalent to equation 5.1 and that equation 5.6 is
equivalent to equations 5.3 and 5.4. Calculate C, in terms of a, and &,.

5.6  State which of the waveforms in figure 5.4 are odd, which are even, and which
have half-wave symmetry.

5.7  Assume the voltage in figure 5.4(b) is applied at V,, in the integrator circuit
below in which R/L = 10™3w,. Calculate the Fourier series of the output voltage V.

5.8 Suppose a voltage source with voltage as in figure 5.4 (d) is connected to an RC
low-pass filter. Calculate the value of w,RC such that the peak-to-peak variation of
the lowest (nonzero) Fourier component of the output is 1000 times smaller than the
dc component of the output.

5.9  Calculate the Fourier transform V(w) of the voltage pulse shown below and
sketch its magnitude |V (w)| as a function of w.

v

Vo

- t
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5.10 Use your intuition to sketch as accurately as possible the Fourier transform of

the voltage below:
v(t)

[\/\f\/\;‘
yure

n

— T e

5.11 Write but do not attempt to evaluate the Fourier integral that describes the
current in a series RLC circuit with an applied voltage of the form shown in
figure 5.7 (a).

5.12 Starting with Maxwell’s equations (see Appendix D), derive equations 5.11
and 5.12 for the capacitance and inductance pér unit length of a circular coaxial
cable.

5.13 Calculate the phase shift at 10 MHz in a 3-m length of coaxial cable with
£=2¢q and pu=p,.

5.14 Calculate the impedance of an infinitely long transmission line having a series
resistance R’ per unit length.

5.15 Suppose a transmission line of characteristic impedance g, has an electrical
length of 3/4 wave and is terminated with a series RL with values Ry and L;. Show
that the impedance at the input looks like a parallel RC circuit, and calculate the
values of R and C.

5.16 Calculate the impedance of a 5/8 wave, 100-Q transmission line that is
terminated with a resistance equal to twice the characteristic impedance of the line.
Is the impedance inductive or capacitive?

5.17 Starting with Maxwell’s equations (see Appendix D), derive expressions for
the capacitance per unit length C’, the inductance per unit length L, and the
characteristic impedance o of the parallel plate transmission line shown in
figure 5.14(a), assuming d < w < 4. —

5.18 What width and thickness would be desired for propagation of the TE,, mode
in a rectangular waveguide filled with a dielectric with &/g; = 9.0, if the operating
frequency is 1000 MHz? Calculate the wavelength A and the guide wavelength Ag
5.19 The group velocity is defined by v, = dw/dk where, for a waveguide, £ = 27/4,.
Calculate the group velocity for the TE, mode in a waveguide of width , and show
that it is always less than the velocity of light.
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chapter 6

Diodes and
Rectifiers

6.1 Vacuum Diodes

The remainder of this book will deal primarily with nonlinear devices and circuits.
The first and perhaps the simplest nonlinear device that we will consider is the diode.
We will discuss two types of real diodes and then define an ideal diode in terms of a
simple but nonlinear relationship between voltage and current. One should be
constantly aware that many of the techniques for analyzing linear circuits are not
applicable for circuits with nonlinear components.

The first type of diode we will consider is called 2 vacuum diode and consists of
an evacuated tube with two electrodes (hence the name diode), as shown in
figure 6.1. The tube is evacuated so that electrons can travel without colliding with

Anode

Cathode I Heater

(a) )

Fig. 6.1 Vacuum diodes. . (a) Heated
cathode. (6) Heated filament.

gas molecules. One electrode is called the cathode. It is kept at a high temperature
by a heater or filament, which is essentially a resistor that converts electrical energy
into heat. The cathode is coated with a material of low work function such as
barium oxide so that it readily emits electrons. The second electrode is called the
anode or plate. If the anode is positive relative to the cathode, the electrons that boil
off the cathode will be drawn to the anode and collected. Hence an electrical current
flows from anode to cathode (opposite to the electron flow) in a diode. On the other
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hand, if the anode is negative relative to the cathode, the electrons are repelled, and
no current flows. An alternative version of the vacuum diode makes use of the
electrons emitted directly by the filament, as shown in figure 6.1(5).

The relationship between current and voltage in the vacuum diode is shown in
figure 6.2. For small positive voltages the electric field that draws electrons away from

) T,

(a) T

Fig. 6.2 [ versus V characteristic of a
vacuum diode for various cathode tem-
peratures. (a) Space charge limited region.
(b) Emission limited region (73> T, > T,).

the cathode is partially shielded by the cloud of electrons that surrounds the cathode.
This is called the space charge-limited region, and the current in amperes is given
approximately by Child’s law:

1=12.33x107% AV**/4* (6.1)

where A is the area of the cathode in square meters and 4 is the separation of the
cathode and anode in meters. For large positive voltages the electric field is strong
enough to collect all the electrons emitted by the cathode, and the current is
independent of voltage but depends strongly on the absolute temperature 7, as
described by Richardson’s equation:

I=1.2x108 AT? ¥*T (6.2)
where £ is Boltzmann’s constant,
k=1.38x10"2J/K

¢ is the work function of the cathode (typically, a few volts, depending on the
material), and 4 is the area of the cathode. This is called the emission-limited
region. A diode operated in the emission-limited region can be used with a voltage
source to produce a good approximation to a current source. The vacuum diode is
thus a very nonlinear device.
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6.2 pn Junction Diodes

Although the vacuum diode was the first widely used diode, for most applications it
has been replaced with the pn junction diode. The pn junction is formed by placing
a p-type and an n-type semiconductor (usually silicon or germanium, lightly doped
with an appropriate impurity) in contact with one another, as shown in figure 6.3.
Actually, the process.is not quite so simple as merely placing the semiconductors in
contact with one another, since small irregularities in their surfaces would degrade

- + + + |
p—type (anode)
© =i O
LS n—type
+ {cathode)
I=0

—>

(a) (b)
Fig. 6.3 pn junction diode. (a) Reverse-biased, I~ 0. (6) Forward-
biased, ¥V ~0.

the quality of the junction. In practice, a pn junction is formed by growing a
semiconductor crystal with one type of impurity and then abruptly changing to a
different impurity while the crystal is still being formed. An n-type (negative)
semiconductor has a surplus of conduction electrons, and a p-type (positive)
semiconductor has a deficiency of conduction electrons. The absence of an electron is
referred to as a hole. In such a junction the p-type side is called the anode, and the n-
type side is called the cathode, by analogy with the vacuum diode.

The appearance of a low-current diode is similar to a resistor — a short cylinder
of a few millimeters in diameter, with conducting leads at each end. The cathode is
usually marked with a painted band around one end of the cylinder. _

If the anode is made negative relative to the cathode, as shown in figure 6.3 (a),
an electric field exists across the junction in the direction shown. This electric field
produces a thin layer near the junction which is called the depletion region, since it
is largely depleted of charge carriers. This depletion region is typically about a
micron (107° meters) thick, but it has a very high resistance and hence opposes the
flow of current across the junction. Such a junction is said to be reverse-biased, and
the current is very small, just as in the vacuum diode with the anode negative relative
to the cathode. On the other hand, if a current source is connected to the junction as
shown in figure 6.3 (b), the electrons and holes are pushed towards the junction where
they combine, thus causing a current to flow. Such a junction is said to be forward-
biased, and the voltage across it is quite small.

The current that flows through a pn junction as a function of the voltage across
the junction is given approximately by ‘

I=1I(" —1) (6.3)
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where [ is a small constant called the reverse current. The quantity £7/e has units
of volts and is about 0.026 V at room temperature. The reverse current for a
germanium diode is in the microampere (10~¢ A) range, and the reverse current for
a silicon diode is in the picoampere (107! A) range. The reverse current itself is a
sensitive function of temperature. At room temperature, a 10°C increase in
temperature will approximately double the reverse current in a germanium diode,
and a 6°C increase will approximately double the reverse current in a silicon diode.
Figure 6.4 shows the / versus V relation for a germanium and a silicon diode at room

1
Ge Si

| | 1
1.0

V (volts)

Fig. 6.4 I versus V characteristic for german-
ium and silicon diode at room temperature.

temperature. Note that the forward voltage drop is relatively constant and is about
0.2 V for a germanium diode and about 0.6 V for a silicon diode. This forward
voltage drop decreases with increasing temperature. At large values of current,
there is an additional voltage drop caused by the resistance of the semiconductor
material and its leads. This voltage drop is given by

l70hmix: =1 Tohmic
so that the total voltage across the terminals of the diode is
kT 1
V=—In <—> + Irohmic (64)
¢ I

For most purposes it suffices to neglect the reverse current and: to assume the forward
voltage drop is constant.

We will now define an ideal diode as a device with the following properties:

I=0 If V<o }

6.
V=0 If7>0 (65)

An ideal diode behaves like an open circuit for negative voltages and like a short
circuit for positive currents. The symbol for an ideal diode is shown in figure 6.5(a).
The arrow points in the direction of current flow.
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Fig. 6.5 (a) Ideal diode. (b) Germanium
diode. (¢) Silicon diode.

A germanium and a silicon diode can be approximated as an ideal diode in sertes
with a constant voltage source, as shown in figure 6.5(b) and (¢). It appears from
these considerations that the germanium diode is more nearly ideal than the silicon
diode. This is not the case, however. Although the silicon diode has a larger forward
voltage drop than the germanium diode, it has a smaller reverse current, and as a
result the variation of reverse current with temperature is less noticeable. Silicon
diodes are normaily used in high-current applications, whereas germanium diodes
are used for low-voltage applications. An ideal diode cannot dissipate power, since
the product VI is always zero. A germanium diode dissipates a small power, a silicon
diode dissipates about three times as much power at the same forward current, and a
vacuum diode dissipates even more power. Although the silicon diode dissipates more
power than the germanium diode, it is nevertheless invariably used in high-current
applications because it can operate at much higher temperatures (up to ~200°C)
without having an unacceptably high reverse current. By contrast, germanium diodes
are worthless above about 85°C. '

High-current diodes are often mounted on a heat sink to reduce their operating
temperature. Real diodes can also be placed in parallel to increase their current-
carrying capacity, although care must be taken to ensure that their V-I characteristics
are closely matched so that the current divides evenly. Alternately, a small resistor
can be placed in series with each diode to help equalize the currents. Real diodes also
have a maximum allowable reverse voltage called the peak reverse voltage (PRV)
or peak inverse voltage (PIV), above which a large current will flow. When the
PRV is exceeded, the diode is usually instantly and permanently destroyed. Diodes
typically have a PRV of up to several hundred volts. For higher voltages, diodes can
be placed in series, although, again, care must be taken to ensure that the diodes are
closely matched so that the reverse voltage divides equally. Alternately, a large
resistor can be placed in parallel with each diode to equalize the reverse voltages.
With ac voltages, small equalizing capacitors are sometimes used as well to overwhelm
any differences in the junction capacitances. ,

The superiority of the pn junction diode over the vacuum diode is readily
apparent. It is more nearly ideal; it doesn’t require extra power to heat a filament or
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cathode; it is mechanically rugged, has a much longer life expectancy, and is less
costly to manufacture. Nevertheless, vacuum diodes are still sometimes found in
equipment such as X-ray machines where very high voltages are involved.

6.3 Rectifier Circuits

One important use of diodes is in circuits that convert ac voltages to dc voltages. Such
circuits are called rectifiers. Since commercial power lines are usually 60 Hz ac (in
the United States) and since most electronic circuits require dc voltages, nearly every
electronic device contains diode rectifiers.

The simplest rectifier circuit is the half-wave rectifier shown in figure 6.6(a).

Va(t)
» .
1 7Y o .
¥ sin wt R Vr /\
2 t
—
(a) (5)

Fig. 6.6 The half-wave rectifier (2) produces an output voltage as in (5).

The diode conducts during the half cycle when the source voltage is positive, and the
voltage across the resistive load is the same as the voltage across the source. During
the negative half cycle the diode behaves like an open circuit, the current is zero, and
the voltage across the resistor is zero. The output voltage for the half-wave rectifier is
shown in figure 6.6(b). If the diode were silicon, the peak voltage would be ~V,
—0.6, and the output voltage would be present for less than half a cycle. The voltage
across the load has a dc component given by the average of V(¢) over a period:

/2
Vie = K; Jo sin @ dt = % (6.6)
This result is the same as the zero frequency component of the Fourier series in
figure 5.4(d). The half-wave rectifier also has Fourier components at frequencies of ,
2w, 4w, 6w, and so on. A rectifier is thus nearly always used in conjunction with a
low-pass filter to attenuate the ac frequency components (see the next section).

A drawback of the half-wave rectifier is the fact that half of the cycle is missing.
This problem is overcome in the full-wave rectifier shown in figure 6.7(a), in which
a transformer with a center-tapped secondary is used. The diodes alternately conduct
for a half-cycle each, producing a current in the load resistor that is always in the
same direction. The output voltage for the full-wave rectifier is shown in
figure 6.7(b). Note that the peak voltage across the load is ¥,/2 if a transformer with a
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Fig. 6.7 Tl;le full-wave rectifier (a) produces an output voltage as in ().

1:1 turns ratio is used. This is because only half the secondary is used at a time. By
using a transformer with a different turns ratio, any output voltage can be achieved.
The dc component of the voltage across the load is the same as for the half-wave
rectifier, in agreement with the zero-frequency component of the Fourier series in
figure 5.4(¢). The full-wave rectifier also has Fourier components at frequencies of
9@, 4w, 6w, and so on. The component at frequency @ is missing, and this relaxes the
requirements on the low-pass filter that attenuates the ac components.

A circuit that has all the advantages of the full-wave rectifier but which does not
require a transformer is the bridge rectifier of figure 6.8(a). It does, however,
require two extra diodes. During the positive half cycle, the upper-right and the
lower-left diodes conduct. During the negative half cycle, the upper-left and the
lower-right diodes conduct. The current in the resistor is thus always from right to
left, and the voltage across the resistor is as shown in figure 6.8(4). The voltage is

A0)

¥ sin wt@

(a) )

Fig. 6.8 The bridge rectifier (¢) produces an output voltage as in (4).

twice as large as in the full-wave rectifier, but it has the same spectrum of Fourier
components. If silicon diodes are used, the peak voltage at the output would be ~ Vo
— 1.2, since two forward-biased diodes are in series during each half cycle, and there
would be brief intervals during which the output voltage remains at zero.

Bridge rectifier units are manufactured with all four diodes internally connected.
Such a device is a four-terminal component with one terminal pair for the ac input
and a second terminal pair for the dc output.
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6.4 Filter Circuits

The main use for rectifier circuits is to convert an ac voltage to a dc voltage. The
circuits discussed in the previous section produce voltages with a dc component, but
their output also contains ac components. Consequently, a low-pass filter is nearly
always used with a rectifier circuit. The lowest (nonzero) Fourier component of the
output is usually the largest, and so if we design a low-pass filter that reduces the
lowest frequency component to an acceptable level, the higher components will
generally be of no concern. It also follows that in a well-designed filter the output will
consist of a dc component and a much smaller sinusoidal component with a
frequency equal to the lowest Fourier component of the rectified waveform. The
sinusoidal part is called the ripple, and the percentage ripple is the ratio of the peak-
to-peak value of the sinusoidal part to the dc component.

Low-pass filters were discussed in Chapter 4, and it is tempting to use the
relations derived there and the Fourier series of Chapter 5 to predict the percentage
ripple of various filters. Such a method will often give a reasonably good approxi-
mation, but is is usually not precise because of the nonlinear nature of the diodes. The
reason is that the output of the rectifier does not look like a voltage source. The
resistance is low when the diodes are conducting, but high when they are not
conducting. Therefore, the Fourier methods, which were ‘derived for linear circuits,
are not strictly applicable.

The simplest filter consists of a capacitor in parallel with the load, as shown in
figure 6.9(a). If @RC > 1, the diode conducts only very briefly once each cycle, and

I

Voniw t
(a) (b)

Fig. 6.9 A rectifier with capacitive filter (2) produces an output as in (4).

the voltage thereafter decays exponentially with = RC, as shown in figure 6.9 ().
For wRC > 1, the dc voltage is ~V,, and thé peak-to-peak ripple voltage is

2nV,

@RC (6.7)

OV = V(1 —e TIRC)
With a full-wave or bridge rectifier, the capacitor is recharged twice each cycle, and
so the percentage ripple is about one-half as much as with the half-wave rectifier.
Equivalently, to achieve the same percentage ripple requires a capacitor only half as
large. Notice that the ripple is zero if R is infinite and that it increases linearly with
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the dc current (V,/R) in R. It is a general feature of filter circuits that the ripple
increases as the dc output current rises. One drawback of this type of filter is that a
large surge current flows through the source and diode. The same number of
coulombs must flow into the capacitor during the brief charging interval as flows out
during the much longer discharge interval. The source must then have a very low
internal resistance, and the diode must have a large surge current rating (see
problem 6.9).

The surge current produced by the capacitive filter can be reduced by adding a
resistor in series with the capacitor, as shown in figure 6.10(a). However, such a series

o— A -
J'C Ry (a)
O O
L
o— — PO '
J'C Ry (b)
. |
L
J'C1 J'Cz Ry (c)
1 |

_ Fig. 6.10- Some commonly used filters for rectifier circuits.
(a) RC. (b) LC. (¢) m-section.

resistor reduces the dc output voltage and wastes power. If the resistor is replaced
with an inductor, as in figure 6.10(), no power is wasted in the filter, but the dc
output voltage is still low. By adding a capacitor at the input of the LC filter, as in
figure 6.10(c), the dc output voltage is raised, but the surge current reappears. When
used with a half-wave rectifier, such a filter provides an attenuation of 1/w?LC, in
addition to that given by equation 6.7, so that the total ripple is '

2nV,

=— 6.8
w*R,C,LC, (6.8)

ov
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For a full-wave or bridge rectifier, the dominant Fourier component of the ripple is at
an angular frequency of 2w, so that the percentage ripple is one-eighth of that given
by equation 6.8. For this reason, full-wave or bridge rectifiers are usually used when
low ripple is desired.

One necessary precaution in the design of LC filters is to ensure that the resonant
frequency of the filter is somewhat lower than the lowest Fourier component of the
rectifier output (w2LC 2 2) to avoid resonance effects that might actually enhance
the ripple and produce large voltages and currents that could damage the
components (see problem 6.10). Since large values of capacitance are desired in these
filter circuits, and since the voltages are always of the same polarity, electrolytic
capacitors are normally used.

A common feature of all real rectifier/filter circuits is the fact that the dc output
voltage varies with the resistance of the load. The voltage regulation is expressed as
the percentage drop in dc output voltage between the no-load and the full-load
conditions. For the same ripple, RC filters have worse regulation than LC filters.

The regulation can be improved by placing a fixed resistor across the output of
the power supply in parallel with the load resistor. Although such a resistor will waste
power, it will make the output voltage less sensitive to changes in R, especially when
R, is large. Such a resistor also serves to discharge the filter capacitors after the ac
power is removed, and so it is called a bleeder resistor. For applications in which
good regulation is required, special regulator circuits must be used (see sec-
tions 6.7, 8.7, and 9.5).

6.5 Voltage Multiplier Circuits

Sometimes it is useful to have circuits which produce a dc voltage that is higher than
the zero-to-peak voltage of the available ac source. Although the usual procedure in
such a case is to use a transformer of appropriate turns ratio before the rectifier, an

alternate approach is to use a voltage multiplier circuit. An example of such a -

circuit, called a voltage doubler, is shown in figure 6.11(g). Such a circuit can be
considered as two half-wave rectifiers, each of which charges one of the capacitors to
the peak voltage V,. The capacitors are placed in series so that an output voltage of
2V, is obtained.

A variation of the voltage doubler is the charge pump circuit of figure 6.11(5).
Diode D, charges capacitor C; to a dc voltage of ¥, just as with the half-wave
rectifier. The voltage across D, is thus the sum of the source voltage (¥, sin w¢) and
the capacitor voltage (V;). The voltage across D, then has a peak value of 2V, and
the diode D, conducts as required until C, is charged to the peak value of 2V,

The circuit is called a charge pump, because during the negative half-cycle the
source pumps charge into C; through D, with D, open-circuited, and then during the
positive half cycle D; becomes an open circuit, D, becomes a short circuit, and some
of the charge in C; flows into C,. The process continues until enough charge is
pumped into C, to raise its voltage to 2V,. The diodes behave much like the valves in
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Fig. 6.11 Voltage doubler circuits. ( ) Conventional
doubler. () Charge pump.

a water pump, alternately opening and closing each half-cycle. One advantage of the
charge pump over the conventional voltage doubler of figure 6.11 (a) is that one side
of the source and one side of the output are common and hence can be grounded.

The charge-pump concept can be extended to any number of stages, as in the
voltage multiplier in figure 6.12. In operation, the capacitors can be regarded as

%3 I 1

%
(n —2)C (n-2)C
(n - l)c (n—1cC

X_

V, sin”wt

Fig. 6.12 Voltage multiplier circuit.
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being in parallel for the ac charging current but in series so far as the dc voltage is
concerned. Such circuits can be used for producing dc voltages as high as several
hundred kilovoits.

A serious limitation of voltage multiplier circuits is their relatively poor voltage
regulation and low output current capability.

6.6 Other Diode Applications

Another use for diodes is in clipping circuits, which limit the voltage to some
prescribed value. Such circuits are useful for protecting circuit components against
damage by overvoltage and for generating special waveforms. Consider the circuit in
figure 6.13(a). Whenever the magnitude of the source voltage exceeds V}, one of the
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Fig. 6.13 The clipping circuit in (a) produces an output voltage as in (5).

diodes conducts, and the output voltage is limited to V;, as shown in figure 6.13(5). If
V, > V,, the output voltage resembles a square wave. Hence such a circuit is useful for
producing square waves. If a voltage V; =0.2 or 0.6 V is satisfactory, the dc sources
can be omitted, and germanium or silicon diodes used, respectively. For higher
voltages, diodes can be placed in series. The output has Fourier components other
than the one produced by the source, and such is usually the case with nonlinear
circuits. Clipping action often occurs, but is highly undesirable, in audio circuits. The
extraneous Fourier components show up as distortion of the audio signal, and in
extreme cases they can make the sound unintelligible.

Diodes can also be used to protect circuit components against overvoltage when
an inductive load is suddenly switched off. Suppose, for example, that the switch in
figure 6.14 has been closed for a long time so that a current /= V,/R is flowing
through the inductor. The diode is reverse-biased and so has no effect. When the
switch is opened, the current in the inductor would drop abruptly to zero if the diode
were absent, and a large voltage V; = Ldl/dt would develop across the inductor and
across the switch. With the diode, however, the same current that was flowing
through the source before the switch was opened would flow through the diode
afterward. The current would then decay to zero in a time = L/R, and the voltage
across the inductor and across the switch would never exceed V,. Such a circuit is
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Fig. 6.14 Crowbar circuit in which a diode is used
to protect the switch and inductor against a destruc-
tive overvoltage when the switch is opened.

called a crowbar (cf problem 3.18). The diode would need a PRV rating of ¥, and
peak current rating of Vo/R. -
Sometimes it is useful to take a periodic ac signal that oscillates between positive
and negative values and displace it so that it is either always positive or always
negative. Such a circuit is called a diode clamp, and it need consist of nothing more
than a capacitor and a diode, as shown in figure 6.15(a). The circuit is the same as the

L .
Vln Vout
O= —C)
(a) &) -

Fig. 6.15 (a) Diode clamp circuit which displaces an input voltage
so that it is always positive (b).

half-wave rectifier except that the capacitor and diode are interchanged. Just as with
the half-wave rectifier, the capacitor charges up to a dc voltage equal to the zero-to-
peak value of ¥;,. The capacitor is made large enough so that it looks like a short
circuit for the ac components of ¥,,.. If, for example, ¥,,, is a sine wave, V,,, will equal
the sum of V,, and the dc voltage on the capacitor as shown in figure 6.15(b). Of
course, the input voltage need not be a sine wave, but for whatever shape it has, the
output voltage will be identical except displaced upward so that it just touches the
¥ = 0 axis at its lowest point. By reversing the diode, the input wave can be displaced
downward so that it is always negative. Furthermore, by placing a voltage source in
series with the diode, the output can be clamped to any desired voltage. Note that the
charge pump described in the previous section is a diode clamp plus a half-wave
rectifier with a capacitive filter.

A circuit closely related to the diode clamp is the baseline restoration circuit
shown in figure 6.16(a). In the absence of the diode, the circuit is just a high-pass RC
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Fig. 6.16 The baseline restoration circuit (a) pre-
vents the baseline of an input signal (§) from drifting
downward (c) as the capacitor charges up.

filter such as might be used to observe a small fluctuating voltage superimposed on a
larger dc component. Imagine that the signal to be observed consists of a finite string
of positive pulses, as shown in figure 6.16(6). Although the cutoff frequency of the
filter is such as to pass the Fourier components of an individual pulse without causing
significant distortion, there is, nevertheless, a low-frequency component arising from
the fact that all the pulses are positive and hence do not average to zero. Without the
diode, the baseline would thus drift slowly downward in an attempt to eliminate the
low-frequency component from the output, as shown in figure 6.16(c). In fact, when
viewed over a sufficiently long time, the area of the function V,,(¢) below the axis
must exactly equal the area above the axis. Otherwise the capacitor would end up
with more charge and hence more voltage than it began with, which would be
inconsistent with the dc nature of the circuit at = —o0 and ¢=00. The diode,
however, provides a low-resistance path for the capacitor to discharge quickly
without causing any current to flow in the negative direction through the resistor.
Consequently, each pulse finds the capacitor in the same discharged condition as

1 34 Diodes and Rectifiers




the previous pulse, and there is no tendency for the baseline to drift downward. If the
pulses to be observed were negative, then it would be necessary to reverse the
direction of the diode to avoid a corresponding upward shift of the baseline.

As a final example of .the many uses of diodes, we will consider how an ac
voltmeter or ammeter could be constructed using a D’Arsonval galvanometer.
Perhaps the most obvious way to make an ac meter is to use a rectifier and filter to
convert the ac to a d¢ voltage or current which is then connected to a dc meter.
Figure 6.17(a) shows perhaps the simplest such circuit. It is just a half-wave rectifier

o—-=4

(b)

Fig. 6.17 Circuits for using a dc volt-
meter to measure an ac voltage (a) Peak
reading voltmeter. () Average reading
voltmeter.

with a single filter capacitor. The capacitor will charge up to the peak value of the
input voltage. Such a circuit is thus called a peak-reading ac voltmeter. If the
input is a sine wave, the voltmeter will read a value V, = ﬁ V.ms- In addition, the
nonideal character of the diode is often important, especially at low voltages. An ac
voltmeter of this type would normally have a scale labeled in rms voltage and be
calibrated to take into account the factor /2 as well as the nonideal character of the
diode. One must thus exercise great caution in using such a meter on waveforms that
are not sinusoidal (see problem 6.18).

A more usual type of ac meter uses a bridge rectifier and omits the filter
capacitor, as shown in figure 6.17(4). If the meter movement has sufficient inertia, it
will not respond to the ripple at the bridge output but rather will give a reading
proportional to the average magnitude of the applied voltage or current. If the input
is a sine wave with a -V peak value, the average magnitude is given by

9 (112 2
vl == J sin(2nt/T) dt == =0.637 V (6.9)
T Jo n ,

6.6 Othef Diode Applications 1 35




For comparison, remember that the rms value of a 1-V zero-to-peak sine wave is
0.707 V, so that an 119, correction is required in addition to that caused by the
nonideal diodes for the meter to read the rms value. Such a meter is called an
average reading ac voltmeter, and the same precautions apply when a non-
sinusoidal voltage is being measured. The same circuit can also be used to read ac
current by simply replacing the dc voltmeter with a dc ammeter, while making sure
that the diodes have sufficient current-carrying capability. By using operational
amplifiers (see Chapter 9), it is possible to construct voltmeters and ammeters which
read the true rms (TRMS) value.

6.7 Zener Diodes

If the voltage across a reverse-biased pn junction is too large, breakdown occurs and
the diode conducts. Normally one wants a diode to have a breakdown voltage that is
higher than the peak-reverse voltage that the diode encounters in the circuit to which
it is connected. On the other hand, a diode with a well-defined, stable, and relatively
small, nondestructive breakdown voltage can be a useful circuit element. Such a
diode is called a Zener diode, avalanche diode, or reference diode, and its
symbol, V-I characteristic, and equivalent circuit are shown in figure 6.18. In the

(a) (b) (c)

Fig. 6.18 (a) Symbol for ideal Zener diode. () V-I Charac-
teristic of real Zener diode. (¢) Equivalent circuit for ideal
Zener diode.

forward direction a Zener diode behaves like any other diode (i.e., ¥V ~0.6 V for Si,
etc.). In the reverse direction the current increases rapidly when the voltage reaches
the breakdown voltage V. An ideal Zener diode is like any ideal diode, except that
the current goes to minus infinity abruptly at ¥ = —Vp. Zener diodes typically have
V3 in the range of a few volts to a few hundred volts, although such diodes can be
placed in series for higher voltages.

1 36 Diodes and Rectifiers




R I
—vWAMA © Vi ke
> ~N
V.
Vin Vs Vout out \\
Ve
o— - Yoo = Vin — IR
|
0 %-% Y 1
R R

(a) ) (b)

Fig. 6.19 The Zener diode regulator in (a) produces an input voltage
as in (4) that is constant so long as the output current is small.

The main use of the Zener diode is as a voltage regulator, as shown in
figure 6.19(a). The Zener diode draws as much current as necessary to keep the
voltage at Vg, even though the input voltage V;, may vary considerably. If too much
current flows to the load, (/> (¥, — V)/R) the voltage will drop below Vp, and the
circuit will cease regulating, as shown in figure 6.19(b). For good regulation over a
wide range of input voltages and output currents, the input ¥;, must be considerably
larger than Vy and/or the resistor R must be small. Unfortunately, both of these
remedies results in wasting considerable power in the diode. Unlike an ordinary
diode, a Zener diode has a significant simultaneous voltage and current, and so must
dissipate power. For the circuit in figure 6.19(a) with I=0, the diode dissipates a
power,

P = = (V= Vou) Vo (6.10)

The Zener diode regulator is closely akin to the clipping circuits previously described.

6.8 Varicap Diodes

Another useful property of real pn junction diodes is the capacitance that appears
across the junction when it is reverse-biased. This capacitance arises because of the
thin depletion region and is typically in the range of ~10-100 pF. Normally such
capacitanice would be undesirable in a diode, but sometimes it can be used to
advantage. The usefulness of the effect comes from the fact that the capacitance
changes as a function of voltage in proportion to (V+ Vo) ~*/* where ¥y, is a positive
constant on the order of the forward voltage drop (0.6 V for silicon). The reason for
this behavior is that the width of the depletion region increases with increasing
reverse voltage. Although any diode will exhibit this behavior, diodes especially made
to enhance the effect are called varicaps or varactors. A typical varicap has a
capacitance that varies over about a factor of 10 in the picofarad range. One of the
uses for varicaps is in controlling the resonant frequency of an LC circuit by means of
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a voltage that may be a rapidly varying function of time. If the voltage change 6V is
small compared with the dc voltage ¥ which is in turn much larger than the constant
V,, the capacitance change is an approximately linear function of éV:

sc=— L oy (6.11)
2V

Such a voltage-dependent capacitor is a nonlinear circuit element, but it behaves in a
nearly linear manner if the ac component of the voltage across its terminals is small
compared with the dc component. The nonlinear character of the varicap is often
used to advantage in the construction of frequency multiplier circuits.

The capacitance of pn junction diodes often becomes significant and poses
difficulties when diodes are used at very high frequencies. For such applications point-
contact diodes are normally used. A point-contact diode has a thin anode wire
(called a catwhisker) which touches a tiny p-type region formed under the contact
on a larger block of n-type semiconductor which serves as the cathode. Such diodes
typically have a junction capacitance of <1 pF, but because of the small area of
contact, they are limited to very low currents.

6.9 Summary

A diode is a nonlinear device that conducts current in one direction but not the
other. Two common types of diode are the vacuum diode and the gr junction diode.
The vacuum diode has a rather complicated V-I characteristic with a space-
charge-limited and emission-limited region. The pn junction diode is more nearly
ideal. A germanium diode has a forward voltage drop of ~0.2 V and a silicon diode
has a forward voltage drop of ~0.6 V. Both types of diode have a small reverse
current.

The main use for diodes is in rectifier circuits that convert ac to dc. Three
common rectifier circuits are the half-wave, the full-wave, and the bridge rectifier. To
reduce the ripple from a rectifier circuit, some form of filter must be used. Diodes and
capacitors can be connected as a voltage multiplier to produce large dc voltages.
Diodes can also be used to limit the amplitude of a voltage and to modify waveforms
in a variety of ways. A Zener diode is useful as a voltage regulator, and a varicap is
useful for controlling the resonant frequency of a circuit by means of a variable
voltage.

Because the diode is nonlinear, many of the circuit-analysis techniques pre-
viously used must, at best, be applied with considerable caution. There is simply no
systematic way to attack a nonlinear circuit in the way that could be done with linear
circuits. Each circuit poses a unique problem, and one must usually be content with
an approximate solution except in certain cases where Kirchhoff’s laws can be
applied to the circuit and the resulting nonlinear equations solved exactly.
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Problems

6.1 Consider a vacuum diode with a cathode of 1 cm? area, a work function of
2.0V, and a temperature of 1000 K with an anode 3 mm away. Calculate the
emission-limited current, and estimate the voltage at which the transition from
emission-limited to space-charge-limited behavior occurs.

6.2 Calculate the reverse current in a germanium and in a silicon diode at room
temperature if the forward voltage drop at 100 mA is 0.2 V and 0.6 V, respectively.
6.3  Over what range does the forward voltage drop of a silicon diode vary as the
current is varied from 1 mA to 1 A at room temperature, assuming /o = 10 pA?
6.4  If the diode in figure 6.6 (a) is germanium and V =1 V, what is the maximum
value of Vg, and over what fraction of the cycle does the diode conduct?

6.5 Calculate the average power dissipated in a 100-Q load resistor for the half-
wave rectifier and for the bridge rectifier, assuming ideal diodes and a sinusoidal
source with a peak value of 10 V.

6.6 In the circuit below in which the diode is silicon, sketch the voltage Vg(t), and -

calculate its maximum value.
N
T
R §

2 cos wt é\D

Vr
N !
’ O\ ,
: 2V

6.7 Describe the symptoms that would result if one of the diodes in the bridge
rectifier in figure 6.8(a) failed by becoming an open circuit. What symptoms would
result if it failed by becoming a short circuit?
6.8 What minimum PRYV rating is required for the diodes in figures 6.6, 6.7, and
6.8 if V=100V and if a capacitive input filter is used?
6.9 Show that the ratio of the surge current to average current in the diode in
figure 6.9 is given by 2./nwRC for ®RC> 1.
6.10 Ifan LC filter is designed with an LC product that is too small, it can actually
do more harm than good. For the circuit in figure 6.10(b) with R, = 00, L=1H, and .
C =2 pF, calculate the output ripple voltage if the input consists of a dc component
and a 120-Hz, 1-V sinusoidal ac component. 7

-6.11 Suppose you have a power supply that can be represented as a Thevenin
equivalent circuit with ¥z =20 V and Ry =4 Q. Calculate the percentage regulation
over the range of output currents from 0 to 1 A. 7
6.12 For the circuit below use reasonable approximations to estimate the dc output
voltage, the percentage ripple, and the percentage regulation:
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6.13 A bridge rectifier with an RL filter as shown below can be analyzed using
Fourier techniques, because two of the diodes are always in conduction. Using the
Fourier series of figure 5.4(e), calculate the dc component of the voltage Vg and the
value of L required to make the percentage ripple in Vg about 19%.

2]

10 sin 120mt

6.14 Suppose in figure 6.11(b) that C, =10C, and that the source is turned on at
t = 0 with both capacitors discharged. Sketch the output voltage for the first few cyeles
of the source.

6.15 Design a clipping circuit using ideal components and a sinusoidal source that
will produce a periodic output voltage close to the one shown below:

Vour

10V

] ]
-0.05 -0.01 | 0.01 0.05 ¢t (seconds)

6.16 What is the maximum current that can flow through an ammeter with a
20,000 Q/V sensitivity and 5000 Q internal resistance if it is connected in parallel
with a silicon diode? Could a germanium diode be used to protect the meter without
disturbing its accuracy?

6.17 In the circuit below, the capacitor is initially charged to 100 V and the switch
is open. At ¢ =0, the switch is closed. Sketch the voltage across the capacitor and the
current through the inductor as a function of time, and show values of voliage,
current, and time on your sketch (cf problem 3.18). ‘
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6.18 Suppose vou have a peak-reading ac voltmeter, an average-reading ac
voltmeter, and a true rms voltmeter, all calibrated for use with sine waves. What rms
voltage would each meter indicate if connected to a triangular wave voltage source,
as shown in figure 5.4(4) with ¥V, =100 V?

6.19 For the circuit below, calculate the power produced by the source and the
power dissipated by R,’R;, and the Zener diode.

20V

) 10V §RL=1009

| 7\ +

6.20 Design a power supply using real components that will produce a 12-V dc-
regulated output over the range 0-100 mA. Use a transformer with a 12.6-V
secondary, and calculate what size fuse should be used to protect the 115-V ac
primary.

6.21 By what percentage must the voltage I across a varicap be varied in order to
vary the frequency of an LC circuit by 19%,? Assume the varicap is the only capacitor,
and neglect V. '
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chapter 7

Vacuum Tubes and
Field Effect Transistors

7.1 Vacuum Triodes

In this and the next two chapters, we will consider an important class of nonlinear,
three-terminal device that is said to be active. An active device is one that behaves as
if it had internal sources. In this chapter we will consider two such devices, the
vacuum tube and the field effect tramsistor (FET), which operate on different
principles but which behave in a very similar manner.

One example of a vacuum tube has already been considered in the previous
chapter where the vacuum diode was described. If one inserts a transparent
conducting grid between the cathode and anode (or plate), as indicated schemati-
cally in figure 7.1, the device is called a vacuum triode (three electrodes). As with

Cathode

Fig. 7.1 Symbol for a vacuum triode.

the vacuum diode, a heater with its associated voltage source is required to heat the
cathode, but since it does not otherwise interact with the rest of the circuit, we will
hereafter ignore it: If the grid is made positive relative to the cathode, but not as
positive as the plate, it will accelerate the electrons and increase the cathode current,
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provided the tube is operating in the space-charge-limited region. Some of the
electrons are collected by the grid, but if the grid Is transparent, many of the electrons
will pass through the grid and will be collected by the even more positive plate. A
large grid current is usually undesirable, because it requires that the source connected
to the grid provide power, and this power must be dissipated by the grid, which in
extreme cases may overheat the grid. Consequently, the vacuum triode is normally
operated with its grid negative relative to its cathode. In such a case it is energetically
impossible for electrons to reach the grid, and so the grid current is always zero. On
the other hand, if the grid is sufficiently close to the cathode and not too negative,
some of the electrons feel the electric field from the positive plate and pass through the
grid and are collected by the plate. In this way a small voltage applied to the grid can
be used to control the flow of current between the plate and the cathode. The
important property of the vacuum tube is that the source which controls the grid
voltage supplies no power, since the grid current is zero, and yet it can significantly
alter the power delivered by a source connected between the plate and cathode. The
vacuum triode, like other nonlinear, three-terminal, active devices, can thus be used
as an amplifier.

Since the vacuum triode is a three-terminal device, its voltage-current character-
istic is not as simple as a two-terminal device. If we use the cathode as a reference
potential, there are two voltages, grid-to-cathode Vg¢, and plate-to-cathode, Vpc.
Since the grid draws no current (assuming V¢ <0), the only current is the one that
flows from plate to cathode, Ip. With three parameters, one needs a three-dimensional
graph to characterize the device completely. However, for convenience, it is
customary to plot two of the quantities on a two-dimensional graph, with a family of
curves representing various values of the third variable. If I, is plotted versus Vpc, for
various Vg, the resulting curves are called the plate characteristics. The plate
characteristics for a typical vacuum triode in the space-charge-limited region are
shown in figure 7.2. The values of the quantities are only representative and may

60 —2 5 W plate dissipation

-3
Operating

“E - point
&
20 -6
0
0 50 100 150 200

Ve (volts)

Fig. 7.2 Plate characteristics of a typical vacuum triode
showing a representative load line and operating point.
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Fig. 7.3 Circuit for determining the
operating point of a vacuum triode.

vary by a factor of 10 or more, depending on the construction of the particular tube.

If the triode is connected to a voltage source Vpp through a resistor Rp, as
indicated in figure 7.3, Kirchhoff’s voltage law can be applied to the loop on the right
with the result

Vep= IPRP + VPC

Solving for Ip gives
h=—-— (7.1)

This relation represents a straight line on the plate characteristics, and it is called the
load lime. A typical load line is indicated in figure 7.2 for Vpp =200V, and Rp
= 3.3 kQ. Note that the load line intercepts the horizontal axis at ¥pp and that it has a
slope of —1/Rp, so that it intercepts the vertical axis at Vpp/Rp. In such a circuit the
plate current and plate-to-cathode voltage will always lie somewhere on the load line.
Their exact value will depend on the grid-to-cathode voltage Fg¢. The intersection of
the load line with the plate current curve corresponding to the appropriate value of
Vgc is called the operating point. The operating point denoted in figure 7.2 assumes
a value of V- = —3 V. Notice that the source at the grid in figure 7.3 is labeled with
a+ toward the grid but that the grid is actually negative relative to the cathode, since
Vec < 0. Amplifier circuits are normally designed so that the operating point is near
the middle of the plate characteristic (i.e., Vpc ~ Vpp/2) so that the largest possible
excursions away from the operating point are permitted without causing saturation
(Vpe = 0) or cutoff (I, ~0).

Care must also be taken to ensure that the product Vpcl, at the operating point is
less than the maximum allowed plate dissipation power for the particular tube in
use. The dashed line in figure 7.2 is a hyperbola showing the limit of allowed
operating points for a typical plate dissipation of 5 W. Operation at points above and
to the right of the dashed curve would run the risk of damaging the tube by over-
heating its plate.
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7.2 Triode Linear Equivalent Circuits

Although the vacuum triode is a highly nonlinear device, for small excursions from
the operating point the plate characteristics are nearly straight, and the tube behaves
in an approximately linear manner. The plate characteristics of figure 7.2 are
redrawn in figure 7.4 on a 10-times magnified scale, so that the curvature of the lines
is not noticeable.

30

T_J\/ ] L I
105 110 115 120

Vpe (volts)

Fig. 7.4 Plate characteristics of figure 7.2 on a
magnified scale appear to be linear.

Since the plate current /p is a function of two variables, Ve and Vpc, a small
change in either of these quantities will produce a corresponding small change in 7,

given by
, olp ) < olp )
ip= vge T v (7.2)
] (aVGC Vpe oc Vec Jvee e

where a lowercase symbol, ip, is used to denote an infinitesimal change in a quantity.
The first partial derivative is taken holding Vp¢ constant. It is called the grid-plate
transconductance,

al,
= 7.3
Em <6 VGC) Vpc = constant ( )

For a typical triode, the transconductance, which has units of inverse resistance, is in
the mU range. The second partial derivative in equation 7.2 is taken holding V¢
constant (i.e., along the diagonal lines in figure 7.4). Its inverse is called the plate
resistance,

Tp = —1— (7.4)

I,
3 VPC V gc = constant

For a typical triode, the plate resistance is in the kilohm range. The value of g,, and 7p
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Fig. 7.5 Vacuum tube linear equivalent circuits.
(a) Thevenin. (4) Norton.

vary with the location of the operating point as well as with the tube type. Their
values are most easily determined by reading them off the plate characteristics of the
particular tube after determining the operating point.

Since the vacuum triode behaves in a linear manner for small changes about its
operating point, it can be represented by either a Thevenin or a Norton equivalent
circuit, as shown in figure 7.5. It will be left as an exercise (problem 7.4) to show that
the Thevenin and Norton parameters are given by

Vr = —pogc (7.5)
Iy = —gmogc (7.6)
Rr=Ry=1 (7.7)
where
H=EmTp (7.8)

is a dimensionless number called the amplification factor. The grid does not
appear in the linear equivalent circuits, because no current flows in the grid circuit
provided Vg < 0.

" The vacuum triode behaves as if it had an internal source, and hence it is an
active device. This source is different from any encountered so far, however, since its
value depends on the value of a voltage elsewhere in the circuit. Such a source is
called a dependent source. Circuits with dependent sources have unique properties
that will be explored in the following chapters. In this case the source voltage depends
on the input voltage and provides the necessary coupling between the input and the
output, causing amplification.
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7.3 Common Cathode Amplifier

The vacuum triode can be used in a circuit such as'figure 7.6(a) to amplify a voltage.
The analysis of such a circuit always takes place in three parts. First one determines
the operating point in the absence of any ac input voltage (v5¢c = 0), as described in
the previous section. Then one determines the values of g, and 7p at the operating
point by taking the appropriate derivatives of the plate characteristic curves. Finally,
one sets the dc voltages to zero and analyzes the remaining circuit, using one of the
linear equivalent circuit representations shown in figure 7.5. The linear equivalent
circuit for the amplifier in figure 7.6(a) is shown in figure 7.6(). It is simply a voltage

®)

Fig. 7.6 The vacuum tube amplifier in (a)
can be analyzed using the linear equivalent
circuit in (b).

divider, and the ac component of the voltage across R, is
o = —pvgcRp
out RP+ p
The amplification of such a circuit is defined as
)

4= (7.9)

in
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Like attenuation, amplification is often measured in decibels (see equation 4.15). For
the circuit of figure 7.6 with u, = v5¢, the amplification is

—URp
Ad=—— 7.10
Rptrp ( )
The minus sign indicates that the output is 180° out of phase with the input. Note that

if 7p is much less that Rp, the amplification 4 is just equal to —pu.
The amplifier circuit of figure 7.6 has two drawbacks:

1. Two dc power supplies are required (Vpp and Vgc), and they must be of
opposite sign relative to ground. )
2.  Both the output and the input have a dc voltage superimposed on them.

" These problems are eliminated in the slightly more complicated circuit in
figure 7.7 (a). In finding the operating point, the capacitors can be treated as open

Ce

v IL n
in O | —

R¢

p
P
Vin ¢ Tout
7 ?Gc Rg @ —vge Rp
l C

(b)

Fig. 7.7 The vacuum tube amplifier in (2) can be analyzed
using the linear equivalent circuit in (5).
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circuits, since only the dc voltages are of significance. The resistor R¢ holds the grid at
ground potential (Vg =0). Since the grid current is vanishingly small, Rg can be
rather large (1 MQ s typical). This resistor is called a grid leak, because it allows the
small charge that would otherwise collect on the grid to leak to ground. The resistor
R allows the cathode to be slightly positive relative to ground by an amount

Ve=IRc (7.11)

where Ip is the plate (and hence cathode) current at the operating point. Since Vg
=0, the dc grid-to-cathode voltage is

Ve = —IpRe (7.12)

Therefore, R, eliminates the need for the voltage source V¢ in figure 7.6(a). Note
that finding the operating point requires successive approximations, since Vec
depends on Ip, and Ip in turn depends on Vgc. Once the operating point is
determined, the values of g,, and 7p are determined as usual.

To find the amplification, we assume that all the capacitors are large enough so
as to look like short circuits at all frequencies of interest. Since these capacitors couple
the ac signals to and from the amplifier while blocking the dc voltages, they are often
called coupling capacitors or blocking capacitors. Such a circuit is limited to
amplification of ac voltages, although the input signal need not be sinusoidal. The
linear equivalent circuit for the amplifier in figure 7.7(a) is shown in figure 7.7(5).
Note its similarity to that in figure 7.6(5). The resistor R; does not appear in the
linear equivalent circuit because it is short-circuited by the capacitor C¢, which is
called the cathode bypass capacitor. Its value must be sufficiently large that
wR:C. is much greater than unity over the range of frequencies that is to be
amplified. The amplification 4 of the circuit in figure 7.7 is apparently the same as
the one in figure 7.6, since it has the same ac linear equivalent circuit.

The input resistance of the amplifier in figure 7.7 is just Rg. The output
resistance is determined as with any Thevenin equivalent circuit by setting the sources
equal to zero and calculating the resistance between the output terminal and ground:

_ Rprp
out — RP+ p

' R (7.13)

The input circuit with its capacitor is just an RC high-pass filter with a 3-dB
point given by '
1

= (7.14)
ReCe

Wc
If the output is connected to a load resistor R;, it will also form a high-pass filter with -
a 3-dB point of

1
= R 7.15
D= RonT ROy (7.19)
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The larger of these two frequencies will determine the lowest frequency for which the
amplification is nearly independent of frequency. The capacitor Cp thus eliminates
the dc component from the output.

This type of amplifier circuit is called a common cathode amplifier, because
the cathode is common to both the input and output circuits.

7.4 Cathode Follower Circuit

Consider the amplifier circuit in figure 7.8(a) in which the output is connected to the
cathode. Such an amplifier is called a cathode follower, since it will turn out that
the cathode voitage follows very closely the input voltage. It is also called a common

it

=
(a)
e
Ui G P
R¢
CP—m——0 1,,,,
R¢
’ (b -

Fig. 7.8 The cathode follower circuit in (a) can be
analyzed using the linear equivalent circuit in (4).
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plate amplifier, because the plate is common to both the input and output circuits.
If we assume the capacitors are short circuits for all frequencies of interest, the linear
equivalent circuit in figure 7.8(6) is obtained. The ac grid voltage is v = ;,, and the
ac cathode voltage is

ve =ipRe = HogcRc
R.+1p
The grid-to-cathode voltage is then
_ _ MgcRe
Yc=Y%6 " U =tnT o
ct7p
Solving for v, gives
Uin (l + uRC ) UGe
Re+rp
The output voltage is
Yout = Uc
and the amplification is
R.
A=l Hlc . (7.16)

% 7t (ut 1)R¢

For u very large, A approaches one, and the output closely follows the input. Note
that unlike the amplifier previously considered, the output is in phase with the input
rather than being shifted 180°.

One might well ask, what use is a circuit that has an amplification of slightly less
than one? The answer lies in the input and output resistances. The input resistance is
R, = Rg. The output resistance is determined by dividing the open-circuit output
voltage,

Uomt = Avin

by the short-circuit output current,

i = PVec _ KV
out -

Tp Tp
to obtain
I
Ry = 4.1 (7.17)
B 2m Z&m

‘Note that this result differs from what would have been obtained had the voltage
source been set to zero.and the resistance between the output and ground calculated.
It is an important property of dependent sources, that they cannot arbitrarily be set to
zero, since their value is not constant but depends on a voltage or current elsewhere in
the circuit. One can, however, always determine the output resistance of a linear
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circuit, even with dependent sources, by dividing the open-circuit output voltage by
the short-circuit output current. Similarly, the input resistance of any linear circuit,
even with dependent sources, can be determined by assuming an input voltage v, and
calculating the corresponding input current, z,. The current will be proportional to

%, and the proportionality constant is the input resistance:

Uin = zinRin

Since the input resistance of the cathode follower can be made much larger than
the output resistance, the circuit has a large power gain, even through its voltage gain
is unity. Such circuits are useful whenever a low resistance load must be driven by a
source with a high internal resistance without attenuation. A common example of the
use of a cathode follower is to drive a transmission line that is terminated in its
characteristic impedance. In such an application, the circuit is sometimes called a
line driver. The reader should contrast the cathode follower with the transformer,
which is also an impedance-matching device but which requires the source to provide
all the power that is delivered to the load.

7.5 Grounded Grid Ampilifier

The previous two sections dealt with the common cathode and common plate
amplifier circuits, respectively. The remaining type of amplifier is the common grid
or grounded grid amplifier shown in figure 7.9(a). As with the previous circuits,
the load line is chosen by an appropriate selection of Vpp and Rp, and the operating
point is determined by the resistor R¢ such that Ve = —1IpR..

The characteristics of the grounded grid amplifier are determined as before by
using the ac linear equivalent circuit shown in figure 7.9(6). The input voltage is
given by

Uin= —Ugc
The output voltage is determined by the voltage divider relation,
Rp
Your = ( —HM6c — Y6c) m
so that the amplification is
Tt _ (T 1Ry
- Rpt+1p

out

A= (7.18)

Vin
This result is essentially the same (for g > 1) as for the common cathode amplifier,
except that the output is in the phase with the input rather than 180° out of phase.

The calculation of the input resistance of the grounded grid amplifier is slightly
more difficult. One’s first inclination would be to replace the voltage source in
figure 7.9(a) with a short circuit and then find the equivalent resistance between g,
and ground. However, since the voltage source depends on the value of a voltage
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Fig. 7.9 Thegrounded grid amplifier circuit in (e) can
be analyzed using the linear equivalent circuit in ().

elsewhere in the circuit, it cannot arbitrarily be set to zero and still permit the
measurement of the resistance. Instead, one must return to the basic definition of
resistance,

R =2 (7.19)

and calculate 7, as in figure 7.10, where the circuit of figure 7.9(b) has been redrawn,
using a Norton equivalent circuit. Applying Kirchhofl’s current law to the node at
the cathode gives

lin = gmlin 1 1 +1i,

Uin Vin ~~ Uout
= Emin + =+
R¢ p
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=0 Vout

Ui O

Fig. 7.10 Circuit used for calculating the input resistance of the
grounded grid amplifier.

iin=vin <£+L+'l__£>

 Rc 1 7
Substituting the value previously derived for 4 gives

| put1\!
R =|—+ 7.20
" (Rc Rp+ 'P) ( )

Unlike the amplifier circuits previously considered, the grounded grid amplifier has a
relatively small input resistance (R;, <Rc). The low input resistance makes the
grounded grid amplifier especially suitable when the input is driven through a
transmission line, which typically has a low characteristic impedance.

The output resistance of the grounded grid amplifier is the same as for the
common cathode amplifier:

Ry = (7.21)
Rp+1p

In all of the vacuum tube circuits considered, it has been assumed that the input
is connected to a voltage source with zero internal resistance and that the output is
connected to a load that draws negligible current, such as an ideal voltmeter. If these
conditions are not met, the amplification will be correspondingly reduced. One virtue
of the vacuum tube amplifier is the almost total isolation of the input from the output,
in the sense that the input resistance is not affected by the load connected to the
output and the output resistance is not affected by the resistance of the source
connected to the input. The grounded. grid amplifier is an exception to this rule,
however, and the isolation is not perfect (see problem 7.12). However, the grounded
grid amplifier does reduce to a bare minimum the capacitive coupling between the
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input and output circuits, making it especially suitable for use at very high

frequencies.
The voltage amplification, input resistance, and output resistance of the three

types of vacuum tube amplifiers are summarized in table 7.1.

TABLE 7.1 Characteristics of the Three Types of Vacuum Tube

Amplifiers
Common Cathode Grounded
Cathode Follower Grid
Amplification Large Small Large
(volase) —_ _uky WRe (1t DRy
Rptrp npt(pt 1)Rc Rp+1p
Input resistance Large . Large Small
1 +1\!
Ry = Rg Rg —+E >
Rc Rp+trp
Output resistance Medium Small Medium
_ Rprp Rerp Rprp’
Row = Rp+1p (ht DR+ 1p Rptrp

7.6 Multigrid Tubes

For a vacuum triode the amplification factor u seldom exceeds about 100. A larger
amplification and a lower capacitive coupling between the grid and plate can be
achieved by adding a second grid, called the screen grid, between the control grid
and the plate, as shown in figure 7.11(a). Such a tube is called a tetrode (four

(a) b)
Fig. 7.41 Multigrid tubes. (a) Tetrode. (b) Pentode.
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electrodes). The screen grid is usually held at a constant voltage, intermediate
between the cathode and plate voltage. Its function is to reduce the dependence of
plate current on plate-to-cathode voltage by providing a nearly constant electric field
to accelerate electrons away from the cathode. Most of the electrons that pass
through the screen are collected by the plate, but some are collected by the screen and
contribute to a2 small current, to the screen grid.

One drawback of the tetrode is that whenever the plate becomes negative
relative to the screen, secondary electrons that are knocked off the plate by the
incident primary electrons are attracted to the screen. This causes an undesirably
high screen current and can cause the plate current to reverse direction. To eliminate
this effect, a third grid, called the suppressor grid, is inserted between the screen
and the plate, as shown in figure 7.11(b). Such a tube is called a pentode (five
electrodes). The suppressor grid is usually held at a constant voltage near that of the
cathode and, in fact, is often connected internally to the cathode. The current in the
suppressor grid is very small, and it effectively repels secondary electrons and
drives them back to the plate.

Typical plate characteristic curves for a pentode with a constant screen voltage
are shown in figure 7.12. Note that the tube behaves very much like a current source,

Vsc = 100 V
15
'V'Gc =0V
-1
-2
-3
-4
L -l ]
0 100 200 300 400
Vpc (voits)

Fig. 7.12 Plate characteristics of a typical pentode vacuum
tube.

except at low voltages. The plate resistance 7p is quite high (megohms), and the
amplification factor p is also high (~10%). Either linear equivalent circuit in
figure 7.5 can be used to represent the pentode, but the Norton equivalent circuit is
more realistic, and rp is often sufficiently large that it can be omitted entirely without
introducing significant error.
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7.7 Junction Field Effect Transistors

A semiconductor device with characteristics very similar to the pentode vacuum tube
is the field effect transistor (FET) shown in figure 7.13. The device consists of a
narrow channel of n-type silicon semiconductor sandwiched between two pieces of p-
type silicon. The two p-type sides are connected together and are called the gate. One
end of the channel is called the source, and the other end is called the drain. If the
gate is negative relative to the source and drain, it forms a reverse-biased pn junction,
and very little current flows in the gate as with the grid of a vacuum tube. The reverse
bias at the junction forms a depletion region that extends into the channel and is
thickest near the drain. The width of the resulting channel and hence the current flow
from the drain to the source is thus controlled by the voltage applied to the gate. The
gate controls the flow of electrons from source to drain in much the same way as the
grid controls the flow of electrons from cathode to anode in the vacuum tube. Unlike
the vacuum tube, the FET can be made in either polarity, since there are two types of
charge carriers, electrons, and holes. A p-channel sandwiched between two n-type
semiconductors behaves in an analogous fashion, provided the signs of all the voltages
and currents are reversed. The schematic symbols for these devices are shown in
figure 7.14. The arrow at the gate is drawn in the direction of current flow by analogy
with the symbol for a diode, but since the gate is normally reverse-biased, what little
current does flow in the gate actually flows opposite to the direction of the arrow.

Depletion
E*” region

Fig. 7.13 n-channel junction field effect transistor.

+1Drain —|Drain
- +
r———
Gate Gate
Source Source
+ 4

Fig. 7.14 Symbols for junction field effect tran-
sistors. (@) n-channel. (4) p-channel.
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Fig. 7.15 Drain characteristics for a typical n-channel
JFET. (a) Ohmic region. (4) Pinch-off region. (¢) Break-
down region.

The drain characteristics of a typical n-channel FET are shown in figure 7.15. At
low values of Vpg, the drain current varies nearly linearly with Vps. This is
appropriately called the ohmic region. In the pinch-off region, /j, depends strongly
on Vg but only weakly on Vps. Eventually, breakdown occurs, and a large current
flows in a manner reminiscent of the Zener diode. The drain characteristics of the
FET are similar to the plate characteristics of a pentode vacuum tube, except that the
voltages are usually somewhat smaller.

An FET circuit is analyzed in the same way as a vacuum tube circuit. The
operating point is first determined by considering the dc circuit. Normally the
operating point is chosen near the middle of the pinch-off region. At the operating
point the value of the forward transconductance,

o, )
&rs= (7.22)
d (a VGS Vps = constant

|
T,

os = ( a ID )
a VDS Vs = constant

can be determined. The subscript s indicates that the device is being used in the
common source configuration. Then the linear equivalent circuit can be used in which
all the dc sources are turned off and the Norton equivalent current is —g ;065 and the
Norton equivalent resistance is 7,, as shown in figure 7.16. Ofien the output
resistance 7, is so large that it can be taken as infinite, in which case the linear
equivalent circuit for the FET becomes nothing more than a current source —g;2gs
between the source and the drain.

and the output resistance,

(7.23)
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The basic FET amplifier circuits corresponding to the three types of vacuum
tube amplifier circuits previously discussed are shown in figure 7.17. The common
source, source follower, and grounded gate have characteristics identical to the
corresponding vacuum tube circuits and are analyzed in éxactly the same manner.
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s
Fig. 7.16 FET linear equivalent circuit.
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Fig. 717 FET amplifier circuits. (¢) Common source.
(6) Source follower. (¢) Grounded gate.

7.8 Insulated-Gate Field Effect Transistors

The device described in the previous section is called a junction field effect
transistor (JFET) because the gate forms a reverse-biased junction with the
channel. The input resistance of the gate is typically ~10° Q. An even higher input
resistance can be achieved by placing a thin insulating layer between the gate and the
channel. Such a device is called an insulated-gate field effect transistor
(IGFET). The most common type of IGFET uses a metal oxide such as SiO; as an
insulator and is called 2 metal oxide semiconductor field effect transistor
(MOSFET). In this way, the input resistance of an FET can be increased to
21014 Q.

The gate-to-channel capacitance is also very small (a few picofarads) so that a
very small electrical charge applied to the gate can result in voltages large enough to.
destroy the FET. Great care must be taken when handling and installing a MOSFET
in a circuit to avoid the buildup of static electricity on its gate. Some MOSFETs have
a pair of built-in, back-to-back Zener diodes between the gate and source to prevent
damage by overvoltage.

MOSFETs are made in two types, called the depletion type and the
enhancement type, as shown in figure 7.18. In the depletion type the channel is
open when the gate-to-source voltage is zero. In the enhancement type the channel
is normally closed but can be opened by forward-biasing the gate. The depletion type
has the advantage that gate biasing is especially simple, since a dc gate-to-source
voltage of zero often provides a quite acceptable operating point. On the other hand,
the enhancement type requires a gate voltage of the same polarity as the drain
voltage, and so biasing can be obtained by a voltage divider from the same power
supply. This provides the possibility of dc coupling two or more FET amplifier stages.
An enhancement-type device is also required whenever a zero drain current is
required at zero gate voltage.
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Fig. 7.18 n-channel MOSFET’s. (a) Depletion-type. (b)
Symbol. (¢) Enhancement-type. (d) Symbol.
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Fig. 718 MOSFET common collector amplifiers.
(a) Depletion-type with zero bias. () Enhancement-type
with positive bias.

The gate electrode is insulated from the channel, and the remainder of the gate is
called the base and is brought out on a separate lead. The MOSFET is thus actually
a four-terminal device. The base is often used to determine the operating point while
the incremental ac signal is applied to the gate. Just as with the JFET, the MOSFET
can also be made with a p-channel, in which case all the voltages and currents are
reversed from the n-channel.

Figure 7.19 shows two examples of common source MOSFET amplifiers.
Figure 7.19(a) uses a depletion-type MOSFET with zero gate bias. Figure 7.19(3)
uses an enhancement-type MOSFET with positive gate bias obtained from a voltage
divider connected to the positive dc voltage supply Vpp.

Compared with the vacuum tube, the FET is mechanically rugged but
electrically fragile (easily destroyed by overvoltage or current), is physically smaller,
operates at lower voltages, requires no heater power, and lasts forever if not abused.

7.9 Summary

The vacuum tube and the FET are two important, three-terminal, nonlinear, active
devices having similar characteristics that enable them to be used as amplifiers. The
analysis of such circuits takes part in three stages:

1. The operating point is determined from the dc circuit by drawing the load line
and finding its intersection with the appropriate grid (or gate) voltage curve on the
plate (drain) characteristics. All capacitors are treated as open circuits.
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2.  The grid-piate (forward) transconductance is determined from the incremental
change in plate (drain) current produced by a change in grid-to-cathode (gate-to-
source) voltage with constant plate-to-cathode (drain-to-source) voltage, and the
plate (output) resistance is determined from the incremental change in plate (drain)
current produced by a change in plate-to-cathode (drain-to-source} voltage with
constant grid-to-cathode (gate-to-source) voltage.

3. The dc sources are then turned off, and the Thevenin or Norton linear
equivalent circuit representation with parameters calculated above are used to
calculate the circuit behavior in the presence of a small ac input signal. All capacitors
are treated as short circuits, provided their values are sufficiently large.

Although the tube and FET are nonlinear devices, for small signals they behave
in a nearly linear manner. For many cases the plate (output) resistance is sufficiently
large that the equivalent circuit of the device consists of nothing more than a single
current source with a value proportional to the ac input voltage.

The FET and the bipolar transistor to be discussed in the next chapter have
replaced the vacuum tube in all but a few highly specialized applications such as
circuits that employ a combination of high voltage, high power, and high frequency.

The development of active semiconductor devices in the 1950s caused a
revolution in the field of electronics and gave birth to a new generation of electronic
gadgets of ever-increasing sophistication. Even today, the rate of development of new
semiconductor devices and circuits is so staggering that one is left to contemplate how
society will be altered by the epoch of electronics which has dramatically overtaken
us.

Problems

714 For the plate characteristics in figure 7.2, estimate the value of /p and Vp¢ at
the operating point, assuming Vpp =150 V, R, =2.5kQ, and Vgc= -2 V.

7.2  Estimate the value of g, 7p, and p at the operating point in problem 7.1.
7.3  Consider the vacuum tube circuit in figure 7.3 with an operating point as
shown in figure 7.2. (a) If V¢ is made more negative, does 7p increase or decrease?
(b) If Rp is increased, does g,, increase or decrease? (c) If Vpp is increased, does 7p
increase or decrease?

7.4 Show that the Thevenin and Norton parameters in figure 7.5 are consistent
with equations 7.5 to 7.7.

7.5 In the circuit in figure 7.7 (a), the vacuum tube has y = 5000 and 7, = 10° Q at
its operating point of Ip =20 mA and Vge= —1.0 V. If the amplifier is to have an
input resistance of 10° Q and an output resistance of 10* ©, what should be the values
of Rp, R¢, and R;? What is the amplification 4 of the circuit (assuming the capacitors
are short circuits for ac)? What value of Cg would give a low-frequency 3-dB point of
100 Hz?
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7.6 Find the operating point for the circuit in figure 7.7(a), using the plate
characteristics in figure 7.2, assuming Rp = 1700 Q, Rc =100 Q, and Vpp =100 V.

7.7 Calculate the amplification A ior the circuit in figure 7.7(a) if Cc=0. The
omission of the cathode capacitor provides negative feedback which has numerous
desirable properties to be discussed in subsequent chapters. Show that for u
sufficiently large, 4 is independent of any of the properties of the tube.

7.8 Calculate the amplification 4 for the circuit in figure 7.7(a) if the output is
connected to a load resistor R;.

7.9  Suppose that a small capacitance C exists between the grid and the plate of a
vacuum tube amplifier, as shown below. Show that the input capacitance of the
amplifier is given by G, = (1+ |4|)C, where 4 is the amplification. This enhance-
ment of the input capacitance is called the Miller effect. When a low-input
capacitance is required, a tetrode or pentode is normally used, because the screen grid
greatly reduces the value of C.

+ Vpp

Tin Qe

7.10 Calculate the value required for R. in the cathode follower circuit of
figure 7.8(a) if Vpp=100V and Vge.= —2V, using the plate characteristics in
figure 7.2.

7.11  Estimate the amplification 4 for the circuit of figure 7.8(a) for the conditions
given in problem 7.10.

7.12 Calculate the input and output resistance of the grounded grid amplifier in
figure 7.9(a), assuming g =99, 7, =10kQ, R, =10kQ, and R, =100 Q. By what
percentage does the input resistance change if a 10-kQ load resistor is connected to
the output? By what percentage does the output resistance change if the resistance of
the source connected to v, is 100 Q?
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7.13 Calculate numerical values for the amplification, input resistance, and output
resistance, for each of the three types of amplifiers listed in table 7.1, assuming
Rp=10kQ, R =100 Q, Rz =1 MQ, and a pentode vacuum tube with g,, =0.01 U
and rp =1 MQ.

7.14 Calculate the amplification A4 for the circuit below using the plate characteris-

tics in figure 7.12.
Dout

Yn
7\
W/
+
_2v @
= = ¥ -

-
7.15 Sketch what g, would look like as a function of time for the circuit of

problem 7.14 if #, =10 sin wt.

7.16 Calculate the amplification 4 for the circuit in figure 7.17(a), assuming g,
= 2.5mQ, r, =, and R, = 1000(}.

7.17 Calculate the values required for Rg, Ry, and Ry in the circuit in figure 7.17(a)
if the FET has g;,=0.01 U and 7,,= o0 and the amplifier is to have an input
resistance of 10° Q, an output resistance of 10° Q and an operating point with I,
=10 mA and Vgg= —1 V. The capacitors can be considered short circuits for ac.
7.18 In the circuit below, the FET has g,, =102 {J and 7,, = 00 at its operating
point. Calculate the amplification 4. You may assume the capacitors act as short

circuits for ac.
+10V

>

zn,,- 10 kQ

<

e

it

- Rg= 1M R = 1 k1
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7.19  For the circuit below in which g, = 0.04 $J and r,; = o0, calculate 4, =0, /v,
and A4, =uv,/v;,, assuming the capacitors are short circuits for ac.

-0V

—_——

100 k2

——
. %m

7.20 In the circuit below, calculate the dc gate-to-source voltage Vg if the FET is
biased such that Vpg=10.5 Vpp.

Vpp = —10V
o

g
]
I—AWW
=
5
AW
T
—

-

7.21 Calculate the amplification 4, the input resistance R;, and the output
resistance R,,, for each of the circuits in figure 7.17 in terms of g,,. Assume 7,,= 00
and the capacitors are short circuits for ac.
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chapter 8

Bipolar
Transistors

8.1 Construction and Operation

The FET described in the previous chapter is but one example of an active
semiconductor device. The first such device to be invented was the bipolar
transistor, and it remains the most common of the active semiconductor devices. In
many ways it resembles the vacuum tube and FET, but it also has important
differences, and in some ways it is simpler than those devices. The bipolar transistor is
so named because current is carried simuitaneously by charges of both polarities
(electrons and holes) rather than by a single species, as in the FET which is an
example of a unipolar device.

The bipolar transistor can be made by placing a thin -type semiconductor in a
sandwich' between two n-type semiconductors, as shown in figure 8.1. Actually, a

Ic
n Cpllector
+
@9 r Base
n Emitter

Fig. 8.1 Bipolar npn transistor.

transistor is manufactured by abruptly changing the doping material twice while the
semiconductor crystal is being grown. If a current I flows into the base, the base-to-
emitter junction is forward-biased, and it behaves like any forward-biased pn
junction; that is, the voltage across the junction is small (~0.2'V for germanium and
~0.6 V for silicon). If a large, positive voltage Vg is applied between the collector
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and emitter, the collector-to-base junction is reverse-biased, and the collector current
I is small. However, since the base is very thin, most of the electrons that flow from
the emitter to the base diffuse across the narrow base region before they have a chance
to recombine with a hole and are collected by the positive collector in much the same
way that electrons that pass through the grid of a vacuum tube are attracted to the
plate. In this way, a small base current is capable of controlling a much larger
collector current. The bipolar transistor thus resembles the vacuum tube and FET,
except that the input (base-to-emitter junction) is biased so as to look like a short
circuit rather than an open circuit.

Like the FET, the bipolar transistor comes in two types which are identical
except that the sign of the voltages and currents are reversed. These are called the npn
and the pnp transistor, respectively, and their schematic symbols are shown n

figure 8.2.

+ _
Ic Ic
C C
B B
Ig Ip
E E
- +
(a) (b)

Fig. 8.2 Symbols for bipolar transistors.
(@) npn. (b) pnp.

It appears from the construction of the transistor that the emitter and collector
ought to be interchangeable. Such is not the case, however, for several reasons. First,
the emitter is usually more heavily doped than either the base or collector to
minimize the recombination of charge carriers in the base region and increase the
amplification. Second, the collector is usually physically larger than the emitter,
because most of the voltage drop and hence the heat production occurs at the
collector-to-base junction. To effectively dissipate this heat, the collector is often
connected to the metal case of the transistor. Finally, the reverse breakdown voltage
of the base-to-emitter junction is typically much less than the breakdown voltage of
the collector-to-base junction. A transistor will often work if connected backward, but
it’s not likely to work very well.

8.2 Collector Characteristics
e

As with the other three-terminal, active devices, the bipolar transistor operation is
described by a set of curves called the collector characteristics. A typical set of
characteristics is shown in figure 8.3. The most proper way to analyze a transistor
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Fig. 8.3 Typical bipolar transistor collector charac-
teristics.

circuit is to follow the same procedure that was used with vacuum tubes and FETs.
The operating point is determined by first drawing the load line using the dc open
circuit collector-to-emitter voltage and the short-circuit collector current. The
intersection of the load line with the collector-current curve corresponding to the
appropriate dc base current I would then specify the operating point. Then for small
variations about the operating point, the ac linear equivalent circuit could be
represented by either a Thevenin or Norton equivalent circuit in which the source
value and resistance are given by the appropriate partial derivatives.

Fortunately, it happens that a simpler procedure is usually adequate. Inspection
of figure 8.3 shows that over most of the range of operation the curves are quite
straight, nearly horizontal, and evenly spaced. In fact, it appears that to a good
approximation the collector current is simply proportional to the base current
independent of operating point:

Ie=Ply (8.1)

The proportionality constant, beta (f), is a dimensionless number with a typical
value of about 100.

Although the value of B is nearly constant over most of the range of the collector
characteristics, at very low values of collector current (near cutoff), the beta varies
approximately linearly with collector current. The beta also increases with increasing
temperature.

As with the other three-terminal active devices, there is 2 maximum power that
the collector can dissipate without overheating and damaging the transistor. This
value can usually be increased substantially by mounting the transistor on a heat
sink which conducts heat away from the transistor and dissipates it by convection
and radiation. The dashed curve in figure 8.3 shows a collector dissipation of
150 mW, which is a typical limit for a small transistor without a heat sink. The
operating point should be chosen so that it lies below such a curve. Transistors, unlike
tubes, are very unforgiving when their ratings are exceeded. Because of their small
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size and mass, even a momentary excursion above the rated collector dissipation will
usually cause irreparable damage to a transistor.

The simplest way to increase the power handling capability of a transistor is to
increase the size of the collector-to-base junction. The junction capacitance in-
evitably increases as a result, and the maximum usable frequency is decreased. There
is thus an inverse relationship between power rating and maximum frequency. Much
of the current effort in semiconductor development is aimed at producing high-power
transistors that will operate at high frequencies. As progress is made, vacuum tubes
are gradually being replaced with transistors in those few remaining applications.

8.3 Linear Equivalent Circuits

Because of the nearly constant value of beta through most of the operating range of
the transistor, it is often possible to use an especially simple model for the transistor
that is valid for both ac and dc voltages. Such a model is essentially a Norton
equivalent circuit in which the Norton current (1) is dependent on the base current
Iy, the Norton resistance is infinite, and the base-to-emitter junction is a short circuit.
Such a model, as shown in figure 8.4(a), will define an ideal tramsistor. Note that

c c
o 9

© e

B Oy Bow——gy
—_— —_—
Iy Iy .
BE]
.
E E
(a) (b) (c)

Fig. 8.4 Transistor linear equivalent circuit models. (a)
Ideal transistor. (4) dc equivalent circuit of ideal germanium
or ideal silicon transistor. (¢) ac equivalent circuit of real
transistor.

the model is valid only if the voltages and currents all have the proper polarities, and
if the transistor is not too close to saturation or cutoff. Such a model will suffice for
analyzing most of the-circuits encountered in this text.

Unfortunately, the base-to-emitter junction of a transistor is not as good a short
circuit as the grid-to-cathode of a vacuum tube is an open circuit. Consequently, a
more complicated model is required when accurate results are desired. For
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calculating the dc voltages and currents, it often suffices to simply add a constant dc
voltage of 0.2 V for a germanium transistor or 0.6 V for a silicon transistor in series
with the emitter to represent the dc base-to-emitter forward voltage drop, as shown in
figure 8.4(b). The voltage source would be positive for an npn and negative for a pnp
transistor. This is the model that will be used to calculate the dc voltages and currents
whenever a circuit is said to contain ideal silicon or ideal germanium transistors,
whereas the ac linear equivalent circuit is assumed to be as in figure 8.4(a).

The ac characteristics of a real transistor can be represented to an accuracy that
will suffice for all purposes of this text by the ac linear equivalent circuit of
figure 8.4(c). The value of B will, in general, depend somewhat on the operating
point that is determined using the dc model of figure 8.4(6). The resistance in series
with the emitter is called the transresistance, and it is a sum of two parts:

+1, (8.2)

Ttr = Tohmic

The 7,pm;c term is constant independent of operating point and has a typical value of
a few ohms for most transistors. It can usually be neglected. The 7, term is called the
dynamic resistance, and it can be calculated from the derivative of the V versus [
characteristic for a pn-junction diode as given by equation 6.3:

_ dVa; KT _0.026
Ty I

The dynamic resistance is an ac resistance given by the slope of the Vgg versus Ig
curve, and it depends on the dc emitter current at the operating point.

Although the models described above will suffice for the purposes of this text, two
additional models are mentioned for the sake of completeness. The first is the T
network equivalent circuit shown in figure 8.5(a). It closely resembles the model
of figure 8.4(c), except that it includes a collector resistance 7¢ which is determined
from the slope of the collector characteristic at the operating point:

1

Gl T
(a VCE )I = constant

and a base resistance 75 which is usually on the order of a few ohms. As with any ac
linear equivalent circuit, the values of the parameters B, r¢, 7g, and rg depend on the
dc voltages and currents that determine the operating point.

" Because the T network equivalent circuit has four parameters, it is complete in
the sense that the transistor behavior is exactly predicted, at least in the small
amplitude limit, provided the parameters are precisely known. The reason for this is
that a transistor is a three-terminal active device, and so in the linear limit it can be
completely specified by four parameters, just as a two-terminal, linear, active device
can be specified by two parameters (V- and Ry or Iy and Ry). For example, if ucg, Uge,
ig, and ic are known, the other voltage can be determined from vcg = vcg — vpg and
the other current from ig=igp+ i, so that there are only four independent

' parameters.

(8.3)

(8.4)
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Fig. 8.5 Four-parameter transistor linear equivalent
circuit models. (¢) T network equivalent circuit. (5) &
parameter equivalent circuit.

The most widely used four-parameter transistor model is the h parameter
equivalent circuit shown in figure 8.5(b). The base-to-emitter junction is repre-
sented by a Thevenin equivalent circuit in which the Thevenin voltage depends on
vcg- The collector-to-emitter junction is represented by a Norton equivalent circuit in
which the Norton current depends on 7z in a manner identical to the simpler models.

Applying Kirchhoff’s laws to figure 8.5(b) gives

b = (6 Vns>

© \ 0y ] ypp= constams
(6 Vee

0 VCE) Ip= constant
<6IC

0lg ) Vg =constant

aVCE Ip=constant

T - (8.5)
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The first subscript of the # parameters stands for input, reverse, forward, and
output, respectively. The second subscript (¢) denotes the fact that the emitter has
been chosen as the terminal that is common to the input and the output. Alternate A
parameter representations are sometimes encountered in which another terminal
such as the base is common. The resulting » parameters can be written in terms of
those in equation 8.5, as follows:

h; A
by, = e
I+ hy,
- hiehoe
b= T 1 7 re
1+ hy,
—h
hfh= fe
by r (8.6)
hob=
1+4,,
hic=hie
hrt= 1 —hre
heye=1%hy,
hoc=hoe J

Note that the & parameters have a variety of units (ohms, siemens, dimensionless),
and for this reason they are called the hybrid h parameters.

By straightforward, although tedious, application of Kirchhoff’s laws, the
relations between the parameters in the various models can be derived (see
problem 8.6). The results are shown in table 8.1, along with typical values for the £

TABLE 8.1 Comparison of Parameters in Various Transistor Models

h Parameter T Network Real Ideal Typical Value
Figure 8.5(b) Figure 8.5(a) Figure 8.4(c}  Figure 8.4(a)
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parameters. Note that an ideal transistor is one in which all the # parameters are zero
except of hy, which is the same as B. The representation we will use for a real
transistor has kg, = B, h;, = (B+ 1)1, and the other 4 parameters equal to zero.

It should be emphasized that all these transistor circuit representations are valid
only when the ac voltages and currents are sufficiently small, only when the dc
voltages and currents have the correct sign, and only when the transistor is not
saturated or cut off.

8.4 Common Emitter Amplifier

The basic bipolar transistor amplifier circuit is the common emitter amplifier
shown in figure 8.6. It is analogous to the common cathode vacuum tube circuit and
the common source FET circuit. The name comes from the fact that the emitter is

+Vee

B
Vin O= » » =
-_— E
‘B
R, R, Rg
! (b)

Fig. 8.6 The common emitter amplifier in (a)
can be analyzed using the linear equivalent circuit

in (6).
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common to both the input and the output circuits. We will first analyze the behavior
of the circuit, assuming the transistor is ideal. By setting the dc source (V) equal to
zero, replacing the capacitors with short circuits, and using the linear equivalent
circuit for the ideal transistor [figure 8.4(a)], the circuit in figure 8.6()) is obtained.

Applying Ohm’s law to Rg gives
vin=(Bipt i) Rg

Similarly, for Rc, Ohm’s law gives

Yout = -ﬂiBRC
The amplification 4 is given by
A=v°_“'=__ﬁ§___R_C:_& (8.7)
Yin (Bt 1)ig R R

where the last approximation is valid for #> 1. Note that the amplification is
independent of f (for B large), which is fortunate, since the B of transistors of the
same type often varies by a factor of two or more, and it would otherwise be difficult
to mass-produce amplifiers with specific characteristics. The fact that 4 is inde-
pendent of B also means that the transistor behaves in a linear fashion, even for large
excursions from its design operating point. Note also that 4 is negative, as was the case
for the common cathode and common source amplifiers. '

The output resistance of the common emitter amplifier is determined by dividing
the open circuit output voltage —PigRc by the short-circuit output current —Pipg,
giving the simple result:

Roul = RC (88)

The input resistance is a little more complicated. It is tempting to set the current
source equal to zero and to say that the input resistance consists of R, R,, and Rg in
parallel. However, this is not allowed, because the current source has a value
proportional to ig, and a measurement of the resistance requires one to apply a
voltage v, which produces a current ig, so that

' + DigR
o=t PP ike  gp, 9)
ip 4]

The input resistance r,, between the transistor base and ground, neglecting R, and
R,, is thus not Rg but BRg (for B> 1). The total input resistance R;, is then given by

11
1 R

=—+ —+— 8.10
R R, R, BPRg ( )

in

Normally, one chooses R, and R, sufficiently small that BRj can be neglected. Then
the input resistance is not affected by variations of B, and so it remains nearly constant
for transistors with widely varying characteristics and for different operating points
for a given transistor.
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The reader may wonder why a voltage divider (R, and R,) is used to establish
the operating point rather than simply omitting R, and obtaining the required dc
base current from R, alone. The reason is that the variation in beta from one
transistor to the next would cause a wide variation of operating points for otherwise
identical circuits. If the collector current at the operating point were chosen to be
one-half the short-circuit current for a given transistor and then a transistor with a
beta twice as great were substituted in the circuit, the circuit would be saturated.
Furthermore, such a circuit tends to be thermally unstable. If the transistor heats up,
the beta increases, and the collector current rises for a constant base current. This can
cause the transistor to heat up even more, further increasing the beta. In an extreme
case, thermal runaway occurs, the maximum collector dissipation is exceeded, and
the transistor is destroyed.

These difficulties are avoided by a proper choice of Ry, R,, and Rg. R, and R,
establish the dc base voltage and hence the emitter voltage (since Vg~ Vp). For a
given emitter voltage Ry determines the dc emitter current, and hence the collector
current (since I =~ Ig) and operating point. The circuit characteristics are thus almost
entirely independent of the transistor characteristics.

In designing a transistor amplifier, the resistors are chosen as follows:

1. R is chosen to provide the desired output resistance (Re = R,y)-
2. Ry is then chosen to provide the desired amplification (Rg = —Rc/4).

3. R, and R, are chosen so that their parallel combination is small (say, 10%)
compared with BR; and such that the operating point is at the desired place, usually
near the center of the collector characteristics. For example, one normally takes the
collector current to be about half the short-circuit (V¢g =0) current:

VC C

Lo~y
€7 2R+ Ry)

Since I >~ I, the emitter voltage desired is

RE VC C

Ve~IRp~——"—
ETTCE T (Rt Ry)
and so by the voltage divider relation, since Vg~ Vg,

RZVCC ~ REVCC
R+ R, 2(Rct Rg)

or

R, (2R (8.11)
R, R

It appears from the above that the amplification |4| can be made arbitrarily
large by making R small. If R is too small, however, the ideal transistor linear
equivalent circuit is no longer adequate, and one must consider the transresistance,
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which appears in series with Rg. In such a case the amplification is

Rc

Re+ o) (8.12)

A=—
which depends on the operating point and has a limiting value of —R/r,, when
Ry = 0. The input resistance is also lowered significantly by taking Rg = 0. One often
connects an emitter bypass capacitor in parallel with Rg in a manner analogous
to figures 7.7 (a) and 7.17(a). The amplification in such a case still depends on the
transresistance and hence on the operating point, but at least the operating point is
determined by the external resistors rather than by the characteristics of the transistor
itself. The use of the external resistor Ry to reduce the amplification and mask the
inherent nonlinearity of the transistor is an example of negative feedback which
will be discussed in some detail in the next chapter.

8.5 Emitter Follower Circuit

The bipolar transistor can be used in a circuit analogous to the cathode follower
discussed in section 7.4. Such a circuit as shown in figure 8.7(a) is called an emitter
follower or 2 common collector amplifier. Assuming the transistor to be ideal
leads to the ac linear equivalent circuit in figure 8.7(5). It is readily apparent that
Uowt = Via- With a more realistic transistor model, a resistance 7,, would be in series
with the emitter, as shown in figure 8.6(¢c), and the output voltage would be given by
the voltage divider relation:

vinRE
Tow =
RE + e
so that the amplification is
Re
A=—— 8.13
R+, (813)

The input resistance is the same as for the common emitter amplifier:

1 1 1 1
SIS SR S I (8.14)
Ry, R, R, PR
The output resistance is zero if 7;, is connected to an ideal voltage source (no internal
resistance) and the transistor is ideal as shown in figure 8.7(4). For the more realistic

transistor model of figure 8.7(¢) the output resistance is

Ry = ke (8.15)
7lr+ RE

as can be seen by examining figure 8.7 (¢) with 3, = 0. In contrast to the vacuum tube
and FET, the output resistance of the emitter follower depends on the internal
resistance of the source connected to the input, and the input resistance also depends

8.5 Emitter Follower Circuit 1 79




Yin O— ' =0 Tout

R R, T @ Re

—iL) i
B a__E

R, Ry T Rg
1

(4

Yout

Fig. 8.7 The emitter follower circuit in (a) can be
analyzed using the linear equivalent circuit in (4) if
the transistor is ideal, or using the more realistic
model in (¢) if more accurate results are required.

on the resistance of the load connected to the output. The output resistance is lowest
when the source resistance is low, and the input resistance is lowest when the load
resistance is low. The emitter- follower is thus a near-unity voltage gain impedance
transformer, but it does not isolate the input from the output as thoroughly as does the
cathode follower or source follower.
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8.6 Common Base Amplitier

As a final example of a single-transistor linear amplifier circuit, we will consider the
common base amplifier shown in figure 8.8(a). Treating the capacitors as short
circuits for ac and the transistor as real leads to the linear equivalent circuit in
figure 8.8(4). The transresistance has to be included in this circuit, because otherwise
it would be impossible to have a voltage between the input and ground.

+Vec

<
I
—0 T,
Cs L) out
1l
nm
R2
= G
i+
>
Rg
(a) -
¢
: E b4 c
g —
Rg iBT Rc
B 1

—

®)

Fig. 8.8 The common base circuit in (2) can be analyzed using
the linear equivalent circuit in (4).

The base current i in figure 8.8(5) from Kirchhoff’s current law is a sum of two
parts, both negative:

. Uin .
ip=—— — Pip
Ter
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Solving for iz gives
) Uin

8= "5+ Dy

The output voltage is

_ . _ ﬂvinRC
Yot = — ﬂZBRC_ (ﬂ+ 1)1'"

Therefore the amplification is

A=”°_"l=ﬂc_~&
Uin (ﬁ+ ])Tlr - Ter

where the last approximation is valid for #3 1. Like the common emitter amplifier,
the amplification is large, but unlike the common emitter circuit, the output is not
inverted. The dependence of the amplification on the transresistance can be reduced
cither by placing a resistor in series with the input (see problem 8.14) or by
eliminating the capacitor from the base to ground (see problem 8.15).

The input resistance of the common base amplifier, as can be seen by inspection
of figure 8.8(b), is given by the parallel combination of 7, and Rg:

P
" rlr+ RE

(8.16)

(8.17)

and hence is quite small, since 7, is usually small. The output resistance is the same as
for the common emitter circuit:

Rou( = RC (818)
TABLE 8.2 Characteristics of the Three Types of Transistor
Amplifiers
Common Emitter Common
Emitter Follower Base
Amplification Medium Small Large
(V(jtige) _ Re Re &
RE + Ter RE + Ter Ty
Input Medium Medium Small
resistance ] i 1\ /1 1 i ro Re
Rin= et et ) (=t =) ==
Ry, R, PR R, R, PR Tt Re
Output Medium Smali Medium
resistance :
7rrRE
= R
Roul RC T,,+ RE C
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In summary, table 8.2 shows the characteristics of the three basic types of
transistor amplifier circuits. One should note the similarity to the three vacuum tube

circuits listed in table 7.1.

8.7 Transistor Voltage Regulators

The amplifier circuits previously discussed account for only a small fraction of the
possible applications of the bipolar transistor. In this section we will consider how
transistors can be used to maintain a constant output voltage across a load in which
the current may vary drastically. Such a regulator is often used with a rectifier and
filter circuit in a device called a regulated power supply which behaves much like
an ideal dc voltage source. We will consider two types of regulators, the series

regulator and the parallel (or shunt) regulator.
Figure 8.9(a) shows the basic series regulator. Its operation is very easy to

(a)
T,
R, L>
Ve Ry 43
e Al.
— =
Ip
—
b)

Fig. 8.9 Transistor voltage regulators. (a) Series.
(b) Parallel.
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explain. The Zener diode holds the base at a voltage Vp over a wide range of
conditions. The circuit is essentially an emitter follower, and so the emitter {and
hence the load) voltage is the same as (or a constant 0.6 V for a silicon transistor less
than) the base voltage. The advantage of the series regulator over the simple Zener
diode regulator discussed in section 6.7 is that the power dissipated by the regulator is
considerably smaller, especially in the no-load (R, = 00) condition.

The basic shunt regulator is shown in figure 8.9 (). Whenever the output voltage
V,, tries to rise above Vg, neglecting the small base-to-emitter voltage, the Zener diode
conducts, and a large current I flows into the base of the transistor. This current is
amplified by a factor of f and increases the voltage drop across Ry until ¥ drops to
Vg. The transistor amplifies the effect of the Zener diode so that the Zener need not
dissipate appreciable power. The transistor does, however, dissipate as much power
as would a Zener diode at the same place in the circuit. The only real advantage is
that high-power transistors are usually less expensive than the equivalent high-power
Zener diode. The shunt regulator dissipates the most power for small J;, whereas the
series regulator dissipates the most power for large /.

8.8 Mulitiple-Transistor Amplifiers

Depending on the configuration, the voltage gain of a single transistor amplifier is
limited to approximately —R¢/r,. To achieve higher gains, to improve stability, and
to increase bandwidth, amplifiers usually employ several stages of amplification. A
straightforward approach is to use two or more single transistor amplifiers as
previously described, with the output of one connected to the input of the next, and
so'on. In such a case it is tempting to calculate the overall amplification by simply
multiplying together the amplification of the various stages. This would be correct,
however, only if the input resistance of each stage is very large compared with the
output resistance of the previous stage. In fact, for maximum power transfer one
generally designs each stage so that its input resistance is approximately equal to the
output resistance of the previous stage. When this is done, the amplification of each
stage is reduced to half the value it would have with no output load, and the overall
amplification is reduced by a factor of 2", where 7 is the total number of stages. This
reduction of amplification is called loading.

An alternate configuration is the Darlington pair shown in figure 8.10(a),
which can be analyzed using the linear equivalent circuit in figure 8.10(4). Such a
circuit is identical to a single transistor with a § given by

B=(B+ 1), (8.19)

which can easily exceed 10*. The total dc base-to-emitter voltage drop is the sum of
the base-to-emitter drops for each transistor (i.e., 1.2 V for silicon). Such a circuit is
often made in a single package with three terminals so as to behave like a single, very
high beta transistor.

A practical difficulty with the Darlington configuration is that the transistor

1 84 Bipolar Transistors




—0 O

(a) - E

C
l 61 "31 l ﬁ! '.82
Bo— _
- -
B B2

E

(b)

Fig. 8.10 The Darlington pair in (a) can
be analyzed using the linear equivalent
circuit in (5).

types have to be chosen very carefully if the full benefit of the high beta is to be
obtained. To avoid saturating the second transistor, its base current, and hence the
collector current of the first transistor, has to be very small. An input transistor thus
has to be chosen that has a high beta at low values of collector current.

Two transistors can be connected as in figure 8.11(a) to form a difference
amplifier which can be analyzed using the linear equivalent circuit in
figure 8.11(b). The transistors are assumed to be identical, and it is necessary to
consider the transresistance so as to allow a voltage difference between the two bases.
For Rg > 1,, the current i; produced by v, and v, can be determined, using the
superposition theoren (alternately, connect v, and then v, to ground):

U1 Uy

2Br, 2P,

Y=
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Fig. 8.11 Thedifference amplifierin (2) can be analyzed using

the linear equivalent circuit in (4)

Similarly, 7, is given by
U2 U

2= 2B, 2Bn
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The voltage drop v,y is

Yous = Piy Re — PioRc = 1% (07 —2) (8.20)
tr

Such a circuit is useful for subtracting two voltages and amplifving the difference.
This is extremely useful whenever it is necessary to measure the voltage between two
points in a circuit, neither of which is grounded, and to reference the measured
voltage to ground. It is also useful for amplifying dc voltages, since no capacitors are
used. A characteristic of most dc amplifiers is that both a positive and negative power
supply voltage are required.

The quality of a difference amplifier is expressed in terms of its common mode
rejection ratio (CMRR). The CMRR is the ratio of the voltage that must be
applied at the two inputs in parallel (v; and ) to the difference voltage (z; —v,), for
the output to be of the same magnitude. The CMRR of the difference amplifier in
figure 8.11 is theoretically infinite. If any of the corresponding components are not
identical, a finite CMRR will result (see problem 8.19). Difference amplifiers usually
have some means of adjusting for small asymmetries in the circuit to maximize the
CMRR. It is relatively easy to obtain a CMRR of ~103 to 10* over a narrow range
of frequencies, but much more difficult when the amplifier bandwidth is large.

Another useful circuit is the complementary-symmetry amplifier shown in
figure 8.12. It uses an npn and a pnp transistor of otherwise identical characteristics.

+Vee
o
Vi O———l [ Dout
Rg
< =
’ f
. ~Vee

Fig. 8.12 A complementary-symmetry am-
plifier using an npn and a pnp transistor biased
to cutoff (class B).
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For v, =0, both transistors are biased to cutoff (i.e., [y =0). For 4, > 0, the upper
transistor conducts and behaves like an emitter follower while the lower transistor is
cut off. For z;,, <0, the lower transistor conducts while the upper transistor is cut off.
In addition to being useful as a dc amplifier, such a circuit conserves power, because
the operating point for both transistors is near Ic = 0. Of course, the characteristics of
a transistor (B, 7,) are not very constant near /o =0, and so the circuit is not very
linear for small signals or near the zero-crossing point of a large signal.

Since it is difficult to obtain npn and pnp transistors that are accurately matched,
it is more common to find circuits that use two transistors of the same type in what is
called a push-pull amplifier circuit as shown in figure 8.13. In this case, the

+Vee
j[- J?-

Fig. 8.13 A push-pull amplifier uses two matched transistors biased to
cutoff (class B).

transistors are connected as common emitter amplifiers, although an emitter follower
and common base configuration are also possible. The push-pull amplifier resembles
the full-wave rectifier in its use of center-tapped transformers. The use of transfor-
mers in a low-frequency circuit of this type is undesirable in terms of cost, weight,
space, and linearity, but a transformer does provide considerable flexibility, in that it
enables the designer to match input and output resistances in a way that optimizes
the overall performance of the circuit. As with the complementary-symmetry
amplifier, the push-pull amplifier is normally operated with =0, so that neither
transistor dissipates power until an ac input signal is applied.

A circuit biased in such a fashion is called a class B amplifier, in contrast with
the class A amplifiers previously discussed, in which the operating point is near
the center of the collector characteristics. Circuits are sometimes constructed in
which the base is reverse-biased so as to conduct over only a small fraction of the
period of the input signal. Such circuits are called class C amplifiers and are used
primarily for amplifying high-frequency signals having a narrow Fourier spectrum.
The input and output voltages for the three types of amplifiers are shown in
figure 8.14.

Although class C amplifiers are the most efficient of the three, they produce
drastic distortion of the input signal and so are normally used with high Q resonant
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Fig. 8.14 Voltage  waveforms for
various classes of amplifiers. (¢) Input
voltage. (6) Class A amplifier. (¢) Class B
amplifier. (d) Class C amplifier.

circuits in their output to attenuate the unwanted harmonics, as shown in figure 8.13.
Alternately, by tuning the output circuit to one of the harmonic frequencies, a class C
amplifier can be used as a frequency multiplier. The resonant LC circuit in the
collector is called the tank circuit, and it is tuned to the frequency of the input voltage
or one of its harmonics to produce a nearly sinusoidal output despite the highly
nonlinear nature of the class C amplifier. .

Figure 8.15 also shows how simply the proper base bias for class C operation can
be obtained. Use is made of the fact that the base-to-emitter junction is a diode
rectifier, and so the capacitor Cy will tend to charge up with a dc voltage that keeps
the base reverse-biased during most of the cycle of the input waveform.

The high efficiency of the class C amplifier results from the fact that the transistor
behaves much like a switch. Most of the time it is cut off and hence draws no current.
‘When it does conduct, it conducts strongly so that the collector-to-emitter voltage is
small. In either case the power dissipated by the transistor is small. Note that the
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Fig. 8.15 Class C amplifier with resonant output circuit.

class C amplifier is operated far from its linear regime. Consequently, the linear
equivalent circuits presented earlier are of virtually no use in analyzing such a circuit.

When good linearity over a wide range of frequencies is required, as in a high-
fidelity audio amplifier, a class A amplifier must be used, with some sacrifice of
efficiency. For any amplifier, the efficiency 7 is defined as the ac power delivered to
the load divided by the total power produced by all the sources. Typical efficiencies
are ~10-309, for a class A amplifier and ~70-809%, for a class C amplifier.

8.9 Summary

The bipolar transistor operates in a manner analogous to the vacuum tube and FET
except that 1t is controlled by a current rather than by a voltage. It is inherently a
low-input resistance device, in contrast to the vacuum tube and FET. A bipolar
transistor tends to be more linear than the other devices, and it usually suffices to
neglect the collector resistance and to ignore the variation of f with operating point.
The base-to-emitter junction is a forward-biased diode, and so it has a small, nearly
constant, dc voltage drop which must sometimes be considered. In addition, the
emitter behaves as if it has an ac internal series resistance 7,, that depends on the dc
emitter current.

The transistor can be used as an amplifier in either the common emitter,
common collector (emitter follower), or common base configuration. The common
emitter circuit has a large amplification but a high output resistance. The emitter
follower has an amplification slightly less than one, but a very low output resistance.
The common base circuit has a large amplification and a very low input resistance.

The transistor can also be used as a voltage regulator either in series or parallel
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with the load. With two or more transistors, the variety of possible circuits is very
large. The Darlington pair, the difference amplifier, the complementary-symmetry
amplifier, and the push-pull amplifier are four common examples. The way in which
an amplifier is biased allows one to trade off linearity for efficiency. Class A amplifiers
are the most linear, and class C amplifiers are the most efficient.

Problems

8.1 Using the collector characteristics in figure 8.3, determine the operating point

for the circuit below:
—0 +20 V

RC=2kQ
Ry = 100 k2

8.2 Calculate the value of 7¢ for the problem above.

8.3 Calculate the value of Vg and I, for the circuit in problem 8.1 if Ry is changed
to 10kQ.

8.4 Calculate the value of Vg and 7, in the circuit in problem 8.1 assuming the
transistor is germanium with 7o, =4 Q.

8.5 Show that if 7= o0 in the T network model of figure 8.5(a), the input and
output currents and voltages are the same as for the real transistor model of
figure 8.4(c), and derive an expression for 7, in terms of B, rg, and rg.

8.6 By application of Kirchhoff’s laws, derive the # parameters for the T network
given in table 8.1.

8.7 Assume figure 8.6 contains an ideal silicon transistor with =100 and V¢
=10V, R, =20kQ, R, =5 kQ, Ry =1 kQ, and Rc =5 kQ. Calculate ¥V, Vg, Ve, Ig,
IE, and Ic. .

8.8 For the circuit described in problem 8.7, calculate R;,, R,y and 4. How would
these values be changed if an emitter bypass capacitor were added to the circuit?
Assume Topmic = 1.4 Q.

8.9 For the circuit described in problem 8.7, calculate the amplification 4
assuming the output is connected to a resistor R, = 7.5 kQ.

8.10 Design a common emitter amplifier with Ry, =5 kQ and A = —10 using a 15-
V power supply and an ideal transistor with B = 100. Calculate its input resistance.
8.41 For the circuit below, calculate the dc and the ac parts of the output voltage

V... (), assuming the transistor is ideal with p=99.
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+10V

§RC=6k.Q
R, = 400 k2

W —0 Voul (t)

0.1 sin @t OmamAAAA—

Ry = 24 kQ

8.12 The circuit below contains a real germanium transistor with =50 and r,
= 2.0 Q. Calculate the input resistance R;, and the voltage v, across the load resistor
R;.

—0 —10 V

G

8.13 For the circuit in problem 8.12, estimate the values required for C; and C, such
that the 3-dB point will occur at f, =25 Hz.

8.14 Calculate the input resistance and amplification of the circuit on the following
page, assuming the transistor is ideal and the capacitors are short circuits for ac.

8.15 Calculate the input resistance and amplification of the circuit in figure 8.8(a)
with the capacitor Cy between base and ground removed, using R, =40 kQ,
R, =10kQ, R = 4kQ, and Ry = 1200 Q, assuming the transistor is ideal with =99
and the other capacitors are short circuits for ac.

8.16 The circuit on the following page acts as a constant current source. Show that
the current I is independent of R, for R, below a critical value, and calculate that
value of R;. Assume that the transistor is ideal.

8.17 Assume the circuit in figure 8.9(a) contains an ideal transistor with = 39.
Calculate the maximum current in R; for which the circuit regulates properly,
assuming ¥, =20V, V=10V, and R, =400 Q. Calculate the power dissipated in
the load, in the transistor, in resistor R,, and in the Zener diode under the above
conditions.
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Illustration for problem 8.16.
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8.18 Assume the circuit in figure 8.9(b) contains an ideal transistor with f= 39.
Calculate the maximum current in R, for which the circuit regulates properly,
assuming V, =20V, V3=10V, and R, =10 Q. Calculate the power dissipated in
the load, in the transistor, in resistor R,, and in the Zener diode under the above
conditions.

8.19 Calculate the common mode rejection ratio for the circuit in figure 8.11,
assuming the transistors have values of f§ that differ by 19, and all other parameters
are identical.

8.20 Assume the circuit in figure 8.12 contains ideal transistors and that 2,
=10sin wt, Ve = 10V, and R = 10 Q. Calculate the power dissipated in the load
R, the power dissipated in the transistors, and the efficiency of the amplifier.
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chapter 9

Operational
Amplifiers

9.1 Operational Amplifier Characteristics

A high-gain, multistage, dc amplifier containing many individual transistors and
resistors can be considered as a single, active, circuit component called an oper-
ational amplifier (op amp for short). Such a circuit is usually miniaturized and
fabricated on a single chip of silicon in what is called an integrated circuit (IC).
Such integrated circuits often contain hundreds of individual components, and when
mass produced, are comparable in size and cost to a single transistor. The op amp is
such a useful device that it has become the basic building block of analog electronics
and has revolutionized the way in which complicated electronic circuits are designed
and constructed.

Figure 9.1 shows a schematic diagram of a typical, low-cost, general-purpose,
operational amplifier. It is not necessary to understand its operation in detail.
However, one should notice that the input stage is a difference amplifier, the output
stage is a complementary-symmetry amplifier, and all stages are dc coupled. These
amplifier circuits were described in section 8.8. This chapter will describe some of the
properties and uses of operational amplifiers.

In practice, it is not necessary to know what is contained within an op amp in
order to use it. Its behavior is completely specified by the relations of the voltages and
currents at its terminals in the same way that other devices such as the vacuum tube
and transistor are specified by the V-I relations at their terminals. The op amp is
basically a four-terminal device, with two inputs, one output, and a common
terminal, which is usually connected to ground. In addition, a plus and minus dc
voltage must be supplied, and extra terminals are often provided to compensate for
certain nonideal properties of the device, such as frequency response and dc offset.
Often the ground terminal is omitted from the op amp, and the output voltage is
referenced instead to the midpoint of the positive and negative dc supply voltages as
determined from a voltage divider internal to the op amp.

The most important characteristics of the op amp are the open-loop voltage
gain, 4, which is a function of input voltage, frequency, the input resistance r;,,
and the output resistance 7,,,. A typical plot of output voltage versus input voltage
difference is shown in figure 9.2. Note that the device is nonlinear, as would be
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Fig. 9.2 Output versus input voltage for
a typical real operational amplifier.

expected, since it contains nonlinear components. In particular, the output voltage
always saturates at a value close to but slightly below the dc power supply voltage.
The device shown has an open-loop voltage gain of 4, ~ 10%, since the output reaches
~10V when the input voltage difference is ~1 mV.

The open-loop voltage gain of op amps in common use is typically in the range of
102 to 10® (40 to 120 dB). Most op amps have input resistances in the range of 10° to
107 Q. Special op amps with MOSFET input amplifiers have 7, of 10'! Q or higher.
The output resistance of op amps is usually in the range of about 10 to 1000 Q.

As with the other components, it is useful to define an ideal op amp as one in
which A4, is constant, r;, is infinite, and r,,,, is zero. The symbol for an ideal op amp is
shown in figure 9.3(a). Whenever the symbol 4, is omitted, for the purposes of this
text, it is assumed to be infinite. The ideal op amp thus behaves like an ideal voltage
source with

Vouw=4o(V, = V_) (9.1)

as shown in figure 9.3(5). A better representation for a real op amp is the Thevenin
equivalent circuit shown in figure 9.3(c). The inputs V., and V_ are called the
noninverting and the inverting inputs, respectively. Like the other active devices
studied, the op amp contains a dependent source, that is, a source whose value
depends on the value of a voltage elsewhere in the circuit.

9.2 Negative Feedback

Operational amplifiers are usually used in circuits that provide negative feedback.
One example of negative feedback has already been encountered in the common
emitter amplifier in ﬁéure 8.6, where part of the output voltage appears across the
resistor Ry causing the base-to-emitter voltage vy; to be reduced to a very low value
relative to z,. The result of this negative feedback is to reduce the overall
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Fig. 9.3 (a) Symbol for an ideal op amp. ()
Linear equivalent circuit. (¢) Representation
of a real op amp.

amplification of the circuit but to make it insensitive to the beta, nonlinearities, and
other nonideal characteristics of the transistor.

Negative feedback is extremely useful. Consider an arbitrary amplifier circuit in
which the amplification in the absence of feedback is 4¢. If a fraction f of the output
is returned and subtracted from the input ¥, then the output is given by

Vou( = AO( Vin _.fVoul)

In the presence of feedback, the amplification is then given by
Voul —- AO
Ve 1+dof

If the product A,f is sufficiently large (>1), the amplification becomes simply
A=1/f, independent of 4y. Thus the fact that 4, is not really a constant for most
nonlinear circuits is of little consequence in the behavior of the circuits. Even though
4, may change drastically with input signal amplitude, frequency, power supply
voltage, temperature, age, and so on, the circuit operation is determined only by the
fraction f of negative feedback. _

Figure 9.4 shows two common forms of operational amplifier negative feedback.

A=
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Fig. 9.4 Examples of op amp feedback. (a) Voltage feedback.
(b) Operational feedback.

These circuits are easily analyzed in the limit 44 = co. For such a case, the output
voltage can be finite only if V, = V_. One of the most perplexing properties of the
ideal op amp with negative feedback and infinite 4, is that the input behaves
simultaneously like an open and a short circuit. It behaves like an open circuit,
because the input resistance is very high, and hence no current flows into either input
terminal. It behaves like a short circuit, because the voltage difference between the
two input terminals is very small. The input is thus unlike any circuit element
previously encountered. It is, in fact, simpler, once one gets used to its unusual
properties.

The circuit in figure 9.4 (a) has what is called voltage feedback, and it uses a
voltage divider to supply a fixed fraction of the output at the inverting input
terminal:

R,V
V.=V,=V.=—2% 9.2
in + Rl + R2 ( )
or 4
R,+R
m=4Eim (9.3)
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The amplification is then given by the ratio of the resistors:

V. R
A= =1+22 9.4
Vin Rl ( )

independent of the properties of the op amp in 2 manner reminiscent of the common
emitter transistor amplifier.

For the circuit in figure 9.4 (), which has operational feedback, the current in
Rl' is V

V.

L= 2t

R;
since V_ =V, =0. In such a case, the inverting input of the op amp is called a
virtual ground, since it is always at the same voltage as the grounded, noninverting
input. The concept of the virtual ground is central to the analysis of op amp circuits.

Similarly, the current in R, is

|2
Ip= -out
R,
Since no current can flow into the input terminals, /; is equal to —1;, or
R :
Vow=— F{ Vi (9.5)
and the amplification is
|2 R
A= 21 9.6
7 R, (9.6)

The amplification is determined only by the ratio of two resistors, but in this case the
output is inverted (shifted in phase by 180°), and |A| can be less than one.

Equations 9.4 and 9.6 imply that an arbitrarily large amplification can be
obtained by an appropriate choice of resistors. Such is, of course, not the case. If R, or
Ry is made very large, the feedback is eliminated, and the amplification approaches
Ag. The equivalent circuit. corresponding to figure 9.4(a) for 4, finite is shown in
figure 9.5(a). From the voltage divider relation,

R,

V.= ———
R+ R,

| 2

out

Since the output voltage is

Vouw=4o(Via—V-)
the V_ can be eliminated from the above equation (provided 44> 1) to give
_ AR+ Ry)

Vour = d
out A0R1+R2 in
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Fig. 9.5 Equivalent circuits for calculating the am-
plification of the circuits in figure 9.4 for 4, finite.
(a) Voltage feedback. (6) Operational feedback.

or
4 Vou _ Ao(Ri+ Ry) 0.7
Vi~ ARy TR

One should note that equation 9.7 reduces to equation 9.4 for 4y, > R,/R; and that
the amplification is given by 4 =4, for 4, € R,/R,.

In a similar fashion the limiting amplification of the circuit in figure 9.4(4) can
be calculated, using the equivalent circuit shown in figure 9.5(4). Equating currents
in the two resistors gives

R; R,
also
Vou( = _AO V-
Combining the above‘two equations and solving for V_,, gives
AO Vian
Vo = — L
AoR,t R,
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or
_ ARy
AR+ R,
One should verify that equation 9.8 reduces to equation 9.6 for 44 > R/R; and that
the amplification is given by 4= 4, for Ay < R//R;.

It should be noted that the results of equations 9.7 and 9.8 are still approxi-
mations, since the input resistance 7, and the output resistance 7,,, have been ignored
in the ideal op amp representation. It turns out that the approximations are
extremely good, however, so long as the external resistors are not chosen too casually.
As a rule of thumb, the feedback resistor (R, or R,) should be R 7, but $r;,. Values
the order of 100 Q to 100 kQ are typical.

The usefulness of negative feedback cannot be overemphasized. Since all active
devices are inherently nonlinear, it is essential to be able to construct circuits in which
the amplification is determined by the ratio of two resistors rather than by the
characteristics of the device itself. Resistors tend to be extremely linear and stable
compared with nearly all other electronic components. The strategy with op amps is
to provide the user with a device capable of much larger amplification than can
reasonably be used, so that most of the available amplification can be traded for
improved linearity. In this way circuits with extraordinarily good linearity can be

A= — (9.8)

constructed.

Note that we have now come full circle. The book began with linear circuits. But
to make amplifiers and other useful circuits generally requires active devices that are
usually quite nonlinear. Negative feedback provides the means for constructing such
circuits while preserving the desired linearity.

Negative feedback also provides the circuit designer with a powerful tool for
adjusting the input and output resistance of an amplifier circuit. For example, in the
common emitter amplifier described in section 8.4, the emitter resistor not only
reduces the amplification but also increases the input resistance of the amplifier to a
value much higher than it would have otherwise been.

Consider the voltage feedback case of figure 9.4(a). If the op amp is ideal, the
input resistance would be infinite. With a real op amp one is tempted to conclude that
the input resistance Ry, of the circuit would be equal to the input resistance r,, of the
op amp itself. That this is not the case can be seen by examining the linear equivalent
circuit of figure 9.6(a), in which the output resistance r,,, is neglected. The input
current I; can be calculated as follows:

L= Vin— V_ - Voul - AVm

' Tin Ao Aor;

The input resistance is thus given by
V Aor'
R. = n _ £0in
Y|

in ™ 1|
This equation illustrates the way in 'which the large available amplification serves to
increase the input resistance even beyond the already large value of 7,.

(9.9)
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Fig. 9.6 Equivalent circuits for calculating the input resistance of the
circuits in figure 9.4. (a) Voltage feedback. () Operational feedback.

For the operational feedback case of figure 9.4(5), the existence of the virtual
ground at the inverting input makes the calculation of the input resistance especially
simple. The input current J; is just ¥;,/R;, and the input resistance is thus

Rln = Rl’

It appears that the input resistance can be made as large or as small as desired
without limit. It is true that it can be made arbitrarily large (although it may be
difficult simultaneously to achieve a high amplification), but there is a lower limit
imposed by the finite output resistance of the device. The input resistance for such a
case can be calculated, using the equivalent circuit of figure 9.6(b) in which the input
resistance r;, has been neglected. The input current is

AT
R,
The output voltage is
I/;u( = Iiroul - AOV—
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Eliminating ¥V, in the above equations gives

(Aot 1)V
T Rf+ Toul
The input resistance is thus
V_ +
Rin=Ri+ _=Ri+ Ef—’fﬂ
I Aot 1

Since 4 is nearly always much greater than one, the input resistance can be written
as

Rf + Tout

o

R, ~R,+ (9-10)
For the lowest possible input resistance, one would take R; =0. Then, even with R,
considerably larger than r,,, an input resistance much less than 1 £ can easily be
achieved because of the 4, in the denominator of equation 9.10. Thus negative
feedback can be used either to raise the input resistance to a very high value or to
reduce it to a very low value,

The output resistance of a circuit with an ideal op amp is zero. With a real op
amp the output resistance R,,, depends on the internal output resistance of the device
Tou, but negative feedback can be used to reduce R, to a very low value. Consider
the equivalent circuit for the voltage feedback case in figure 9.4(a) shown in
figure 9.7(a) in which the output has been shorted to ground. With the output short-
circuited, the voltage V_ is zero, and the short-circuit output current is

1 _AOVin'__ OVout
- Tout B Aty

where V_, is the open circuit output voltage. The output resistance is thus

V. Ar,
R = Vou _ Ao 9.11
= = (9.1

The large available amplification can be used to reduce the output resistance, just as
it increased the input resistance (equation 9.9).

In a similar fashion, the short-circuit current for the operational feedback case of
figure 9.4(b) can be calculated using the equivalent circuit in figure 9.7(#). The
short-circuit output current is given by the superposition theorem as

L= V. AV
R f Tout
From the voltage-divider relation,
V. = Rf Vin
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Fig. 9.7 Equivalent circuits for calculating the output
resistance of the circuits in figure 9.4. (a) Voltage feedback.
(b) Operational feedback.

Combining the above two equations and solving for /,, gives

p oL _ 4\ RV
““\R; 1w/ R+R

out

Tout — AO'Rf Rf Vou( /A
Rf’out Ri + Rf

where V,,, is the open-circuit output voltage. The output resistance is thus

V. ar
R — _out _ out R + R
out Isc T — AO Rf( i f)

For the usual case in which 7,,, < 4R/,

out lo (Rf +] )'rou( ( )
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The output resistance R,,, is usually much smaller than r,,, (iflA] < A,), butalarge
amplification (14] =4,) it approaches 7,,,.

The properties of the amplifier circuits with negative feedback shown in
figure 9.4 are summarized in table 9.1.

TABLE 9.1 Properties of Amplifier Circuits with Negative Feedback

Voltage Operational
Feedback Feedback
Figure 9.4(a) Figure 9.4(b)
Ao(Ry+R ¥ |
Voltage amplification (4) L——Z) _ ARy
AoR,+ R, AR+ R,
R R
(4o — ) 1+2 -
R, R;
. AO RI + Tout
Input resistance (R;,) — tin R+
4 4,
(4o —> ) S R;
A |4l (R,
Output resistance (R,,,) —, fankui Y (b BT
P out Ao ut Ao (Rf ) Tout
(4o — ) 0 0

Two applications of op amps which are special cases of the circuits in figure 9.4
are shown in figure 9.8. The circuit in figure 9.8(a) is called a voltage follower. It is
a case of voltage feedback with R, = o0 and R, =0. Like the cathode follower, source
follower, and emitter follower, it has the property of near unity voltage gain (4 = 1),
high-input resistance (R;, = 4¢7;,) and low-output resistance (Ryy, = Tou/40)-

The circuit in figure 9.8(5) is called a current-to-voltage converter. It is a
case of operational feedback with R; =0. The output voltage is given by

Voul =- IinR (9 13)

One may wonder why an op amp is required at all, since a resistor by itself is also a
current-to-voltage converter. The point is that the input resistance of the op amp
circuit is very low (R,, >~ R[4,) so that, just like an ideal ammeter, it can be inserted
in series with the branch whose current is to be converted to a voltage without
perturbing the circuit. Or, stated another way, the voltage that can be obtained
at the output for the same perturbation to the circuit is a factor of 4, larger when an
op amp is used instead of a resistor by itself.
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Fig. 9.8 Special cases of feedback amplifiers. (a) Voltage
follower. () Current-to-voltage converter.

9.3 Operational Amplifier Applications

Although the operational amplifier can be used as a substitute for a single transistor or
vacuum tube in any of the circuits described in the previous two chapters, it has a
much wider range of application. In this section we will discuss how the op amp can
be used to perform the linear mathematical operations of addition, subtraction,
integration, and differentiation. In the following discussion the op amps are assumed
ideal, with 45 = 00 except where indicated otherwise.

Figure 9.9(a) shows the basic addition circuit. Applying Kirchhoff’s current law
to the virtual ground at the inverting input terminal gives:

E-}- E+E‘L‘=0

R, R, R,
Solving for V,,, gives
Vo = (% p+ o V2> (9.14)
For the special case of R, =R, =R/, .
Vouw=—("1+13) | (9.15)

In a similar manner, such a circuit can be used to add three or more voltages. The
inverting input is a virtual ground and is called the summing point. Currents can
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Fig. 99 Basic op amp circuits. (a) Adder. (b) Subtractor. (¢)
Integrator. (d) Differentiator.

be added by simply omitting the resistors (except R;) connected to the summing
point.

The existence of a summing point in such a circuit is the key to its operation.
Since the summing point is a virtual ground, an arbitrary number of inputs can be
connected to it, ard each input is independent of the others. By contrast, if the
summing point were not a virtual ground but, say, a resistor to ground, then its
voltage would vary in response to each of the input currents, and the other input
currents would be correspondingly affected. An op-amp adder thus provides isolation
between circuits whose outputs are to be added, so that each circuit is oblivious to the
existence of the others.
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Figure 9.9(b) shows the basic subtraction circuit. The positive input is a voltage
divider, so that

R, V.
V, =11
TRt R;

Applying Kirchhoff’s current law to the inverting input gives

V=V _V-=Vou

R, R,
Using the fact that V_ =V, and solving for V,,, gives
Rf
Vow=—7 V2= V1) (9.16)
R,
For the special case of R, =R,
Vo= V2=V, (9.17)

Note that the addition and subtraction circuits can be combined so as to perform
operations such as ¥; + V, — V3 with a single op amp, but the design of such circuits is
more difficult, because the inverting input is not a virtual ground (see problem 9.5).
Since the isolation properties of the simple adder and simple subtractor are sacrificed
in such a circuit, it is customary to use two op amps when both addition and
subtraction are required.

It is also useful to note that either the adder or subtractor can also serve to
multiply or divide any of the inputs by a constant with an appropriate choice of the
resistors. Such a circuit is nothing more than an amplifier. Multiplication or division
by a constant is a linear operation. To multiply or divide one variable voltage by
another is a nonlinear operation, however, and requires more advanced techniques,
as described in section 9.5.

Figure 9.9(c) shows the basic integrator circuit. Applying Kirchhoff’s current
law to the inverting input gives

V; dvy,
m + C out _ O
R dt
Solving for V¥, gives
1
V.,,=—— | Vin dt 9.18
out RC J‘ n ( )

This result is reminiscent of the RC integrator described in section 4.6, except that in
the present case there is no requirement that RC be large, or, equivalently, that Vo,
be much less than V,,.-Actually, with a real op amp, one does, in fact, require that ¥,
be much less than 4,V;,. A problem with a real op-amp integrator is that it has a very
large voltage gain (d,) at low frequencies. Therefore, a small dc component of
voltage at the input can drive the output to saturation. This problem can be cured

9.3 Ampiifier Appiications 209




either by providing a dc offset adjustment or by limiting the low-frequency gain by
placing a resistor in parallel with the feedback capacitor.

Figure 9.9(d) shows the basic differentiator circuit. Applying Kirchhoff’s current
law to the inverting input gives

Vou = —RCﬁ (9.19)
dt

This result is reminiscent of the RC differentiator described in section 4.6, except that
in the present case, there is no requirement that RC be small, or equivalently, that V,,,
be much less than V;,. As with the integrator, one requires only that V,,, be much less
than 4,V;,. The op-amp differentiator also has a difficulty, in that it has a very large
voltage gain (4,) at high frequencies. The result is that a great deal of noise (see
‘section 9.7) appears at the output, unless one reduces the high-frequency gain by
placing a resistor in series with the input capacitor. Op-amp integrators and
differentiators can also be made using RL circuits, but this is rarely done, because
inductors tend to be larger, more expensive, and less nearly ideal than capacitors.

9.4 Analog Computers

The circuits described in the previous section can be used in various combinations to
solve linear differential equations. Such an application is an example of an analog
computer. The unknown is represented as a voltage at a point in the circuit, and its
value as a function of time can be determined with an oscilloscope or similar device.

As an example, consider the following differential equation written in standard
form:

2
:j_t; 10%—-%x=65in wt
One would like to construct a circuit in which x() appears as a voltage to be
measured somewhere in the circuit. This is done by first rewriting the equation with
the highest derivative on the left by itself and all other terms on the right:
2
d—; = — 1oé+ —l-x+65inwt
dt dt 3

One then starts with d?x/d? as an input and generates the other lower-order
derivatives by successive integration, as shown in figure 9.10. The resulting terms are
then added with appropriate multiplicative constants and inversions (multiplication
by —1) until the quantity on the right-hand side of the equation is generated,
whereupon it is fed back to the input. For a nonhomogeneous equation such as the
above, a time-dependent voltage source is required (such as the sin @t in figure 9.10).
The initial conditions for the transient solution can also be simulated by placing
appropriate initial voltages on the two capacitors. In the example above, the
integrators are made with a time constant of RC = 1s, but this is not a necessity.
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Fig. 9.10 Analog computer circuit for solving the equation

(d*x]de?) + 10 (dx/dt) — 4 x =6 sin wt.

Other choices permit one to slow down or speed up the phenomenon in order to
observe it on a more convenient time scale. In designing such circuits one should
always check to be sure that the inverting input and the output of each op amp are
connected either to resistors or capacitors, and never directly to one another or
directly to a voltage source or to ground. Note that the technique described above is
limited to linear equations. If the equation contained a term such as x (dx/dt) it would
be nonlinear, and no combination of the op-amp circuits discussed so far would
suffice to generate a solution.

9.5 Nonlinear Operations

In addition to the linear operations described in the preceding sections, op amps can
be used to perform a wide variety of nonlinear operations. In this section several such
applications will be mentioned.

If a real pn junction diode with a V-I characteristic as given by equation 6.3 is
used as the feedback element of an op amp, as shown in figure 9.11{a), the result is a
device called a logarithmic amplifier. Applying Kirchhoff’s current law to the
inverting input gives

Zii - 10 (e—el’om/kT _ 1) ~ Ioe—el’m"/kT

R

-

where the latter approximation is valid for V,,, negative and

[ Vou > - ~0.026 V {at room temperature)
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Fig. 9.11 Nonlinear op amp circuits. (a) Logarithmic
amplifier. (b)) Exponential amplifier.

Solving for ¥V, gives

kT V;
Viyy ~ —— n 9.20
out p In <IOR) { )

Such a logarithmic amplifier enables one to measure a voltage that varies over several
orders of magnitude without having to change the range of the meter which is being
used. Note that such a circuit only works for a positive ¥, since the log of a negative
number is not real. Furthermore, the output of the circuit in figure 9.11(a) is always
negative.

If the diode is used as the input element of an op amp, as shown in figure 9.11(5),
the result is a device called an exponential (or antilogarithmic) amplifier.
Applying Kirchhoff’s current law to the inverting input terminal gives

Vour
R

= _IO (eeVin/kT - 1) ~ _IoeeVin/kT

where the latter approximation is valid for
kT
Vin® —~0.026 V (at room temperature)
;e

Solving for V,,, gives

|

out

= —IoReeyin/hT (9.21)
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Such an exponential amplifier is easily saturated if the input voltage becomes too
large. Note that such a circuit only works for a positive V,;,, and that the output is
always negative.

With the two circuits in figure 9.11, along with the linear circuits previously
described, one can design circuits to perform a variety of nonlinear operations
including multiplication, division, and raising a number to an arbitrary power (either
positive or negative). One need only take the log of the numbers, add or subtract the
logarithms, and take the exponential of the result. An example of such a circuit which
produces an output proportional to the product ¥} V, (for ¥V, and V, > 0) is shown in
figure 9.12. One should work through the circuit stage by stage to verify that it has
the predicted behavior. :

The analog multiplier circuit described above is an example of a single-
quadrant multiplier since, of the four possibilities, the input voltages must both be
positive. With more complicated arrangements of the same basic circuits, a four-
quadrant multiplier can be constructed in which either input voltage can have
either sign. Such analog multiplier circuits are available at low cost as a single
integrated circuit, as are a wide variety of circuits that perform other nonlinear
operations such as division and square roots. Such circuits can be used in analog
computers in the manner described in the previous section to solve nonlinear
differential equations.

An entirely different kind of nonlinear operation is exhibited in the comparator
circuit in figure 9.13(a). For such a circuit, the output is driven to saturation
whenever ¥; and V, are different:

I/O‘“ - _VSAT fOl‘ Vl < V2 (9'22)
+ Vour for Vi >V,

For a real op amp with finite gain, the voltage difference [V, — V,| must exceed
Vsar/Ao to saturate the output. In addition to determining the sign of a voltage, such
a circuit can be used for generating square waves from a sinusoidal input, since the
output switches abruptly between the two saturated levels every time the input
crosses zero. Such a circuit is also called a zero-crossing detector.

A related circuit is the latch circuit shown in figure 9.13(6), which has positive
feedback. With the input open circuited, it is stable only for Vo, = V541 If i, is
momentarily made positive, V,,, goes to + V5,r and remains there until ¥, is made
negative, even if the input voltage source is disconnected. Similarly, a negative V;
will cause the output to latch- at —Vg 7. This is an example of a bistable flip-flop
which has application as a binary memory element in digital circuits.

As a final example of the use of operational amplifiers, consider the voltage
regulator circuit in figure 9.14(a). It is identical to the transistor voltage regulator
shown in figure 8.9 except for the addition of one resistor (R;) and an op amp. The
Zener diode holds the noninverting input of the op amp at a constant voltage V3. The
inverting input samples a fraction f of the voltage ¥, across the load resistor by means
of the voltage divider potentiometer R;. The op amp biases the base of the transistor
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Fig. 9.13 (a) Comparator circuit. (b) Latch circuit.

in such a way that the op amp input terminals remain at the same voltage, or .

14
V,=—=2
S

By adjusting R, so that f ranges from zero to one, the output voltage can be regulated
to any value greater than V.

One difficulty with this type of voltage regulator is that it works so well that it is
easily damaged if connected to a load that draws excessive current. In trying to keep
the output voltage constant, it will often supply enough current to destroy the load
resistor, the regulator transistor, or other components in the power supply. Conse-
quently, most general-purpose regulated power supplies are provided with some form
of current limiting, so that the voltage is constant up to some maximum output
current and then decreases as required to maintain a constant current. Usually the
current limit is adjustable. By setting the voltage high and the current limit low, such
a power supply can be made to behave much like an ideal current source. A power
supply with this provision is said to be short-circuit protected.

Figure 9.14(b) shows how the circuit in figure 9.14(a) can be modified to include
current limiting. Its operation is identical to that in figure 9.14(a) as long as the
voltage drop across R, is sufficiently small that transistor T, does not conduct
appreciably (Vg < 0.6 V for silicon). If the current in R, rises too much, T, begins to
conduct and reduces the base current and hence emitter current in T,. The value of
R, thus controls the maximum output current. Voltage regulators, incorporating
most of the components shown in figure 9.14(4), are available at low cost as a single
integrated circuit.

Note that a regulated power supply with current limiting is not a linear device
over its entire range of operation. At low-output currents, its internal resistance is
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Fig. 9.14 Op amp voltage regulators. (a) Without current limiting. (4) With
current limiting.

very low (dV/dI is small). At high-output currents, its internal resistance is very large
(dV/dl is large). The internal resistance changes abruptly at the point at which the
power supply delivers the maximum power to the load.

9.6 Amplifier Limitations

There are many other ways in which op amps, and, indeed, any amplifier fall short of
ideal behavior. For example, in addition to the finite input resistance previously
discussed, any amplifier will have a certain input capacitance. A typical op amp
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might have an input capacitance in the range of a few to about a hundred
picofarads. Since the input of an amplifier is not purely resistive, one often speaks of
the input impedance, which, of course, is a function of frequency and has both
resistive and reactive components. Similarly, the output impedance, especially at
high frequencies, may not be purely resistive or independent of frequency.

The input impedances previously discussed are impedances between the two
input terminals of the amplifier. There is also an additional impedance between each
input and ground. This is called the common mode input impedance, and its
value is typically 10-1000 times larger than the differential input impedance for most
op amps. As with a simple difference amplifier (see section 8.8), an op amp will have
a finite common-mode-rejection ratio, usually in the range ~10%-10° (80-100 dB).
This means that if a 1-V signal is applied to both inputs of the op amp simultaneously
and the op amp has an open-loop voltage gain of 10*, ari unwanted output signal of
~0.1-1 V will result.

For an ideal op amp, the inverting input is normally operated as a virtual
ground, and the voltage difference between the input terminals is negligibly small.
For a real op amp, even in the absence of an input signal, the voltage difference
between the two inputs may amount to a few mV. This is referred to as the input
offset voltage. Because of the large amplification of an op amp, even a small input
offset voltage can cause an objectionably large dc component at the output. Many op
amps provide an extra pair of terminals to which one can apply voltages in the proper
ratio in order to adjust for zero output in the absence of an input signal. Alternately,
an external circuit can be added so that, for example, the voltage at the normally
grounded input can be adjusted to compensate for the input offset.

In a similar fashion, with the inputs shorted together, an input offset current,
typically in the nonampere range will produce an output voltage. The offset current
tends to be less of a problem and can be easily corrected by adding an appropriate
current of the opposite polarity at the summing point. The offset current, unlike the
offset voltage, is temperature sensitive, and so frequent readjustment may be required
in those special cases where it is large enough to be objectionable.

For any amplifier, there is a frequency above which the amplification falls
significantly below its value at low frequencies. This decrease is caused largely by
stray capacitance. Figure 9.15 shows a plot of the open-loop voltage gain 4, versus
frequency for a typical op amp. Such a graph is called a Bode plot. For many cases
the gain falls by 20 dB per decade at high frequencies, until a frequency is reached at
which Ay = 1. The figure of 20 dB per decade is just what one would expect for a
simple RC low-pass filter (see section 4.5). Similarly, the phase shift between the
output and the input rises from 180° at low frequencies to 270° at high frequencies for
such a case. The frequency at which 4, falls to 1/ \/5 of its value at zero frequency is
called the open-loop bandwidth, Af, of the amplifier. Note that for the case shown
in figure 9.15, the open-loop bandwidth is quite small (~10 Hz). The frequency at
which 4, falls to one is called the unity gain crossover frequency. This frequency

is typically in the megahertz range for most op amps.
With negative feedback, the amplification is reduced and the bandwidth is in-
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Fig. 9.15 Voltage gain of a typical op amp

without feedback (4,) and with negative feedback
(4).

creased as shown by curve Ain figure 9.15. It is usually possible to trade off gain and
bandwidth in an amplifier circuit. For a case as in figure 9.15 in which the open-loop
gain falls by 20 dB per decade, the gain-bandwidth product is constant:

AAf = constant _ (9.23)

For an amplifier with a very narrow bandwidth, such as might be used to amplify sine
waves of a constant frequency, it is easy to get a very large amplification. Note that for
the 20 dB/decade case shown in figure 9.15, the gain-bandwidth product is numeri-
cally equal to the unity gain crossover frequency.

Various techniques can be used to increase the gain-bandwidth product of an
amplifier. A common example is the use of a compensating capacitor to provide some
positive feedback which increases with increasing frequencies. The result is usually to
produce a Bode plot in which 44 remains high to a larger frequency but then falls at a
rate in excess of 20 dB/decade. Up to a point such techniques can be useful, but a
practical difficulty often arises. The sharp fall in 4, versus frequency is inevitably
accompanied by a large phase shift in the op amp, such that the net feedback becomes
positive at some frequency, resulting in instability or oscillation (see Chapter 10). As
a general rule, stable operation will result if the slope of the Bode plot is less than
~30—40 dB/decade at the point at which the curve without feedback merges with the
curve with feedback (see figure 9.15).

In addition to its frequency-response limitation, an op amp is limited to a certain
slew rate. This is 2 measure of how fast the output voltage can change, and it is a
function only of the internal circuitry of the op amp. A typical slew rate is ~1V/us. If
the combination of input signal amplitude and frequency is such as to try to drive the
output beyond this value, the output will become distorted. Sine or square waves
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applied at the input will appear as triangular waves at the output with a slope equal
to the slew rate.

Also, the maximum current that can be drawn from the output of an op amp is
usually limited to a value somewhat less than the maximum output voltage divided
by the internal output resistance. Values of 10-100 mA are typical. Most op amps are
designed to be protected from short circuits, so that no damage is done if their output
is inadvertently connected to ground.

9.7 Noise

Even in the absence of any input, an amplifier will produce a certain amount of noise
at its output. This noise contains a broad spectrum of frequencies and is noticeable as
hiss at the output of an audio amplifier. One fundamental cause of noise is the thermal
fluctuation of the electrons in a resistor, which gives rise to a voltage at the resistor
terminals. The magnitude of this voltage can be estimated using the equipartition
theorem of statistical mechanics, which states that there is 3 kT of energy per degree of
freedom for a physical system in thermal equilibrium at temperature T. The stray
capacitance associated with any real resistor, thus, on the average, stores an amount
of energy given by

YCVi=L4kT
Since the bandwidth Af of the parallel RC circuit is given by

1
2nRC

Af=

the mean square noise voltage can be written in a form that is independent of C:
V? =2k TRAS
A more exact calculation gives the result

V.o = /4 TRAS (9.24)

where T = 4.14 x 1072! J at room temperature (~300 K). When written in this
form, the noise voltage depends on the bandwidth of the instrument (oscilloscope,
etc.) which is used to make the measurement. This noise is variously called thermal
noise, Johnson noise, or Nyquist noise. It is an example of white noise, since all
frequency components are present, just as in the case of white light. It is important to
note that the noise voltage obeys a Gaussian probability distribution:

P(V)~ e~ IVIV )t
so that voltage spikes of several times the rms value will occasionallyv occur. An
amplifier with a bandwidth of 1 MHz and | MQ input resistance will have an rms

thermal noise voltage of ~1.3 x 10™* V at its input. If it has an amplification of
1000, the noise voltage at the output would be ~0.13 V. Other sources of noise are
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usually also present, which preclude an approach to the Johnson noise limit. In any
case, it is desirable to design an amplifier with the minimum permissible bandwidth
in order to achieve the maximum possible signal-to-noise ratio. Sometimes amplifiers
are cooled to temperatures near absolute zero (—273°C) in order to improve the
signal-to-noise ratio.

A second form of noise, called shot noise, arises from the fact that electrical

currents consist of the cumulative motion of many individual electrons. In a time Af,
during which 7 electrons cross a surface, there will be an rms fluctuation in z given by

by
An=
The corresponding rms fluctuating current is thus

= elAAn _ e\/ 2n
At At

Thus, in terms of the dc current,

the noise current is
rms = / 2¢1| Al

Equating At to the inverse bandwidth 1/Af gives the usual expression for the rms shot

noise current:
= /2eIAf (9.25)

The amount of shot noise usually deviates somewhat from equation 9.25 and tends to
be worse in vacuum tubes and transistors than in simpler devices like resistors. Like
thermal noise, shot noise is white, in that it has a constant power density per unit
frequency independent of frequency.

A third type of noise, less well understood, is called flicker noise. It is
characterized by a power density inversely proportional to frequency, so that it
always dominates the other types of noise at sufficiently low frequencies. For this
reason it is sometimes called 1/f noise. The frequency at which flicker noise is
comparable to the other types of noise is called the corner frequency, and it is
typicallly ~1 kHz.

The absolute amount of noise produced by an amplifier is less important than the
signal-to-noise (§/N) ratio at its output. A relatively large amount of noise can be
tolerated if the signal is also large. However, the signal-to-noise ratio is not a useful
measure of the quality of the amplifier, since much of the noise at the amplifier
output may have been present at the amplifier input rather than being generated
within the amplifier. Consequently, the extra noise produced by the amplifier is often
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expressed in terms of its noise figure (NF) defined by

(S/NV) input
NF=10 e AR .
510 15T ot (0.26)
where S/N is the ratio of signal to noise power. The noise figure is always greater than
0 dB and might typically be in the range of 5-10 dB.

Noise generated at the input stage of an amplifier is usually the most
troublesome, because it experiences the largest amplification. For an amplifier in
which all the noise is generated by the input resistance, it turns out that the noise
figure is a function only of the input resistance R;, and of the resistance R; of the
source which is connected to the amplifier input:

NF = 10 log,o (1 + Ry/R,) (9.27)

Note that when the amplifier is matched to the source (R;, = R;), the noise figure is
3 dB, and that the noise figure becomes very bad if the amplifier input resistance is
unnecessarily low. This illustrates another advantage of constructing amplifiers with
a high input resistance.

Even the noise figure is a highly imperfect measure of the quality of an amplifier,
since it depends on the bandwidth, the source resistance, and the temperature of the
source resistance. A better measure is to imagine a resistor with a resistance equal to
the input impedance of the amplifier connected at its input. If the resistor is at a
temperature of 0 K, all the noise at the amplifier output would be generated within
the amplifier. If the temperature of the resistor were increased until its thermal noise
just caused the amplifier output noise power to double, that temperature would be
the noise temperature of the amplifier. An advantage of noise temperature is that
it is independent of the bandwidth of the amplifier, so that it can be used to compare
amplifiers with different bandwidths. Furthermore, since the noise power is pro-
portional to the noise temperature, the noise temperature of a complicated system can
be determined by adding the noise temperatures of each component of the system.
Such would not have been the case with noise figure or signal-to-noise ratio. The
noise temperature can be lower, but is often considerably higher than the actual
temperature at which the amplifier operates.

9.8 Circuit Isolation

In addition to the random noise that is always present in electrical circuits, other types
of interference caused by unavoidable coupling to nearby circuits often plague even
the most experienced circuit designer unless great care is given to the physical layout
of the circuit. Although the problem is not unique to operational amplifier circuits,
such circuits provide an opportunity to illustrate the principles involved. Because of
the large amplifications often used in op-amp circuits, their interference problems
tend to be especially severe. One should be especially wary of circuits that amplify or
otherwise process low-level signals (in the millivolt range) when nearby circuits
involve high voltages or currents.
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Unwanted coupling can take place by three basic mechanisms: resistive,
inductive, and capacitive. Each of these will be considered in turn. Consider first the
standard op-amp circuit in figure 9.16(a). Now suppose that a circuit designer notes
that point 4 is at ground potential and finds it convenient for the physical layout of
the circuit to use that point as the ground return of another circuit in which a current
I flows. This would be perfectly acceptable, except for the fact that the conductor
between point 4 and ground is never ideal and will, in general, have a small
resistance R. Because of this resistance, a voltage drop of IR appears in series with the
input to the op amp. It would not be unusual to have such a circuit in which /is 1 A
and R is 0.1 Q, giving a voltage of 100 mV at the input. If ¥, were 1 mV, the signal
would be completely masked by the interference. If the amplifier has an amplification
of 1000, the output would likely be driven to saturation. If the current / were a 60-Hz
sine wave, a 60-Hz square wave would appear at the output, and the desired signal
would be compietely lost.

The cure in this instance is relatively simple. One would disconnect the extra
circuit from point 4 and connect it instead directly to ground. In general, one should
be extremely cautious to ensure that the oniy currents that flow in any part of a low-
level signal circuit are those produced by the signal, and not by other sources.

The second way in which interference can be coupled to a circuit is inductively,
as in a transformer. Figure 9.16(4) shows an example of inductive coupling. Suppose
a nearby circuit produces a fluctuating magnetic field B, part of which links the input
loop. From Faraday’s law, a voltage is produced at the input of the op amp equal to
the normal component of dB/dt integrated over the area of the loop. The input loop
can be considered as a single turn secondary of a transformer in which an adjacent
loop of the interfering circuit is the primary.

This type of coupling can never be completely eliminated, but it can be greatly
reduced. First, one should separate the low-level signal circuits from other high-
current circuits by as much distance as possible. Second, one should reduce the
magnetic fields of high-current circuits to the lowest possible value by reducing the
area of the loops in which high currents flow. In an extreme case, the amplifier circuit
could be enclosed in a ferromagnetic shield. Finally, one should reduce the area of the
input loop. This is generally done by twisting the input leads together or by using
coaxial cable at the input. Twisting the leads not only reduces the area but tends to
cancel the induced voltage by the periodic reversal of the direction of the loop. A
coaxial cable allows almost no inductive coupling.

A subtle variation involving both inductive and resistive effects is the ground
loop as shown in figure 9.16(c). The fact that the input circuit is grounded at two
different points seems perfectly innocuous until one considers that this forms a loop,
part of which is common to the input circuit. A fluctuating magnetic field B will
produce currents in this loop which will, in turn, cause a voltage drop across the
resistance R of the input leads. The solution is to ensure that the input circuit is
grounded at only one point, preferably close to the input of the amplifier.

The third type of coupling arises from the stray capacitance C between the
amplifier input and a nearby circuit having a large time-varying voltage as shown in
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Fig. 9.16 Possible sources of interference in an amplifier
circuit. (a) Resistive coupling. (6) Inductive coupling. (¢)
Ground loop (inductance+ resistance). (d) Capacitive coupling.
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figure 9.16(d). The severity of this problem is reduced if the signal source ¥, has a
low internal resistance and/or if the amplifier circuit has a low input impedance (small
R;). In any case, it is wise to separate as much as possible the input of a low-level
amplifier from other circuits that involve large fluctuating voltages. Also, the use of a
coaxial cable for the input signal will shield the input from capacitive coupling. In
extreme cases the entire amplifier circuit should be completely enclosed in a grounded,
conducting shield. An amplifier circuit employing all of these precautions is shown in
figure 9.17. Such a circuit is said to be isolated.

Ry

out

[

Fig. 9.17 The proper way to isolate an amplifier from unwanted inter-
ference.

A fourth potential source of interference is from electromagnetic radiation in
which parts of the amplifier circuit act as antennas (see Chapter 12). This happens at
high frequencies where the wavelength becomes comparable to the physical
dimensions of the circuit. Since an electromagnetic wave is a combination of an
oscillating magnetic field and an oscillating electric field, this type of interference is
minimized by the precautions already mentioned. In any case, it is wise to keep all
leads as short as possible.

Finally, it should be mentioned that unwanted signals can be coupled in through
the power-supply leads, which have been ignored thus far. These signals are caused
by inadequate filtering, in which case the interference is at the powerline frequency
(usually 60 Hz) and its harmonics, or by fluctuations of the power-supply voltages in
response to variations in the current drawn from the power supply by other circuits
which may be connected to it (cross-talk). These problems are best cured by using a
well-filtered and regulated power supply and by using some form of low-pass filter
(perhaps just a capacitor to ground) directly at the power-supply input to the
amplifier. When many circuits share the same power supply, it is common to provide
each one with its own low-pass filter or IC regulator to minimize cross-talk through
the power supply.

Other types of interference can occur because of mechanical vibrations of parts
of the circuit (called microphonics), in which the stray capacitance changes in a
time-dependent fashion. Vacuum-tube circuits are particularly susceptible to micro-
phonics because of the small delicate grids and the relatively high voltages. Similarly,
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certain types of dielectrics such as the insulation often used in coaxial cables will
develop a small voltage in response to applied pressure. Such materials are said to be
piezoelectric.

These practical considerations occupy much of the attention of the professional
circuit designer and are a frequent cause for the failure of an apparently well-designed
circuit to perform as expected.

9.9 Summary

A dc amplifier with inverting and noninverting inputs, high input resistance, low
output resistance, and large voltage gain is called an operational amplifier. Its uses
are numerous. In addition to simple voltage amplifiers, op amps can be used to
perform the basic linear mathematical operations of addition, subtraction, in-
tegration, and differentiation. In combination, op amps can be used as an analog
computer to solve linear differential equations.

With a nonlinear component such as a pn junction diode, the op amp can be used
to produce an output proportional either to the logarithm or exponential of the input
voltage. This permits the possibility of performing nonlinear operations such as
multiplying, dividing, and raising a number to an arbitrary power. Other useful
nonlinear applications include the comparator and the latch, which make use of the
fact that a finite voltage difference at the input will drive the output to saturation,
either negative or positive. Op amps also make extremely good voltage regulators.

As useful as op amps are, they are always limited in frequency response and have
a certain noise at the output. One can usually trade off gain and bandwidth, and the
noise is minimized if the bandwidth is small. Op-amp circuits, along with all other
electrical circuits, are susceptible to a variety of sources of interference, and
considerable care in the physical layout and construction of such circuits must often
be exercised.

The limitations and potential problems with the construction of op amp and
other circuits are so numerous as to risk the total discouragement of the beginner in
electronics. Such an attitude is not warranted, however. The problems usually come
only one or two at a time, and armed with a knowledge of the common pitfalls and a
proper dose of caution and persistence when things don’t quite work right on the first
try, even a total beginner can these days successfully build quite sophisticated
electronic circuits.

Problems

9.1 Calculate the amplification of the circuit on the following page.

9.2 Consider the op-amp circuit in figure 9.4(b) in which R; = R, and the op amp
is real with an open-loop gain of 44 (> 1), an input resistance of 7;,, and zero output
resistance. How large can R; be made if the amplification is to be given within a
factor of two by equation 9.6?
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Hllustration for Problem g.1.

9.3  Calculate the input resistance of the circuit in figure 9.4(a), assuming the op
amp is real, with 4,=10% r, =1 MQ, r,, =0, and R, =R, =1 kQ.

out
9.4  Calculate the output resistance of the circuit in figure 9.4(4), assuming the op
amp is real, with 4o =10°, r,, = 0, 7,, =10 Q, and R;=R,=10kQ.

9.5 Calculate the values required for R,, R,, and Rj; in the circuit below in order
for the output to be given by Vo, = —(V;+ ¥, — V3).

R, Ry = 1000
 o—AMA———A——

R2 -
V2 o—AMY

R, b0 Vour

9.6 Calculate the amplification and the input resistance for the circuit below,
assuming the op amp is ideal.

1000 b0 Vo

9.7. Calculate the amplification of the circuit below, assuming the op amp is ideal.

9.8 Calculate the output ¥, in terms of the input voltage V;, for the following
circuit in which the op amp is ideal.

9.9 Calculate the amplification as a function of frequency for the circuit below in
which the op amp is ideal.
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Lilustration for problem g.7.
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Lllustration for problem 9.8.
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Hllustration for problem g.9.

9.10 Show that the circuit below behaves as a noninverting integrator.

C
11
LB

wy
il

9.11 Show that the circuit below behaves like a negative resistance (i.e., / decreases
as V increases), and calculate the input resistance, R;, = V/I.
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9.12 If the op amps below both saturate at an output of +10V, find V, and Vg for
V., between zero and +15 V.

+15 V

Vin 0=

2kQ

Va

6 k2

9.13 Design a circuit using a single ideal op amp that will produce an output given

1
by Voul= -7 J‘Vl dt_ZJ.VZ dt.
9.14 Design a circuit using two ideal op amps that will produce an output given by
Vouw=5 | Vy dt —10V,.

9.15 Design an analog computer to solve the differential equation,

dZ
495 g%

+ 2% = 100.
dr? a
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9.16 Design a circuit using ideal op amps that will produce an output given by
Vot € ~/ Vin» for Vi, > 0.

out in?
9.17 Show that the ¢ -cuit below behaves as a logarithmic amplifier if the transistor
is real. Such circuits are often used in preference to the circuit in figure 9.11(a)

because the logarithmic variation holds over a wider range of input voltages.

-

9.18 Calculate the rms Johnson noise voltage at the output of the circuit in
figure 9.4(b) if R, =100 kQ, assuming A, is given by figure 9.15 and 4 = 100.

9.19 Calculate the rms Johnson noise voltage at the output of the circuit below:

R,' = 1000 Q
—AMA—
L=001H R; =102 _
Vi \—
C= 0.01 uF — V.
+
= =

9.20 Calculate the noise figure in decibels for an amplifier with an input resistance
of 1 kQ driven by a source with a 10-kQ output resistance.
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chapter 1 0

Other Nonlinear
Circuits and Devices

10.1 Oscillators

An amplifier with positive feedback can be made to produce an output even in the
absence of any input. Such circuits are called oscillators. They are useful for
producing ac voltages of adjustable frequency from a dc source. Suppose that a
fraction f of the output is returned and added to the input ¥, of an amplifier. Then

the output is given by

Vou = 4o(Via + fVou)
or
=120
Even though V;, is zero, an output voltage can still be achieved if the condition
Aof=1 (10.1)

is satisfied. Since 4, and f usually depend on frequency, the above condition, called
the Barkhausen criterion, is usually satisfied at only a single frequency, and that is
the frequency at which the circuit will oscillate.

Figure 10.1 shows an oscillator circuit that uses an operational amplifier. The LC
circuit can be considered as a resonant filter that eliminates from the amplifier input

any angular frequencies significantly different from wo =1/ \/E . With a sinusoidal
voltage of angular frequency w, at ¥}, the amplifier is alternately driven to saturation
in the positive and negative direction, and so it produces a square wave at V,. This
square wave has a strong fundamental Fourier component at frequency @y, part of
which is fed back to the noninverting input through resistor R in order to keep the
oscillation from damping out even in the absence of any externally applied voltage at
V,. Such a circuit thus produces both a sine wave and a square wave output.

It is reasonable to-wonder how the oscillation gets started in the first place. One
might suppose that it is necessary initially to apply a sinusoidal voltage at Vy. This is
seldom a problem, however, since there is always some noise present at the output.
This noise has a Fourier component at frequency @, and because of the positive
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—> 2VIT '(—
(b)

Fig. 10.1 The op amp oscillator circuit in
(a) produces a sinusoidal and a square wave
output as shown in ().

feedback, it rapidly grows in amplitude (in just a few cycles, depending on the
strength of the feedback) until the output amplitude saturates. In practice, the
problem is often just the opposite. Circuits designed as amplifiers, especially if they
have high gain and large bandwidth, often have enough stray capacitance to produce
the positive feedback. Great care must be exercised in the construction of high-gain
amplifiers to ensure that unwanted oscillations do not occur.

An oscillator circuit need not use op amps. Any device that can be used as an
amplifier, such as a vacuum tube, FET, or bipolar transistor, can also be used as an
oscillator. However, a single vacuum tube or transistor, when used in a circuit that
provides a large voltage amplification, will generally produce an output that is 180°
out of phase with the input, and so an additional phase shift of 180° is required to
achieve positive feedback. For example, figure 10.2(a) shows an FET Hartley
oscillator. A Hartley oscillator achieves the 180° phase shift desired for positive
feedback by means of a tapped inductor in the gate circuit. The phase of the voltages
at the two ends of the inductor differ by 180° with respect to the grounded tap on the
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Fig. 10.2 Typical oscillator circuits. (a) Hartley. (b) Colpitts.

inductor. The situation is analogous to the full-wave rectifier with a center-tapped
transformer (see figure 6.7). The frequency of the Hartley oscillator is determined

almost entirely by the value of 1/,/LC.
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Figure 10.2(4) is an example of a Colpitts oscillator that uses a bipolar
transistor. A Colpitts oscillator achieves the 180° phase shift required for oscillation
by using the fact that the two capacitors are in series, and so the circulating ac current
in the LC circuit produces voltage drops across the two capacitors that are of opposite
sign relative to ground at any instant of time. The frequency of the Colpitts oscillator
is determined primarily by the value of 1/\/1—,5, where C is the series combination of
C, and C,.

Many other combinations of active circuit components and feedback methods
are frequently encountered. Furthermore, it is not necessary that oscillators contain
LC circuits. One particularly straightforward although rarely used type of oscillator is
the RC phase-shift oscillator shown in figure 10.3. Use is made of the fact that the

+Vv

L
I 0 Uoue

Fig. 10.3 RC phase shift oscillator

output of an RC filter differs in phase from the input by an amount that can vary from
zero to 90° (see figure 4.9). Therefore, two RC filters can just produce the required
180° phase shift, but only in the limit of infinite attenuation. Therefore, such phase
shift oscillators normally use three RC sections, each with a phase shift of 60°. Even
then, significant attenuation of the feedback signal occurs, requiring that the
amplifier have appreciable voltage gain (see problem 10.3). The angular frequency
of oscillation is on the order of 1/RC, but calculation of the exact frequency is not
trivial, because consideration must be given to the fact that the output of each RC
circuit is loaded by the input of the next (see problem 10.2). In practice, RC phase-
shift oscillators are only useful at audio frequencies and below ( f < 10 kHz), because
at higher frequencies, stray capacitance and extraneous phase shifts become too
important to neglect.

A particularly stable form of oscillator uses a piezoelectric crystal of quartz in
place of the LC circuit. The symbol for a quartz crystal is shown in figure 10.4(a).
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Fig. 10.4 Quartz crystal. (a) Symbol. (4) Electrical equivalent

circuit.

Such a crystal exhibits a high Q resonance when a sinusoidal voltage of the
appropriate frequency is applied between its faces. The frequency is determined
almost entirely by the thickness of the crystal. Although the quartz crystal is an
electromechanical device, its behavior can be described by an electrical equivalent
circuit as shown in figure 10.4(8). The R, L, and C, represent the series mechanical
resonance. The C, represents stray capacitance in the crystal holder and leads. The
ratio of L (many henries) to C; (<1 pF) is much higher than could be achieved with
real inductors and capacitors. Quartz crystals are available with resonance frequen-
cies from a few kHz to about 100 MHz.

A typical crystal oscillator circuit using an op amp is shown in figure 10.5. The

Rp

AMA—

I
i
fo

Fig. 10.5 Op-amp crystal oscillator circuit.

circuit resembles that in figure 10.1(a), except that the series resonance of the crystal
is used instead of the parallel resonance of an LC circuit to provide positive feedback
at the desired frequency. Crystal oscillators that maintain a constant frequency to
better than one part in 10 are not at all uncommon. As a result, quartz crystals are
useful as time and frequency standards, and are even found in some types of
wristwatches.

Whereas crystal oscillators are excellent in applications where a fixed frequency
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is required, many applications require a variable-frequency oscillator (VFO).
One straightforward approach is to make the inductor or, more usually, the capacitor
in an LC-controlled oscillator adjustable. Such an approach is satisfactory if sufficient
care is exercised in construction to ensure adequate frequency stability in the presence
of mechanical vibrations and if rapid, precise, automatic, or remote control of the
frequency is not required. For relatively small frequency variations, use can be made
of varicaps (see section 6.8) in place of or in addition to the capacitor in an LC
oscillator so that the frequency can be adjusted by means of a variable voltage. More
sophisticated integrated circuits, called voltage controlled oscillators (VCO:s) are
available which provide a linear variation of frequency with applied voltage over a
factor of 10 or more and which provide a selection of output waveforms (square,
triangular, etc.).

Finally, it should be noted that oscillators are not the only application of positive
feedback. Recall that one of the virtues of negative feedback is to increase the
bandwidth of an amplifier. Not surprisingly, then, positive feedback can be used to
narrow the bandwidth of an amplifier. In applications such as radio com-
munications, in which a high degree of frequency selectivity is desired, positive
feedback just below the level required for oscillation is sometimes used to increase
selectively the amplification at a particular frequency. Such circuits are called Q-
multipliers, because they result in a bandpass characteristic much sharper than
would otherwise be allowed by the Q of the associated LC circuit. Quartz crystals,
because of their very high Q are also often used in crystal filter circuits where
frequency selectivity is important.

10.2 Multivibrators

The latch circuit shown in figure 9.13(b) is one example of a class of circuits known as
a multivibrator or flip-flop. As the name suggests, a flip-flop is a circuit that
abruptly changes from one state to another. Although multivibrators can be made
with operational amplifiers, a simpler and more usual design uses a pair of transistors.
For example, the circuit in figure 10.6(a) is a bistable multivibrator very much
like the op amp latch circuit previously described. A bistable multivibrator is a circuit
that will remain in either of two states indefinitely until caused to change state by an
externally applied signal. To understand its operation, imagine that V; =0. Then
the transistor on the right has no base current and hence no collector current, since
I = pIy. Therefore, all the current that flows through R, goes into the base of the left-
hand transistor, driving it into saturation. In the saturated condition, ¥, is zero, as
assumed at the outset. However, by symmetry the circuit is equally stable with ¥, =0
and the right-hand transistor saturated. The circuit can be made to switch from one
state to the other by simply grounding either ¥, or ¥V, as appropriate. One way to
think of the bistable multivibrator or latch circuit is as an oscillator with positive
feedback at zero frequency. The oscillator begins in whichever state is dictated by the
initial conditions, but because the period of oscillation is infinite, it never gets to the
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Fig. 10.6 Multivibrator circuits. (a) Bistable. (b)
Monostable. (¢) Astable.

other state. Bistable multivibrators can be used as digital memory devices (see next
chapter) or as frequency dividers, since alternate pulses restore the circuit to its initial
condition. -,

A different type of circuit, known as a2 monostable multivibrator, is shown in
figure 10.6(). A monostable multivibrator is a circuit that is stable in only one state.
It can be put invits unstable state by an externally applied signal, but it automatically
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returns to its stable state after a prescribed time has lapsed. As with the previous
circuit, it is stable with ¥; =0. If V; is grounded momentarily, the capacitor C
behaves transiently like a short circuit and causes the base current, and hence the
collector current, of the left-hand transistor to go to zero. Then all the current in R,
flows into the base of the right-hand transistor, holding it in saturation until the
capacitor C can recharge through resistor R, whereupon the circuit switches back to
its initial state. Such a circuit thus produces a square pulse of voltage at V; with a
duration determined by the time constant RC and independent of the duration and
amplitude of the pulse that caused it to change state.

Such circuits are sometimes called one-shot multivibrators and have a variety
of uses. One use is with an integrator at the output, for generating the sweep voltage
in an oscilloscope when the initiation of the sweep must be triggered by an external
voltage. Another use is for producing large pulses of standard width from input pulses
of varying amplitude and width. Still another use is for delaying a pulse by a known
amount of time. The input pulse puts the circuit in its unstable state. By
differentiating the output, a pulse can be produced at a later time when the circuit
switches back to its original state.

A third type of multivibrator is the astable multivibrator shown in
figure 10.6(c). An astable multivibrator is not stable in either state and spontaneously
switches back and forth at a prescribed rate, even in the absence of any input signal.
Assume that V, is initially at ground. The base of the right-hand transistor will also be
at ground until C; can charge up enough through R that the right-hand transistor
will saturate, whereupon V, goes to zero, causing the base of the left-hand transistor
to go to zero. Then ¥, rises to a positive value until C, charges up through R,, causing
the left-hand transistor to conduct, which starts the cycle ali over again. The result is
that the circuit automatically switches back and forth between the two states. The
time spent in each state can be controlled by the time constants of the RCs in the base
circuits. An astable multivibrator is basically an oscillator, but it allows some
flexibility in the shape of the output waveform. The capacitors eliminate the positive
feedback at dc, thereby avoiding the latch-up that occurs with the bistable
multivibrator. Note the resemblance to the RC phase-shift oscillator, but remember
that with multivibrators the voltages are not sinusoidal, and so the concept of phase is
of limited use.

A useful variation of the monostable multivibrator is the Schmitt trigger
circuit shown in figure 10.7(a). Since one or the other of the transistors is always in
conduction, the emitter voltage Vj is approximately the same level (for R, ~R,),
which is a fraction of the power supply voltage V determined by the ratio of the
various resistors. If ¥, is less than ¥, the transistor on the left does not conduct and its
collector rises to a high voltage, holding the right-hand transistor in conduction.
Under this condition the output voltage ¥,,, is equal to Vg. If ¥, exceeds Vg, the left
hand transistor begins to conduct, lowering its collector voltage and hence the base
voltage of the transistor on the right. This allows ¥,,, to rise to + V where it remains
until ¥;, drops below V. Actually, the input voltage must fall somewhat below Vg
before the output switches (see problem 10.8). The Schmitt trigger is thus like a
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Fig. 10.7 The Schmitt trigger circuit in (a) produces an output
(b) that switches between two levels whenever the input voltage
crosses the lower of the two levels.

comparator (see figure 9.13), in that it switches states abruptly when the input crosses
a specified value as shown in figure 10.7(b). In addition to its use as a comparator, the
Schmitt trigger is useful for eliminating noise on certain types of signals and for
generating square waves from a sinusoidal input. It is also used as a trigger level
control in oscilloscopes to initiate the sweep when the trigger signal exceeds a certain
preset level. In practice, all these circuits are usually seen with small additional
capacitors whose function is to reduce the time required for the circuit to switch from
one state to the other.
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10.3 Tunnel Diodes

A pn junction diode that is heavily doped so as to increase the concentration of charge
carriers has an electric field that is concentrated very near the junction. The region
over which the field exists is so narrow that charges can tunnel through the barrier by
a quantum mechanical effect. Such a diode is called a tunnel diode and has an /-V
characteristic as shown in figure 10.8(a). Unlike an ordinary diode, the tunnel diode
conducts strongly when reverse-biased or when forward-biased by a small amount.
For large forward bias, the tunnel diode behaves like any other pn junction diode
(Le., I [,V *T),

The characteristic of the tunnel diode that sets it apart from all the other devices
encountered so far is the multivaluedness of the current. As the current is increased
from zero, the voltage increases until it reaches point 1 in figure 10.8(a). Then it
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Fig. 10.8 (a) Typical tunnel diode
characteristics. (4) Tunnel diode oscillator.

abruptly jumps to point 2. If the current is then decreased, the voltage falls to point 3,
and then jumps to point 4. Such a device is said to exhibit hysteresis, since the curve
does not retrace itself as the current oscillates.

A tunnel diode can be used to construct multivibrators similar to those described
in the previous sectian. For example, if a current source of], say, 2 mA is connected to
the tunnel diode whose characteristics are shown in figure 10.8(a), the device is stable
in one of two states with different voltages. Monostable and astable multivibrators
can be made in similar fashion.

The region of the curve in figure 10.8(a) between points 1 and 3 has df/dV <0,
and hence is said to have negative resistance. A negative-resistance device can be
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used as part of an oscillator circuit, as shown in figure 10.8(b). The dc voltage ¥,
establishes an operating point in the negative resistance region. The ac linear
equivalent circuit then consists of a negative resistance:

4
dl fy -y,

in parallel with an LC. The differential equation for such a circuit predicts a
sinusoidal oscillation that grows rather than damps exponentially, as was the case
with the transient RLC circuits described in Chapter 3. The oscillation eventually
reaches a limiting amplitude when the resistance departs significantly from the value
in equation 10.2, and the diode is just able to compensate for losses in the nonideal L
and C. It is a general feature of systems that are unstable in their linear (small
amplitude) limit to grow exponentially in time until some nonlinear effect terminates
the growth. The growth is, then, a transient state that often goes unnoticed, and the
amplitude of the steady-state oscillation is determined entirely by the nonlinearities.

In addition to its simplicity, a tunnel diode also has an advantage in its fast
switching speed. Charge carriers cross the junction at essentially the speed of light, in
contrast to the slow diffusion of charges in the bipolar transistor. For this reason,
multivibrators using tunnel diodes are ideal for high-speed digital computers, and
tunnel diode oscillators have been made to operate at frequencies as high as 10! Hz.

A close relative of the tunnel diode is the back diode. By controlling the doping
during manufacture, it is possible to suppress the peak forward current fpoint 1 in
figure 10.8(a)] while retaining the rapid rise in current in the reverse direction. For
small voltages (<0.6 V for silicon), such a diode thus behaves just the opposite of an
ordinary diode, except that the knee of the V-I characteristic occurs very close to zero
voltage. Back diodes are therefore useful for rectifying very small ac voltages where an
ordinary diode would simply behave like a high-value resistor.

Negative-resistance devices were known well before the advent of modern
semiconductor technology. For example, the neomn bulb in which two electrodes are
sealed in a glass envelope filled with low-pressure neon gas is widely used in pilot
lamps to indicate when a particular circuit is energized, but it is also known to exhibit
negative resistance. The neon bulb, whose symbol is shown in figure 10.9(a), draws
essentially no current until the voltage across its terminals increases to about 80 V,
whereupon the neon becomes ionized, the voltage drops back to a lower value, and the
current increases to whatever value is required to maintain the voltage at ~60 V. In
normal use, the neon bulb must therefore be used with a voltage greater than ~80 V
and a series, current-limiting resistor.

A simple circuit, called a relaxation oscillator, using a neon bulb, is shown in
figure 10.9(b). When the circuit is turned on, the capacitor C begins to charge
through resistor R, exponentially approaching the voltage V,, as shown in
figure 10.9(c). Until the capacitor voltage reaches ~80 V, no current flows in_the
neon bulb, but when the neon bulb finally begins to conduct, it rapidly discharges the
capacitor to ~60 V, whereupon the neon bulb goes out (provided R is sufficiently
large) until the capacitor is able to recharge to ~80 V. The voltage across the neon

R (10.2)
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Fig. 10.9 The neon bulb (a), because of its
negative resistance characteristic, can be used
in a relaxation oscillator circuit () to produce
a sawtooth output voltage ().

bulb thus consists of a dc component of ~70 V and a sawtooth-shaped ac component
with a peak-to-peak amplitude of ~20 V. Such oscillators are especially simple and
inexpensive, but they are not very stable and are limited to frequencies below about
100 kHz.

10.4 Unijunction Transistors

A three-terminal device with negative resistance characteristics similar to the tunnel
diode is the unijunction tramsistor (UJT). It consists of a single bar of n-type
silicon semiconductor with a small pn junction near its middle which forms the
emitter. At each end of the bar is a base terminal made by ohmic contacts to the
respective base leads. The symbol and equivalent circuit for the UJT are shown in
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Fig. 10.10 Uhijunction transistor. (a) Symbol. (b) Equivalent circuit. {(¢)
Emitter characteristics. (¢) Relaxation oscillator.

figure 10.10(a) and (b), respectively. With the emitter open-circuited, the resistance
between the bases is typically a few thousand ohms, with Rg, somewhat greater than
Ry,. If base 1 is grounded, a voltage Vg applied at the emitter has no effect unless it
exceeds a value given by

Ry, :

Vcrit— RBl+R32 Vyz (10.3)
whereupon the diode begins to conduct and current flows into the emitter. This
current causes R, (and hence Vg) to decrease and Ig to increase. This decrease in Vg
as I increases is the origin of the negative resistance characteristic of the UJT. The
emitter characteristic of a typical UJT is shown in figure 10.10(c).

Like the tunnel diode, the UJT can be used as an oscillator. Figure 10.10(d)
shows a typical UJT oscillator. As capacitor C charges through Ry, the emitter
voltage will increase until the emitter begins to conduct, whereupon the capacitor
will suddenly discharge, and the voltage will drop below the minimum value shown
in figure 10.10(c).- Then the emitter ceases to conduct (/g drops to a very low value),
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and the cycle begins again. The output voltage across the capacitor thus has a
sawtooth waveform. The operation is analogous to the neon bulb relaxation oscillator
except that the waveform returns nearly to zero when the capacitor discharges. An
additional output from base 2 would provide negative-going spikes every time the
capacitor discharges. Such a circuit is another example of a relaxation oscillator, and
it finds use in the same applications as the astable multivibrator discussed earlier.

10.5 Silicon-Controlied Rectifiers

Another three-terminal nonlinear device is constructed from a pnpn structure, as
shown in figure 10.11(a). Such a device is called a silicon-controlled rectifier
(SCR) or a thyristor. The symbol for an SCR is shown in figure 10.11(4). The SCR
can be represented as two bipolar transistors connected as in figure 10.11(c).

Anode Anode
P
— T
Gate ? Gate
n
Cathode Cathode
(a) )
Anode
Gate
Cathode
(c)

Fig. 10.11 Silicon-controlled  rectifier.
(a) Structure. (4) Symbol. (¢) Repre-
: sentation in terms of bipolar transistors.

To understand its operation, assume first that no current flows into the gate (gate
either open-circuited or connected to the cathode). Then the bottom transistor is
biased to cutoff and hence draws no collector current. The upper transistor then has
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no base current, and it is also .an open circuit. The device thus looks like an open
circuit between anode and cathode for either polarity of voltage. Now suppose a
positive current flows into the gate. The bottom transistor begins to conduct, causing
a base current to flow into the upper transistor, causing it to conduct also. It then
produces an additional base current in the lower transistor, causing it to conduct even
more, and so forth, until both transistors are biased to saturation. The device then
remains a short circuit between anode and cathode, even when the gate current is
removed. It can be made to cease conducting only by reducing the anode current
below a small value called the holding current (or by reversing the anode-to-
cathode voltage). The SCR thus behaves like a switch that can be closed (turned on)
by a momentary pulse of current at its gate. The gate input resistance is quite small
(5100 Q), and the size and duration of the required gate trigger pulse are also small.

A variation of the SCR is the silicon-controlled switch (SCS), in which a
fourth terminal (called the anode gate) is connected to the base of the upper
transistor in figure 10.11(c). This fourth electrode allows the device to be switched off
by the application of a momentary positive voltage. ‘

One very common use of the SCR is for controlling the ac power delivered to a
load. Such a circuit is shown in figure 10.12(a). By varying the resistor R, the fraction
of the cycle over which the device conducts can be controlled, as shown in
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Fig. 10.12 The SCR circuit in (a) allows the
average power in R; to be varied by control-
ling the waveform as shown in ().
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figure 10.12(5), and hence the average power dissipated by R, can be adjusted. The
advantage of such a circuit over a simple adjustable series resistor is that essentially no
power is wasted in the SCR, since it always has either a zero current or a zero voltage.
The power dissipated by resistor R can be very small since typically R > > R,. The
disadvantage of the SCR is that the waveform across the load R, in no way resembles
a sine wave. Often this is of no concern, and SCRs find wide application in consumer
appliances such as electric-light dimmers and electric-motor speed controls.

One common application of the SCR is as a rectifier in a variable voltage power
supply. Since the waveform of figure 10.12(b) resembles the output of a half-wave
rectifier (see figure 6.6), the resistor R, in figure 10.12(a) can be replaced with a low-
pass filter as shown in figure 10.13, and the result will be to produce a dc output

1 4

Vo cos wt
L I -0

Fig. 10.13 Half-wave SCR-controlied variable power supply.

voltage whose value can be adjusted by the resistor R. Such a power supply is much
more efficient than one in which control is achieved by wasting power in a series
resistor or transistor. Full-wave and bridge rectifier versions of the SCR-controlled
power supply can be constructed in similar fashion.

A limitation of the SCR circuits of figures 10.12 and 10.13 is that the output
wave shape can be varied only between a quarter cycle and a half cycle. The average
power in the load can thus be varied by only a factor or two. This limitation can be
largely overcome by the addition of a capacitor, as shown in figure 10.14(a). With R
small, the capacitor has very little effect, and the SCR fires shortly after the voltage
crosses zero in the positive-going direction, as shown in figure 10.14(5). When R is
increased, the time at which the SCR fires moves later, because a larger source
voltage is required, just as in figure 10.12, but the RC circuit produces an additional
phase shift that can approach 90°. Consequently, the capacitor voltage reaches its
peak value just before the source voltage crosses zero in the negative-going direction,
as shown in figure 10.14(c). The result is that the output waveform duration can be
adjusted from nearly zero to almost half a cycle. Similarly, the voltage output of the
power supply in figure 10.13 could, with such a modification, be varied from near
zero to full output.

The circuit in figure 10.12 has the additional disadvantage of conducting at most
over a half a cycle. This limitation is eliminated by placing two SCRs back-to-back,
as shown in figure 10.15(a}, so that each conducts alternately as the polarity reverses.
Such a device is called a triac, and its symbol is shown in figure 10.15(). When the
triac is connected in a circuit as in figure 10.15(¢), its behavior is the same as for the
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Fig. 10.14 The addition of the capacitor C in the
SCR circuit in (a) allows the output waveform to be
varied from nearly a half wave (4) for R small to a
narrow spike (¢) for R large.

SCR circuit of figure 10.14, except that the output waveform is symmetrical about
¥V =0, as shown in figure 10.15(d).

One difficulty with the gate-trigger circuits shown in figures 10.12-10.15 is the
unreliable operation that results from the variation in required trigger currents
between different devices and for the same -device at different temperatures. A
common solution is to insert a neon bulb in series with the gate, so that a large
amount of energy is delivered to the gate in a short pulse just after the bulb goes into
conduction. For lower voltage operation, a special solid-state trigger diode, called a
diac, can be used in place of the neon bulb. A diac is like a triac except that it is a
two-terminal device that is triggered into conduction when the voltage across its
terminals exceeds a prescribed value (typically ~30 V) in either direction.

A final example of the many uses of the SCR is the pulser circuit shown in
figure 10.16(a). In the absence of an input voltage (¥, =0), the capacitor C charges
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Fig. 10.15 Two SCRs connected as in (a) form a unit
called a triac whose symbol is shown in (b). When
connected in a circuit as in (¢), an output waveform as in
(d) results.

to voltage ¥, through resistor R, and no current flows through the SCR. Ifa posmve
pulse of sufficient size and duration (usually a few volts for a few microseconds) is
applied at ¥,,, as shown in figure 10.16(b), the SCR abruptly goes into conduction

and dumps all the energy of capacitor C into the load resistor R;. The voltage across
R, is thus a decaying exponential

V.

out

= Voo 1ReC (10.4)

as shown in figure 10.16(c). When the capacitor voltage drops to a sufficiently low
value, the SCR anode current is insufficient to maintain the SCR in conduction
(provided R is sufficiently large), and the SCR stops conducting. The capacitor then
recharges and awaits the next trigger pulse at V;;. A common application for such a
circuit would be an electronic photofiash in whlch the energy stored in a capacitor is
used to produce an intense but brief burst of light at a precisely controlled time.
The SCR pulser thus behaves something like a pulse amplifier, in that the output
pulse can be much larger than the input pulse. But it differs from an amplifier, in that
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Fig.10.16 The SCR pulser in (a) can be
triggered by a small brief pulse (8) so as to
produce a larger pulse of constant size and
shape (¢).

the shape of the output pulse is determined by V,, Ry, and C, independent of V;, so
long as V¥, is sufficient to trigger the SCR into conduction.

The SCR has two vacuum tube counterparts that are still in common use,
especially for very-high-voltage applications. The thyratron is a vacuum triode
filled usually with low-pressure hydrogen gas and containing an electron-emitting,
heated cathode. A positive pulse applied from grid to cathode ionizes the hydrogen
and triggers the device into conduction. The ignitron is a similar device which is used
at even higher voltages and currents (up to ~50 kV at 10% A). It contains an anode
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and a pool of mercury that serves as the cathode. The device is triggered into
conduction by the application of a positive voltage (usually a few hundred volts)
between a third electrode (called the igmiter) and the cathode. Thyratrons and
SCRs are often used to provide the trigger pulse for ignitrons.

10.6 Optoelectronic Devices

A rapidly developing area of electronics involves devices whose electrical properties
are altered by incident light or devices that emit light upon application of a voltage or
current. The simplest such optoelectronic device is the photodetector which
consists of a photoconductor such as cadmium sulfide whose resistance drops
because of the excitation of free charge carriers by incident light. It is a passive device
in the sense that it does not produce electrical power. In combination with an external
voltage source and ammeter, it can be used to measure light intensity.

The basic semiconductor optoelectronic device is the pn junction with a trans-
parent window. In such a photodiode, photons incident on the junction cause a flow
of current across the junction. When optimized to produce the maximum electrical
output power for a given incident light, such devices are called photoveltaic cells or
solar cells and hold promise for large-scale generation of electricity from sunlight.
Unfortunately, these devices are expensive and have low efficiency (10-15%,), and
have found widespread application only in satellites and space vehicles, where
sunlight is abundant and other sources of power are prohibitive. On a smaller scale,
photocells are used in applications such as reading punched computer cards and tapes
and for producing an audio signal from the information coded on movie film. In such
applications, the junction is usually reverse-biased, and the reverse current /, varies
in proportion to the incident light. The pn junction is also sensitive to nuclear
radiation and has found application in nuclear particle detectors.

An alternate configuration combines a light-sensitive pn junction with a bipolar
transistor in a device called a phototransistor. It results in a multiplication of the
light-induced current by the beta of the transistor. The process can be carried one
step further in the photo Darlington tramsistor (see figure 8.10). Similarly, an
FET can be made sensitive to light. Such a PHOTOFET is useful for measuring the
attenuation of light passing through liquids and gases, as might be required in a
smoke detector.

A photosensitive pn junction can also be incorporated into an SCR so that it can
be triggered into conduction by a pulse of light. Such a device is called a light-
activated silicon-controlled rectifier (LASCR). A typical application would be
in a remote photographic flash unit that triggers on the light from the flash attached
to a camera so as to provide extra illumination on the subject being photographed.

The process that is the reverse of the photodiode is also observed to occur. In the
light-emitting diode (LED), a forward current through a pn junction can be used to
produce light. Such junctions are usually made of gallium arsenide or gallium
phosphide and typically emit red light, although other colored LEDs are also
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available. The prime advantages of the LED over other types of light sources are
their compact size, low current and voltage requirements, high efficiency, and
exceptionally long operating life. For these reasons, LEDs find widespread use in
devices such as pocket calculators where battery drain and operating life are prime
considerations.

LEDs can also be combined with some form of light-sensitive detector (LSD)
such as a photodiode to form a device called an optocoupler or optoisolator. It
produces an output current approximately proportional to the mput current but
offers a high degree of electrical isolation and voltage standoff between the input and
the output, because the emitter and detector can be separated some distance by a
transparent insulator or by a grounded, conducting screen. Optoisolators normally
operate in the near infrared rather than in the visible portion of the spectrum, and
typically provide >10"! Q of isolation.

Often the light emitter and detector are separated by a considerable distance and
are coupled by means of a thin flexible light guide which often consists of a bundle of
thin fibers of glass or plastic (called fiber optics). Because the frequency of visible
and infrared light is much higher than the frequencies normally encountered in
electronic circuits, fiber optics offer the potential of 2 much higher rate of information
transfer than ordinary electrical transmission lines. Fiber optics are thus finding
application in telephone, television, and data-transmission systems.

An entirely different type of optoelectronic device is the liquid crystal display
(LCD), in which an applied voltage changes the opacity of the crystal. When viewed
against a dark background, it thus gives the appearance of changing from light to
dark. Since such a device does not directly emit light, its power consumption can be
extremely small. Such a device would be a natural choice for an application in which
the ambient light level is high and available power is minimal, such as a digital
wristwatch.

When extremely high sensitivity to light is required, a device called a photo-
multiplier (PM) tube is often used. As shown in figure 10.17, such a device 1s a
vacuum tube consisting of a cold, photosensitive cathode that emits electrons when
struck by light. The electrons are attracted to a nearby positive electrode (called a
dynode) where they typically release 3 to 6 secondary electrons which are attracted
to the next, even more positive dynode, and the whole process repeats through
many stages, producing a large current at the anode. Such a device is so sensitive
that it can detect a single photon of light, in which case the output consists of a
negative voltage pulse with a size determined by the capacitance of the measuring
instrument.

An alternate and more compact configuration is the channeltron electron
multiplier (CEM) in which a long, thin, evacuated glass tube is coated on the inside
with a low-work-function, conducting material that takes the place of the individual
dynodes in the photornultiplier tube. A high voltage is applied between the ends of
the tube, and an avalanche of electrons is formed whenever light is incident on the
more negative end of the coating. Arrays of such devices can be used to form a two-
dimensional electronic image of the object being viewed.
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Fig. 10.17 Photomultiplier tube.

10.7 Summary

This chapter has dealt with a small number of the more common nonlinear circuits
and devices. Oscillators are circuits that do the opposite of rectifiers. They convert a
dc voltage into an ac voltage. There are dozens of ways to make oscillators. They all
involve either active circuit components with positive feedback or a device with
negative resistance. The frequency of an oscillator is often determined by a resonant
LC circuit, but RC circuits and quartz crystals can also be used. Oscillators can be
made with sinusoidal outputs or with a variety of other periodic waveforms.

The multivibrator is a circuit consisting of a pair of transistors that abruptly
switch between saturation and cutoff. They can be made in three configurations. The
bistable multivibrator is equally happy in either of two states. The monostable
multivibrator can be made to change states, but it always returns to its initial state
after a prescribed interval. The astable multivibrator isn’t really happy in either state
and continually switches back and forth. It is just another kind of oscillator. The
Schmitt trigger is a variation of the monostable multivibrator that resembles the op-
amp comparator.

The list of semiconductor devices in widespread use is a very long one. Tunnei
diodes are useful as oscillators and high-speed switching devices because of their
negative resistance characteristics. The unijunction transistor is a three-terminal
device with a negative resistance characteristic. It and the silicon controlled rectifier
are switching devices, but the means by which they are turned off once they begin to
conduct are rather different. Optoelectronic devices are electronic devices that either
respond to or emit light. Their uses are numerous and rapidly growing.
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Problems

10.1  Assume the op amp in figure 10.1(a) is real with 4o =10* and r,, =1 kQ.
Calculate the maximum value of R for which oscillation will occur.

10.2 Show that the frequency of oscillation of the circuit below is given by

Jo= I/Qn\/é RC provided the op amp output does not saturate.
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10.3  For the circuit in problem 10.2, show that oscillation will occur only if the
open loop voltage gain of the op amp exceeds 4o =29.

10.4 For the quartz crystal equivalent circuit shown in figure 10.4(b), assume R
=0 and C, > C,. Show that the circuit exhibits a series resonance at an angular
frequency w, that is independent of C, and that a parallel resonance occurs at a
slightly higher frequency such that the difference between the two resonances is given
by Aw =woC,/2C,.

10.5 If the crystal described in figure 10.4(6) with R=10009Q is used in the
oscillator circuit of figure 10.5 with R =1000 Q, what is the minimum ratio R,/R; for
which oscillation will occur?

10.6  Calculate the values of L and C; for the crystal equivalent circuit of
figure 10.4(b) if the crystal has a series resonance at 1 MHz with a Q of 10° and a
series resistance of R =100 Q.

10.7 Calculate the minimum value of ¥;, which will trigger the Schmitt trigger
circuit in figure 10.7, assuming the transistors are ideal, R, =2kQ, R,=R;=R,
=Rg=1kQ, and V=24 V.

10.8 Show that the Schmitt trigger circuit described in problem 10.7 exhibits
hysteresis; that is, once the circuit is triggered, show that V;, must fall to a value below
the value that caused it to trigger before it switches back to its initial state, and
calculate that value of Vi,

10.9  Design a monostable multivibrator using the tunnel diode whose characteris-
tics are shown in figure 10.8(a). The circuit should produce a pulse of duration
~1073s.

10.10 Estimate the-minimum value of resistance that could be placed in parallel
with the inductor in figure 10.8(5) and still allow the circuit to oscillate if the tunnel
diode is described by the curve in figure 10.8(a). What value should ¥, have for this
value of resistance?
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10.11  The circuit below is an astable multivibrator that uses an ideal op amp with
an output saturation voltage of 10 V. Calculate the period of the output square
wave.
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10.12 Sketch the voltage waveform across the capacitor in the circuit in problem
10.1]1 and indicate the magnitude of the voltage.

10.13 Solve the homogeneous differential equation for the voltage across a parallel
RLC in which the resistance is negative.

10.14 Calculate the frequency of the neon bulb relaxation oscillator of figure 10.9
in terms of RC, assuming a power-supply voltage of V; =160 V.

10.15 Derive a criterion for the values of § for the two transistors in figure 10.11(¢)
that will ensure that the circuit behaves like an SCR.

10.16 Calculate the average power dissipated in the load R, in figure 10.12 (a)
assuming the voltage source is sinusoidal with peak value ¥, and the SCR is triggered
whenever the gate current exceeds /,.

10.17 Calculate the dc and fundamental frequency component for the Fourier
series for the waveform in figure 10.12(b) if the SCR conducts for a quarter-cycle
with a peak output voltage of V5 =100V.

10.18 Design a circuit using an SCR that can be triggered with a +10-V, 1-ps-wide
voltage pulse which will produce an exponentially decaying pulse of +100-V initial
amplitude and 100-us time constant across a load R,. Assume that a gate current
of 1 mA will reliably trigger the SCR and that the holding current is also 1 mA.

i

10.19 If an SCR pulser is triggered repetitively at too high a repetition rate, the
capacitor will not charge up to its full voltage. Derive an expression for the peak
output voltage as a function of the repetition rate f (in hertz) for the conditions
described in problem 10.18. (Assume f < 1/R,C.)

10.20 How many dynodes would be required for a photomuitiplier tube to produce
a >0.1-V pulse across a 100-pF load when a single electron is emitted from the
photocathode if each dynode emits 5 electrons per incident electron?
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chapter 1 1
Digital
Circuits

11.1 Binary Numbers

In most of the applications of electronic circuits encountered so far, the voltages and
currents vary continuously over a range of values. Such circuits are called analog
circuits. As the opposite extreme are circuits in which the voltages and currents are
allowed to have only two rather different values, as was the case with the
multivibrators described in section 10.2. Such circuits are called digital circuits.
With digital circuits, the exact values of the voltages are of no consequence so long as
one can unambiguously determine which of the two states the circuit is in. The two
states are variously referred to as on/off, true/false, yes/no, high/low, or one/zero.
Digital circuits are inherently more reliable and less prone to noise and interference
than analog circuits.

Digital circuits lend themselves rather naturally to performing arithmetic with
binary numbers. A binary number is a number composed of the two binary digits
(called bits), 0 and 1. With a decimal number, such as 931, the decimal digits
represent successive powers of ten:

931,5=1 x 10°+ 3 x 10" + 9 x 10?

Similarly, a binary number such as 10110 can be expressed as successive powers of

two:

10110, =0 x2°4+ 1 x 214+ 1 x22+ 0 x 23+ 1 x2*=22,,

The idea can be generalized to numbers of any base. Octal (base 8) and
hexadecimal (base 16) representations are quite common. The binary, octal, and
hexadecimal equivalents of the decimal numbers1 through 20 are given in
table 11.1. Each octal digit can be represented as a three-bit number, and each
hexadecimal digit can be represented as a four-bit number. An eight-bit binary
number is often called a byte. A byte can thus be written as a two-digit hexadecimal

number. _
Binary numbers are added just like decimal numbers, by carrying a digit
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TABLE 11.1 Representations of Decimal Numbers in Binary, Octal,
and Hexadecimal

Decimal Binary Octal Hexadecimal
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 11 7 7
8 1000 10 8
9 1001 11 9

10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
i6 10000 20 10
17 10001 21 11
18 10010 22 12
19 10011 23 13
20 10100 24 14

whenever the result would be more than one digit:
110
+101
1011

Similarly, two binary numbers can be multiplied as with decimal numbers:

10110
x 101

10110
00000
10110

1101110

Note that the multiplication of two binary numbers consists merely of successive
additions of a column of numbers formed by shifting the bits of the original number
one place to the left for each bit in the multiplier that is a 1.

Subtraction of binary numbers follows the same rules as subtraction of decimal
numbers. It is necessary to borrow from the next higher bit whenever one tries to
subtract a 1 from a 0. A convenient trick for the subtraction of two binary numbers
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makes use of what is called two’s complement arithmetic. The rule is to take the
number that is to be subtracted, and invert it {(change all 0’s to 1 and all 1’s to 0), then
add 1, and add the result to the original number, discarding any leftover carry bit.
For example, to subtract 43,, =101011, from 57,5 =111001,, proceed as follows:

111001

+ 010100
+ 1
1001110

The leftmost bit of the result is a carry bit and is discarded, leaving the number
001110, = 14,,. In this notation the remaining leftmost bit (0 in this case) is called
the sign bit. Its only purpose is to indicate whether the number is positive or
negative. A Osign bit means that the remaining number is positive; a 1 sign bit means
that it is negative. If the result is negative, it is necessary to take its inverse and add 1
to find its value.

The division of two binary numbers can be done by counting how many times
one number can be subtracted from the other. The count then becomes the quotient.
Note that unlike the other arithmetic operations, the division of one integer by another
does not, in general, give an integer result. The remainder after subtracting one
number from the other as many times as possible then can be used to determine the
fractional part of the quotient.

An important conclusion that can be drawn from this discussion is that all
arithmetic operations on binary numbers can be reduced to addition. Thus a digital
circuit capable of performing binary addition becomes the building block for all the
more complicated operations.

11.2 Logic Gates

Electronic circuits that perform operations with binary digits are called logic gates.
For example, a circuit with two inputs and one output that produces a 1 at its output
if input 4 and input B are both 1, and 0 otherwise, is calied an AND gate. A circuit
with such a property is shown in figure 11.1(a). In this circuit, if either 4 or B is at
zero V, one of the diodes (assumed ideal) is forward biased, and the output V; is zero.
If, on the other hand, both 4 and B are at + V (typically 5 V), the output Vpisat +V,
which we identify as a binary 1. The behavior of such circuits is described by a truth
table, as shown in figure 11.1(5). A truth table describes the output for all possible
combinations of input variables. Examination of the truth table shows that the AND
gate is essentially a binary multiplication circuit, and so the AND operation is
indicated by a dot:

VO =A-B
Sometimes the dot is omitted and the AND operation is written simply as

Vo =AB
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Fig. 11.1 (a) AND circuit. (4) Truth
table. (¢) Symbol.

but in this text the dot will always be used. The symbol for the AND gate is shown in
figure 11.1(c). An AND gate can have more than two inputs, in which case it produces
a | at its output only if all the inputs are 1. An AND gate with more than two inputs
can be used as a two-input AND gate if the unused inputs are maintained at 1. The
AND gate is also called a coincidence circuit, since it produces an output if two
positive pulses at the inputs coincide in time.

A different type of circuit produces a 1 at its output if 4 or B (or both) are 1 ; and
0 otherwise. It is called an OR gate. Such a circuit is shown in figure 11.2(a). Its
operation is described by the truth table in figure 11.2(4). The OR operation is
indicated by a + sign:

Vo=A+B

The symbol for the OR gate is shown in figure 11.2(¢). An OR gate can have more
than two inputs, in which case it produces a 1 at its output if any of the inputs are 1.
An OR gate with more than two inputs can be used as a two-input OR gate if the
unused inputs are maintained at 0.

One limitation of the diode logic gates described above is the degradation of the
signal (~0.6 V/gate) that occurs when a series of such gates are connected together.
Furthermore, the number of gates that can be connected to the output of a diode gate
(called the fanout) is limited to a fairly small number, since each additional gate
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(c)

Fig. 1.2 (a) ORcircuit. () Truth table.
(¢) Symbol.

loads down the voltage output to the point where eventually the 1 state is no longer
reliably recognized. Consequently, logic gates are more often constructed with
transistors, as shown in figure 11.3(a). Such a circuit resembles the OR gate, except
that the transistor inverts the output as shown by the truth table in figure 11.3(8).
Such a circuit is called a NOR gate (NOT-OR). The NOT operation is indicated by a

+V
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Ao—AMW——)

(a)
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Fig. 11.3 (a) NOR circuit. (b)) Truth table. (¢}
Symbol.

bar over the quantity, so that the NOR operation is indicated by
Vo=A+B

The symbol for the NOR gate is shown in figure 11.3(c). A NOR gate can have any
number of inputs. A single input NOR gate or 2 multiple input NOR gate with all but
one of its inputs maintained at 0 performs the NOT operation (inversion).

Finally, one can produce a NAND gate (NOT-AND) by combining an AND gate
with a single input NOR gate, as shown in figure 11.4(a). The NAND operation is

] >

(a)
A B V
0 0 1
o 1 1
1 0 1
1 1 0

(c)

Fig. 11.4 (2) NAND circuit. (4) Truth
table. (¢) Symbol.

indicated in the truth table in figure 11.4(), and written as
Vo = A ‘B
The symbol for the NAND gate is shown in figure 11.4(c). A NAND gate can have any
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number of inputs. Any unused inputs of a NAND gate must be held at I or connected
in parallel with one of the inputs that is being used. A single input NAND gate or a
multiple input NAND gate with all but one of its inputs maintained at | performs the
NOT operation. The NOT operation is sometimes denoted by the symbol in

(a)

o =|x

(8

Fig. 11.5 NOT circuit. (a) Symbol. ()
Truth table.

figure 11.5(a) in which the resemblance to an inverting op amp is more than
coincidental. The truth table for the NOT operation is given in figure 11.5 (8).
Notice that a single input NOR gate, a single input NAND gate, and a NOT gate all
perform the same function.

Not surprisingly, logic gates are available as integrated circuits. Such circuits are
often more complicated than those shown in figures 11.1-11.4 in order to improve
reliability, reduce power dissipation, and increase operating speed. Speed and power
dissipation can usually be traded off against one another. This is an important fact,
since large digital circuits such as computers typically employ thousands of logic
gates, and thee speed and total power dissipation are usually limiting factors.

Because of the limitations previously mentioned, gates containing only diode
and resistor logic (DRL) components are rarely used. Some of these limitations are
overcome with resistor-tramsistor logic (RTL), such as was shown in figure
11.3(a). Some additional improvements, especially in physical size, noise immunity,
and fanout, can be achieved by a combination of diodes and transistors (DTL). The
diodes, however, have considerable junction capacitance, and thus the speed with
which the gate can operate is not great. Faster operation is achieved with tramsistor-
transistor logic (TTL) in which special transistors with multiple emitters are used.
Even greater speed is achieved by using emitter-coupled logic (ECL) in which
emitter followers are used for low output resistance, and the input capacitance is
reduced by not driving the transistors into saturation. ECL gates are the most
expensive and have the highest power requirements, but they have a large fanout
and are able to respond in about 10™%s. At the opposite extreme is the MOS logic
family which uses MOSFET devices rather than bipolar transistors. Because of the
very high input resistance of the MOSFET, the power dissipation per gate is very
small and the fanout enormous, but the switching speed is comparatively slow.
Finally, one should note that the voltage levels used for the different types of logic are
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not necessarily the same, and so one should avoid mixing types unless care 1s taken to
convert the voltages properly. The characteristics of a typical logic gate employing
the various logic types are summarized in table 11.2.

TABLE 11.2 Comparison of a Typical Logic Gate Employing
Various Logic Types

Logic Type Speed Power Vo(0/1) Fanout
RTL 50 ns 10 mW 0.2/0.9 4
DTL 25 ns 15 mW 0.2/4.0 8
TTL 10 ns 20 mW 0.2/3.0 10
ECL 2 ns 50 mW —1.55/—0.75 24
MOS 200 ns 0.3 mW 0/3-15 50

11.3 Boolean Algebra

The analysis of logic networks is facilitated by a set of theorems developed by George
Boole, an English mathematician, and known as Boolean algebra. These theorems
were developed for symbolic logic long before the advent of digital electronics. Most
of the theorems of Boolean algebra are identical to those of ordinary algebra:

A+B=B+4

Commutation: 4B —B-A } (11.1)
Association: Ej+§;+g:j+§§+g} (11.2)
Distribution: A+ (B+C)=(4-B)+ (4:0) (11.3)

Certain other theorems arise from the binary properties of the quantities:
A-A=4 (11.4)
A+ A4=A4 (11.5)
A-A=0 (11.6)
A+4=1 (11.7)
A=4 (11.8)

A very useful relationéhip of Boolean algebra is De Morgan’s theorem:
A+B=4-B (11.9)

By replacing 4 with Aand B with Bin equation (11.9), and using equation (11.8), an
alternate form of De Morgan’s theorem can be derived:

A+B=4'B (11.10)
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De Morgan’s theorem is very important, because it allows all the basic logic
operations to be done with only NOR gates or with only NAND gates. For example,
figure 11.6(a) shows how an AND gate can be constructed from NOR gates, and

Ao

A
"] Do——ow-TiEas
B

(a)

“B=A+B

>

VD=

5] [

SRNCRVIRY

(b)

Fig. 11.6 (a) Construction of an AND gate using NOR gates.
(6) Construction of an OR gate using NAND gates.

figure 11.6(b) shows how an OR gate can be constructed from NAND gates. Many

other relationships can be derived from these theorems.
All these theorems can be proved quite simply by writing out the truth tables. For
example, the truth table for De Morgan’s theorem is given in table 11.3.

TABLE 11.3 Truth Table for Proving De Morgan’s Theorem

A4 B A B B A+B AFB
o 0 1 1 1 0 1
0o 1 1 0 0 1 0
1 0 0 1 0 I 0
1 1 0 0 0 1 0

11.4 Logic-Gate Appiications

Logic gates can be combined to perform a variety of mathematical operations. For
example, the circuit in figure 11.7(a) will add two single-bit numbers, 4 and B, and
produce a two-bit number with right- and left-hand digits, R and L, respectively.
Such a circuit is calleda half-adder circuit, and it is described by the truth table in
figure 11.7(b). The half-adder circuit has limited usefulness, because the most
complicated problem it can solve is 1+ 1 =2. To add larger numbers (many bits), it
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(a)
A BLR
0 0 0 O
0 1 0 1
1 0 0 1
11 10
{6)

Fig. 11.7 The half-adder circuit in (a) is

described by the truth table in ().

is necessary to have an adder circuit in which the carry bit from the preceding circuit
can be added to the right-hand digit. The left-hand digit then becomes the carry bit
for the next adder, and so forth. Such a circuit is called a full-adder, and is shown in
figure 11.8(a). The operation of the full-adder is described by the truth table in
figure 11.8(b). A full-adder is capable of adding two single-bit numbers (4 and B)
plus a carry bit (C) and producing a single-bit result (R) and a carry bit (L).

‘L_gD——"L

—0 R

Ao Half -

B adder Half

Co adder R

(a)
A BCLR
0 0 0 0O
0O 01 0 1
0 1 0 0 1
0 1 1 10
1 0 0 0 1
10 110
11 0 1 0
11 1 1 1
O]

Fig. 11.8 The full-adder circuit in (a) is described by the truth table in

(8).
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With full-adders, one can proceed to construct circuits to perform nontrivial
calculations. For example, suppose one wishes to add the binary numbers 1101
=13, and 1001 =9;,. For the first number, one would set four voltages as
appropriate, beginning with the right-hand (least-significant) bit:

Al=1 A2=O A3=1 A4=1
Similarly for the second number:
B =1 B,=0 B,=0 B,=1

These eight voltages could then be applied simultaneously to the circuit in
figure 11.9(a), and the output C would be a five-bit number 10110 = 22,o. Such a
circuit is called a four-bit adder, and it can add numbers up to 15 + 15 = 30. Clearly,
by stacking four-bit adders together, numbers of any size can be added. The addition of

Cs
Carry
L
fo e ——
As B Full
4 O—— adder R C
[ -
/1_’ L Carry
O———
B Full
3 © adder R c
[ S
A, Ol L Cary
Full
Byo adder R
r fe———0 C,
§ L | Carry
1 o
o Full
B, adder R c
[ |
(a)
A R
O — . * ]
Full ¢
Bo | adder L
Bit
delay
(b)

Fig. 11.9 (a) Four-bit parallel adder. ()
Serial adder.
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2 eight-digit decimal numbers, such as might be done with an electronic calculator,
requires 7 four-bit adders. .

The four-bit adder just described is an example of a parallel operation, in that
all of the input voltages must appear simultaneously, and a separate connection is
required for each bit of each number being added and for each bit of the output. An
alternate technique is to use a serial operation, in which each bit of the numbers is
transmitted sequentially, beginning with the least-significant bit. Such a circuit for
the addition of two numbers is shown in figure 11.9(4). Suppose at ¢ =0, the right-
hand digits of the numbers 1101 and 1001 are applied at 4 and B, respectively. The
output at C would be 0 and at L would be 1. Now suppose at =1 us, 4 and B are
changed to 0 and 0 to represent the next digit of each number, and the bit delay
circuit provides a 1 carry-bit that was generated 1 us earlier. The bit delay circuit
could be a monostable multivibrator. The output at R would then be | and at L
would be 0. The process would continue, producing a train of pulses at C representing
successively the bits of the result. With serial addition, there is no limit to the size of
the numbers that can be added. Furthermore, serial addition requires fewer
components than parallel addition. However, serial addition is much slower, because
the bits have to be fed in one at time rather than all at once.

Where data has to be transmitted over long distances, serial transmission is
invariably used, since this permits the use of a single two-conductor transmission line.
The rate of transmission is expressed in terms of bits per second, called the baud
rate. It should be clear from the discussion of Fourier analysis in Chapter 5 that the
maximum baud rate is proportional to the bandwidth of the circuit, and that a
bandwidth of 10 kHz is required to transmit 10,000 bits per second.

Much digital data transmission takes place over the already existing telephone
network. For this purpose, a device called a modem (modulation-demodulation) is
used. It generates a 2225-Hz tone whenever a logical 1 is to be sent and a 2025-Hz
tone whenever a logical 0 is to be sent. A second pair of frequencies is used for
reception, with a logical 1 at 1270 Hz and a logical 0 at 1070 Hz. Such a low-speed
modem might operate typically at 300 baud.

The adder circuits described above can be combined with other logic gates to
perform additional operations such as multiplication, subtraction, and division, using
the rules described in section 11.1. Circuits are also made that perform special
operations such as the evaluation of transcendental functions (sine, cosine, log, etc.},
direct conversions (inches to meters, °C to °F, etc.) and binary to decimal conversions
(and vice versa). Such circuits are called read-only memories (ROMs), trans-
lators, or decoders. They are available singly or in combination as integrated
circuits at very nominal cost.

Although ROMs are normally programmed during manufacture to perform a
definite operation, programmable read-only memories (PROMs) are also
available,. in which .the user can specify the operation to be performed by the
application of appropriate voltages that permanently alter the internal circuitry of
the device. Some types of PROMs are erasable, so that they can be reused for
different purposes or corrected if a mistake is made during the programming. With
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EPROMs (erasable PROM), the device must be removed from the circuit and
exposed to ultraviolet radiation to erase its contents. With EAROMs (electrically
alterable ROM), the contents of the device can be selectively altered by the
application of appropriate voltages while it is still in the circuit.

11.5 Flip-Flops

Flip-flop circuits similar to the op-amp latch and the bistable multivibrator can also
be constructed from logic gates. For example, figure 11.10(a) shows a circuit called
an RS flip-flop in which two NOR gates are used to produce an output at Q which is

R 0

|

(a)

- - 0o o0lD
- o = 0oln
v o = Q0|0
D = o OO

{8

Fig.. 11.10 The RS flip-flop in (a) is
described by the truth table in ().

either 0 or 1. The inverse quantity will appearat Q. If S=1and R=0, Q willgo to 1
and remain there until R is set to 1 and $ to 0, which resets the circuit and causes Q to
go to zero. The truth table for the RS flip-flop is shown in figure 11.10(b). A serious
drawback of the RS flip-flop appears if both inputs are set to 1. In such a case Q and
Q both go to 0, and the final state after the inputs are returned to 0 will have a value
that depends on asymmetries in the circuit or on which input first goes to 1.

A variation of the RS flip-flop shown in figure 11.11(a) has a third input, called
the clock input. The circuit ignores any signals at the R and S inputs unless the clock
input is at 1. The clock input allows one to control the time at which the circuit
switches state. The truth table for the clocked RS flip-flop is the same as the truth
table for the simple RS flip-flop in figure 11.10.

Another type of flip-flop is the D (for data) flip-flop shown in figure 11.11{5). It
has an R, S, and clock input and also a fourth input, called the D input. The R and S
are used to put the circuit in one of two possible initial states. When the clock is set to
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Fig. 11.11 (a) Clocked RS flip-flop. (b) D flip-flop.

1, the output Q switches to 0 if D is 0 or 1 if D is 1, and remains there until reset or
until another clock pulse arrives.

The most complicated and most useful flip-flop is the 7K flip-flop. It has two
inputs, 7 and K, and two outputs, Q and @, as shown in figure 11.12(a). The circuit is
caused to switch state by a momentary 1 pulse at the clock (Ck) input. The term
“toggle” is sometimes used instead of ‘‘clock.” The circuit remembers the values of ¥
and K at the instant the clock goes from 0 to 1, but it does not switch the output state
until the clock input goes back to 0. The behavior of the 7K flip-flop is described by
the truth table in figure 11.12(4), in which the subscript : (initial) refers to the value
of the quantity when Ck goes from 0 to 1, and f (final) refers to the value when Ck
goes back to zero. The circuit is reset by means of the C! (clear) input. Normally Cl is
kept at 1. Setting Cl to O sets Q to 0 and Q to 1. The K flip-flip described here is
actually two flip-flops and is an example of a master-slave flip-flop. The master
flip-flop is set by the input (7 and K') when the clock goes to 1. It then commands the
slave to produce the appropriate output (Q and Q) when the clock goes back to 0.

JK flip-flops are useful in devices such as multivibrators, counters, and shift-
registers. Multivibrators have been discussed earlier (section 10.2). A counter is a
device that produces a digital output equal to the number of pulses that have
appeared at the input since the device was last cleared. Figure 11.13(a) shows how
such flip-flops are connected to make a binary counter. A common application of a
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Fig. 11.12 The JK flip-flop in (a) is described by the truth table in (4).
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Pig. 11.#3 (a) Bimary counter. (b) Shift-register.
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counter is in a digital clock. A counter can also serve as a frequency divider. For
example, a 60-Hz sine wave at the input of the counter in figure 11.13(a) will
produce a 30-Hz square wave at the 2 output, a 15-Hz square wave at the 4 output,
and so on. Such divider circuits allow digital clocks to be synchronized with the 60-
Hz power lines, which are normally highly regulated in frequency. A counter can also
be used as a digital frequency meter. Suppose that a sine wave of unknown frequency
is applied to the input of the counter in figure 11.13(a) through a gate that opens
periodically for 1 s after the counter has been cleared. Then the reading after'the gate
closes will be the frequency of the sine wave in Hz (expressed as a binary number).

A shift register is a device that moves each digit of a number one place to the
right or left. Such a circuit is shown in figure 11.13(#). Electronic calculators use shift
registers to-move the digits in the display to the left as subsequent digits of a number
are entered by the keys. By connecting the output back to the input, a circular shift
register can be made. Shift registers are also useful as memory devices, but the
information has to be stored and recalled serially, and so such devices tend to be very
slow. :

This limitation is overcome in the random-access memory (RAM) in which
the flip-flops are arranged in a two-dimensional array in such a way that one can set
(WRITE) or test (READ) each flip-flop by energizing or measuring the x- and y-
address of the relevant location in the memory. Such memory may be cither static
(or nonvolatile), in which case the RAM holds its information so long as the power is
not removed, or dynamic (volatile), in which case the information has to be
periodically refreshed, perhaps once per millisecond. Although the dynamic RAM
requires more circuitry, it is often preferred because of its lower power consumption
and because the use of integrated MOSFET circuitry allows extreme miniaturization.
A dynamic RAM capable of storing 210 = 1024 bytes (1 K) of information need be no
larger than a medium size individual transistor.

11.6 Digital-to-Analog and Analog-to-
Digital Conversion

In electrical circuits it is often necessary to convert from a digital to an analog signal
and vice versa. Digital-to-analog (D-to-A) conversion is relatively easy, as indicated
in figure 11.14(a) where a four-bit binary number is converted to an analog voltage
V. by an operational amplifier. Such a circuit can be extended to any number of
bits. One must only be careful that the op amp does not saturate for the largest
possible number at the input. The feedback resistor R, can be adjusted to give a
conveniently large but unsaturated output voltage. If the inherent accuracy of the
digital number is to be preserved, the resistors have to be of high tolerance.
Analog-to-digital (A-to-D) conversion is somewhat more complicated, and a
wide variety of such circuits has been developed. A common feature of these circuits is
that they all involve an oscillator, a counter, and a comparator. Perhaps the simplest
such circuit is the one shown in figure 11.14(5). A highly stable oscillator (called a
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Fig. 11.14 (a) Digital-to-analog converter. (4) Analog-to-digital
converter.

clock) is used. The clock output is fed through an AND gate into a counter that
counts the number of clock pulses after being reset. The counter produces a digital
output which can be converted to an analog signal with a D-to-A converter as
described above. It is then compared with the analog input by an analog comparator.
When the reading of the counter equals the input voltage V;,, the gate closes, and the
counter stops and waits to be reset. A common application of an A-to-D converter is a
digital voltmeter (DVM). In a similar fashion, any quantity that can be represented
by a voltage can be converted to a digital format for display or for storing in a digital
computer. A-to-D conversion is inherently slow, especially when the counter must be
reset to zero for every measurement, as was the case for the circuit just described.
More elaborate circuits partially alleviate this difficulty, but speed is still a serious
limitation in the use of A-to-D converters for many applications, especially when high
resolution is also required.

For A-to-D converters as well as most other digital devices, it is necessary
eventually to display the numerical result for interpretation by a human being.
Perhaps the simplest’such display would be a series of lamps that would light for
binary 1 and remain off for a binary 0. The binary number could then be read
directly. Unfortunately, the decimal number system is deeply ingrained in our
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thinking, and so for most purposes it is imperative that some form of decimal display
be provided. The first step in such a process is to convert the binary number to a
binary-coded decimal (BCD) format in which each decimal digit is represented by
a four-bit binary number. Thus the binary number 1001110 =785 could be
represented in BCD as 0111 1000. Other BCD codings are also possible. Then each
four-bit segment of the BCD code would be fed into the input of a decoder logic, as
shown in figure 11.15(a) whose output would illuminate appropriate segments of a
seven-segment digital display as shown in figure 11.15(5). The display could be
LEDs or an LCD. A separate display with its own decoder driver would be required
for each decimal digit of the display. Alternately, a single decoder driver could be
rapidly switched from one display to the next in a process called multiplexing. This
technique also conserves power, and if the switching is sufficiently rapid, no flicker
will be noticed. The construction of decimal readout circuits is tedious, but, as with
most other digital circuits, the marvels of integrated circuit technology coupled with
the economy of mass production have filled our pockets with such devices for less than
the price of a pair of shoes.
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Fig. 11.15 (a) BCD decoder logic for
seven-segment display. (§) Seven-segment
digital display.

11.7 Digital Computers

By now, it should be obvious that most any mathematical or logical operation can be
performed by a sufficiently complicated arrangement of the basic logic circuits
previously discussed. Such hardwired circuits have been used in a wide variety of
scientific, industrial, and consumer applications. However, it is not very efficient and
economical to construct a different circuit for each and every such application. A
much better approach is to construct a single device that is capable of performing all
the basic operations in any combination and sequence and to provide the user with a
means for instructing the device which operations to perform and in what order. Such
a device is called a digital computer, and it represents the most sophisticated
example of digital circuitry. It is outside the scope of this text to provide more than a
general introduction to some of the more important aspects of digital computers.

To gain some appreciation of how a circuit can be instructed to p2rform different
operations, consider the circuit in figure 11.16(a). It is called an exclusive-OR
circuit, because it produces a 1 at its output if either A or B are | but not both, as
shown by its truth table in figure 11.16(5). But in the present context we can think of
it as a circuit that performs an operation on 4 that is controlled by an instruction at B.
If B is set to 0, the operation is to do nothing (¥, = A). If B is set to 1, the operation is
to perform an inversion (¥, = A). If we now imagine a string of 1’s and 0’s appearing
at 4 and B in sequence, we can think of 4 as constituting input data and B as consti-
tuting a predetermined program of instructions, and the result of the programmed
operation on the data would appear as a string of 0’s and 1’s at the output V. Such a
device is a primitive and not very useful computer.

Now consider some of the refinements that would be necessary to make a truly
useful and versatile device. First, we would need some method for storing the
program and possibly the input and output data as well. This memory might consist
of an array of flip-flops or an array of ferromagnetic toroidal cores that can be
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Fig. 11.16 The exclusive-OR circuit in (a) whose truth table is in
(b) is an example of controlling the operation of a circuit by means
of an instruction.

magnetized in either of two directions. Information is stored in memory in the form
of a series of 0’s and 1’s called words, which are typically 8, 16, or 32 bits long. Some
types of information such as the startup instructions for the computer might be stored
in a ROM, but to exploit the great versatility of the computer, a significant amount
of RAM capability is generally desired. The ability of the computer to store a
complicated and easily modified program that may, in fact, specify different
operations — depending on the outcome of previous calculations performed on the
data — is what makes the computer so versatile, even sometimes giving the
impression that the computer has intelligence.

In addition to memory, we would like to provide the computer with a more
complete set of instructions to replace the one-bit inversion instruction of the
exclusive-OR. We would probably want to implement all the standard arithmetic
and logic operations. This will, of course, require a separate multibit number for each
instruction that we wish to implement. If we allow our instructions to have eight bits
(two bytes), we can choose among 256 possible operations by setting the proper
voltages on the eight control lines. Such a device is called an arithmetic logic unit
(ALU). More-complicated mathematical operations (square root, exponentiation,
etc.) can be done by repeated operations of the ALU under the control of a program
stored in memory.

To make the ALU perform the proper operation at the proper time we need
additional circuitry to decode the instructions and to tell the ALU what to do next.
We .also need a numbér of storage registers in which intermediate results of
calculations performed by the ALU can be stored. Another register, called the
memory address register (MAR), is required to keep track of what location in
memory is being addressed, and a memory data register (MDR) would contain
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what is found or what is to be stored at that address. One very important register is
the program counter (PC) which keeps track of the memory address of the current
program instruction. After each instruction is executed, the program counter is
incremented, thereby providing the address of the next instruction to be executed.

An internal clock is also required to regulate the rate at which the various
operations are performed. The clock cycle usually has at least two distinct phases.
During the fetch phase, the instructions are obtained from memory and the
appropriate function-select lines to the ALU are energized. During the execute
phase, the arithmetic operation is performed. The speed of a computer is thus
determined by multiplying the cycle time (typically 0.1-1 us) by the number of
individual arithmetic operations that have to be performed. There is a tradeoff
between complexity and speed. A simple computer with a limited instruction set and
a limited number of storage registers will have to perform more operations and will
take longer to complete a given task than one in which many instructions and registers
are available.

An ALU with its associated decoding circuitry, registers, and internal clock is
called a central processing unit (CPU). The CPU is the heart of the computer. It
is a tribute to integrated circuit technology that an entire CPU can be fabricated on a
single chip of silicon in less than 1 cm? of area, and at a cost not very different from
the cost of a single vacuum tube. Such an integrated circuit CPU is called a
microprocessor. Probably no single device since the invention of the transistor has
done more to revolutionize the way in which electronics influences our lives.

Finally, the computer needs some means for communicating with the outside
world. For this purpose we require 1/O (input/output) devices. Input to the computer
is typically by a keyboard, punched cards, punched tape, magnetic tape, or an A-to-
D converter. Qutput typically involves a teletype, line printer, CRT display, D-to-A
converter, or X-1 plotter. These devices are often called peripherals. Large
computers invariably have various forms of peripheral memory such as magnetic
tapes, discs, or drums, which can store huge amounts of information (typically many
megabytes) but which require the order of a second rather than the order of a
microsecond to access.

The basic components of the computer can be connected together in various
ways. The interconnection is called a bus, and it usually consists of 2 multiconductor
transmission line, with each conductor carrying one bit of information at a time. The
implementation of the bus is a critical decision in the design of a computer.
Figure 11.17 shows two possible ways in which the components can be connected. In
(a) there is a separate bus to connect the CPU to the memory and to the I/O devices
so that everything passes through the CPU. In () there is a single bus through which
any device can communicate directly with any other. Although the use of a single bus
generally allows faster transfer of information, special care must be taken to ensure
that only one device at a time is trying to drive the bus. For this purpose tristate
logic is used in which a third high impedance state is available in addition to the low
impedance 0 and 1 states for those circuits that have outputs connected to the bus.

Another important design decision is the choice of serial (bit by bit) or parallel
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Fig. 11.17 Two possible ways to organize the components
of a digital computer. (a) Separate buses. (#) Single bus.

(byte by byte or word by word) operation of each device. Serial operation reduces the
circuit complexity but slows down the execution speed. Usually a compromise is
made with inherently slow devices (such as many of the I/O devices) using serial
operation and the high-speed devices (such as the ALU) using parallel operation.

The usefulness of a computer can be further enhanced by a number of
techniques. One example is the use of microcoding in which one instruction invokes
a long series of instructions that might be stored in a separate fast memory and
executed in its own fast processor so as to produce a result in only a few CPU clock
cycles. Another example is the use of interrupts, which allow an I/O device to halt
the processor’s present task and demand that it be serviced. This requires a priority
arbitration system to decide what can interrupt what and when. Additionally, the
processor would have to remember what it was doing so that it could continue after
the interrupting task is over.

The I/O devices are connected to the processor through interfaees, which
resolve voltage and speed differences between the devices as well as initiating
interrupts. Although much of the traffic between the I/O devices and the memory
would proceed through the CPU, certain devices, by virtue of their high speed, might
be allowed direct access to memory. Such interfaces are called direct memory
access (DMA) interfaces. Interfaces are sometimes provided with limited computing
power to relieve the processor of the time-consuming task of controlling complicated
I/O devices. These interfaces are generally called controllers.

To program a computer to perform a particular task, it is necessary to provide
the computer with an array of binary numbers which the CPU can use to set all the
circuits in the proper manner. These binary instructions are called machine
language. Programming in machine language is extremely tedious, since all the
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instructions look pretty much the same, and it is easy to make errors. For this reason,
a simpler mnemonic language called assembly language is used, in which the
commands have easy-to-remember names like ADD, MOV (move), and MUL
(multiply). The computer then generates the machine-language instructions, using a
translation program called an assembler. Some assemblers even implement error
checking by detecting illegal conditions (divide by zero, etc.), and halting execution
with an appropriate error message.

Even assembly language is cumbersome for anyone but a professional pro-
grammer, and so various higher-level languages have been developed for general use.
Common examples are BASIC (beginners’ all-purpose symbolic instruction code),
PASCAL (after Blaise Pascal, a French mathematician who built a successful digital
calculating machine in 1642), and FORTRAN (formula translater). These languages
use familiar statements such as ordinary algebra and patterns of logic that closely
resemble human thought. The high-level languages are also relatively machine inde-
pendent, so that a program written for one computer can be easily run on another.

Such languages tend to fall into one of two categories. BASIC is an example of an
interpretive language, because it stores the program exactly as it was written, When
it is run, the program is executed on a line-by-line basis. No attempt is made to
restructure the program or predetermine what functions, tables of symbols, or storage
will be needed. Interpreters have the advantage that they require a relatively small
amount of memory, and since the program is executed exactly as written, the user has
a clear idea what is happening. This is a great advantage when the programmer is
writing, testing, or editing a program.

FORTRAN is an example of a compiled language. The programmer first writes
a program and then uses a program called a compiler, which translates the program
from the original source code to an object code the machine camr understand. In the
process, the compiler will construct symbol tables, allocate storage to variables, check
for certain types of errors, and perhaps optimize the code to run faster and more
efficiently. The statements required to perform a typical algebraic operation in three
different languages are shown in table 11.4.

TABLE 11.4 Comparison of Various Computer Languages

FORTRAN Assembly Language Machine Language

0001011 111 000 001

MOV B, R1 0 001 000 000 000 010
0110011 111 000 001
ADD C, R1 0 001 000 000 Q00 100
A=(B+C)*D 0111 000001 011 111
MUL D, R1 0001 000 000 000 110
- 0001 000001 011 111
MOV R1, A 0 001 000 000 000 000

——— —

Compiler Assembler
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A common feature of high-level languages is that a significant amount of the
computer’s memory has to be dedicated to the transiation programs, leaving
correspondingly less for the source program and data storage. Consequently, high-
level languages are only compatible with large computers. The programs that are
written to enable a computer to act intelligently are collectively referred to as
software, in contrast with the actual electrical circuits and mechanical devices that
constitute the hardware. In a modern computer, the human effort and expense
involved in software development is comparable to that required for the hardware. In
the early days of computers, the software was given away in order to sell the
hardware. The day may come when the hardware is so inexpensive that it will be
given away in order to sell the software, which still requires much human thought
and ingenuity.

Recent advances, especially in semiconductor technology, have brought the size
and cost of computers down while increasing their speed and flexibility. Computers
are an economic anomaly. Their history shows a continuous drop in cost along with a
dramatic increase in computational power. This, of course, encourages the use of
computers in many new applications. :

One important innovation was the development of the minicomputer. These
machines, while somewhat limited in speed and computational power, are sufficiently
inexpensive and simple as to encourage their use as dedicated controllers (in devices
such as machine tools and environmental control systems), as programmable
calculators, and as laboratory instruments that collect and analyze scientific data.
They are used on board aircraft and ships to handle navigation and other duties.

Increasing density in integrated circuit technology has spawned the micro-
computer, of which the programmable electronic calculator is one example. The
heart of the microcomputer is a microprocessor. The microprocessor differs in part
from a full-sized computer CPU in word length. Microprocessors typically use 4- to
16-bit words, whereas computers usually have 16- to 64-bit words. Microprocessors
can be used as building blocks for larger computers or to perform a specific operation
such as controlling the temperature and timing of an oven or controlling the
operation of a clock radio. This revolutionary development has expanded computer
applications almost without limit.

The advantages of computer control in a product are numerous. Improvements
and other changes can often be made by simply changing the program rather than by
costly hardware modifications. Greater control sophistication is encouraged by the
ease with which it may be implemented by computer.

Microcomputers are now being produced that can use high-level languages and
thus compete favorably with minicomputers. The computer industry is developing at
a staggering pace. New technological developments such as bubble memories and
charged-coupled devices (CCD) promise vast amounts of storage at almost
inconsequential cost. The availability of almost unlimited memory will probably
make the oral programming of computers possible within a relatively short time.
New semiconductors promise greater speed and density along with lower power
dissipation. Digital logic, especially ECL, is getting so fast that a major barrier to
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speed is the propagation delay along leads. Some ultra-high-speed computers have
had to resort to unusual physical layouts to minimize lead length. Some day, the
highest-speed computers will have to be the size and shape of baseballs, or perhaps
ball bearings. Already, engineers are beginning to use microprocessors as circuit
elements in the same way they have been using transistors, op amps, and digital logic
integrated circuits. The computer revolution might well be seen by future historians
as an event of comparable importance to the Industrial Revolution.

11.8 Summary

Digital circuits are circuits in which the voltages can take on only two rather distinct
values. Such circuits are ideally suited for performing binary arithmetic and logical
operations. The building blocks of all digital circuits are the AND and the OR logic
gates and their inverse counterparts; the NAND and the NOR gates. Actually, all
logical operations can be performed using only a single type of gate such as the NAND
gate. The theorems of Boolean aigebra indicate how this is done. The behavior of
logic circuits can always be analyzed by writing out the truth table.

Applications of logic circuits extend all the way from the half-adder which can’t
even add two and two, to the digital computer, which is the most powerful and
versatile of the digital circuits. Logic gates can be used to make flip-flops, which are
useful in multivibrators, counters, and shift-registers. Finally, circuits can be
constructed that convert digital information to analog information and vice versa.
Digital devices can be extraordinarily complex, such as the digital computer, but
fortunately, integrated circuit technology allows such devices to be produced in small
packages at a cost that compares favorably with the vastly simpler circuits of only a

few years ago.

Problems

111 Find the decimal equivalents of the following numbers: 1101011,, 3742,
A6F 6.

11.2  Find the octal equivalents of the following numbers: 101011101,; 9274,
E49B,.

11.3 Find the binary and hexadecimal equivalents of the following decimal
numbCrSZ 29710, 316810.

11.4  Find the binary coded decimal (BCD) equivalents of the following numbers:
101101101,, 87354, 789,4.

11.5 Perform the subtraction 537,, — 891, using two’s complement arithmetic
and show that the result is correct.

11.6  Using the rules of long division, divide the binary number 101101111, by
1100, and show that the result agrees with the result of dividing the equivalent
decimal numbers.
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11.7  Write down a logical expression for the output of the circuit below. Design a
circuit using only NAND gates that will produce the same output.

>

11.8  Use logic gates to design an anticoincidence circuit, that is, a circuit that
will produce an output whenever a pulse appears at input 4, provided that it does not
appear simultaneously at input B.

11.9  Write out the truth table for the quantity A+(B+ C)+ A.
11.10 Use NAND gates to perform the following functions:

(a) A+B+C
(b) A+ (B-C)
() (4+B)-(CF¥D)

11.11  Use NOR gates to form the functions in problem 11.10.
11.12 Design a monostable multivibrator using NAND gates.
11.13 Design an oscillator using NAND gates.

11.14 Using the theorems of Boolean algebra, prove the following equalities:
A+ A-B=A+B
AB+ A-B+ A-B=4+B
A+ A4-B=A4+B

11.15 Prove by means of truth tables the equalities in problem 11.14.

11.16 Sometimes a zero voltage is used to represent logical 1 and a positive voltage
to represent logical 0. This is called negative logic. Design an OR and an AND gate
using resistors and diodes for negative logic.

11.17 Draw the circuit for the RS flip-flop in ﬁgure 11.10(a) in terms of individual
circuit components (resistors, diodes, and transistors), and convince yourself that it is
just an elaborate version of the bistable multivibrator shown in figure 10.6(a).

11.18 Design a binary counter circuit using 7K flip-flops that will count from zero -
to nine and on the tenth count will reset to zero and generate a carry bit. Such a
circuit is called a binary coded decimal (BCD) counter, and has obvious
applications.

11.19 The device below produces sequences of four-bit binary numbers. If we start

atA=0,B=1,C=1, and D =0, find the next five numbers in the sequence which
results after each clock pulse.
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11.20 Construct an RS flip-flop using NAND gates.

11.21 In the D-to-A converter of figure 11.14(a), what accuracy of the resistors is
required in order to maintain the inherent accuracy of the digital input? What
accuracy would be required for a 16-bit input?
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chapter 1 2

Communications
Electronics

12.1 Electromagnetic Radiation

One of the most interesting predictions of Maxwell’s equations of electromagnetism
is the existence of electromagnetic waves which can propagate through a vacuum
with a speed of ¢=3 x 10® m/s. Electromagnetic waves in free space consist of an
oscillating electric and magnetic field oriented at right angles to each other with both
perpendicular to the direction of propagation. The frequencies and wavelengths of
the electric and magnetic fields are identical, but at a given point in space the fields
are 90° out of phase. Electromagnetic waves are unique in that they require no
medium for transmission, and yet they transmit energy from one point to another.
Electromagnetic waves can occur at any frequency, but for a given frequency f, the
wavelength 4 in free space is fixed according to the relation

A=clf (12.1)

As an electromagnetic wave travels through a medium, such as a piece of glass,
its frequency remains constant, but its velocity, and hence its wavelength, decreases.
Many forms of electromagnetic waves are distinguished according to how they are
generated. and detected, but the only fundamental difference between them is their
frequency. Figure 12.1 shows the spectrum and the common names and uses of the
various frequencies. The reader should note especially the frequencies used for AM
broadcasting (535-1705 kHz), FM broadcasting (88—108 MHz), and television (54—
890 MHz). The boundaries between the various types of waves are somewhat
arbitrary.

One method of producing electromagnetic waves, especially in the radio
frequency range (100 kHz—-1000 MHz) is with the use of an antenma, as shown
schematically in figure 12.2. The antenna can be almost anything, such as a simple
piece of wire. The antenna in figure 12.2(a) is called a ground plane antenna, and
it typically consists of a vertical element § wavelength long rising above the earth or
above an artificial conducting plane. The antenna in figure 12.2(5) is called a dipole
antenna, and it typically consists of a 4 wave horizontal conductor fed at its midpoint
by a transmission line. For an antenna } wave long, the voltages at the ends are 180°
out of phase, and it thus resembles an oscillating electric dipole. For the ground plane
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Fig. 12.1 The clectromagnetic spectrum.

antenina, the other half of the antenna appears as an image (as in a mirror) below the
ground plane. It is thus virtually the same as a horizontal dipole except rotated by 90°.
The ground plane antenna radiates the same in all horizontal directions. The dipole
radiates best offits broad side (i.e., such that its ends appear to the observer as far apart
as possible). '

Any antenna will present a complex impedance to an ac voltage source
connected to its terminals. A short antenna (short compared with a wavelength) is
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Fig. 12.2 Sinusoidal source connected between: (2) an antenna and
ground, (4) two terminals of an antenna.

mostly capacitive. A long antenna may be either capacitive or inductive, depending
on its length, in a manner similar to the open-circuited transmission line (see
section 5.6). At certain critical lengths (such as 4 wave), the reactance of the antenna
becomes zero, and only a small resistive part remains. This resistance is cailed the
radiation resistance. It is typically on the order of 100 Q. However, unlike an
ordinary resistor, it does not represent a dissipation of electrical power in the antenna,
but rather a radiation of the energy into the surrounding space. The power is
supplied by the source, converted into electromagnetic waves by the antenna, and
radiated into space, only to be dissipated by objects some distance away. The
dissipation is so slight, however, that a detectable amount of energy usually exists at
great distances from a well designed antenna.

In an exactly analogous fashion, an antenna can be used to convert electro-
magnetic radiation into electrical power which can be delivered to a load connected
to the antenna. Such a receiving antenna can be thought of as a Thevenin
equivalent circuit with a source resistance equal to the radiation resistance. The
Thevenin equivalent voltage is a linear superposition of all the nearby sources of
electromagnetic radiation. The voltage is usually small (millivolts or less), and so it is
important to properly match the radiation resistance to the input resistance of the
load for maximum power transfer. Since the antenna is often separated from the
transmitter or receiver by some distance, a transmission line is often necessary. An
antenna optimized for transmission will also be optimized for reception and vice
versa. In fact, the reciprocity theorem demands that under most conditions, for a
given pair of antennas, one connected to a transmitter and the other to a receiver, the
received signal strength will be the same if the transmitter and receiver are
interchanged. For best propagation, the polarization (vertical or horizontal) of the
two antennas should be the same.

Sometimes antennas of the optimal length are impractically long. A }-wave
antenna for an AM automobile radio would require a length of about 100 m! In such
a case, the reactive component of the antenna’s impedance can be eliminated by
means of some form of resonant LC circuit. Such antennas are inherently inefficient
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and operate properly over only a narrow range of frequencies, but their use is often
unavoidable. In many applications, the inefficiency of the antenna is easily
compensated for by a high gain in the receiver.

12.2 The lonosphere

Radio waves usually travel in straight lines. They easily penetrate insulators such as a
glass window or a wood-framed building. They tend to be reflected from conductors
such as the earth or a steel-framed building. Accordingly, we would expect radio
transmission to be possible only if the transmitting and receiving antennas are within
line-of-sight, with perhaps only minor obstructions. At very-high-frequencies (above
~100 MHz), the propagation of waves is reasonably well described by the above
facts. Actually, because of a slight refraction of radio waves by the atmosphere, the
radio horizon is usually slightly farther away than the optical horizon.

We know, however, that radio transmissions are possible between distant points
on the earth. This occurs because the upper layers of the atmosphere contain a
significant density of ionized gas atoms. Such a gas is called a plasma, and it is an
electrical conductor. The ionization is produced primarily by ultraviolet radiation
from the sun. When radio waves travel upward, they can be reflected from this region
called the ionosphere provided their frequency is below the plasma frequency:

£,=90n (12.2)

where n is the number of free electrons per cubic meter.

The electron density in the ionosphere varies with height, time of day, time of
year, and sunspot activity. Typically, the peak density occurs at an altitude of several
hundred kilometers and has a value of ~10*? electrons/m>. Therefore, radio waves
are usually reflected if their frequency is somewhat below ~10 MHz. At much higher
frequencies, the waves usually pass through the ionosphere.

We are now in a position to understand some of the properties of wave
propagation. Low-frequency waves such as those in the AM broadcast band
(~1 MHz) are reflected from the lower layers of the ionosphere, where the density is
low. At night, the density drops, and the waves penetrate higher before being
reflected, and so the range increases as shown in figure 12.3. Higher frequencies such
as the short wave bands (5-25 MHz) have the longest range, depending on the
condition of the ionosphere, but too high a frequency, or too low an electron density
(such as might occur at night) resulis in penetration rather than reflection, and
then the coverage is limited to line-of-sight, as with FM radio and television.
Communication with satellites and deep-space probes must take place at very high
frequencies (2100 MHz).

The reflected (or sky) wave, since it requires special conditions in the
ionosphere, tends to provide a much less reliable form of communication than the
direct (or ground) wave. Fading of the signal is common, because ionospheric
conditions fluctuate. Intense solar activity can generate a high flux of charged
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Fig. 12.3 Asthefrequency israised or as the ionosphere becomes
less dense, a radio wave (a) is reflected at a higher altitude (4)
until finally it is not reflected at all (¢).

particles that bombard the earth and produce aurora displays, magnetic storms, and
ionospheric disturbances. At intermediate distances, the ground wave and sky wave
can interfere with each other, causing intense fading as the path length for the sky
wave varies.

Multiple reflections of the sky wave are possible, but the energy loss in each such
reflection is high. Nevertheless, at very low frequencies (/< 10 kHz), the earth and
ionosphere form a waveguide (see section 5.7), and with sufficiently high power,
around-the-world propagation can be achieved. These low frequencies are also of
interest because the penetration depth into a conducting medium such as saltwater is
reasonably great, and they thus provide one of the few reliable means for
communicating with underwater submarines.

12.3 Types of Modulation

In the preceding sections we have considered radio waves that consist of a single,
sinusoidal frequency component. Such a wave is of limited use because it can carry
essentially no information. Generally it is necessary for the sine wave to vary in some
manner (such as a variation in its amplitude), usually at an audio frequency (~20-
20,000 Hz) to transmit speech or music. Such a variation is called amplitude
modulation (AM), and it is illustrated in figure 12.4(a). Note that the audio and
radio frequency waves are multiplied together, not added. Thus modulation is an
inherently nonlinear operation and requires the use of nonlinear components. To
understand how this is done, imagine a two-port network in which the output voltage

is given as a function of the input voltage by

V. =aV,+bV2 (12.3)

out
The first term is the linear term, and the second term represents the nonlinearity.
These can be thought of as the first two terms of a Taylor series for an arbitrary
nonlinear network. In general, a constant term could be included, but it would be
zero for a passive network. Now imagine that two sinusoidal voltages of different
frequencies are applied in series at the input:

Vo = V] sin ot + V, sin w,t
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Then the output would be
Voue = aV; sin ¢+ aV, sin w,t
+ b¥V3sin? w,t+ bV sin? w,t (12.4)
+ 26V, V, sin w,! sin wyt
By using the trigonometric identity,
sin? @ =%(1 — cos 26)
and, rearranging terms, the above equation can be written as
Vo =36(Vi+ V3) +aV,sin ot
—1bV? cos 20yt — 56V cos 2w,t (12.5)
+ (a + 25V, sin ) V; sin wy!

The output then consists of five terms: (1) a dc term, like the output of a rectifier,
(2) a sinusoidal term at @, (3) a sinusoidal term at 2w, , (4) a sinusoidal term at2w,,
and (5) a sinusoidal term at @, whose amplitude is varied (modulated) by @,. If
Wy €Wy, asis usually the case for amplitude modulation, it is relatively easy to filter
out all but the last term, thereby producing an amplitude-modulated wave. The
percentage modulation is determined by the ratio.26V,/a, such that when 26V, /a
= 1, the wave is said to be 1009, modulated, that is, the amplitude just goes to zero at
the pcak of the modulation. The case shown in figure 12.4(a) is ~509, modulated. A
modulation of 1009, is usually considered optimal. A lesser amount is wasteful of
power, and a greater amount results in severe distortion of the waveform.

The terms in equation 12.4 can be rearranged in a slightly different way by using
the trigonometric identity

sin 0 sin @ =}[cos (0 — @) — cos (6 + ¢)]
to get the result
Vou=36(V3+ V%) + aV, sin 0t + aV, sin w,t
—31bV3 cos 2,1 —3bV2 cos 20,t (12.6)
+ bV, V, cos (w, — w,)t — bV, V, cos (w, + w\)¢

As before, Fourier components appear at dc, @;, ®,, 2w,, and 2@,, but new
components also appear at @, + ;. The presence of the second harmonic of @, and
@, results from the initial assumption of equation 12.3. A term proportional to V3,
would have given rise to a third harmonic, and so on. The fundamental frequencies
®, and @, can be eliminated by using an appropriately balanced circuit, such as a
bridge rectifier for which a = 0. For an AM signal, the higher frequency o, is called
the carrier, and the two frequencies @, + w, are called the sidebands. In a typical
case the carrier might be at 1 MHz while the modulation might be at 1 kHz. Then
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Fig. 12.4 (a) Amplitude modulation. (4) Frequency
modulation.

the Fourier spectrum of the AM signal consists of a 1000-kHz carrier with sidebands
at 999 kHz and 1001 kHz. A radio wave modulated by an audio signal with Fourier
components up to, say, ~10 kHz would thus be spread out in frequency in a band
~20 kHz wide centered around the carrier frequency.

An alternate form of modulation, called frequency modulation (FM), is
illustrated in figure 12.4(4). In this case, the frequency of the carrier varies in
response to the applied audio signal. The amount by which the frequency varies is
called the deviation. If the deviation is small, the Fourier spectrum contains only
components near the carrier frequency. The exact calculation is complicated, since it
depends on both the frequency spectrum of the audio signal and the deviation. The
spectrum is usually slightly broader than the corresponding AM signal. The
advantages of FM over AM are that nonlinearities in the radio frequency amplifiers
in the transmitter and receiver do not affect the quality of the signal, and the FM
receiver is relatively free from electromagnetic interference (noise) which tends to be
amplitude modulated. The high fidelity of an FM broadcast signal comes about not
as an inherent quality of FM but rather as a result of the use of larger bandwidths
that allow the transmission of much higher frequency Fourier components of the
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audio signal. An AM signal with equal bandwidth would be equaliy clear and crisp.

With either type of modulation, the circuits in the transmitter and receiver must
be capable of passing a band of frequencies centered on f; and wide enough to
accommodate the sidebands without attenuation. On the other hand, a narrow
bandwidth is desired to avoid interference from strong stations on adjacent
frequencies, as well as to permit the reception of weak signals in the presence of noise
(see section 9.7). A radio receiver always represents a compromise between these
conflicting requirements.

Audio signals are not the only kind of information that can be transmitted on a
carrier wave. A television video signal is transmitted in the same way (see
section 12.6), as are various forms of digital data. Other more exotic forms of
modulation are also in wide use. For example, single sideband (SSB) modulation,
which is basically AM with the carrier and one of the sidebands removed, allows the
same information to be transmitted in a bandwidth only half as wide as an AM signal
and with more efficient use of the power radiated by the transmitter. This is possible
because the two sidebands carry the same information, and the carrier contains most
of the power but no information. To generate the original Fourier components of the
audio signal, however, it is necessary to reinsert the carrier at the receiver by a
nonlinear process similar to the one by which the modulated wave was originally
generated. This is done with a device called a beat frequency oscillator (BFO) or
with a product detector.

12.4 Radio Transmitters

A radio transmitter consists of an oscillator, one or more amplifier stages, and a
modulator as shown in figure 12.5. The oscillator is usually crystal-controlled to
improve its frequency stability. Frequency multiplier stages are often placed between
the oscillator and amplifier. The amplifier is normally operated class C to improve
efficiency, since only a narrow band of frequencies must be amplified. The
modulator can be simply a switch to turn the carrier on and off for transmitting
Morse code.

In an AM transmitter, as shown in figure 12.5(a), the modulation is usually
applied at the final amplifier stage to eliminate distortion caused by the nonlinearities
of the class C amplifier. The modulator usually contains a class A or push-pull class B
audio amplifier which controls the operating point of the radio frequency amplifier.
It must provide an amount of audio power equal to about half of the radio frequency
carrier wave. Sometimes amplitude modulation is applied to a stage prior to the final
amplifier to reduce the amount of power that must be supplied by the modulator. In
such a case, the subsequent amplifier stages must be operated in a linear fashion,

" thereby reducing their efficiency.

In the FM transmitter shown in figure 12.5(b), the modulator varies the
oscillator frequency, for example by means of a varicap diode in the oscillator LC
circuit. Such a modulator need supply very little power, and the subsequent radio
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Fig. 12.5 Transmitters. (a) AM. (b) FM.

frequency amplifier stages need not be linear, but they must have adequate
bandwidth to accommodate the Fourier spectrum of the oscillator signal.

12.5 Radio Receivers

The function of a radio receiver is to extract the audio signal from a modulated radio
frequency carrier wave. The simplest radio receiver would consist of nothing more
than an antenna, a diode (preferably germanium), and a pair of headphones. Such a
receiver possesses little or no frequency selectivity, and will usually receive several of
the strongest AM broadcast stations simultaneously. By simply adding a variable
inductor that forms a resonant LC circuit with the antenna capacitance, as shown in
figure 12.6, a quite usable radio receiver can be constructed which is capable of
tuning in a number of different AM stations.

Like modulation, the process of demodulation or detection is inherently
nonlinear, thereby accounting for the necessity of the diode in figure 12.6. Recall that
all of the Fourier components of a modulated radio wave lie in a small band of
frequencies near the frequency of the carrier wave. The diode generates the low-
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Fig. 12.6 Simple diode receiver.

frequency (audio) Fourier components which are absent in the transmitted wave. The
operation is similar to a diode rectifier in which a low-frequency (dc) component is
generated out of a higher-frequency (60-Hz) ac component. Figure 12.7 shows how
this is done. Figure 12.7(a) shows an amplitude-modulated wave. After passing
through the diode, only the positive half of the wave remains, as shown in
figure 12.7(6). This wave clearly contains low-frequency components in addition to
components at the frequency of the carrier wave. With the addition of a low-pass
filter, only the low-frequency components remain, as shown in figure 12.7(c). A dc
component is also present, but this is easily eliminated. For the case of the simple
radio receiver in figure 12.6, the frequency response of the headphones and of the
human ear provide the low-pass filter. The ear is actually an extraordinarily good
filter, attenuating frequencies below ~20 Hz and above ~20 kHz by an amount that
would be difficult to approach by the use of electrical components.

The simple diode receiver can be improved by adding radio frequency amplifiers
between the antenna and the diode so that a smaller antenna can be used, additional
frequency selectivity provided, and the nonideal properties of the diode overcome.
Similarly, audio frequency (AF) amplifiers can be used after the diode so that the
output can drive a loudspeaker.

Although the scheme described above will work, it is seldom used. To produce
adequate frequency selectivity, many resonant circuits are required, and it is difficult
to keep them all tuned to precisely the same frequency as the receiver frequency is
varied. A more common scheme is to use a superheterodyne circuit as shown in
figure 12.8. The incoming radio frequency signal (1000 kHz in this example) is used
to amplitude modulate a signal from a variable frequency local oscillator
(1455 kHz in this case) in a circuit called a mixer or converter. It produces an
output equal to the sum and difference of the two frequencies (455 kHz and
2455 kHz), as was shown in equation 12.6. These two frequencies can be thought of
as sidebands of the 1455-kHz amplitude-modulated oscillator, although they are
quite widely separated. The 455-kHz component is amplified by a highly selective,
fixed frequency, intermediate frequency (IF) amplifier, and then fed into a
circuit called a detector, which extracts the modulating signal in the same way as the
diode in figure 12.6. The 2455-kHz signal is far outside of the passband of the IF
amplifier and thus is rejected.
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Fig. 12.8 Superheterodyne receiver.
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The advantage of the superheterodyne circuit is that the IF amplifier frequency
can remain fixed, and thus it is easy to maintain a narrow bandwidth for a wide range
of input frequencies. Also, the lower IF frequency means that for a given circuit Q,

- the bandwidth is smaller, since Af = f,/ Q. Furthermore, since f, is independent of the
frequency of the received signal, a constant selectivity can be maintained over an
unlimited range of received frequencies. Lower frequency amplifiers are also easier to
construct so as to avoid unwanted oscillation and the like, because stray inductances
and capacitances are less critical.

A superheterodyne receiver is not without its difficulties; however. For example,
note that a signal at 1910 kHz will also produce a 455-kHz IF signal for the case
shown in figure 12.8. This is called the image frequency, and it is always present,
separated from the frequency of the received signal by an amount equal to twice the
IF frequency. Thus a strong signal at 1910 kHz might be heard when the receiver is
tuned to 1000 kHz. The image is suppressed by providing adequate selectivity in the
radio frequency amplifier stages preceding the converter. As the radio frequency
becomes higher, image rejection becomes more and more of a problem. For a 100-
MHz receiver with a 455-kHz IF, the signal and its image are separated by only
~19,, and adequate selectivity is difficult to obtain while still allowing the receiver to
tune over a wide frequency range. Consequently, double conversion super-
heterodynes are sometimes used, in which the first IF (perhaps 5 MHz) provides the
image rejection and the second IF (often 455kHz) provides the selectivity.

The presence of an oscillator in a superheterodyne receiver poses certain other
difficulties. Care must be taken to isolate the oscillator from the receiving antenna, so
that the receiver does not act as a transmitter and generate unwanted interference. It
is also possible for harmonics of the local oscillator to interfere with the incoming
signal at certain frequencies if the oscillator is on the low side of the signal frequency.
In a dual-conversion receiver with two oscillators, a great many spurious frequencies
can be generated by the beating together of various harmonics of the oscillators. A
certain care must therefore be exercised in choosing appropriate IF frequencies, in
maintaining good sine waves (low harmonic content), and in isolating the oscillators
from one another.

Another consideration in the construction of any AM receiver is the fact that a
wide variation in signal strength usually exists for the various stations to which the
receiver might be tuned. This fact would only be an annoyance, causing a variation
in the audio volume as the receiver is tuned from one station to another, except that it
is difficult to design amplifiers that have a sufficiently large amplification for weak
signals without causing distortion to the strong signals because of nonlinearities in the
amplifiers. Consequently, most AM receivers have an automatic volume control
(AVC), more properly called an automatic gain control (AGC), whose function is
to reduce the gain of the radio and intermediate frequency amplifiers by an amount
that increases with the strength of the received signal. This is usually done by taking
the dc component of the detector output [see figure 12.7(c)], and using it to control

 the bias and hence the operating point of the preceding amplifiers. An AGC is thus a
form' of negative feedback, but at very low frequency.
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The AGC voltage also provides a convenient means for monitoring the strength
of the received signal. Such an S-meter is labeled in S-units (S1 to §9) and dB over
S9 and is usually calibrated so that a voltage of 50 uV at the receiver input gives a
reading of S9, and each S unit corresponds to 6 dB. S-meters are rarely calibrated
with great accuracy, but they do provide an extremely useful indication of relative
signal strength. An AM detector circuit containing volume control, AGC, and S-
meter functions is shown in figure 12.9.

IF )

. l a
L1

AGC
out O

Volume

S—meter

i

-

Fig. 129 AM detector circuit, containing volume control, AGC.
and S-meter.

An FM receiver is also usually a superheterodyne, but its detector contains a
frequency-selective LC filter that produces an output voltage proportional to the
deviation of the signal frequency from its unmodulated value. Since the audio volume
of an FM signal is independent of the signal strength and depends only on the
frequency deviation, the use of an AGC circuit is unnecessary. In fact, FM receivers
are normally designed with such high amplification that the last IF stage is driven
from cutoff to saturation for even a very weak signal. Such a saturated amplifier is
called a limiter, and it serves to make the output quite insensitive to amplitude
variations. Because of the large amplification, an annoying amount of noise is usually
present in an FM receiver in the absence of a signal. A squelch circuit is thus often
provided to suppress the audio output noise in the absence of an input signal.

Because of the high frequencies used for FM broadcasting ( ~100 MHz), even a
small percentage drift in the local oscillator frequency can be quite objectionable.
Consequently, most tunable FM receivers have an automatic frequency control
(AFC) which detects the variation of the IF signal from the center of the IF passband
and produces a corresponding dc voltage which is used to stabilize the local oscillator
frequency. An AFC circuit is yet another example of negative feedback.

Whereas the bandwidth of a commercial AM broadcast signal is about 6 kHz,
the bandwidth of an FM broadcast signal is about 36 kHz. The wide bandwidth not
only improves the fidelity of an FM signal but also permits the transmission of
stereophonic information by means of a modulated subcarrier displaced 19 kHz
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from the main carrier. Although stereo could be achieved by modulating each carrier
with one of the two audio channels, this would cause a monophonic receiver to
receive only a single channel. The two systems are made compatible by modulating
the main carrier with a signal proportional to the sum of the two channels and
modulating the subcarrier with a signal proportional to the difference between the
left and right channels. A stereo receiver then reconstructs the two channels by taking
the appropriate sums and differences of the two signals.

12.6 Television

The video (picture) portion of a television signal is generated by a television (TV)
camera which is the optical analog of the microphone. The type of TV camera used
for live commercial television is the image orthicon in which the picture to be
transmitted is imaged on a photocathode which emits electrons proportional to the
amount of light striking each area of the cathode. These electrons strike a glass disc,
causing it to emit secondary electrons. The secondary electrons are collected on a fine
mesh screen, leaving the disc with a positive charge density proportional to the light
intensity. A low-velocity electron beam from a cathode ray tube is then directed
toward the positively charged disc, and the intensity of the reflected beam is
measured by a photomultiplier tube <(section 10.6). Some of the electrons are
extracted from the beam to neutralize the positive charge, and so the detected signal
is modulated by the light intensity.

Asecond type of TV camera which is becoming increasingly popular because of its
small size and simplicity is the vidicom. It consists of a thin layer of photoconductive
material deposited on a transparent conducting film on which the image of the
picture is focused. The surface is initially uniformly charged, but those areas on which
the light falls discharge at a more rapid rate. Then, when a low-velocity electron
beam is swept across the surface, a charging current flows to the conducting film in
proportion to the light intensity.

For either type of camera, a well-focused electron beam sweeps across the target
in a pattern as shown in exaggerated form in figure 12.10. The beam sweeps slowly
from left to right and then is turned off (blanked) during the rapid retrace when the
beam moves back to the left. Actually, rather than sweeping through all 525 lines in
sequence, the odd-numbered lines are first swept, and then the trace returns to the top
and sweeps through the even-numbered lines. This imterlacing reduces the
bandwidth required for transmitting a picture without objectionable flicker. Even so,
it is necessary to transmit 30 complete pictures per second, so the horizontal sweep
frequency is 525 x 30 = 15,750 Hz. To obtain reasonable horizontal resolution, the
video bandwidth must be several hundred times greater than this, so that the total
bandwidth is about 4,5 MHz. Contrast this with the fact that the wholc AM broadcast
band is only about 1 MHz wide!

A television transmitter is essentially the same as a radio transmitter, except that
the carrier is amplitude modulated with a 4.5-MHz-wide video signal, and an FM
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Fig. 12.10 Scan sequence of a television picture.

audio subcarrier is added 4.5 MHz above the video carrier. To conserve bandwidth,
the Fourier components above about 1 MHz are suppressed from the lower sideband
Since only a vestige of the sideband remains, the process is referred to as vestigial
sideband modulation.

A television receiver is a superheterodyne with an FM audio section and an AM
video section. The detected video signal is fed to a picture tube, which is essentially an
intensity-modulated CRT, usually with magnetic rather than electrostatic deflection.
The sweep of the picture tube must, of course, be synchronized with the sweep of the
TV camera tube. This is done by special horizontal and vertical sync pulses which
are transmitted during the retrace of the beam.

With color television, three separate camera tubes are used with red, green, and
blue filters. To make the system compatible with black-and-white television, a signal,
called the luminance signal, is produced by adding the outputs of the three color
signals. This signal then amplitude-modulates the main video carrier. Then, in a
manner similar to the way in which an FM stereo signal is transmitted (see
section 12.5), two chrominance signals are generated by taking a linear com-
bination of the differences of the three color signals. To keep the bandwidth of the
color TV signal comparable to that of black-and-white, use is made of the fact that
most of the Fourier components of the luminance signal occur near harmonics of the
horizontal sweep frequency, 15,750 Hz. The chrominance signals are transmitted on
two subcarriers 90° out of phase and having a frequency 3.579545 MHz above the
picture carrier so that their harmonics fall midway between the harmonics of the
luminance signal. In the usual color television receiver, the red, green, and blue
signals are reconstructed and used to control three electron guns which are directed at
the viewing screen through a shadow mask consisting of a metal sheet with
thousands of accurately located holes. The mask allows each beam to illuminate a
phosphor dot of the appropriate color on the screen. When viewed from a distance,
the dots are indistinguishable and produce a shade of color that depends on the
relative intensities of the various dots.
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12.7 Radar

An interesting application of electromagnetic radiation is radar (radio detection and
ranging), in which radio waves in the microwave range are reflected off a distant
object and detected in order to determine the position and/or velocity of the object.
Microwave frequencies (10° — 10'? Hz) are required, because they can be confined
to narrow beams by modest-sized antennas and because they travel in straight lines
and penetrate clouds and other nonconducting obstructions.

There are two basic types of radar. With pulsed radar, a short (typically 1 ps)
pulse of radiation is transmitted at a rate of typically 1000 puises/s by a rotating
antenna. The position of an object is determined from the direction of the antenna
and the time required for the pulse to be reflected from the target and return. The
position is displayed on a device cailed a plan position indicator (PPI) which is just
a cathode-ray tube with a circular sweep that is in sync with the rotation of the
antenna. Such a radar is two-dimensional, since it provides bearing and range
information only. Its most common application is in air traffic control.

The other type of radar is called doppler radar. It makes use of the fact that an
electromagnetic wave is shifted in frequency when it is reflected from a moving
object. The frequency shift is given by

=¥ (12.7)

where » is the component of velocity of the target toward the radar and ¢ is the
velocity of light (» <¢). The radar receiver mixes the transmitted signal and the
received signal to produce a beat frequency equal to Af. The frequency difference is
then converted to a voltage that can be read with a dc voltmeter. The doppler radar
need not be pulsed and is typically run continuously. Its most common application is
in speed detection for law enforcement.

The two types of radar can be combined to discriminate against stationary
targets so as to reduce clutter on the radar screen caused by trees, buildings, and the
like. Higher-frequency radars (A < 1 cm) give higher spatial resolution, but they tend
to be strongly attenuated, especially in areas of high precipitation. Weather radars
intentionally use frequencies at which significant reflection occurs from regions of
precipitation. The range of a typical radar is limited to a few hundred miles, but radio
waves have been reflected from the moon and even from several of the closer planets.

12,8 Summary

When applied to an antenna, high-frequency oscillating voltages will generate
electromagnetic waves that propagate over large distances without wires or other
medium. These waves are characterized by their frequency or corresponding
wavelength. They provide a highly effective means of communicating speech,
pictures, or other types of information. At low frequencies ( <10 MHz), radio waves
reflect from the ionosphere and can travel around the earth. At high frequencies
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(Z10 MHz), they usually penetrate the ionosphere and travel deep into space,
gradually losing their energy density.

A radio transmitter consists of an oscillator, an amplifier, and a modulator that
varies either the amplitude or frequency of the wave. A radio receiver can be nothing
more than a diode and a pair of headphones, but more typically it contains a number
of amplifiers to improve its sensitivity, and, in the case of the common superheterodyne
receiver, one or more frequency converters.

The processes of rectification, amplitude modulation, detection, heterodyning
(beating), and frequency multiplication are all nonlinear operations that generally
result from passing one or more signals through any nonlinear circuit. Whether a .
circuit is called a rectifier, a modulator, a detector, a mixer, or a multiplier depends
on which of the operations the circuit is optimized for. By choosing appropriate
nonlinear devices and connecting them in a suitable way with filters, any one of the
operations can be emphasized and the other suppressed.

Two important examples of the use of electromagnetic waves are television and
radar. A television picture is produced by scanning an electron beam in a prescribed
sequence and amplitude modulating a carrier in proportion to the light intensity.
Color television uses three such beams to record the intensities of each of the primary
colors: red, green, and blue. A radar transmits a wave and detects either the time
lapse (pulse radar) or the frequency shift (doppler radar) of the wave reflected from a
target. In this way the position and velocity of the target can be determined.

Problems

12.1  Calculate the wavelengths corresponding to the following frequencies: (a) an
AM radio station at 1070 kHz, (b) an FM radio station at 88.7 MHz, (c) a UHF
television station at 700 MHz, (d) a citizen’s band transmitter at 27.185 MHz, (e) a
microwave oven at 2450 MHz.

12.2 Use dimensional arguments to show that in free space (Q =0, I=0),
Maxwell’s equations require
' E 1

B Jug,

=c

12.3  You notice that the antenna on a police car is about 18 in. long. Assuming it
to be + wavelength, estimate the frequency of the police radio.

12.4 Assume an antenna has a capacitive reactance corresponding to 1000 pF.
Design a circuit that will cause the antenna to look purely resistive to a source at a
frequency of 1 MHz.

12.5 A television tower is 1000 ft high. Estimate the range of its coverage if the
receiving antenna is at ground level. How high must the receiving antenna be to
double the range? -

126 Estimate the range that could be expected for a radio wave that reflects from
the ionosphere at a height of 100 km.
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127  Calculate the amplitude and frequency of the Fourier components of the
amplitude modulated wave given by V(t) =V, cos wyt(1+ cos Awt).

12.8  Calculate the ratio of the power in the sidebands to the power in the carrier
for a 100%, modulated AM signal. Assume power is proportional to the square of the
voltage.

129  Write a mathematical expression for the time dependence of a sinusoidal
voltage of peak value 10 V and 100 MHz which is frequency modulated by a 1-kHz
sine wave with a deviation of +10 kHz.

1210 FM broadcast receivers often have a 10.7-MHz IF. If such a receiver is tuned
to 88.1 MHz, what are the two frequencies for which images might be expected?
What determines which of the two frequencies will, in fact, be present?

12.11 Assume an AM broadcast receiver (5351705 kHz) has a 455-kHz IF and a
local oscillator on the low side of the received signal (very unusual). Over what range
of frequencies must the oscillator tune? At what frequencies on the radio dial might
one expect to hear harmonics of the oscillator? At what frequency on the radio dial
might the fundamental of the local oscillator be picked up directly by the IF
amplifier? Give three reasons why the local oscillator is usually at a frequency above
the received frequency in such a receiver.

12,12 Adouble conversion superheterodyne has a first IF of 10.7 MHz and a second
IF of 455 kHz. If the receiver is tuned to 121.5 MHz, what are the possible
frequencies of the first and second local oscillators?

12.13 A ‘“‘ghost image” is often observed on a television screen slightly displaced
horizontally from the main picture. Usually this is caused by a reflected wave which
arrives at the TV antenna slightly later than the main wave. Calculate the difference
in path length of the direct and reflected wave if the ghost is displaced by one inch on
a screen with a width of 16 in.

12.14 Disregarding the sync pulses, calculate the frequencies at which most of the
Fourier components of the TV video signal occur for a carrier frequency of
61.25 MHz (Channel 3) if the picture consists of (a) a single vertical stripe, and (b) a
single horizontal stripe.

12.15 Consider a pulsed radar which operates at a frequency of 10 GHz and
transmits 1-us-wide pulses at a rate of 1000 pulsesfs. Calculate (a) the number of
waves in a pulse, (b) the spatial length of a wavetrain, (c) the spatial distance between
pulses, and (d) the minimum bandwidth of the radar signal.

12.16 What is the maximum range of a pulsed radar that transmits 2000 pulses per
second? If the pulse length is 0.5 us, what is the approximate range resolution?
1217 What frequency shift would be produced in a doppler radar by a target
moving at 55 mi/hr if the radar uses 1-cm microwaves?
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Bibliography

Unfortunately, all the theory, data, and practices that are needed to solve electronic
problems and design circuits have not been compiled in one reference source. This
book provides but a starting point for circuit design and analysis. The serious student
of electronics will require much more detailed treatments of the various topics. There
are hundreds of good sources, but only a handful of the most useful are listed here,
along with brief comments on their contents. In addition to these sources, the reader
should be aware of the volumes of specifications and application data available free
or at nominal cost from electronics manufacturers, especially the semiconductor
manufacturers. The electronics magazines (Electronics, Electronic Design News, Electronic
Design, Electronic Products, and Digital Design, to name a few) are very helpful in
keeping up with new products, “the state of the art,” and engineering practice.

Study other’s designs and methods, but don’t blindly copy what you don’t fully
understand. Many published designs either contain errors or have never been fully
tested. Perhaps because of the fundamental perversity of Nature, even the most subtleé
and sophisticated design methods often yield circuits requiring substantial amounts of
“bench engineering” to obtain satisfactory performance.

Halliday, David, and Resnick, Robert, Physics, Wiley (1978). The starting point for any study
of electronics is an understanding of the underlying physical principles. This standard
introductory physics text contains a complete, yet not overly involved, explanation of all the
important physical processes that govern the behavior of electronic components. A book of this
sort should be in the library of every scientist and engineer.

Thomas, George B. Jr., and Finney, Ross L., Calculus and Analytic Geometry, Addison-Wesley
(1979). The difference between someone who merely tinkers with electronics and someone who
can successfully design complicated circuits lies largely in the person’s level of mathematical
ability. This freshman calculus text provides all the mathematical tools that are necessary for
design and analysis of even the most complicated electrical circuits. Besides differentiation and
integration, the sections on determinants and linear equations, Fourier series, complex
numbers, and differential equations are especially useful in the study of electronics.

Brophy, James J., Basic Electronics for Scientists, McGraw-Hill (1977). This standard electronics
text contains a good description, often simplified, of most of the topics covered in this book. For
the reader who would like to see the topics treated here explained in different (and perhaps
better) words, Brophy provides a highly readable text. ‘

Anderson, L. W., and Beeman, W. W., Electric Circuits and Modern Electronics, Holt, Rinehart
and Winston (1973). This text, which is presently out of print but available in libraries, is
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probably closer in level, order of topics, emphasis, and notation to the present text than any
other electronics book available. It was for several years used as the text in the course for which
the present book was written. It delves in much greater detail into many of the topics presented
here.

Diefenderfer, A. James, Principles of Electronic Instrumentation, Saunders (1979). This relatively
modern text, as the title suggests, is slanted toward the use of analog and digital circuits in
electronic instruments. It contains a large number of sample specification sheets for
semiconductor devices and integrated circuits.

Langford-Smith, F., ed., Radiotron Designer’s Handbook, distributed by Radio Corporation of
America (1965). Although many people will scoff at this relic of the tube days, it is filled with
valuable information on almost every electronic subject except semiconductors. Every chapter
is followed by a thorough bibliography with detailed information on many subjects.

Westman, H. P., ed., Reference Data for Radio Engineers, Sams & Co. (1975). In many ways the
modern version of the Radiotron Designer’s Handbook, this volume contains most of the reference
information any electronics designer needs. Though it is slightly tilted toward the com-
munications engineer, most of the articles are of general interest. It is excellent for reference
and review but not a very good source for learning new material. It contains a great wealth of
tables and formulas.

Tremaine, Howard M., Audio Cyclopedia, Sams & Co. (1969). This is a very comprehensive
source of information on audio recording and reproduction. Unfortunately, it is organized in a
question-and-answer format, which can be annoying, but it has a fairly good index. Itis a good
source of audio engineering practice, although it contains nothing on semiconductors.

The Radio Amateur’s Handbook, American Radio Relay League, published yearly. The
publications of the ARRL can be very useful, even to the non-ham, in providing basic, clearly
written instruction in electronic principles and good construction practices. The Radio Amateur’s
Handbook is strongly recommended for the beginner in electronics, especially for someone with
only a modest mathematical training. It is also relatively inexpensive.

Graeme, Jerald G., Tobey, Gene E., and Huelsman, Lawrence P., eds., Operational Amplifiers :
Design and Application, McGraw-Hill (1971). There are many excellent textbooks on op amps as
well as a wealth of application data available from manufacturers. This book, however, along
with its companion volumes by Graeme, Jerald G., Applications of Operational Amplifiers: Third
Generation Techniques, by Wong, Yu Jen, and Ott, William- E., Function Circuits: Design and
Applications, and Graeme, Jerald G., Designing with Operational Amplifiers : Applications Alternatives,
provide the best reference on op amp technique available. Written under the aegis of Burr-
Brown, a major supplier of operational amplifiers, this reference provides clear, complete
information on almost every aspect of op amp application.

Taub, Herbert, and Schilling, Donald, Digital Integrated Electronics, McGraw-Hill (1977). For
one who was intrigued but frustrated by the brief treatment of digital electronics in Chapter 11,
this book expands to over 600 pages on the fundamentals of digital circuits, exclusive of
computers. Written in textbook style, with many examples and problems, this book begins
where the present text leaves off in digital circuits.

Cannon, Don L., and Lucke, Gerald, Understanding Microprocessors, Texas Instruments
Learning Center (1979). Although texts on digital computers and microprocessors have a way
of becoming outdated by the time they make it to press, this elementary text is as good a
starting point as any for one who wants to understand in more detail the construction and
operation of microcomputers.
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Scientific American, September 1977 issue. This entire issue was devoted to the subject of
microelectronics and contains eleven articles on topics ranging from the construction of
integrated circuits to the organization and use of microcomputers. It also contains an extensive
bibliography.
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B
Physical

Constants

Gravitational constant: G=6.672 x 107! N-m?/kg?
Acceleration due to gravity: £=9.81 m/s?

Mean radius of the earth: Ry =6371 km

Mass of an electron: m, =9.10953 x 107! kg
Electronic charge: ¢e=1.60219x1071° C
Velocity of light: ¢ =2.99792 x 108 m/s
Boltzmann’s constant: 1.38066 x 1072 J/K
Permeability of free space: Uo =4m x 1077 N/A?
Permittivity of free space: €0 =8.85419 x 10712 C2/N+m?
Planck’s constant: h=6.62618 x 1073* J/Hz
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C

Units and
Conversion Factors

Some metric prefixes: p=107"2 (pico)
n=10"? (nano)
u =107 (micro)
m = 1073 (milli)
c=107? (centi)
k=10? (kilo)
M = 108 (mega)
G = 10° (giga)

1 ampere (A) =1 Cfs

1 volt (V)=1]J/C

1l ohm (Q)=1V/A

1 siemens (U) =1 A/V

1 watt (W)=1]J/s

1 farad (F)=1 G}V

1 henry (H) =1 Wb/A

1 hertz (Hz) = 1/27 rad/s

7 radians = 180°

Temperature (Kelvin) = 7(°C) + 273.16
1 micron (g) =10"%m

1 inch=2.54cm

1 mile =1.60934 km

1 calorie=4.184]

1 electron volt (eV)=1.6 x107'?J
1 horsepower = 745.7 W
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D

Electromagnetism

Maxwell’s equations:

Current:

Voltage:

Magnetic flux:
Resistance:
Capacitance:
Inductance:

308 Electromagnetism

$ E-dA = QJ¢, (Gauss’s law)
$B-dA=0

d
fB‘dl = pol + poto 7 J.E-dA (Ampere’s law)

d

§E'dl= -3 fB'dA (Faraday’s law)
=%

dt
V= [E-dl
®=[B-dA
R=VI
c=Q/V
L=NO/I




E
Mathematical
Formulas

Quadratic equations:

1
a?+ bx+c=0 = x=—2—(—bi~/b2—4—ac)

a
Linear, first-order, homogeneous, differential equations:

dx —at
—tax=0 = x=xq¢

dt

Linear, first-order, nonhomogeneous differential equations (x, = constant):

dx .
E+ax—ax = x=ux¢ " +x,
I’Hépital’s rule:
. df |dg
lim f(x)/g(x) = — [ = (if f(a) = g(a) =0)
Y—a dx | dx|c=,
Partial derivatives:
d
of (x,9) = f ox+ —
y P |«

Average value:
7 L x
rms value:
Xems = ' ?
s [T T
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Error analysis:




Tavlor series:
Z (x—a)"d"f
—— (a

n! dx"

Sflxy=fla)+ ) where n!l=n(n—1)(n—2)...1
n=1
Fourler series:

it . 1 (T2 B
Sty = Z C,,elnwor where C, = ?_. f(l)e nwot 1y

n=—o -7/2
Fourier transform:

St = _l___ jw f—(w) 72 dep Wheref(w) = J f(l)e—j"" dt

2n ) _ .
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F

Trigonometric
Relations

sin §= —sin (—0) =cos (n/2 — 0)

cos B =cos (—6) =sin (n/2 — )

sin (0 + ¢) =sin 0 cos ¢ + cos O sin ¢
cos (0 + ¢) =cos 0 cos ¢ Fsin Osin ¢
sin 8 sin ¢ = 4[cos (6 — ¢) — cos (0+ ¢)]
cos 8 cos ¢ =1[cos (0+ @)+ cos (0 — ¢)]
sin # cos ¢ =4 [sin (8+ ¢) + sin (6 — ¢)]
sin? 6 =4(1 —cos 26)

cos? 6 =1 (1+ cos 26)

tan 6 =sin 8/cos

cot@=1/tan 0

sec0=1/cos 8

cosec 0 =1/sin 0

sin? 0+ cos? 0 =1

Acos @ —Bsin 0 =./4*+ B* cos (0+ ¢) where ¢ =tan"! (B/4)
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G

Complex Numbers

j=T 0 P=—l yj=—

e =j == e =—J =1

¢® =cos @+ jsin 0

1 . .
sin @ =% (8% — 779

J
cos 0 =4(e?+ ¢
A+ jB=./A*+ B* ¢ where ¢ =tan™" (B/A)
1  A—jB
A+jB  A*+B?
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H

Derivatives

d(fg)=fdg+tgdf

df — fd
af1g =44 ng 2

d(f)y=nf""tdf
d(e™) = ae™ df
d(In f) =df|f
dsinf@=cos 048
dcos@=—sinBdb

do
0=
dtan 20
- 4
L
dtan f_l+f2
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Integrals

n+1

n+t1
I dx =Fla + ¢

Ix"dx: +C

1
J‘—dx=lnx+C
x

flnxdx=xlnx—x+C
fsinxdx=—cosx+C
jcosxa'x:sinx‘i'C
jtanxdx:—lncosx-i-C
jxsinxdx=sinx—xcosx+C
jxcosxdx=cosx+xsinx+C
jsinxcosxd =1sin2x+C
[sinfxdx=%4x—%sin2x+C
feos?xdx=%x+isin2x+C
[ cos (m—n)x cos (m+ n)x
2m—n)  2m+n)

+C (m?#n?)

sin mx cos nx dx = —

*n ] B
sin? x dx = cos? xdx=—
JO 0 2
*n

sinxcosxdx=0

Jo
("o
s
e dx=% [—
Jo a
(x T (m=n)
M = { m, n integers
Jo 0 (m#n)
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Approximations

The following formulas are valid for x| < 1:

(1+x)"=1+nx
sin x ~x

cos x~1—x?/2
tan x> x

tan lx~x
Ex~1+x
a&=1+xlna
In(1+x)~x

Approximations 31 5
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Answers to Odd-Numbered

Problems

Chapter 1

1.1 94 x10"°m/s

1.3 9.8kW

1.5 800 Q

1.7 0.833Q

1.9 1618 R,

1.L11 5V

1.13 05A

Chapter 2

21 L=L+1L
L=hLt+1I

Vi=hLR, + LR,
12R2 = 13R3 + I4R4
LRy+ V,+ I,Rs=0

93 L+I=1,
V=ILR,+ LR,
V+ IR,
L=
R1+R2
25 0.1A
27 V=20V, Rp=150Q,
I,=0.1A
29 R=R;

211 Iy=1A, Ry=11Q V, =11V

Chapter 3
3.1 0.0177 uF
3.3 99 mH

31 6 Answers to Odd-Numbered Probiems

115
1.17
1.19
1.21

1.23

2.13

2.15

2.17

2.19
2.21

3.5

1V
12.5 V

(a) 1 V, (b) 1.625 V
40 A

Connect meters in series:

V, =880V, V, =220 V

_ R,Ry+ RyRc+ R R,

B R,* Rc

R,Ry+ RyRc+ R R
R,+ Ry

Rll

Ry =
Ry, =Ry,

_ RRgt RgR:+ R, R
= R,
R, =10Q, R, =409,
R,=10Q

R \R, + RiR,
R,+R, R3;+R,
Ve=15V,R = 13Q
Iice =23 mA, Vo =23V

o= e

Vety =V+ (Vo= V) e IR




3.7  I(0)= 0)=0
(0) RTR, 3(0)
14
()= R+ Ry
. VR,
() =% Tr,
vV
9 — (1= —RiRt/(R; +R3)L
3 R, (1—e )
C, ¥, (0)
3.11  Vy(0) = V,(00) = —
1 2 C,+ G,
Chapter 4
wCV 1
. I= (1] —t/RC
+.1 0*R*C + 1 [wRC ¢

+ wRC cos wt —sin wt

wCV,
VOIR*C*+ 1
where ¢ = tan~'(1/wRC)
£5 Q=wol/R
47 $=154.3°
49 Vy=3.54 o100+
Lr=50+504, Rr =500,

43 I= cos (wt+ @),

Ly=05H
411 | Voul/Vial
3 1
L+ __eL ’
R(w*LC—1)
" ol
p=mn e 1)
Chapter 5
2V & 1 nx
5.1 =20Y 2|1 -cos—
<) n[ cos 2]
sin nwyt
Wy 4V, &
53 V() ="2--2
0=—"=— ,.;2
cos nweyt neven
n?—1

211 a’1+ 1V
di*  RCdt LC ~ LRC
dl 14
1(0) = V/R, — (0) = — ——
(0) =VIR, ( ) R0
Pl 1 dIR 1 14
SR R = ——
4> RCdt LC® RLC
3.17 VC=100 lz, VL=0.1V

3.13

3.15

R+ R,
RR,C
4.15 16 Hz to 8 MHz
1
RyC3R,C,
RyR, _ R\R, 4 R\R,
C, C, C,

R,

R, + R,
-(independent of w)

421 L=4H,I = 7.07A
423 Lp=4H, k=0.998

413 wc=

417 w*=

419 |Vou/Vial =

5.5 Cn = %(ab _an)
@
5.7 Vy~—81x1074V, ¥

n=1
n odd

sin nwgt

n3
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5.9 |[7(w)|=gK9!’l—cos wr)
w
511 I(t)= M )
n bl <]
wRC+ j(1 —w?LC)
w?R*C*+ (1 —w?LC)? -
sin (w1/2)e*" dw
Chapter 6
6.1 I=102mA, V=54V
6.3 0.48t00.66V
6.5 0.25 W (half-wave),
0.5 W (bridge)
6.7 Open: looks like a half-wave
rectifier.
Short: draws large current from
source.
6.9  Lypellay=2./T0ORC
Chapter 7
7.1 Vpe=82V, [, =27mA
7.3 (a) increases, (b) decreases,
(c) decreases
7.5 Rp~10kQ, R-=509Q,
Rs; =100 kQ,
A~50,C;=0.016 uF
1T A=—p -:d:‘l’+ WR
P , c
~ — % (for u large)
79 GC,=(1+]4))C
7.11 A=0.46
7.13 Common cathode: A ~ —100,

31 8 Answers to Odd-Numbered Problems

R,=1MQ, R, ~10iQ
Cathode follower: 4 ~ 0.5,
R,=1MQ R ~50Q
Grounded grid: 4 ~ 100,
R, ,~50Q, R, ~10kQ

13

15
17

U

w

5.19

6.11
6.13

6.17

6.19

6.21

7.15
7.17

7.19
7.21

¢=—-51°
R=Z(2)/RL, C=LZ5
C'=ewld, L' = pdjw,
Ro=+/Hledw

v

_ P
vg_——_—l'*-(l/Qw)z <vp<c

20%

Ve(dc) =6.37 V,
L=177H
T=157ms, L, =1A

Po=4W, Pr=2W,P,=1W,
P,=1W

49,

Peaks of wave are flattened
Re=1MQ, R, =1kQ,
Rs=100Q
A, =0.995, 4, = —0.995
Common source: A= —gRp,
Ry, =Rg, Ry =Rp
Source follower: A=1,
Ry, =Rg
R, =—F5

grsRs T 1
Grounded gate: A =g, R,

Ry
in gsts+ 1 » flout D




Chapter 8

8.1 Veg=11V,I;=45mA

83 V=05V, I;=95mA

B

l+ﬂ+7£

8.7 V=2V, Vg=14V, V=3V,
ILy=14 A, Ig=Ic=1.4mA

89 A4=-3

85 r,=

Chapter 9

9.1 A= —(R;+ R, T R,R([R))[R;
93 R,=5x101°Q

95 R,=R,=10009Q, R;=2000Q

9.7 A= B—‘—i_——&
R,
99 A4=1
Chapter 10
10.1  R=10MQ
10.3 4,=29
10.5 R /R;=1
10.7 V,=6V
10.11 T=4ms

10.13 V= Voe *RC sin wt

Chapter 11
11.1 107, 2018, 2671

11.3 100101001, 129,
110001 100000,, C50,

11.5 —354

Chapter 12

12.1 280 m, 3.38 m, 43 cm, 11 m,
12 cm

123 164 MHz

12.5  62.3 km, 1000t

12.7 ¥V, at wyg, Vp/2 at @y + Aw

129 V=10sin 2n(108+ 10*
sin 6283¢)¢

8.11 V,, =4-0.99sin wt

8.13 C,=6uF, C, =123 uF

8.15 R,=75Q, A=49.5

8.17 I,=1A,P,=10W, P,=10W,
Pg=025W,P,=0W

8.19 CMRR=100

91 1 Rin = —R1R3/R2
9.13 R,C=1]7,R,C=4

kT
9.17 Vou= ——In (Vi/BLR)
¢

9.19 ¥, =0513uV

10.15 BB, >1

17
10.17 V(¢) =2—;+ Vy cos ot

v,
+ -2 sin w,t
2n n o

10.19 VW, ~100(1 — ¢ 100011

11.7 Vy=(4+B)-C
11.19 1011, 0101, 0010, 1001, 0100
11.21  6.25%, 0.0015%

12.11 80-1250 kHz; 910, 682.5,
606.7, 568.8, 546 kHz;
910 kHz
12.13 1.19 km
12.15 10% 300 m, 300 km, 1 MHz
12.17 4.9 kHz
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Laboratory
Experiments

Included here are fourteen suggested laboratory expcrirhents to accompany the text.
The experiments are each designed to be completed in a single three-hour laboratory

period.
It is suggested that students work in pairs at benches provided with the following

basic equipment:

Dual power supply, current-limited, regulated (0-20 V)
Volt-ohm-milliammeter (20 kQ/V)

High-impedance voltmeter (=10 MQ)

Function generator, sine, square, triangular waves (10 Hz-500 kHz)

Oscilloscope (dc-1 MHz)

In addition, an assortment of resistor, capacitor, and inductor substitution boxes or
individual components are required. Several of the experiments are facilitated by
having preassembled circuit boards containing most of the required components.

Students are encouraged to write up the results of the experiments with some
care. The wise student will do enough for the analysis during the laboratory period to
ensure that the experiment was done properly. Wherever possible, the measured
values of quantities should be compared with theoretical calculations and the
percentage error given. When plotting graphs, make sure the axes are adequately
labeled with the quantity and its units, and put the measurements on the graph as
discrete data points and the theory, where appropriate, as a solid line. It is a good
idea to write a short, one-paragraph summary at the end of the report, stating what
was learned from the experiment.
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Experiment 1

D.C. Measurements

The purpose of this experiment is to acquaint the student with the various
instruments available in the laboratory for measuring dc currents and voltages and to
acquaint the student with the limitations of these devices.

Apparatus required: 0-20 V power supply, two resistor substitution boxes, VOM,
VTVM (or equivalent), 24-V incandescent lamp.

Procedure:

1. Set up the voltage divider shown in figure 1.7 using R, and R, of approximately
100 . Test the voltage divider relation using the VOM and again using the VTVM.
2. Repeat the above measurements using 1 MQ for R, and R,. When does a
voltmeter give a useful measurement in this circuit?

3. Measure at least two resistances, one about 100 Q and one about 50 k(Q, using
each of the circuits below:

@

(a)

f;f\
O/
I
. (b)
I
For each case, correct the measured resistance for the finite internal resistance of the
meters. Explain under what circumstances each circuit is best for such resistance

measurements.
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4. By varying the power supply voltage, measure and plot the voltage across the
resistance as a function of current through the resistance in one of the best circuits.
Determine R from the slope of the line. Estimate the percentage accuracy of the
measurement.

5. Measure and plot the voltage across an incandescent lamp as a function of
current through the lamp. Is the lamp a linear component?
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Experiment 2

Circuit Theorems

This experiment illustrates the superposition theorem, Thevenin’s theorem, and the
reciprocity theorem for linear circuits; and the failure of these theorems when the
circuit contains nonlinear components.

Apparatus required: Dual 0-20 V power supply, VOM, VTVM, 3-port resistor
network with switch to add an incandescent lamp.

Procedure:

1. With the switch in the R position, apply various voltages ¥V, at port 2 and
simultaneously apply ¥, at port 3 and measure the short circuit current at port 1.
Does the superposition theorem hold?

. 2. With the switch in the R position, apply a voltage V; of 10V at port1 and
determine the open circuit voltage ¥, and the short-circuit current /, with terminals 3
short circuited. Find the Thevenin and Norton parameters for port 2.

3. With the switch in the R position, place a voltage source ¥, at port ! and an
ammeter at port 2 with terminals 3 short circuited. Now interchange the voltage
source and the ammeter and repeat the measurements. Is the reciprocity theorem
obeyed?

4. With the switch in the R position, measure all 9 R parameters for the circuit
(R;;=V;/1;), remembering to short-circuit the unused terminal pair(s).

5. With the switch in the L position, repeat as many of the above measurements as
necessary to convince yourself that the circuit theorems are not obeyed.

6. Make a diagram of the circuit. Analyze and display the results of the data and a
comparison with the values calculated from the diagram for Vy, Ry, Iy, Ryy, Ry, and
so on.
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Experiment 3

Wheatstone Bridge

This experiment is to familiarize the student with the Wheatstone bridge and its
ability to make very precise measurements using the null method.

Apparatus required: 0-20 volt power supply, sensitive galvanometer, 0.5%, pre-
cision 1000-Q resistor, 0.059, precision resistor decade box.

Procedure:

1. Set up a Wheatsone bridge circuit as shown in figure 2.13. Use a precision
(0.05%) resistor decade box set to 1000 Q for R;. Use a precision (0.05%,), 1000-Q
resistor for R,. Use low-precision, 1000-Q resistors for R, and R,. Since R, and R, will
not be precisely equal, it will be necessary to place high-value resistors in parallel with
either R, or R, in order to achieve a balance. Once this is done, verify that a 1-Q
change in R, either above or below 1000 Q will produce a noticeable reading on the
galvanometer.

2. Use the already-balanced bridge with R, changed to an unknown resistor to
measure by direct reading of Rj the correct resistance of resistors of about 500 Q,
1000 €, and 2000 Q, with an accuracy of approximately 0.1%. Repeat until the
results agree with those obtained by your instructor.
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Experiment 4

Oscilloscope

The purpose of this experiment is to permit the student to become familiar with the
operation of the cathode ray oscilloscope.

Apparatus required: Oscilloscope, function generator, 0-20 V power supply,
VOM, resistor substitution box, 6.3-V transformer.

Procedure:

1. With the function generator connected to the vertical input of the oscilloscope,
observe sine, square, and triangular waves of several different frequencies.

2. Check the sweep-speed calibration of the oscilloscope by applying a 60-Hz
sinusoidal voltage from the 6.3-V transformer to the vertical input.

3. Using a dc voltage source in conjunction with a VOM, check the voltage
calibration of the oscilloscope. '

4. Apply a 60-Hz voltage from the 6.3-V transformer to the horizontal input. Use
the function generator to apply a sinusoidal ac voltage to the vertical input. Observe
the Lissajous figure that results when the function generator is carefully adjusted to a
frequency that is in a rational ratio to 60 Hz (ie., 20 Hz, 30 Hz, 40 Hz, 60 Hz,
120 Hz, etc.). How accurately calibrated is the function generator?

5. Devise and execute an experiment to determine the input resistance of the

oscilloscope.
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Experiment 5

Transient Series RLC Circuit

The purpose of this experiment is to permit the student to study the transient response
of a series RLC circuit in the overdamped, critically damped, and underdamped
cases.

Apparatus required: 0-20 V power supply, mercury relay, oscilloscope, resistor ,
inductor, and capacitor substitution boxes.

Procedure:

1. Construct the following circuit:

2
o
o
>

V&

I R
| o

The switch § is a mercury relay that is driven by the 60-Hz voltage from the power
line. Verify that it opens and closes every 1/120 s. Adjust the oscilloscope so that it
triggers on the opening of the switch. The behavior of the circuit will be studied just
after the switch opens, at which time the source is disconnected and the circuit
consists only of a series RLC.

2. What are the initial conditions for I,>Vc, and dI/dt?

3. Choose R, L, and C such that the circuit is underdamped with a Q of about 20.
Measure the frequency of oscillation and compare with equation 3.23.

4. Measure the damping rate of the oscillation and compare with equation 3.25.

5. Increase R until the circuit is critically damped, and compare with the value
predicted for R. / :

6. Increase R furtler to produce strongly overdamped behavior and compare the
rise and fall times of the current with the expected values.
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Experiment 6

Filter Circuits

The purpose of this experiment is to acquaint the student with the measurement of
phase and amplitude for various types of filter circuits with sinusoidal sources.
Apparatus required: sine wave generator, oscilloscope, resistor, inductor, and
capacitor substitution boxes.

Procedure:

1. Set up and measure the attenuation and phase of a low-pass RL filter as shown in
figure 4.8(a) as a function of frequency.

2. Set up and measure the attenuation and phase of a high-pass RC filter as shown
in figure 4.9(a) as a function of frequency.

3. Set up and measure the attenuation and phase of a resonant filter as shown in
problem4.10 as a function of frequency. Choose R, L, and C to give resonance at
5000 Hz with a @ of 10.

For each of the above cases, compare the results with the theoretical predictions.
A programmable calculator or computer should prove very helpful here.
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Experiment 7

Fourier Series

The purpose of this experiment is to demonstrate that a periodic waveform can be
decomposed into an infinite sum of sine waves with harmonically related frequencies.

Apparatus required: function generator, oscilloscope, 5-€2 resistor, 100-Q resistor,
100-mH inductor, and capacitor decade box.
Procedure:

1. Set up the following spectrum analyzer circuit:

100 mH c
e
2 kHz (™) Vo 5Q 100 v
—0

The 5- resistor lowers the Thevenin equivalent resistance of the 2-kHz square wave
source and raises the Q of the RLC circuit.

2. By adjusting C with the oscillator fixed at 2 kHz, measure the magnitude of each
Fourier component up to at least n=09. Record the capacitance required for
resonance at each harmonic. It may be helpful to vary the oscillator frequency
slightly (a few percent) to maximize V if the resonance falls between switch positions
of the capacitor decade box.

3. Plot the ratio |V,/V,| versus n on log-log graph paper and compare the results *
with the theoretical values predicted for the Fourier series representation of
figure 5.4(a).

4. Repeat steps 1-3 above using triangular rather than square waves.
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Experiment 8

Characteristics of Ge, Si,
and Zener Diodes

The purpose of this experiment is to enable the student to examine and understand
the properties of germanium and silicon solid state diodes and Zener diodes.

Apparatus required: 0-20 V power supply, resistor substitution box, VOM,
VTVM, diodes (Ge, Si, Zener), 6.3-V transformer, and oscilloscope.

Procedure:
1. Set up the following circuit.
R
AN-
+
(vo) v
- f;(\
\

I

By varying ¥, and R, measure the V-I characteristic of a germanium diode from V, =
—10 V up to whatever positive voltage is necessary to cause 10 mA to flow through
the diode. Note that either the voltmeter must have a very high internal resistance or
a correction to the measured current must be made.

2. Compare the measured results with equation 6.4 and estimate the values of I,
kTle, and ropmic- '

3. Repeat steps 1 and 2 for a silicon diode, using forward currents up to 100 mA.
4. Set up the following circuit to display the I-V characteristic of the diodes on an

oscilloscope: - —o Horizontal

63V

115V
60 Hz
4

L LLLA

100 Q

—0 — Vertical
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What are the approximate forward voltage drops for the two diodes?

5. Display using the circuit above the IV characteristic of a Zener diode.
Determine the breakdown voltage, and decide whether the diode is germanium or

silicon.
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Experiment 9

Rectifier Circuits

The purpose of this experiment is to permit the student to examine the properties of
various rectifier circuits and to examine the influence of a filter on the output of the

rectifier.
Apparatus required: 6.3 VCT transformer, four silicon diodes, 10-uF capacitor,
resistor substitution box, and oscilloscope.

Procedure:

1. Set up the half-wave rectifier shown in figure 6.6, and compare the output
waveform with the predicted value. Be sure to measure the output voltage of the
transformer, since it is likely to be greater than 6.3 V rms when the output current is
small. Also consider the forward voltage drop of the diode.

2. Set up the full-wave rectifier shown in figure 6.7, and compare the output
waveform with the predicted value.

3. Set up the bridge rectifier shown in figure 6.8, and compare the output waveform
with the predicted value.

4. Using a 10-¢F capacitor, connect a capacitive filter as shown in figure 6.9 to each

of the rectifier circuits and measure the dc output voltage and ripple for several
values of load resistance. Compare the observed ripple with that predicted by

equation 6.7.
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Experiment 10

FET and Bipolar Transistors

The purpose of this experiment is to acquaint the student with the properties of field
effect and bipolar transistors.

Apparatus required: Dual 0-20 V power supply, VOM, VTVM, resistance
substitution box, p-channel FET, and npn bipolar transistor.

Procedure:
1. Set up the following circuit:
Oto-20V
)b
P D
Ot +6 Vo
N

e
- -

Measure and plot the drain current fj, versus drain-to-source voltage Vs for several
gate-to-source voltages Vgg in the range 06 V.

2. Identify on your graph the ohmic region, the pinch-off region, and the break-
down region, and estimate the value of the output resistance r,, in the pinch-off region.

3. Set up the following circuit:

Oto+20V
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Measure and plot the collector current /i versus collector-to-emitter voltage Vg for
several values of base current /g in the range 0-100 uA.

4. From the graph estimate the value of beta for the transistor.

5. Heat or cool the transistor, and note the effect of temperature on beta.

6. Maeasure the base-to-emitter voltage as a function of base current, and verify that
the base-to-emitter junction behaves like a forward-biased diode. Is the transistor

germanium or silicon?
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Experiment 11

Common Emitter Amplifier

The purpose of this experiment is to teach the student how to design a simple
transistor amplifier.

Apparatus required: 0-20 V power supply, silicon ngn transistor, assorted resistors
and capacitors, sine wave generator, and oscilloscope.

Procedure:

1. Design 2 common emitter amplifier as shown in figure 8.6 with the following
characteristics: ¥V,, =15V, 4= —25, R, = 50 kQ, lower cutoff frequency f =100 Hz.
2. Construct the circuit, and determine that the operating point is correct. It may
be necessary to vary R, somewhat from your design value to achieve proper
operation.

3. Apply a 1-kHz sine wave at z;,, and observe the saturation and cutoff that occurs
at the output when the input amplitude is too large.

4. Using a suitably small value of 2, measure the amplification, input resistance,
and output resistance, and compare with the predicted values.

5. Measure the amplification as a function of frequency from 20 Hz to at least
500 kHz, and plot the results on log-log paper.

6. With a suitable capacitor in parallel with Rg, repeat step 5, and plot the results

on the same graph. Does the measured amplification agree with the prediction based
on a reasonable estimate of the transresistance?
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Experiment 12

Linear Op Amp Circuits

The purpose of this experiment is to permit the ‘udent to set up and examine the use
of op amps to perform the four basic linear mathematical operations of addition,
subtraction, integration, and differentiation.

Apparatus required: Dual 0-20 V power supply, operational amplifier, assorted
resistors and capacitors, function generator, 1.5-V battery, and oscilloscope.

Procedure:

1. Set up the circuit in figure 9.9(a) for adding two voltages. Use resistors in the
range 10—100 kQ. With ¥, = 0, select resistors so that V,,,, = —3V}. Using a sinusoidal
input for V;, measure the amplification of the system at low frequency and small
amplitude.

2. Determine the value of ¥, at which saturation occurs.

3. Measure and graph the amplification as a function of frequency.

4. Using a sinusoidal voltage for V; with an amplitude such that V,, is close to
saturation, increase the frequency until the slew rate is observed. How does the
observed slew rate compare with the published specifications for the op amp?

5. Using a sinusoidal voltage for V; and a 1.5-V battery for V5, verify that the
output is given by equation 9.14.

6. Set up the circuit in figure 9.9(b) for subtracting two voltages. Using a sinusoidal
voltage for V, and a 1.5-V battery for V,, verify that the output is given by
equation 9.16.

7. Set up the circuit in figure 9.9(c) for integrating a voltage. It may be necessary to
place a high-value resistor (1-10 MQ) in parallel with the capacitor to prevent the
input offset voltage from saturating the op amp. Using a square wave for V,,, verify
that the output is given by equation 9.18.

8. Set up the circuit in figure 9.9(d) for differentiating a voltage. Using a triangular
wave for V,,, verify that the output is given by equation 9.19.
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Experiment 13

Nonlinear Op Amp Circuits

The purpose of this experiment is to acquaint the student with some of the nonlinear
applications of op amps.

Apparatus required: Dual 0-20 V power supply, operational amplifier, assorted
resistors, capacitors, and inductors, silicon diode, function generator, 1.5-V battery,
and oscilloscope.

Procedure:

1.  Set up the comparator circuit shown in figure 9.13(a). Set V; at 1.5 V. Use a low-
frequency sine wave with variable amplitude for V,. Verify that the circuit works as a
comparator. How would one use an op amp to generate a symmetric square wave,
starting with a sine wave at its input?

2. Set up the latch circuit shown in figure 9.13(5). Show that the circuit remembers
the last polarity of V.

3. Set up the logarithmic amplifier shown in figure 9.11(a). Sketch the shape of ¥,
when ¥, is a triangular wave. '

4. Set up an exponential amplifier as shown in figure 9.11(4). Sketch the shape of

Vou when ¥, is a triangular wave.

5. Construct at least one oscillator circuit using positive feedback. Measure its
frequency of oscillation and compare the result with the expected value.
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Experiment 14

Digital Circuits

The purpose of this experiment is to introduce the student to the fundamentals of
digital circuits.

Apparatus required: 5-V power supply, circuit board containing TTL: 8 two-
input NAND gates, 8 JK flip-flops, 4 toggle switches, and 16 indicator lamps.

Procedure:

1. Verify the truth table for the NAND gate in figure 11.4(4).

2. Use NAND gates to construct the following circuits and verify their operation: 2-
input AND gate, 2-input OR gate, and 2-input NOR gate.

3. Cross couple two NAND gates to make an RS flip-flop similar to that in
figure 11.10.

4. Make a clocked RS flip-flop and a D-flip-flop as shown in figure 11.11.

5. Verify the truth table for the JK flip-flop in figure 11.12(5).

6. Construct an 8-bit counter as shown in figure 11.13(a). Show that it acts as a
frequency divider.

7. Construct an 8-bit shift-register as shown in figure 11.13(#). Connect the output
to the input and make a circular shift-register.

Laboratory Experiments 337







Active circuit, 143

Active differentiator, 210

Active integrator, 209

Address, memory, 270

Admittance, 77

Algebra, Boolean, 262

All-pass filter, 92

Alternating current (ac), 69

Ammeter, 12

Ampere, 1, 307

Ampere’s law, 49, 308

Amplification, 148

Amplification factor, 147

Amplifier: antilogarithmic, 212
audio frequency, 292
cathode follower, 150
class, 188
common base, 181
common cathode, 148
common collector, 179
common emitter, 176, 334
common source, 160

complementarysymmetry, 187, 195

difference, 185, 195
efficiency, 190
" exponential, 212
grounded gate, 160
grounded grid, 153
intermediate frequency, 292
limitations, 216
logarithmic, 221, 229
multiple-transistor, 184
operational, 195
push-pull, 188
radio frequency, 293
source follower, 160
Amplitude modulation (AM), 287
Analog circuit, 255

Index

Analog computer, 210

Analog multiplier, 213

Analog-to-digital (A-to-D) converter, 270

AND gate, 257

Angular frequency, 62

Anode, 121, 123, 244, 251

Anode gate, 245

Answers to problems, 316

Antenna, 283

Anticoincidence circuit, 280

Antilogarithmic amplifier, 212

Apparent power, 78

Approximations, 315

Arithmetic logic unit (ALU), 274

Assembler, 277

Assembly language, 277

Association, 262

Astable multivibrator, 238

Attenuation, 82

Attenuator, compensated, 85

Audio frequency (AF) amplifier, 292

Automatic frequency control (AFC), 295

Automatic gain control (AGC), 294

Automatic volume control (AVC),
294

Avalanche diode, 136

Average value, 309

Ayrton shunt, 20

Back diode, 241
Balance condition, 38
Bandwidth, 104, 217, 266
open-oop, 217
Barkhausen criterion, 231
Base: bipolar transistor, 169
MOSFET, 163
number, 255
UJT, 243
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Baseline restoration circuit, 133
BASIC, 277

Battery, 5

Baud rate, 266

Beat frequency, 298

Beat frequency oscillator (BFO}), 290
Beta, transistor, 171
Bibliography, 303

Binary arithmetic, 255
Binary-coded decimal (BCD), 272
Binary-coded decimal counter, 280
Binary counter, 268

Binary number, 255

Bipolar transistor, 169

Bistable flip-flop, 213

Bistable multivibrator, 236

Bit, 255

Blanking, 296

Bleeder resistor, 130

Blocking capacitor, 150

Bode plot, 217

Boltzmann’s constant, 122, 306
Boolean algebra, 262

Branch, 23

Breakdown region, 159
Breakdown voltage, 49, 136
Breaker, circuit, 8

Bridge, Wheatstone, 23, 25, 31, 37, 324
Bridge, Wien, 93

Bridge circuit, 37

Bridge rectifier, 127

Bubble memory, 278

Bulb, neon, 241

Bus, 275

Byte, 255

Cable, coaxial, 108
Calorie, 307
Capacitance, 48, 308
coaxial cable, 108
equivalent, 54
input, 165, 216
parallel plates, 47
Capacitor, 47
blocking, 150 i
charging, 54
coupling, 150
electrolytic, 49
emitter bypass, 179
parallel, 53
polarized, 49
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reactance, 71

series, 54
Carrier, 288
Cathode, 46, 121, 123, 143, 244,251
Cathode bypass capacitor, 150
Cathode follower circuit, 150
Cathode ray tube (CRT), 46, 297
Catwhisker, 138
Cell, photovoltaic, 250
Central processing unit (CPU), 275
Channel, FET, 158
Channeltron electron multiplier (CEM),

251

Characteristic impedance, 109
Charge, 1, 47

of electron, 1, 306
Charge pump, 130
Charged-coupled device (CCD), 278
Child’s law, 122
Choke, 49. See also Inductor
Chrominance signal, 297
Circuit: active, 143

analog, 255

bridge, 37

digital, 255, 337

distributed, 108

filter, 81, 128, 327

hardwired, 273

integrated, 195

linear, 7, 23

lumped, 108

nonsinusoidal, 95

open, 27

passive, 30

rectifier, 126, 331

resonant, 58, 79

short, 27

sinusoidal, 69 -

transient, 45, 326
Circuit breaker, 8
Circuit isolation, 221
Circuit reduction, 8, 35, 52
Circuit theorems, 23
Circular shift register, 270
Clamp, diode, 133
Class A, B, C amplifier, 188
Clipping circuit, 132
Clock, 267, 271
Clocked RS flip-flop, 267
Coaxial cable, 108
Code, computer, 277




Coefficient of coupling, 88
Coil, 49. See also Inductor
Coincidence circuit, 258
Collector, 169
Collector characteristic, 170
Collector dissipation power, 171
Color code, 3
Color TV, 297
Colpitts oscillator, 234
Common base amplifier, 181
Common cathode amplifier, 148
Common collector amplifier, 179
Common emitter amplifier, 176, 334
Common grid amplifier, 153
Common mode input impedance, 217
Common mode rejection ratio (CMRR), 187,
217
Common plate amplifier, 151
Common source amplifier, 160
Communications, 283
Commutation, 262
Comparator circuit, 213
Compensated attenuator, 85
Compiled language, 277
Compiler, 277
Compiement (2°s), 257
Complementary-symmetry amplifier, 187,
195

Complex conjugate, 78
Complex number, 75, 312
Computer: analog, 210

digital, 272

languages compared, 277
Condenser, 47. See also Capacitor
Conductance, 2
Conductor, 2
Conjugate pairs, 15, 52
Constants, 306
Contactor, 46
Control grid, 46, 143
Controller, 276
Conversion factors, 307
Converter: A-to-D, 270

current-to-voltage, 206

D+o-A, 270

frequency, 292
Core, 273
Corner frequency, 220
Coulomb, 1
Counter, 268

BCD, 280

Coupling capacitor, 150
Coupling coefficient, 88
Critical damping, 60
Cross-talk, 224
Crowbar, 68, 133
Crystal: liquid, 251
quartz, 234
Crystal filter circuit, 236
Crystal oscillator, 235
Current, 1, 308
alternating (ac), 69
direct (dc), 28
displacement, 48
eddy, 51, 87
holding, 245
loop, 25
magnetizing, 87
Norton equivaient, 32
offset, 217
partial, 27
short circuit, 29
Current divider, 10
Current limiting, 215
Current-to-voltage converter, 206
Cutoff, 145
Cutoff frequency, 82,115

Damping, 60, 326

Darlington pair, 184, 250

D’Arsonval galvanometer, 13

Data (D) flip-flop, 267

Decade, 82

Decibel (dB), 82

Decimal number, 255

Decoder, 266

Delta-connection, 34

Delta function, 104

Delta-Y transformation, 34

Demodulation, 291

De Morgan’s theorem, 262

Dependent source, 147, 197

Depletion region, 123, 158

Depletion-type MOSFET, 161

Derivative, 313

Detection, 291

Detector: diode, 291
light-sensitive, 251
product, 290
zero-crossing, 213

Deviation, 289

Diac, 247

Index
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Dielectric constant, 49

Difference amplifier, 185, 195

Differential equation, 45, 309
homogeneous, 55
nonhomogeneous, 57, 73
second-order, 59

Differentiator: active, 210
passive, 85

Digital circuit, 255, 337

Digital computer, 272

Digital multimeter (DMM), 15

Digital voltmeter (DVM), 14, 271

Digital-to-analog (D-to-A}, converter,

270
Diode, 121
back, 241
capacitance, 137
forward voltage drop, 124
light-emitting, 250
peak reverse voltage, 125
pn junction, 123
point contact, 138
power dissipated, 125, 137
and resistor logic (DRL), 261
reverse current, 124
silicon vs germanium, 124, 329
temperature dependence, 124
tunnel, 240
vacuum, 121
varicap, 137
Zener, 136, 329
Diode clamp, 133
Diode detector, 291
Diode logic, 258
Diode rectifier, 126
Diode-transistor logic (DTL), 261
Dipole antenna, 283
Direct current (dc), 28

Direct memory access (DMA), 276

" Dispersion, 111,117
Displacement current, 48
Display: liquid crystal, 251

seven-segment, 272
Distributed circuit, 108
Distribution, 262
Divider: current, 10

frequency, 237, 270

voltage, 9
Dominant mode, 115
Doppler radar, 298
Double conversion, 294
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Drain, 158

Dynamic memory, 270
Dynamic resistance, 173
Dynode, 251

Earth, radius, 306
Eddy current, 51, 87
Efficiency, amplifier, 190
Electrical length, 111
Electrically alterable ROM (EAROM), 267
Electric field, 47,114
Electrolytic capacitor, 49
Electromagnetic radiation, 224, 283
Electromagnetic wave, 115, 283
Electromagnetism, 308
Electrometer, 14
Electromotive force (emf), 2
Electron: charge, 1, 306

mass, 306

secondary, 157,251, 296
Electron multiplier, 251
Electron volt {(eV), 307
Elementary loop, 24
Emission limit, 122
Emitter, 169, 243
Emitter bypass capacitor, 179
Emitter-coupled logic (ECL), 261
Emitter follower circuit, 179
Energy, stored, 49, 51, 71
Enhancement-type MOSFET, 161
Erasable PROM (EPROM)}, 266
Error analysis;, 309
Even function, 98
Exclusive-OR gate, 273
Execute phase, 275
Experiments, laboratory, 320
Exponential amplifier, 212

Fading, 286
Fanout, 258
Farad, 48, 307
Faraday’s law, 50, 308
Feedback: negative, 165,179, 197,
294
operational, 200
positive, 231
voltage, 199
Ferrite, 51
Fetch phase, 275
Fiber optics, 251
Fidelity, 289




Field: electric,47, 114
electromagnetic, 224
magnetic, 50, 114, 222

Field effect transistor (FET), 158, 161

Filament, 46, 121

Filter: all-pass, 92
crystal, 236
high-pass, 83
low-pass, 81
notch, 84
power supply, 128
resonant, 84

Filter circuit, 81, 128, 327

Flicker noise, 220

Flip-flop, 213, 236, 267

FORTRAN, 277

Forward bias, 123, 169

Forward transconductance, 159

Forward voltage drop, 124

Forward wave, 112

Four-bit adder, 265

Fourier series, 95, 288, 328

Fourier transform, 102, 310

Four-quadrant multiplier, 213

Four-terminal network, 33

Frequency, 63, 283
angular, 63
beat, 298
corner, 220
fundamental, 95
image, 294
plasma, 286
resonant, 80
unity gain crossover, 217

Frequency converter, 292

Frequency divider, 237, 270

Frequency domain, 75

Frequency meter, 270

Frequency modulation (FM), 289

- Frequency multiplier, 138, 189, 290

Full-adder circuit, 264

Full-wave rectifier, 126

Function: delta, 104
even, 98
nonperiodic, 95
odd, 97
periodic, 95

Fundamental frequency, 95

Fuse, 7 -

Gain-bandwidth product, 218

Galvanometer, 13
Gamma-ray, 284
Gate: anode, 245
FET, 158
logic, 257
SCR, 244
Gaussian, 103, 219
Gauss’s law, 47, 308
Ghost image, 300
Gravitational constant, 306
Gravity, 2, 306
Grid: control, 46, 143
screen, 156
suppressor, 157
Grid leak resistor, 150
Grid-plate transconductance, 146
Ground, 1
virtual, 200
Grounded gate amplifier, 160
Grounded grid amplifier, 153
Ground loop, 222
Ground plane antenna, 283
Ground wave, 286
Group velocity, 117
Guide, light, 251
Guide wavelength, 116

h-parameter equivalent circuit, 174
Half-adder circuit, 263
Half power point, 80
Half-wave rectifier, 126
Half-wave symmetry, 97
Hardware, 278

Hardwired circuit, 273
Harmonic, 96

Harmonic oscillator, 64
Hartley oscillator, 232
Heat sink, 125

Henry, 50, 307

Hertz, 63, 307
Hexadecimal number, 255
High-pass filter, 83
Holding current, 245
Hole, 123

Homogeneous solution, 57
Horsepower, 307

Hybrid h parameter, 175
Hysteresis, 51, 240, 253

Ideal transistor, 172
Ignitor, 250
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Ignitron, 249
Image frequency, 294
Image orthocon, 296
Impedance, 76
antenna, 284
cathode follower, altered by, 153
coaxial cable, 109
common mode input, 217
emitter follower, altered by, 180
input, 217
output, 217
transformer, altered by, 88
transmission line, altered by, 111
Incandescent lamp, 321
Inductance, 50, 308
coaxial cable, 108 -
equivalent, 54
leakage, 88
solenoid, 49
Inductor, 49
parallel, 53
reactance, 72
series, 52
Infrared radiation, 284
Input/Output (I/0), 275
Insulated-gate FET (IGFET), 161
Insulator, 2
Integral, 314
Integrated circuit (IC), 195, 261
Integrator: active, 209
passive, 84
Interface, computer, 276
Interference, 221
Interlacing, 296
Intermediate frequency (IF) amplifier,
292
Interpreter, 277
Interpretive language, 277
Interrupt, 276
Inverse tangent, 74
Inverting input, 197
Ionosphere, 286
Isolation, 221

JK flip-flop, 268

Johnson noise, 219

Joule, 1

Junction FET (JFET), 158

Kirchhoff’s laws, 23
I’Hopital’s rule, 309
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Laboratory experiments, 320
Lamp: incandescent, 321
neon, 241
Language, computer, 277
Laplace transform, 104
Latch cireuit, 213, 236
Law: Ampere’s, 49, 308
Child’s, 122
Faraday’s, 50, 308
Gauss’s, 47, 308
Kirchhoff’s, 23
Ohm’s, 2, 77
Leakage inductance, 88
Length, electrical, 111
Light: frequency, 284
velocity of, 110, 306
Light-activated SCR (LASCR), 250
Light-emitting diode (LED), 250
Light guide, 251
Light-sensitive detector (LSD), 251
Limiter, 295
Linear circuit, 8, 23, 28
Line driver, 153
Liquid crystal display (LCD), 251
Loading, 184, 258
Load line, 145,171
Local oscillator, 292
Logarithmic amplifier, 211, 229
Logic, types compared, 261
Logic gate, 257
Long wave, 284
Loop, 23
ground, 222
Loop current, 25 -
Loudspeaker, 93, 292
Low-pass filter, 81
Luminance signal, 297
Lumped circuit, 108

Machine language, 276

Magnetic field, 50, 114, 222
Magnetic flux, 50, 308
Magnetizing current, 87
Master-slave flip-flop, 268
Mathematical formulas, 309
Maxwell’s equations, 52, 308
Memory, 266, 270, 273

Memory address, 270

Memory address register (MAR), 274
Memory data register (MDR), 274
Mesh, 24




Metal oxide semiconductor (MOS) FET,
161

Meter, 12, 321

ac, 135

accuracy, 15

frequency, 270

linearity, 15

sensitivity, 13

shunt, 14
Metric prefixes, 307
Mho, 2
Microcoding, 276
Microcomputer, 278
Micron, 307
Microphonics, 224
Microprocessor, 275, 278
Microwave, 113, 284, 298
Miller effect, 165
Minicomputer, 278
Mixer, 292
Mode, waveguide, 115
Modem, 266
Modulation, 287
Modulator, 290
Monostable multivibrator, 237
MOS logic, 261
Multigrid tube, 156
Multimeter, 14
Multiple-transistor amplifier, 184
Multiplexing, 272
Multiplier: analog, 213

frequency, 138, 189, 290

voltage, 130
Multivibrator, 236, 268

n~channel FET, 158

n-type semiconductor, 123, 158, 169

NAND gate, 260

Negative feedback, 165,179, 197,
294

Negative logic, 280

Negative resistance, 227, 240

Neon bulb, 241

Network, 28. See also Circuit

Node, 23

Noise, 219

Noise figure, 221

Noise temperature, 221

Noninverting input, 197

Nonlinear operation, 211,336

Nonperiodic waveform, 95

Nonsinusoidal circuit, 95
Nonvolatile memory, 270
NOR gate, 259

Norton equivalent current, 32
Norton equivalent resistance, 32
Norton’s theorem, 32

NOT gate, 259

Notch filter, 84

npn transistor, 169

Null condition, 38

Null method, 37

Number, base, 255

Nyquist noise, 219

Object code, 277
Octal number, 255
Octave, 82
QOdd function, 98
Offset current, 217
Offset voltage, 217
Ohm, 2,71, 76, 307
Ohmic region, 159
Ohmmeter, 20
Ohm’s law, 2, 77
One-shot multivibrator, 238
Open circuit, 27
Open circuit voltage, 30
Open-loop bandwidth, 217
Open-loop voltage gain, 195
Operating point, 145
Operational amplifier (op amp), 195,
335
Operational feedback, 200
Optics, fiber, 251
Optocoupler, 251
Optoelectronics, 250
Optoisolator, 251
OR gate, 258
Orthicon, image, 296
Oscillation, 63
Oscillator, 231, 238, 241, 243, 270,
290

harmonic, 64
Oscilloscope, 46, 325
Output impedance, 217
Overdamped circuit, 60

p-channel FET, 158

p-type semiconductor, 123, 158, 169
Parallel operation, 266

Parallel regulator, 183
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Parameters, hybrid h, 175
Norton, 32
R—, 36
Thevenin, 29
Partial current, 27
Partial derivative, 309
Particular solution, 57
Pascal, 277
Passive circuit, 30
Peak reverse voltage (PRV), 125
Pentode, 157
Percentage modulation, 288
Period, 63, 70
Periodic waveform, 95
Peripheral, computer, 275
Permeability, 50, 306
Permittivity, 47, 306
Phase, 71
Phase shifter, 92
Phase-shift oscillator, 234
Phase velocity, 110
Phasor, 75
Photocathode, 251, 296
Photoconductor, 250
Photo Darlington transistor, 250
Photodetector, 250
Photodiode, 250
PHOTOFET, 250
Photoflash, 248
Photomultiplier tube, 251, 296
Phototransistor, 250
Photovoltaic cell, 250
Physical constants, 306
Pi-network, 35
Piezoelectric effect, 224, 234
Pinch-off region, 159
Plan position indicator (PPI), 298
Planck’s constant, 306
Plasma, 286
Plasma frequency, 286
Plate, 121, 143
Plate characteristic, 143
Plate dissipation power, 145
Plate resistance, 146
Pn junction diode, 123, 250
pnp transistor, 170
Point contact diode, 138
Polarization, antenna, 285
Polarized capacitor, 49
Port, 34
Positive feedback, 231
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Potential, 2. See aiso Voltage
Potentiometer, 4
Potentiometer circuit, 42
Power, 4
apparent, 78
collector dissipation, 171
maximum transfer, 41, 88,113
plate dissipation, 145
reflected, 113
Power factor, 78
Power spectrum, 103
Power supply, 4, 130, 246
SCR, 246
current limiting, 215
filter, 128
regulation, 130, 183, 213
ripple, 128
Primary winding, 87
Priority arbitration, 276
Probiem answers, 316
Product detector, 290
Program, computer, 273
Program counter (PC), 275
Programmable ROM (PROM), 266
Pulse, square, 104
Pulsed radar, 298
Pulser circuit, 247
Pump, charge, 130
Push-pull amplifier, 188

Q-multiplier, 236

Quadratic equation, 309 ™~
Quality factor (Q), 63, 80, 294
Quartz crystal, 234

R-parameter, 36
Radar, 298
Radian, 307
Radiation: electromagnetic, 224, 283
gamma-, 284
infrared, 284
ultraviolet, 284
X-, 284
Radiation resistance, 285
Radio frequency (RF) amplifier, 293
Radio receiver, 291
Radio transmitter, 290
Random-access memory (RAM), 270, 273
Reactance, 71
Read, 270
Read-only memory (ROM), 266




Receiver, radio, 291
Reciprocity theorem, 33
Rectifier, 126, 331

silicon-controlled, 244
Reference diode, 136
References, 303
Reflected wave, 112, 286, 298
Register, 270, 274
Regulation, 130
Reguiator: op amp, 213

transistor, 183

Zener, 137
Relative permeability, 51
Relative permittivity, 49
Relaxation oscillator, 241, 243
Relay, 46
Remanence, 51
Resistance, 2, 308

bridge measurement, 37

dynamic, 173

equivalent, 8

internal, 5, 215

negative, 227

Norton equivalent, 32

plate, 146

radiation, 285

source, 5

Thevenin equivalent, 29
Resistor, 3

bleeder, 130

color code, 3

grid leak, 150

parallel, 8

power dissipated, 4

series, 9

temperature dependence, 39

variable, 3
Resistor-transistor logic (RTL), 261
Resonant circuit, 58, 79
Resonant filter, 84
Resonant frequency, 80
Retrace, 296
Reverse bias, 123,170
Reverse current, 124
Richardson’s equation, 122
Ripple, 128
Root mean square (rms), 70, 309
RS flip-flop, 267
Runaway, thermal, 178 ~

S-meter, 295

Saturation, 145
Schmitt trigger, 238
Screen grid, 156
Secondary electron, 157, 251, 296
Secondary winding, 87
Selectivity, 291
Semiconductor, 123
Serial operation, 266
Series: Fourer, 95, 288, 328
Taylor, 310
Series regulator, 183
Seven-segment digital display, 272
Shadow mask, 297
Shift register, 270
Short circuit current, 29
Short circuit, 27
Short wave, 284
Short-circuit protection, 215
Shot noise, 220
Shunt regulator, 183
Shunt, 14
Ayrton, 20
meter, 14
Sideband, 288
Siemens, 2, 71,77, 307
Sign bit, 257
Signal-to-noise ratio, 220
Silicon-controlled rectifier (SCR),
244
Silicon-controlled switch (SCS),
245
Single sideband (SSB) modulation,
290
Single-quadrant multiplier, 213
Sinusoidal circuit, 69
Sky wave, 286
Slew rate, 218
Software, 278
Solar cell, 250
Solenoid, 49
Source, 4, 158
dependent, 147
Source code, 277
Source follower amplifier, 160
Space charge limit, 122
Speaker, 93, 292
Spectrum analyzer, 106
Square pulse, 104
Square wave, 96
Squelch circuit, 295
Standard cell, 42
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Standing wave, 112
Standing wave ratio (SWR}, 112
Static memory, 270
Stereophonic broadcast, 295
Subcarrier, 295, 297
Summing point, 207
Superconductor, 2
Superheterodyne circuit, 292
Superposition theorem, 26
Suppressor, transient, 8
Suppressor grid, 157
Surge current, 129
Susceptance, 71
Switch, 45

silicon controlled, 245
Symmetry: circuit, 12

- half-wave, 97

Maxwell’s equations, 52

Sync pulse, 297

T-network equivalent circuit, 173
T-network, 35
T-pad, 42
Tank circuit, 189
Taper, 4
Taylor series, 310
Television (TV), 296
Terminal, 3
Tetrode, 156
Theorem: Boolean algebra, 262
De Morgan’s, 262
Norton’s, 32
reciprocity, 33
superposition, 26
Thevenin’s, 28
Thermal noise, 219
Thermal runaway, 178
Thermistor, 39
Thevenin equivalent resistance, 29
Thevenin equivalent voltage, 29
Thevenin’s theorem, 28
Three-dB point, 82
Three-terminal network, 34
Thyratron, 249
Thyristor, 244
Thyrite, 8
Time constant, 56
Time domain, 72
Transconductance, 146, 1569
Transform: Fourier, 102, 310
Laplace, 104
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Transformer, 86
Transient ciréuit, 45, 326
Transient suppressor, 8
Transistor amplifiers compared, 182
Transistor linear equivalent circuit,
172
Transistor: beta, 171
bipolar, 169, 332
field effect, 158, 332
ideal, 172
photo Darlington, 250
unijunction, 242
Transistor-transistor logic (TTL), 261
Transistor voltage regulator, 183
Translator, 266
Transmission line, 108
Transmitter, radio, 290
Transresistance, 173, 178
Transverse wave, 115
Triac, 246
Trigger, Schmitt, 238
Trigger circuit, 46
Trigonometric relations, 311
Triode, 143
Triode linear equivalent circuit, 146
Tristate logic, 275
Truth table, 257
Tube: cathode ray, 46, 297
photomultiplier, 251, 296
vacuum, 121
Tunnel diode, 240
Twin-tee, 93 ~
Two’s complement arithmetic, 257
Two-terminal network, 28

Ultraviolet radiation, 284

Underdamped circuit, 62

Unijunction transistor (UJT), 242

Unipolar device, 169

Units, 307

Unity gain crossover frequency,
217

Vacuum diode, 121

Vacuum pentode, 157

Vacuum tetrode, 156

Vacuum triode, 143

Vacuum tube, 143

Vacuum tube amplifiers compared, 156
Vacuum tube voltmeter (VIVM), 14
Varactor, 137, 236, 290




Variable-frequency osciliator (VFO), 236
Varicap diode, 137, 236, 290
Velocity: group, 117

of light, 110, 306

phase, 110
Vestigial sideband modulation, 297
Video, 296
Vidicon, 296
Virtual ground, 200
Volatile memory, 270
Volt-ohm-milliammeter (VOM), 14
Voltage, 1, 307, 308

breakdown, 49, 136

offset, 217

open circuit, 30

Thevenin equivalent, 29
Voltage controlled oscillator (VCO),

236
Voltage divider, 9
Voltage doubler, 130
Voltage feedback, 199
Voltage follower, 206
Voltage multiplier, 130
Voltage regulator, 137, 183, 213
Voltage standing wave ratio (VSWR),
112

Voltmeter, 12
digital, 14, 271
vacuum tube, 14

Watt, 4, 307
Wave: electromagnetic, 115, 283
reflected, 112, 286, 298
square, 96
standing, 112
trangverse, 115
Waveguide, 113, 287
Wavelength, 283
guide, 116
Wheatstone bridge, 23, 25, 31, 37, 324
White noise, 219
Wien bridge, 93
Word, 274
Work function, 121, 251
Write, 270

Xray, 284
Y-connection, 34

Zener diode, 136, 329
Zero-crossing detector, 213
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