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Introduction

Physics is an experimental science. In this laboratory, you will fight against experimental
errors, find ways to minimize them, and (we hope) come to appreciate the need for clear
and accurate record-keeping.
Physics is also a social activity. Discuss with your lab partners the purpose of each piece
of apparatus; cooperate to choose who does what; critique the data as it is taken (is it
as expected?); calculate independently, then compare results to check each others’ work;
debate the reliability of the results, and what may fairly be concluded from them.
Keep clear and accurate records, and record fair conclusions, in a laboratory notebook:

1. Heading of the Experiment:
Copy from the manual the number and name of the experiment.
Include both the current date and the name(s) of your partner(s).

2. Original data:
“Original data” are the actual readings you have taken. Record them directly into
your notebook as they are gathered. All partners should record all data: in case of
doubt, the partners’ lab notebooks can be compared to each other.
Arrange data in tabular form when appropriate. Introduce each table with a phrase
or sentence (so that you, or someone else, can make sense of it later).

3. Housekeeping deletions:
Every hour or so, draw a box around any erroneous or unnecessary material and
hatch three or four parallel diagonal lines across this box. Write a note explaining
to yourself what was wrong (sometimes, it turns out it wasn’t wrong...).

4. Sketches and remarks:
Make simple, diagrammatic (rather than pictorial) sketches of apparatus.
When a useful result occurs at any stage, describe it with at least a word or phrase.

5. Graphs:
Affix a hand-drawn graph on graph paper with transparent tape; affix a computer-
generated graph with transparent tape; or mark out and plot a simple graph directly
in your notebook.
Show points as dots, circles, or crosses, i.e., ·, ◦, or ×.
Show trends by drawing a smooth curve (that may actually miss most of the points)
rather than connecting the points with lines.

6. Units, coordinate labels:
Whenever you write down a physical quantity, always write down its units.
Whenever you make a graph, always label the abscissa (horizontal coordinate) and
ordinate (vertical coordinate), so that the reader (who might be yourself at a later
time) knows what has been graphed.

7. Final data, results and conclusions:
Write a neat summary of data and results at the end of each experiment. Any con-
clusions must be faithful to the data. Use phrases such as “the discrepancy between
our measurements and the theoretical prediction was larger than the uncertainty in
our measurements.”
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Errors and Uncertainties

All measurements are to some degree uncertain. It is good scientific practice to include an
estimate of the uncertainty of every measurement you make. The uncertainty of a
single measurement–such as, for example, the diameter of a cylinder–comes from multiple
sources, which fall into two categories: random uncertainties and systematic errors:

• There may be actual variations of the quantity being measured, e.g. the diameter
of a cylinder may actually be different in different places. This random uncertainty
can be reduced by making measurements at different places and taking the aver-
age. The standard deviation of the measurements (see below) is a measure of the
uncertainty.

• The measuring device itself may be in error. The systematic error thus introduced
will not lie equally on both sides of the true value, so averaging a large number of
readings is no help. To reduce such errors, we calibrate the measuring device. In the
case of the micrometer caliper, for example, we measure the zero error (the reading
when the jaws are closed) and the readings on selected precision gauges that are
about as large as the cylinder to be measured.

• The measuring technique may be a source of systematic error. When used to
measure the diameter of a cylinder, the micrometer will always measure the largest
diameter between its jaws; hence if there are small bumps or depressions on the
cylinder, the average of a large number of measurements will not give the true
average diameter but a quantity somewhat larger. This error can be reduced by
making the jaws of the caliper smaller in cross section.

• The measuring technique may also be another source of random uncertainty. For
example, the reading of the micrometer caliper may vary because one can’t close it
with the same force every time, and one’s estimate of the fraction of the smallest
division varies from trial to trial. Making multiple measurements also reduces the
uncertainty from this source

Characterization of Uncertainties

The experimenter cannot immediately determine the cause of the variation of a set of
measurements. A simpler task is to characterize this variation.

Consider the data below. Column 1 represents 10 readings of the diameter of a cylinder
taken at one place, so that variations in the cylinder do not come into consideration.

Measurements Deviation from Mean
9.943 mm 0.0003 mm
9.942 - 0.0007
9.944 0.0013
9.941 - 0.0017
9.943 0.0003
9.943 0.0003
9.945 0.0023
9.943 0.0003
9.941 - 0.0017
9.942 - 0.0007
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How should one state the results of these measurements in a scientific fashion?

Expressed algebraically, the mean x̄ of a set of n measurements {xi} is x̄ =
∑
xi/n.

The mean of the 10 readings above turns out to be 9.9427 mm.

Column 2 gives each reading’s deviation from the mean. The standard deviation σ
(also known as the “root mean square deviation”) is defined as

σ = standard deviation =

√√√√ 1

(n− 1)

n∑
i=1

(xi − x̄)2

The standard deviation of the above 10 measurements is 1.225×10−3.

Note that if you make one measurement of some quantity x, then n = 1 and x̄ = x1
in the above equation: the standard deviation of your measurement is

√
0/0, which is

undefined. You don’t know how reliable your measurement is.

Assuming you make more than one measurement, σ tells you the typical deviation
from the mean you will find for an individual measurement. It depends on your
experimental method. If you make more measurements, σ will not change much.

However, the more measurements you make, the more accurately you can expect to
know the value of the mean. The uncertainty of the value of the mean is called the
standard deviation of the mean σµ, and in general it is less than σ:

σµ = standard deviation of the mean =
σ√
n

=
1√
n

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2

The standard deviation of the mean of the above 10 measurements is 3.96×10−4.

When you take more measurements in order to minimize σµ, you are “gathering statistics”.

One states one’s results as mean ± standard deviation of the mean. From the
data above, the diameter of the cylinder was measured to be 9.9427 ± 0.0004 mm.

Error Distribution and Error Bars

For many types of measurement one may assume that the error distribution is “normal”:
the probability of a given error ε is proportional to e−ε

2
. If the error distribution is normal

and the number of measurements is large, 68% of the measurements will lie closer than σ
to the true value.

The purpose of the error bars shown on a graph in a technical report is to guide the
reader’s expectation of reproducing the results in the graph using the procedure described
in the report.

If the error distribution is normal, and the errors bars extend to 1 σ above and below
the data point, the reader should expect a 68% chance that a repetition of the experiment
would produce a measurement that falls between the error bars.
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Propagation of Uncertainties

Let R = f(x, y, z) depend on measurements of three different quantities x, y, and z. The
uncertainty ∆R in R which results from an uncertainty ∆x in the measurement of x is

∆R =
∂f

∂x
∆x ,

and the fractional uncertainty in R is

∆R

R
=

∂f
∂x

f
∆x .

In many experimental situations, the errors are uncorrelated and normally distributed. In
this case the uncertainties add in quadrature (the square root of the sum of the squares):

∆R

R
=

√√√√( ∂f
∂x

f
∆x

)2

+

(
∂f
∂y

f
∆y

)2

+

(
∂f
∂z

f
∆z

)2

.

∆ denotes the uncertainty in a quantity, and σ refers to the standard deviation.
Some examples:

A) R = x + y. If the uncertainties in x and y each have a normal distribution
and are independent, they combine in quadrature:

∆R =
√

∆x2 + ∆y2 .

Note that if R = x− y, then ∆R/R can become very large if x is nearly equal to y. Hence
avoid, if possible, designing an experiment where one measures two large quantities and
takes their difference to obtain the desired quantity.

B) R = xy. The fractional uncertainties combine in quadrature:

∆R

R
=

√
(
∆x

x
)2 + (

∆y

y
)2 .

Note the same result occurs for R = x/y.
C) Consider the density ρ of a solid cylinder (Exp. M-201b):

ρ =
m

πr2L

where m = mass, r = radius, L = length, are the three measured quantities. Then

∂ρ

∂m
=

1

πr2L

∂ρ

∂r
=
−2m

πr3L

∂ρ

∂L
=
−m
πr2L2

.

If the errors have normal distribution and are uncorrelated, then

∆ρ

ρ
=

√(
∆m

m

)2

+

(
2

∆r

r

)2

+

(
∆L

L

)2

D) Area of a circle: A = πd2/4: ∆A/A = 2∆d/d.
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Significant Figures

Suppose you measure the diameter of a circular disk to be 24.326 ± 0.003 mm and want
to compute its area A = πd2/4. Evidently A =464.7627... mm2, but how many digits are
significant?

The fractional uncertainty in d is ∆d/d = 0.003
24.326 = 1.2 × 10−4. From example D) on

the last page, this gives ∆A/A = 2.4 ×10−4, so the uncertainty in A is ∆A = .11 mm2.

This tells us that only the first five digits are significant, so A should be reported as

A = πd2/4 = 464.77± 0.11 mm2

A good rule is to use one more digit in constants than is available in your measure-
ments, and to save one more digit in computations than the number of significant figures
in the data. When you use a calculator you usually get many more digits than you need.
Therefore at the end, be sure to round off the final answer to display the correct
number of significant figures.

SAMPLE QUESTIONS

1. You measure d = 1.0 ± 0.2 cm and s = 1.0 ± 0.2 cm. What is the uncertainty in
r = d+ s?

(a) 0.2 cm

(b) 0.3 cm

(c) 0.4 cm

2. You measure r with a percentage uncertainty of 1%. What is the percentage uncer-
tainty in A = πr2?

(a) 1%

(b) 1.4%

(c) 2%

3. What happens to σ, the standard deviation, as you make more and more measure-
ments? What happens to σµ, the standard deviation of the mean?

(a) They both remain same

(b) They both decrease

(c) σ increases and σµ decreases

(d) σ approaches a constant and σµ decreases

4. You measure m1 = 115.34 ± 0.01 g and m2 = 1.0 ± 0.1 kg, in order to find m3 =
m1 +m2. How should you report m3?

(a) 1.11534 ± 0.00001 kg

(b) 1.11534 ± 0.1 kg

(c) 1.1 ± 0.1 kg
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M-200 Errors, Uncertainties, and Excel

OBJECTIVES:

1. To reassure you that nature is inherently uncertain. All measurements include some
degree of uncertainty.

2. To practice the fundamentals of characterization of uncertainty and propagation of
uncertainty, using Excel for calculations and plotting.

3. To develop a vocabulary for rigorous and objective reporting of measurements and
their relation to predictions.

APPARATUS:

Funnel; 100 round chads from a three-hole punch, graph paper; Excel. There is a
sample Excel spreadsheet called “M-200.xlsx” available on the lab computer at Lab
Software/207/M-200.xlsx.

PRELAB:

1. Read through the “Errors and Uncertainties” section, beginning on page 3.

2. Find documentation on the web for the Excel functions AVERAGE, STDEV, and
LINEST that pertains to your version of Excel.

3. Familiarize yourself with how to make a scatter chart (without connecting lines) of
data in Excel, how to add error bars to the data points, and how to add a trendine.

PROCEDURE

Let us use h to denote the distance between the bottom of the funnel and the paper. Your
TA will choose which h you will use for this lab: h = 10 cm, 15 cm, 20 cm, 25 cm, or 30
cm.

1. Set the bottom of the funnel a distance h above the graph paper. Set the center of
the graph paper directly below the center of the funnel, and mark the origin of a set
of x-y axes on the graph paper directly below the center of the funnel. Indicate x
and y directions.

2. One at a time, drop 100 chads through the funnel. Make a mark on the graph paper
where the center of each chad has come to rest. Transfer data to Excel, indicating
x and y coordinates of each of the chad centers. (Suggestion: work in teams, with
one person dropping the chad, one person marking and reading the graph paper,
and one person entering the data in Excel.)

When you are done dropping chads, please collect all of them (check the lab table
and floor for chads that have gone astray) and return them to the chad bin.



M-200 ERRORS, UNCERTAINTIES, AND EXCEL 8

MEAN AND STANDARD DEVIATION

Below is an Excel scatter chart of the h=25 cm data. It is evident that the “center” of
the distribution is somewhere near (0,0), and the “scatter” of the points is something like
± 5 cm in x and ± 5 cm in y. The concept of “mean” is (one way) to precisely quantify
“center”, and likewise “standard deviation” is (one way) to precisely quantify “scatter”.

1. Make an Excel scatter chart of your data.

2. Calculate the mean x̄ (using AVERAGE) and standard deviation σx (using STDEV)
of the x coordinates of the data.

3. Calculate ȳ and σy from the y coordinates of the data.

4. Print the scatter chart you just made (one copy for each lab partner).

5. Draw vertical lines on the chart at x = x̄, x = x̄+ 0.6745σx, and x = x̄− 0.6745σx.

6. Draw horizontal lines on the chart at y = ȳ, y = ȳ+0.6745σy, and y = ȳ−0.6745σy.

7. If the distributions of the x− and y− positions of the dots are “normal distributions”,
they should obey the following rules:

• Half the dots are on one side of the mean, and half are on the other;

• Half the dots are closer to the mean than 0.6745 standard deviations.

8. How many dots are to the left of x = x̄? How many dots are below y = ȳ?

9. How many dots are within 0.6745σx of x̄? How many dots are within 0.6745σy of ȳ?

10. Make a sketch of a distribution of 30 dots with means x̄ = 0 cm, ȳ = 2 cm, and
standard deviations σx = 1 cm, σy = 5 cm. Use the same scale for x and y.
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STANDARD DEVIATION OF THE MEAN

The standard deviation of the mean σµ is a measure of the uncertainty of the mean. The
standard deviation of the mean σµ is different from the standard deviation σ discussed in
the last section, which is a measure of the scatter of the data: σµ = σ/

√
N . The larger

the number N of data points you have, the smaller σµ becomes: .

1. Calculate the standard deviation of the mean σµ,x of your x−position data.

2. Calculate the standard deviation of the mean σµ,y of your y−position data.

3. Return to the printout you made in step 4 above, and draw a particularly dark dot
at the position of (x̄, ȳ).

4. Add vertical error bars to the dark dot that extend 0.6745 σµ,y above it and 0.6745
σµ,y below it.

5. Add horizontal error bars to the dark dot that extend 0.6745 σµ,x to either side of
it.

Note that the error bars are much smaller than the “scatter” of the 100 dots, which is
characterized by the standard deviations σx and σy.

The error bars convey that if someone else were to repeat the experiment of dropping
100 chads through an identical funnel, that person should expect a 50% chance that the
center of the distribution of the chad locations would lie within the error bars.

PROPAGATION OF UNCERTAINTIES

The center of the distribution of dots is located at (x̄, ȳ), and from this we can calculate
r̄ =

√
x̄2 + ȳ2, the distance of the center of the distribution from origin. The question

then arises, “what is the uncertainty in r̄?”

The answer can be worked out using multi-variate calculus (not expected of students in
Physics 201 or 207):

σr =

√
(x̄ σµ,x)2 + (ȳ σµ,y)2

r̄
. (1)

1. Calculate r̄ and σr for your data.

2. Show your TA your results for r̄ and σr. When your TA confirms them, please write
them on the board.

You have just asked Excel to calculate the uncertainty in a quantity you did not directly
measure (r̄) based on uncertainties in quantities you did directly measure (x and y). This
is an example of the “propagation of uncertainties”.

3. How far from the origin did the average chad land? Calculate ρ =
√
x2 + y2 for

each chad, and record ρ̄. Is ρ̄ the same as r̄?
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FITS AND UNCERTAINTIES IN FIT PARAMETERS

By now there should be a table on the board showing r̄ and σr as functions of h. We
might suppose that the larger is h, the less well we know r̄. We will use Excel to check
how well the measurements are fit by this supposition.

1. In Excel, make a scatter chart (without connecting lines) of σr, which measures how
accurately we know r̄, as a function of h.

2. Add a linear trendline to the chart. Note that what Excel calls a “trendline” is what
in physics is called a “least-squares fit”. Select “Display equation on chart”.

3. Excel also calculates the uncertainties in the fit parameters. They can be accessed
through the Excel function LINEST. In M-200.xlsx, see cells V6:W10 (raw data)
and cells V13:W14 (trendline fit parameters and uncertainties) for an example.

4. Use LINEST to display the uncertainties in the trendline found in step 2. Two of
the values LINEST returns should match the values shown on the chart. The others
are the uncertainties.

5. Based on the LINEST output, what is the uncertainty in units of cm of the y-
intercept of the trendline (i.e. the value of the trendline when h = 0)?

Excel can do quite a bit more analysis of uncertainties than needed in Physics 201 or 207.

VOCABULARY: “DISCREPANCY”

discrepancy (noun) an unexplained difference

If we lower the funnel until it sits on the paper (h = 0), every chad should land exactly
at the origin (r = 0), so we expect σr(h = 0) = 0. Yet perhaps the linear trendline
found in step 2 above does not go through the point h = 0, σr = 0. There is some kind of
discrepancy (unexplained difference) between this new data point and the linear trendline.

1. What is the discrepancy (in cm) between r = 0 and the y-intercept of the trendline?
(In physics 207 always report discrepancies as being greater than zero.)

2. What is the ratio R of (the discrepancy)/(the uncertainty in the trendline value at
h = 0) ? (R should be a dimensionless number greater than zero.)

3. Summarize this result by writing the sentence: “The discrepancy between the ob-
served σr at h = 0 and the value of the linear trendline at h = 0 is R times as big
as the uncertainty in the trendline value”. This elaborate phrasing is objective–it
does not express an opinion on whether the observation or the trendline (or both)
are in error. Also it is rigorous: it proceeds from the raw data by a set of automatic
mathematical steps.

SUMMARY

1. Summarize what you did in this lab, and tell us what part of the material was new
(this will help us teach you better).

2. What version of Excel are you using?
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M-201 Errors & Motion

M-201a Measurement and Error

OBJECTIVES:

To develop an understanding of random and systematic errors in a measurement; to
introduce PASCO hardware and software.

THEORY:

accuracy of a measurement: how close the measurement is to reality.

precision of a measurement: how consistent repeated measurements are.

systematic errors: errors which affect the accuracy of a measurement. Typically they
are reproducible so that they always affect the data in the same way. For instance,
if a clock runs slowly, its measurement of some duration will be less than the true
duration. Taking more measurements does not reduce systematic error.

random errors: errors which affect the precision of a measurement. A process
itself may have a random component (as in radioactive decay) or the measurement
technique may introduce noise that causes the readings to fluctuate. Averaging
over many measurements reduces random errors.

APPARATUS:

PASCO photogate and stand; PASCO 850 Universal Interface; PASCO Capstone
software.

PROCEDURE:

How long is one second? The formal definition–the second is the duration of
9,192,631,770 periods of the radiation corresponding to the transition between the
two hyperfine levels of the ground state of the Cesium-133 atom–is unhelpful for
everyday affairs. In this lab you will test your ability to internalize the one second
time interval by flicking your finger back and forth through an infrared beam sensor
once per second. The duration of each full cycle (back and forth, approximately
2 seconds) will be simultaneously recorded, plotted and tabulated by the PASCO
interface software.

Configure the experiment as in Fig. 1 below. Insert the phone-jack cable from the
photogate into the DIGITAL INPUT #1 socket. If you pass your finger through the
photogate, an infrared beam is interrupted and the red LED should light up. Adjust
the photogate so that you can easily and repetitively flick your finger through the
gap.

To launch the Pasco interface software, Capstone, click on the “Experiment M-201a”
file in the Lab Software/201 folder on the desktop. A display should appear as in
Fig. 2, showing a typical data run. In the table you can view all of the data points
and the statistical analysis, including mean and standard deviation. The plot and
histogram show the same data as the table.
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Figure 1: A schematic of the M-201a components and layout.

SUGGESTED PROCEDURE:

1. Start recording data by clicking on the “Record” icon and practice flicking a
finger back and forth so that a two second interval appears in the window. The

Record icon has now changed to the “Stop” icon ; click the Stop icon when done.
Since the program started with one set of data, this will produce a second set.

2. Each run gets its own data set in the “Data Summary” tab under the Tools
Palette. (If there are any data sets in existence you will not be able to reconfigure
the interface parameters or sensor inputs.) A data set can be deleted by selecting
the data set and clicking the red X to the right of the name. You can select which
data set is displayed on a particular graph by clicking on the Data Summary icon
that appears on that graph.

Figure 2: The PASCO Capstone display window
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3. Once you are comfortable with the procedure then click on the Record icon, cycle a
finger back and forth over fifty times, then click on the Stop icon. DO NOT watch
the time display while you do this, since you want to find out how accurately and
precisely you can reproduce a time interval of 2 s using only your mind.

4. Table: What is the mean time per cycle? What is the standard deviation? As
described in the “Errors and Uncertainties” section on page 3, the mean t and
standard deviation σ are given by:

t =
N∑
i=1

ti/N and σ =

√√√√ N∑
i=1

(ti − t)2/[N − 1] .

(If these are not visible at the bottom of the table, click on the Statistics icon ).

5. Graph: For a normal distribution approximately 68% of the data points fall within
±1σ of the mean, and 95% fall within ±2σ. The graph display shows as a shaded
region one standard deviation above and below the mean. How many data points
are there, how many don’t fall within one σ of the mean, and what percent of the
points is this?

6. Histogram: A normal distribution looks like a “bell-shaped curve”. What feature
of the curve corresponds to the mean? What feature corresponds to the standard
deviation?

7. Is the discrepancy between the mean and “reality” (in this case, two seconds) smaller
than a standard deviation?

In general σ is a measure of how much a single measurement fluctuates from the mean,
and thus describes the size of the random error. It doesn’t change as more measurements
are taken. The standard deviation of the mean σµ = σ/

√
N characterizes how well you

know the mean. It gets smaller the more measurements you take.

8. What is σµ for your data?

9. The difference between the mean and reality is a test for the presence of a systematic
error. If the difference between the mean and reality is much more than σµ, there is
clear evidence of systematic effect. If the difference is much smaller than σµ, there
is clear evidence against a systematic effect. Is there clear evidence of a systematic
effect in your data set?

10. Which is larger in your dataset: the random error or the systematic error?
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M-201b Errors and the Density of a Solid

OBJECTIVES:

To learn to use vernier calipers; to learn about systematic errors and random uncer-
tainties; to propagate uncertainties.

NOTE: This experiment illustrates the earlier section on Errors and Uncertainties
(see page 3).

APPARATUS:

Hardened steel metal cylinder; vernier calipers; precision gauge blocks; precision
balance.

PRECAUTIONS:

Avoid dropping the metal cylinders, or deforming them in any other way.

Disengage both thumbscrew locks on the caliper before attempting to use it.

Improper weighing procedures may damage the precision balance. Consult your
instructor if in doubt.

In handling the gauge blocks avoid touching the polished surfaces since body acids
are corrosive.

INTRODUCTION:

First read the material on Errors and Uncertainties (page 3). You will measure the
density (mass per unit volume) of a metal cylinder by first measuring the cylinder’s
mass m (on a balance), and then calculating the volume (hπr2 = hπd2/4) from
measurements of the cylinder’s diameter d and height h. Then you will estimate
the uncertainty in your determination of density by propagating the uncertainties
in your determinations of m, d, and h.

Calculations may conveniently done in Excel: use Excel “average” function to cal-
culate mean, and Excel “stdev” function to calculate standard deviation.

THE VERNIER CALIPER:

The vernier scale was invented in 1631 by Pierre Vernier. Work through
Appendix A for practice reading a vernier scale. A helpful video is here:
https://mediaspace.wisc.edu/media/M-201b Vernier Calibration Rev/1 vm3rtq18
Experiment with one of the large verniers in the lab until you are confident you can
use it correctly.

Precautions on use of the calipers:

1. Unclamp both top thumbscrews to permit moving caliper jaws.

2. Open caliper to exceed the dimension being measured by about 1 mm.

3. Close right thumbscrew to lock position of lower horizontal knurled cylinder. Rotate
the knurled cylinder to make the measurement, then rotate it the other direction to
release the object being measured. Never over-tighten!
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CALIBRATION:

1. Zero Error: wipe the caliper jaws with cleaning paper. Close the jaws and make a
reading. Record the reading, separate the jaws, close them again, and make another
reading. Continue in this way until you have recorded five readings. The mean of
these readings is the zero error. Record the zero error, and standard deviation of
your measurements.

2. Measure all four calibration gauge blocks (6, 12, 18 and 24 mm): Set the gauge
blocks on end, well-in from the edge of the table, thus freeing both hands to handle
the caliper. Record the actual (uncorrected) reading. A single measurement of each
block will suffice.

3. Using data from the two steps above, plot a correction curve for your measuring
device: plot errors as ordinates (vertical axis) and nominal measurements (0, 6, 12,
18, and 24 mm) as abscissae (horizontal axis). Fit a straight line to your measure-
ments. This line represents your estimate of the systematic error of your use of this
particular vernier caliper.

DENSITY DETERMINATION:

1. Make five measurements (should be in millimeters) of the height and ten of the
diameter. Since our object is to determine the volume of the cylinder, distribute
your measurements so as to get an appropriate average length and average diameter.
Avoid any small projections which would result in a misleading measurement. If not
possible to avoid, estimate their importance to the result. Record actual readings
and indicate, in your lab book, how you distributed them.

2. Calculate and record the mean height, mean diameter, and standard deviations
thereof.

3. Use your correction curve to correct for systematic error. If you were to use the
uncorrected values, how much fractional error would this introduce?

4. From the corrected mean dimensions, calculate the volume. From the fractional
uncertainties in the dimensions, calculate the fractional uncertainty in the volume,
and then the uncertainty in the volume. Refer to the “Propagation of Uncertainties”
section (page 5) for guidance. Record your results.

5. Weigh the cylinder twice on the electronic balance; estimate to 1 mg; record the
mean and standard deviation of the two measurements.

6. Calculate the density (in units of g/cm3), the fractional uncertainty in the density,
and thus the uncertainty in the density. Record your results.

7. Some familiar metals (of which the cylinder might be made) are: Aluminum, bronze,
Iron, Lead, Nickel, steel, Tin. Which of these are ruled out by your measurements?

Link to the world’s premier institution devoted to improving the accuracy of measure-
ments:

National Institute of Science & Technology at http://www.nist.gov/
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M-201c Position, Velocity and Acceleration

OBJECTIVES:

Become familiar with the PASCO interface hardware and software; relate subjective
observation of motion to mathematical description by experimenting with 1-D
motion.

THEORY:

The motion of an object is described by indicating its distances x1 and x2 from a
fixed reference point at two different times t1 and t2. From the change in position
between these two times one calculates the average velocity (remember velocity is a
vector, and specifies direction) for the time interval:

average velocity ≡ v =
x2 − x1
t2 − t1

=
∆x

∆t
m/s

The acceleration of an object may be calculated by finding its velocity v1 and v2 at
two different times t1 and t2. From the change in velocity between t1 and t2 one
calculates the average acceleration for the time interval:

average acceleration ≡ a =
v2 − v1
t2 − t1

=
∆v

∆t
m/s2

FUNDAMENTAL CONCEPTS OF LINEAR MOTION:

1. The equation that describes the motion of an object that moves with constant ve-
locity is: x = x0 + v · t. x0 is the position of the object at time t=0, and v is the
(constant) velocity.

2. The equations that describe the motion of an object that moves with constant
acceleration are: x = x0 + v0 · t + 1

2at
2 and v = v0 + at. x0 again represents

the position of the object at t=0, v0 is the object’s velocity at t=0, and a is the
(constant) acceleration.

APPARATUS

PASCO motion sensor, and stand; PASCO 850 Interface; PASCO dynamic track
with magnetic bumpers; cart with reflecting vane; meter stick; one or two steel
blocks.

The PASCO motion sensor emits a series of short pulses of sound (each pulse
sounds like a “click”), and receives a series of echoes reflected from a nearby object.
The time elapsed between the emission and the reception of a sound pulse is equal
to the distance to the object divided by the speed of sound (this is also how bats
find flying insects and military ships locate submarines).

Thus the motion sensor directly measures the position of an object as a function
of time, then calculates from this the velocity and acceleration of the object, using
successive position measurements, by an algorithm like that given above in the
“THEORY” section.
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EXPERIMENT I: BASIC OPERATION AND MOTION SENSOR CALIBRATION:

PROCEDURE:

1. Connect the yellow plug of the motion sensor cable to digital channel 1, and the
black plug to digital channel 2.

2. Double click the “Experiment M-201c” file in the Lab Software/201 folder on the
desktop. Fig. 1 below shows the display that should appear. All three measured
quantities–position, velocity, and acceleration–are displayed simultaneously.

Figure 1: The PASCO Capstone display format

3. Referring to the above figure: identify a time when the object is not moving, and
also not acclerating.

4. Identify a time when the object is moving, but not accelerating.

5. Identify a time when the object is accelerating, but not moving.

6. Attach the reflecting vane (which is magnetic) to the cart. Put the motion sensor
on the stand, with the top of the reflective disk at the same height as the top of the
vane, and facing it, as in the figure below. Tilt the motion sensor 5◦ upward so that
the sound it emits doesn’t reflect from the bottom of the cart. Note the minimum
range of the motion sensor is approximately 20 cm.

Figure 2: How to position the motion sensor
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7. To start the data acquisition click on the Record icon . To stop it click on the

same icon which will have become the Stop icon .

8. Each run gets its own data set in the Data Summary tab under the Tools Palette.

In what follows, make sure you don’t drop the cart or allow it to roll off the table. This
damages the bearings and drastically increases the friction.

9. Start the data acquisition, and try to reproduce Fig. 1 by moving the cart to and
fro and while watching the position, velocity and acceleration displays. When you
are satisfied, stop the data acquisition, print out the screen using Ctrl-P, and tape
it into your lab notebook.

10. Stop the data acquisition.

11. Explore what some of the other buttons do:

• Click on the Zoom-to-Fit icon on one of the plots.

• Click on the Data Highlight icon and the Zoom-to-Fit icon to zoom in
to particular regions of interest. Use Ctrl-Z to get back to the original plot
area.

• Click on the Crosshair icon and move about within a plot window.

• Click on the Statistics icon to bring up statistics for a given set of data.

Make sure that all members of the group have an opportunity to test these. It will
facilitate the rest of the course if the basic operations on the software interface are
understood by everyone!

12. Delete the data set by clicking on the red ‘X’ next to RUN #1 item in the Data

Summary tab under the Tools Palette.

13. What is the minimum distance the vane can be to the motion sensor and still have
its position read accurately? (Expect the distance to be close to 20 cm.)

14. If necessary, move the motion sensor further from the track so that when the cart
touches the near magnetic bumper the motion sensor still records accurately.

15. How accurate is the motion sensor? Measure the position at two distances approxi-
mately 0.8 m apart and compare the printed centimeter scale with the motion sensor
readout. Does the motion sensor appear to be at least as accurate as the scale?

EXPERIMENT II: INCLINED PLANE AND MOTION:

1. Raise the side of the track closest to the motion sensor using one of the blocks.

2. Find an appropriate release point that allows the cart to roll down the track slowly
enough that it bounces off the magnetic bumper without striking it.

3. Click the Record button and release the cart, letting it bounce three or four times,
and then click the Stop button.
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4. Qualitatively describe the shape of the three curves: position, velocity and acceler-
ation; use words like “constant”, “linear”, and “parabolic”.

5. Use Ctrl-p to obtain a hard copy of this data.

6. Label/identify the various key features in the various curves by writing descriptive
phrases like “cart bounces off bumper”, “cart accelerating”, “cart decelerating”, or
“cart motionless” directly on the hard copy, and paste it in your notebook.

7. The cart bounces less high with every bounce for two reasons: there is friction in
the bearings, so the cart slows down as it rolls, and when it hits the bumper the
bumper flexes a little bit, so the cart doesn’t come off the bumper as fast as it went
in. Write down (using complete sentences) how these two effects are visible in the
hard copy.

EXPERIMENT III: ACCELERATION AT g (∼9.8 m/s2):

1. Have one member of the group stand carefully on a chair and hold the position sensor
facing downward above a second member’s head, while the second member holds a
notebook above his or her head.

2. Start a new data set and have the student holding the notebook jump straight up,
trying to remain in the air as long as possible, keeping the notebook flat to the top
of the head. Be sure the jumper doesn’t bump into the motion sensor, or the person
holding it.

3. Stop the recording and look at the data. If there doesn’t appear to a be a range of
times when the position is a parabolic function of time, take another dataset.

4. When the notebook-holder is moving closer to the motion sensor (ie upwards), what
is the sign of the velocity?

Try to measure the acceleration g due to gravity in three ways by making three fits to
data.

5. First, use the Data Highlight icon to select the position data you think corre-
sponds to the time when the notebook-holder was off the ground. Write down a
good criterion by which to select this data.

6. Then, click on the Fit icon to get at the pull-down menu; choose “Quadratic”.
Record the estimate of g and uncertainty that results. Make sure to include units.

7. Next, choose the appropriate velocity data. What is a good criterion to use to
identify the moment the notebook holder leaves the grouns?

8. Make a “Linear” fit to the velocity data. Record the estimate of g that results.

9. Finally, choose the appropriate acceleration data, and use the statistics button
to find its mean, and record the resulting estimate of g.

10. It is very unlikely all three fits will yield the same results (that is the nature of
experimental science!). Which fit do you trust the most–and why?
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M-204 Acceleration in Free Fall

OBJECTIVE: To measure g, the acceleration of gravity; to propagate uncertainties.

APPARATUS:

Spark timer; cylindrical bob; paper tape; cushion.

INTRODUCTION:

A spark timer is a device that generates a spark at very precise intervals of time.
A heavy bob is connected to a paper tape, which is routed through the spark timer
(see figure below). When the tape is released, the bob accelerates downlard. Sparks
pass between points A and B every 1/60 of a second, leaving little burn marks on
the paper. From the positions of these burn marks, the acceleration of the bob can
be determined. In order to make as an accurate as possible a measurement of g, the
acceleration due to gravity, we will attempt to account for two effects that reduce
the acceleration of the bob: the drag of the paper tape as it passes through the
spark timer (“tape drag”), and air drag.

PROCEDURE:

1. Find a stable horizontal surface about
1.5 m above the floor. Position spark
timer chassis near the edge of the sur-
face, and with the convex surfaces (A
and B) extended beyond the surface.
Put cushion on floor directly under A
and B.

2. Cut a 1.5 m length of paper tape, and
insert one end between the two halves
of the cylindrical bob. Fasten together
with thumb screw.

3. Team up with your lab partners: have
one partner find a stable place to stand,
and hold the tape end high enough (ver-
tically) above A and B that the bob just
touches below A and B. Have another
lab partner stand in front of, and sev-
eral meters away from, the spark timer,
and tell the first lab partner when the
tape end is centered side-to-side over the
spark timer. When the tape is centered,
have the third partner press the but-
ton on the back of the spark timer, and
immediately say “Go!”, at which time
the first lab partner is to release the
tape. Discard any part of tape which
fell through the spark gap after bob hit
the cushion.

A B

bob

cushion
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4. Place a meter stick on its side (on top of tape) so that the ends of the mm graduations
are as close as possible to the dots on the tape.

5. Recording and analysis of data may conveniently be done in Excel. Start a table
of data, with column headings “dot number”, “position x (cm)”, “uncertainty in
position (cm)”, “time (s)”.

6. There should be a giant black splodge on the tape where many sparks passed through
the tape before the tape started moving. Label this “dot 0”, but ignore it in the
analysis.

7. Starting with dot 1, record the position of each dot as you see it with your eye
directly above the dot, in order to avoid parallax error (see the section on Parallax
in Appendix B, p. 67). Make sure the meter stick and tape don’t move while you
are making measurements.

8. Aside: this is an excellent occasion to become acquainted with parallax error. Pick
a dot, and record the position of the dot with your eye two cm to one side of the
position of the dot. By how much did the position of the dot appear to change,
compared to your reading from the previous step? This is parallax error. The meter
stick is about 1/4-inch thick.

9. Estimate the uncertainty in your measurement of the position of each dot. If you
are less certain of the position of one or more dots than of the others, make sure to
record their uncertainties as larger than the others.

10. Assume spark timer timing errors are negligible, so the time between sparks is 1/60
second, and the uncertainty in the time of a position measurement is zero.

11. Make a graph of the data, including error bars indicating the uncertainty in the
position measurement. Make sure to label axes appropriately.

12. Scrutinize the graph. Do you see any evidence of drag? If so, record it.

13. Now start a new table for the recording of speeds. Make the headings “nominal dot
number”, ”xj − xj−1”, “v (cm/s)”, “uncertainty in v (cm/s)”, and “nominal time
(s)”.

14. The first row will be for nominal dot number 1.5. Enter the distance between the
first two dots, x2−x1, in the second column. Divide this by the time interval between
the dots, 1/60 s, to get the average speed of the bob during the time interval between
the first two dots, and enter this in the third column. Propagate the uncertainties
in the dot positions, and enter the result in the fourth column (for guidance see the
section on Propagation of Error on page 5). Take the average of the times of dot 2
and dot 1 and enter it in the fifth column.

15. Complete the remaining rows in an analogous fashion.

16. Make a plot of speed vs. time, including error bars and axis labels.

17. Air drag is proportional to speed. The effect of air drag on a freely-falling object is to
make the acceleration decrease as the velocity increases (eventually, the acceleration
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reaches zero, at which point the object is falling with “terminal velocity”). The effect
of tape drag is unpredictable–in a worst-case scenario, the tape could get tied in a
knot and get stuck in the spark timer, in which case the velocity of the bob would
drop to zero. Scrutinize the plot of speed vs. time, and write down any evidence
you see for air drag and tape drag.

18. Following the above scrutiny, determine which data points should be excluded from
further analysis because they were affected by air drag or tape drag. State which
dots are excluded.

19. Make a final plot, showing the positions of just the dots that haven’t been excluded
as a function of time. Fit a 2nd-order polynomial trendline to this data set. Display
the equation on the chart. Record the value of g given by the fit.

20. What are the uncertainties in the fit parameters given by the trendline? An Excel
Trendline is apparently an application of the Excel “LINEST” function. Let us
suppose the position data is in cells B4:B31 and the time data is in cells D4:D31.
In order to show the coefficient of x2 shown in the trendline, select an empty cell
and type the following into it:

= INDEX(LINEST($B$4:$B$31,$D$4:$D$31ˆ{1,2},TRUE,TRUE),1,1)
The cell should now display the coefficient of x2 shown on the graph.

In an adjacent cell, type
=INDEX(LINEST($B$4:$B$31,$D$4:$D$31ˆ{1,2},TRUE,TRUE),2,1)
This cell should now display the uncertainty in the coefficient of x2.

Based on the above LINEST parameters, record your measurement of g, and its
uncertainty. Make sure to include units.

21. The local value of g has been measured to be 9.803636± 0.000001 m/s2.1 Compare
this to your value of g: is the discrepancy between this value of g and your value of
g larger or smaller than the uncertainty in your value of g?

In measurements made before the semester, the discrepancy was found to exceed the
uncertainty by a factor of about 7. This suggests that more measurements would be
needed to fully account for drag (either air or tape).

Follow-up Questions

A. Meaning of “uncorrelated” errors In the section on Propagation of Uncertainties
on page 5, certain rules were given for propagating uncertainties in the case
that “errors are uncorrelated”. If we were to attempt to calculate the average
acceleration of the bob, as a function of time, by taking the difference in successive
velocity measurements, we would encounter a situation where errors where not
uncorrelated.

1Wollard and Rose, “International Gravity Measurements”, UW Geophysical and Polar Research Cen-
ter, (1963) p. 211 and p. 236.
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Suppose an error of δ was made in the measurement of the position of dot j. What
effect would this have on vj+1/2, the speed associated with nominal dot j+1/2, and
on vj−1/2, the speed associated with nominal dot j-1/2 ?

B. We might dutifully calculate the acceleration of the bob at that time as aj =
(vj+1/2 − vj−1/2)/(1/60s). However, there would be a correlation between the errors
in vj+1/2 and vj−1/2. Describe this correlation.

C. Measurement of reaction time Find a partner. Have your partner hold a meter stick
by the top, letting it dangle vertically, while you place your thumb and forefinger
opposite the 50 cm point, but not grasping it. Ask your partner to release the stick
without giving you a warning. When your partner releases the stick, grab it as soon
as possible. From the distance through which the 50 cm mark fell, calculate the time
of free fall of the meter stick. This is your “reaction time”. Record the distance the
meter stick fell, and the reaction time you calculated.

D. M-204 in Space The International Space Station orbits the earth, which has a radius
of about 6400 km, at an altitude of about 400 km. Newton’s law of gravitation
predict the force of gravity drops off as 1/r2. If the acceleration due to gravity at
the Earth’s surface is ∼9.80 m/s2, one would predict that the acceleration due to
gravity at the altitude of the space station would be about

9.80 m/s2 ×
(

6400 km

6400 km + 400 km

)2

∼ 8.68 m/s2.

However, if lab M-4 were performed as written by an astronaut on the space station,
the astronaut would measure an acceleration of 0 m/s2–the bob would appear to be
“weightless”. How can this be?

For further investigation: The acceleration due to the Earth’s gravity at the location of
the top of the bob is slightly smaller than the acceleration due to the Earth’s gravity at the
bottom of the bob, which is ∼ 3 cm closer to the center of the Earth. This is an example
of a “tidal” effect (effect due to the gradient of a gravitational field). Tidal effects can
be as large as ≈ 10−7 g, and one must correct for them. See Handbuch der Physics, Vol
XLVIII, p. 811; also Wollard and Rose, p. 183.
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M-205 Projectile Motion

OBJECTIVE: To find the initial speed and predict the range of a projectile, by use of
the laws of conservation of momentum and conservation of energy.

APPARATUS: Ballistic pendulum with spring gun, plumb bob, catcher, protractor, and
elevation stand; balance; large plumb bob.

protractor

spring gun
catcher

plumb bob

Figure 1: The ballistic pendulum.

Figure 2: Front and side views of the catcher

THEORY:

A ballistic pendulum is a device commonly used to determine the initial speed of a
projectile. A spring gun shoots a ball of mass m into a pendulum catcher of mass
M (see Figs. 1 and 2). The catcher traps the ball; thereafter the two move together.
Linear momentum is conserved, so the momentum of ball before impact equals the
momentum of ball plus catcher after impact:

mu = (m+M)V (1)

where u = ball’s speed before impact and V = initial speed of combined catcher
plus ball.



M-205 PROJECTILE MOTION 26

To find V , note that motion after impact conserves mechanical energy. Hence the
kinetic energy of the ball plus catcher at A in Fig. 2, just after impact, equals the
potential energy of the two at the top of the swing (at B). Thus

1

2
(M +m)V 2 = (M +m)gh . Hence, V =

√
2gh . (2)

We will measure h, and estimate its standard deviation σh from a set of measurements of
h. We will use these data to calculate u and its uncertainty σu. This is an example of the
“propagation of uncertainties”. Using the ideas set forth in the section “Propagation of
Uncertainties”, on page 5, we can show that, if y = Axn, where A and n are constants,
then

σy
y

= n
σx
x
.

PART I: LEVELING, ALIGNMENT, AND CALIBRATION:

1. Leveling: rotate the knurled screw on the front underside of the ballistic pendulum
until the plumb bob hangs at 90◦, as indicated by the protractor.

2. Alignment: adjust the lengths of the four strings suspending the catcher, by adjust-
ing each of the four screws at the top of the ballistic pendulum, until the axis of the
catcher is collinear with the axis of the spring gun.

3. Measure m, M and the length L of the pendulum (see Figure 2). Also record ∆L,
the uncertainty in L. Minimize parallax error (see Appendix B) when measuring L.

4. Practice cocking the gun, firing the ball into the catcher, and recording the maximum
angular deflection of the pendulum. Make sure to position your eye so that, at the
moment of maximum deflection of the pendulum, the string closer to you on the back
of pendulum appears to be directly in front of the string further from you on the
back of the pendulum, thus avoiding parallax error. Repeat until you are confident
in your result to within one degree.

5. For three trials, measure θ, the maximum deflection of the pendulum ( = 90◦−
reading on the protractor), and its uncertainty ∆θ, and from θ find the increase in
height of the pendulum h = L− L cos θ. Record θ in units of radians.

6. Calculate the mean rise h̄ and standard deviation σh for the three trials.

7. The purpose of this step is to compare the shot-to-shot variation in the pendulum
height increase, calculated in the previous step, to the uncertainty of a particular
measurement of the pendulum height increase. It can be shown (using the ideas set
forth in the section “Propagation of Uncertainties”, on page 5) that the uncertainty
∆h associated with h is given by:

∆h

h
=

√(
∆L

L

)2

+
sin2 θ

(1− cos θ)2
∆θ2 (3)

Calculate ∆h for each of the three shots. Is the shot-to-shot variation in h much
bigger than the typical ∆h, much smaller, or about the same?
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8. From the measured value of h, and σh, use the conservation of energy (after impact)
and the conservation of momentum (during impact) to calculate the initial speed of
the ball as it leaves the gun, u, and its uncertainty.

9. What fraction of the initial kinetic energy of the ball was lost during the collision?

PART II. RANGE MEASUREMENTS
HORIZONTAL SHOT:

1. Remove the catcher from the ballistic pendulum; move the strings out of the way.

2. Measure and record D, the height of the bottom of the ball above the floor.

3. Given u and its uncertainty from Part I, predict the range R (see diagram below)
and its uncertainty for the ball when shot horizontally from a position on the table.

R

D

4. Check your prediction experimentally by carrying out this and the next few steps.
Let x=0 correspond to the horizontal location of the center of the ball when it starts
free fall. What is the relationship between x=0 and the end of the spring gun, when
the spring gun is fully extended? (Hint: the radius of the ball is involved somehow;
record the radius of the ball).

5. Using the large plumb bob (the one not attached to any ballistic pendulum), put a
piece of tape on the floor and make a mark on it where x=0. Also put a piece of
tape on the table just behind the rear feet of the ballistic pendulum, so that you
can move it back into position if it recoils when fired.

6. Tape a piece of paper on the floor at the predicted point of impact (the ball’s impact
on the paper leaves a visible mark). Just beyond the paper put a box to catch the
ball on the first bounce.

7. Take five shots. Record the mean and standard deviation of the observed range.
Did the ballistic pendulum recoil during any of the three shots?

8. Which is larger, and by what percentage, the uncertainty in the predicted R (which
is based on the uncertainty in u), or the standard deviation of the observed R?

9. What is the discrepancy between the predicted and observed R, and is it greater or
less than the larger of the two quantities mentioned in the last step?
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10. Suggest one thing you might do, if you had more time, to try to track down the
source of the discrepancy.

11. Calculate a revised value of u, based on the observed range.

ELEVATED SHOT:

1. Use the stand provided to elevate the gun at an angle above the horizontal. Call this
angle φ: it can be read with the plumb bob and protractor: φ = 90◦ - protractor
reading. Record φ.

2. Measure the new value of D, the height of the bottom of the ball above the floor at
the first instant it is no longer supported by the spring gun.

3. Remark x = 0 on the floor.

4. Predict the range, using the value of u which you found in the “horizontal shot”
procedure above. Keep in mind that the initial vertical and horizontal velocities of
the ball are u sinφ and u cosφ.

5. Make five shots; record the mean and standard deviation of the ranges.

FINAL QUESTIONS:

1. Which measurement was more repeatable, horizontal shot range or elevated shot
range? State your answer in one english sentence, supported by one mathematical
inequality involving the fractional variation ∆R/R in the observed ranges.

2. When the gun is cocked, the spring is compressed by about 4.6 cm. From your
data from Part I, find the spring constant k of the gun, in units of N/m, from
1
2mu

2 = 1
2kx

2.
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M-206 Uniform Circular Motion

OBJECTIVE: To verify whether the centripetal force Fc is correctly calculated as

Fc =
mv2

r
= mω2r

APPARATUS:

Fig. 1 is a schematic of the rotating system. The bobs and springs are removable
for weighing.

spring

light pipe

top viewbob

bob

light pipe

spring

axis of
rotationlens

side view

magnetic sensor

Figure 1: The rotating sytem (only one side shown).

A variable speed motor drives the rotating system which has two slotted bobs which
slide on a low-friction bar.

A revolutions counter is on the shaft. The counter operates by sensing rotating
magnetic poles. The display shows the frequency of revolution in rpm.

A spring (plus any friction) supplies the centripetal force required to keep the bob
traveling in a circle.

Suppose one measures the angular frequency ω required for one bob to just cover
the light pipe, and then measures the force F needed to pull the bob out to the same
distance when the system is not rotating. Assuming F = Fc, one can check whether

Fc = mω2r
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PROCEDURE:

1. Measurement of m: measure the mass of the nickel-plated brass bob, and the mass
of the spring. Record the masses and the uncertainties thereof.

2. Measurement of ω: Replace the brass bob, spring, and plastic cover. Adjust the
motor speed until the light pipe at the center of the rotating system goes dark.

To correct for frictional effects of the bob on the bar, record the frequencies both
as the speed is slowly increased to the correct value and as the speed is decreased
from too high a value. Since the direction of the frictional force reverses for the two
cases, take the average of ω2 to eliminate the frictional effect.

Repeat several times. Record your best value for, and uncertainty of, ω2.

3. Measurement of F : Use the string, pulley, weight holder, and slotted weights to
measure the force required to stretch the spring so that the optical light pipe is
again just covered.

Make sure the string is collinear with the spring. Devise a way to account for error
caused by the friction at the pulley and of the sliding bob on the bar. Record F and
the uncertainty thereof.

4. Measurement of r: while the spring is stretched to its proper length (item 3 above),
measure the distance r from the axis of rotation to the center of mass of the bob.
The center of mass is marked on the bob. Record r and the uncertainty thereof.

Figure 2: Static measurement of the force using hanging weights
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5. Compute the putative centripetal force Fc = mω2r, and its uncertainty, from your
measurements of m, ω, and r. Recall that if y = Axn, where A and n are constants,
then

σy
y

= n
σx
x
,

and that if y = Avlwmxn, and the uncertainties in quantities v, w, and x are
uncorrelated, then the uncertainties add in quadrature:

σy
y

=

√(
lσv
v

)2

+
(mσw

w

)2
+
(nσx
x

)2
.

Compare Fc to the static measurement of the force, F . Is the discrepancy between
F and Fc larger or smaller than the uncertainties in F and Fc?

6. Replace the brass bob with the aluminum bob, and repeat steps 1, 2, and 5 above.

7. In computing the centripetal force, it can be shown (Weinstock, American Journal
of Physics, 32, p. 370, 1964) that ≈ 1/3 of the spring mass should be added to the
mass of the bob to obtain the total effective mass. Compute the magnitude of this
correction for both bobs, in N.

8. Summarize the evidence given by your results to support (or otherwise) the conjec-
ture that centripetal force is calculated by Fc = mω2r. If you had more time, which
of your measurements would you try to improve?
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M-209 Angular Acceleration, Moment of Inertia, Angular
Momentum

OBJECTIVES:
To study rotational motion resulting from constant torque, causing constant angular

acceleration; to investigate the moment of inertia of an object about different axes of
rotation; to demonstrate conservation of angular momentum.

THEORY
In this lab we consider a rigid object rotating about a fixed axis with constant angular

acceleration. We use the notation:

θ(t): orientation (i.e. angle) of object at time t. Units: radians.
θ0: orientation of object at t = 0. Units: radians.
ω(t): angular speed of rotating object at time t. Units: radians/second.
ω0: angular speed of rotating object at t = 0. Units: radians/second.
α: angular acceleration of rotating object. Units: radians/second2.

For a constant α, θ(t) = θ0 + ω0 · t+ 1
2αt

2 and ω(t) = ω0 + αt. If α = 0, these simplify to
θ(t) = θ0 + ω · t , and ω = ω0.

In this lab always use radians and never degrees. One full revolution of an object
corresponds to 2π radians.

A constant α is caused by a constant torque τ , via τ = Iα, where I is the moment of
inertia of the rotating object.

In the absence of torque from external forces the angular momentum L = Iω of a rotating
system is a constant.

Check units on each equation that you write. For example, if you are using v to denote
linear speed (units = m/s), and you find yourself writing an equation like v = ω, then
you must recheck your work–the units do not match.

APPARATUS:

PASCO interface; rotational assembly; photogate sensor and support; pulley; solid
plastic disk; aluminum bar; black metal ring; black metal square; a length of string;
weight hanger and various slotted masses; scale for mass measurements.

PRE-LAB QUESTIONS:

The figure below depicts a solid disk of mass M and radius R that is free to rotate
about the axis as shown. The inner hub is massless but has radius r. Around this inner
hub is wrapped a string (as shown) that goes over a frictionless pulley and this is attached
to a hanging mass m. The mass m is acted upon by gravity. The normal force of the
table cancels the weight of the disk. The disk starts at rest. Thereafter, the string slowly
unwinds without slipping on the pulley or the hub.
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1. Draw a free body diagram of the mass m, and use it to write an equation relating
a, the linear acceleration of the mass m, to the tension T in the string.

2. Draw a free body diagram of the disk, and use it to relate the angular acceleration
of the disk, α, to T , the mass M of the disk, and the radii (R and r). The moment
of inertia of a solid disk about its axis of symmetry is I = MR2/2.

3. Relate a to α.

4. Write α in terms of M , m, R, and r.

(In Experiment 1 below you will measure, M , m, R, and r, and α, and compare the
predicted and measured moments of inertia of the disk.)

EXPERIMENT 0: PRELIMINARY

1. Measure the mass, M , of the disk, and estimate its uncertainty ∆M . Also measure
the radius R of the disk, and estimate its uncertainty ∆R.

2. Connect the photogate to Digital Input # 1 of the PASCO interface. Install it on
the PASCO rotational motion assembly as shown in the figure below. Make sure it
is neither so low it rubs against the slotted wheel, nor so high it rubs against the
disk. It will measure the angular speed of the disk.

RO
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A

AC
CE
SS
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Y
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Photogate

Slotted Wheel

Disk

Shaft

Pulley

A

B

Mounting

Rod

Figure 2: Mounting of photogate and pulley
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3. Screw the pulley onto the shaft. Orient the pulley so its axis is parallel to the floor,
and tighten thumbscrew B. This will decrease friction from string rubbing.

4. Thread the string downwards through the middle hole of the inner hub, and tie a big
enough knot in the end so the knot doesn’t slide through the hole. Spin the slotted
wheel clockwise so that the string winds a few turns around the middle channel
of the hub. Lay the string over the pulley, and pull it taut while holding the hub
so it doesn’t spin. Rotate the mounting rod so the string runs in the plane of the
pulley, and then secure the mounting rod by tightening thumbscrew A. This will
also decrease friction from string rubbing.

5. Move the assembly so the pulley sticks out over the edge of the table.

6. With the string fully unwound, affix the weight hanger to the string (perhaps by
using a bowline knot) so that the weight hanger hangs an inch above the floor.

7. Rotate the hub clockwise, winding the string on the top hub, the weight of the
hanger keeping the string taut. Make sure the string winds neatly.

8. Mount the solid grey disk horizontally onto the rotation shaft. Make sure it doesn’t
rest on or rub against the photogate.

9. Measure the effective hub radius, r, and estimate its uncertainty. One might use a
vernier caliper, but this neglects string diameter and tracking. Here is a better way:

(i) Align a meter stick vertically from the floor so that you can track the net
displacement of the string.

(ii) Identify a calibration point on the rim of the grey disk. (Masking tape should
work well enough.) Align this near the edge of the meter stick and use the
meter stick edge to locate a reproducible starting point.

(iii) Use the weight hanger to identify a height reading. Then lower the string and
hanger ten full turns of the disk and take a second height reading.

(iv) The relationship between the change in height δh and change in angle δθ is
given by δh = r δθ, where δθ is in radians. Use the measured values of δh and
δθ to find r, and calculate ∆r/r =

√
(∆δh/h)2 + (∆δθ/θ)2.

10. Initiate the Pasco interface software by double clicking on the “Experiment M-209a”
file in the Lab Software/201 folder on the desktop.

11. Start the data acquisition by clicking on the Record icon . To stop the data

acquisition click on the Stop icon .

12. Using the 50 gram hanger plus another 100 grams, start data acquisition and release
the disk. Since the torque is constant, it is predicted that the angular speed should
increase linearly.

13. Use the “highlight” tool to select the five data points on the graph of angular speed
vs. time where the angular speed is closest to 2.0 rad/s, and use the “fit” tool to
make a linear fit to this data. Record the slope of the curve (which is α) and its
uncertainty. Make sure to record units.

14. Is there any evidence of departure from linearity?
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EXPERIMENT I: COMPARING PREDICTED AND MEASURED MOMENTS OF IN-
ERTIA

1. Calculate the theoretical moment of inertia of the disk if it is rotated about its axis
of symmetry, Iaxis = MR2/2.

2. Using the measured uncertainties in M and R, calculate the uncertainty in Iaxis
(refer to the Propagation of Uncertainties section on page 5; if you find that the
fractional uncertainty in one measured quantity is much larger than the fractional
uncertainty in the other, you may neglect it).

3. For nominal hanging masses of 50 g, 100 g, 150 g, 200 g, 250 g, and 300 g, mea-
sure and record the actual value of each mass, its uncertainty, and the fractional
uncertainty.

4. For each mass, measure and record α, the angular acceleration of the disk, and its
uncertainty, using the method of step 13 from Exp. 0. For the 150 g mass, use the
measurement of α made in that step.

5. Compute the fractional uncertainty in each measurement of α.

6. Compare the fractional uncertainties ∆m/m, ∆r/r, and ∆α/α: which quantity is
the most accurately known, m, r, or α? Which is the least?

7. From the measured α, calculate the measured moment of inertia of the disk for each
of the six measurements, starting from

I = mr2
( g
rα
− 1
)
.

Compute g/rα for the largest value of α you measured in step 4, and show that it
is much larger than one. This allows you use the approximation

I ≈ mrg/α .

8. Propagate the uncertainties in α and r to give the uncertainty in each measurement
of I.

9. Find the mean and standard deviation of the six measurements; call them Imeasaxis and
∆Imeasaxis .

10. Is the discrepancy between Iaxis and Imeasaxis larger or smaller than ∆Imeasaxis ?

11. Look up or derive the expected moment of inertia Idia of a disk rotated about its
diameter in terms of M and R, and write down the expected ratio Idia/Iaxis (you
should be able to express it as the ratio of two integers).

12. Remove the disk, and remount it vertically using one of the holes drilled in its side.
Experimentally measure Imeasdia , the moment of inertia about this new axis, using the
150 g hanging mass. What is the ratio Imeasdia /Imeasaxis ?

13. We have neglected friction in this lab, despite some evidence it is measurable (see
item 14 in Exp. 0). Does that mean our measurements of I are likely to be incorrectly
high, or incorrectly low? Justify your answer.
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EXPERIMENT II: CONSERVATION OF ANGULAR MOMENTUM:

1. Measure M ′, R1, and R2, the mass and inner and outer radii of the black metal ring.
Use Iring = 1

2M
′(R2

1 +R2
2) to calculate the moment of inertia of the ring.

2. Untie the string from the hub. Re-install the grey disk horizontally, as it was in the
first part of Exp. 1.

3. Spin the grey disk and click on the Record icon .

4. While the grey disk is spinning hold the ring just above it. Carefully drop the ring
onto the disk so that it remains centered, and afterwards rotates at the same angular
velocity as the disk. Your data should look something like Fig. 3 below.

Figure 3: Ring drop, superimposed on gradual angular deceleration.

5. Repeat four more times.

6. Note that the angular speed is observed to decrease steadily both before and after
the “collision”, due to friction. Use the PASCO data (perhaps downloaded into a
spreadsheet) to determine this constant (negative) angular acceleration.

7. Determine the decrement in angular speed due to the collision. Note that the col-
lision has a finite duration (typically about 0.25 s), so the angular speed decreases
by a non-zero amount due to friction during this time. Develop a plan to account
for this non-zero decrease; state your plan and carry it out.

8. Calculate the initial and final angular momenta and kinetic energies for each of the
five trials. Calculate the fraction of angular momentum and kinetic energy that were
conserved in each trial. Calculate the mean and standard deviation of the five trials.

Initial values:

Li = Imeasaxis ωi and Ei =
1

2
Imeasaxis ω2

i

Final values:

Lf = (Imeasaxis + Iring) ωf and Ef =
1

2
(Imeasaxis + Iring) ω

2
f

9. Is angular momentum conserved to within the standard deviation of the measure-
ment?

10. What was the average fraction of kinetic energy that was lost?

11. Friction measurement. Use your estimate of the angular acceleration of the disk (in
rad/sec2) from step 6 above, and Imeasaxis from Exp. 1, to estimate the torque (in N
m) due to friction. Use the value of r from Exp. 0 to estimate the weight, and thus
the mass (in g), of a hanging mass that would balance that frictional torque. State
how you would use this estimate to correct your result from Exp. 1 for friction (but
do not go back to do the correction).
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M-211 Elastic and Inelastic Collisions

OBJECTIVE: To study conservation of energy and momentum in collisions.
APPARATUS:

Air track; assorted slotted masses; air supply; hose; gliders; photogates & support
stands; PASCO interface and computer.

PRECAUTIONS: The gliders and track surfaces damage easily: Don’t drop!
With the air pressure on, check that a glider glides smoothly, and the track is free of
high friction areas from scratches or plugged air holes.
All collisions must be free from any glider contact with the rail.
Speeds which are too slow are overly influenced by friction and air track leveling errors.
Speeds which are too fast cause pitch and yaw motions of the gliders which increase the
likelihood of physical contact with the track.
You should perform a number of preliminary trials to discern which speeds work best.
In Experiment III, good alignment of the needle assembly is a necessity.

EXPERIMENT 0: PRELIMINARIES

1. Turn on the air supply and experiment with the gliders.

2. Adjust the leveling screw so that a glider placed at rest remains at rest. Adjust the
air flow so the gliders move freely without rocking side to side.

3. Make sure that the photogates are plugged into the first two phone jack inputs in
the PASCO interface module. Set the two photogates 50 cm apart and at the right
height to track the 10-cm-long timing plate.

4. Start the PASCO software by double-clicking “Experiment M211” in the Lab Soft-
ware/201 folder on the desktop. The monitor should look as in Figure 1 below.

Figure 1: The Pasco Capstone display for M211.

5. To start the data acquisition, click Record. To stop it, click Stop. Each time a glider
passes the photogate an entry will appear in the appropriate table column. NOTE:
The photogates measure the speed but do NOT sense the direction of motion. You
are responsible for the latter.
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6. Take a single glider and practice sending it through both photogates. Make sure the
two photogates record similar speeds. Keep speeds under about 0.7 m/s.

7. Launch the glider from the right end of the track and record, in a spreadsheet, the
speeds measured by both photogates, as well as the direction of motion. Include
units.

8. Repeat, launching the glider from the left end.

9. Repeat eight more times, launching the glider first from the right end, then the left
(you should have 20 speed measurements at the end of this step).

10. Measure m, the mass of the glider, and estimate ∆m, the uncertainty in your mea-
surement of m. What is ∆m/m?

EXPERIMENT I: ELASTIC COLLISIONS, ONE GLIDER INITIALLY AT REST
The adjective “elastic” means “energy-conserving”.

1. Affix spade and elastic to both gliders (see Fig. 2); add masses to one glider (hence-
forth “glider #1”). Measure the mass of each glider, and the uncertainty in each
measurement. Record your data in a spreadsheet. Specify units for all data.

Glider: #1 #2

mass (g)

uncertainty in mass (g)

elastic
spade

elastic
spade

elastic
spade

Figure 2: Sketch of the glider configuration for elastic collisions.

2. Read the following step; before performing it, predict which way will glider #1 be
moving after the collision: left or right?

3. Start with glider #1 at the left end of track and glider #2 at rest near the center, in
between the two photogates. Give #1 a push toward #2. Make sure your hand has
left #1 before #1 reaches the photogate, and make sure #1 clears the photogate
before it collides with #2. Call this “collision 1”. After the collision, stop glider #2
before it bounces back. Which way was glider #1 moving after the collision?

4. Tabulate the velocities for collision 1 as shown below. Use a spreadsheet for conve-
nience. Record velocities to the right as positive, to the left as negative.
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Raw data Before impact After impact

v1 (m/s) v2 (m/s) v′1 (m/s) v′2 (m/s)

collision 1

collision 2

collision 3

5. Repeat; record the velocities for this collision (“collision 2”).

6. Now put #1 at rest in the center, send #2 in from the left, and record the velocities
from the collision (“collision 3”).

7. Recall the definitions of momentum (p = mv) and kinetic energy (E = 1/2mv2).
For a two-body collision the laws of conservation of momentum pinit = pfinal and
conservation of kinetic energy Einit = Efinal may be written:

conservation of momentum : m1v1 +m2v2 = m1v
′
1 +m2v

′
2,

conservation of kinetic energy :
1

2
m1v

2
1 +

1

2
m2v

2
2 =

1

2
m1v

′ 2
1 +

1

2
m2v

′ 2
2 .

Tabulate momenta and energy as shown below; record momenta to the right as
positive, those to the left as negative.

p (kg m/s) Before impact After impact

p1 p2 pinit p′1 p′2 pfinal
collision 1

collision 2

collision 3

E (kg m2/s2) Before impact After impact

E1 E2 Einit E′1 E′2 Efinal
collision 1

collision 2

collision 3

8. Tabulate the fraction of initial total momentum conserved in each collision and the
fraction of the initial kinetic energy conserved in each collision, as shown below.

Fraction of momentum conserved Fraction of kinetic energy conserved

collision 1

collision 2

collision 3

9. Using data from the final table, calculate the mean and standard deviation of the
fraction of conserved momentum and the fraction of conserved kinetic energy.

10. Are the measured fractions of conserved energy and momentum within a standard
deviation of the predicted fractions (=1)?
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EXPERIMENT II: ELASTIC COLLISIONS, BOTH GLIDERS INITIALLY MOVING

1. Spend a few minutes bouncing the gliders against each other, and letting them
bounce off the ends. When you see a collision about to occur, try to predict what
is about to happen before it happens. Here is a game: try to send the two gliders
together in such a way that one of them is motionless after the collision. Let every
lab partner have a turn. No need to make any measurements.

2. Start the gliders at opposite ends of the air track. Record the data for three collisions.
Tabulate data, and compute fraction of energy and momentum conserved (with
uncertainties), as in Exp. I.

3. Compare σp and σE , the standard deviations in the fractions of conserved p and E,
for this experiment to those from Exp. 1. Why is σp larger than in Exp. I?

(Hint: If the two gliders initially have equal and opposite momenta, pinit = 0.
Friction during the collision may cause pfinal 6= 0. One should not conclude that
momentum has appeared from nowhere, but rather that one should avoid designing
experiments that depend on subtracting two nearly equal quantities (in this case the
initial momenta of the gliders), since small losses or uncertainties in measurement
can lead to spurious conclusions.

EXPERIMENT III: INELASTIC COLLISIONS
The adjective “inelastic” means “energy non-conserving”.

1. Attach needle and wax insert to the gliders as in Fig. 3, so that they now stick
together when they collide (inelastic collision). Make sure the needle lines up
exactly with the wax or there will be significant sideways motion during the
collision. Measure masses of gliders (with uncertainties). Repeat Exp. II. Start
gliders from the same side (so that one overtakes the other), in order that pinit 6= 0.

When two gliders that are stuck together pass through a photogate, they ought
to both have the same speed, but sometimes the measured speeds differ, because
of friction or a non-level track. If this happens, is it better (for the purposes of
accounting for p and E during the collision) to use the speed of the lead glider for
both gliders, or use different speeds for the two gliders?

elastic
spade wax

elastic
spade

needle

Figure 3: Sketch of the glider configuration for inelastic collisions.

2. Did you observe a large change in the fraction of energy conserved in this experiment,
compared to the preceding two experiments?
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EXPERIMENT IV: ERRORS AND UNCERTAINTIES

In this section, we will try to quantify three sources of uncertainty or error: i. uncertainty
in measurements of speed; ii. effect of friction; iii. effect of possibly non-level track.

1. Uncertainty in measurements of speed. The uncertainty in the photogate measure-
ment of speed is ∆v = 0.005 m/s. Read the “Propagation of Uncertainties” section
(page 5). If (∆m/m)/(∆v/v) � 1 we may neglect the uncertainty in mass when
calculating the uncertainties in momentum and energy. Using your answer from
the last question in Exp. 0, calculate how large v would have to be in order for
(∆m/m)/(∆v/v) = 1. (Since all speeds in the experiment are less than this, neglect
∆m in what follows.)

2. Derive formulae for ∆p/p and ∆E/E in terms of ∆v/v in the case where ∆m/m
can be neglected.

3. Using a formula you derived above, propagate the uncertainty in the speed mea-
surements through the calculation of momentum for collision 2 of Exp. II. Use the
tabulation below.

p and ∆p (kg m/s) p1 ∆p1 p2 ∆p2 pinit ∆pinit
(before collision)

p and ∆p (kg m/s) p′1 ∆p′1 p′2 ∆p′2 pfinal ∆pfinal
(after collision)

4. If the collision were ideal the change in total momentum would be zero. Calculate
the “anomalous” change in momentum, pa ≡ pinit − pfinal, and equate ∆pa, the
uncertainty in pa, with σpa, the standard deviation in pa. By how many standard
deviations does pa differ from 0?

5. Using the other formula you derived above, propagate the uncertainty in speed
through the calculation of energy for collision 2 of Exp. II. Use a similar tabulation
to what you used for momentum.

6. Calculate the change in energy, Ea = Einit−Efinal, and its uncertainty ∆Ea. Assert
∆Ea ∼ σEa. By how many standard deviations does Ea differ from 0?

7. Effect of friction. Review the data from Exp. 0. For each passage of the cart,
calculate w, the speed decrement between photogate passages, and then calculate
the mean w for the 10 passages. What is the ratio between the mean w and the
uncertainty in measuring v, ∆v=0.005 m/s?

8. Effect of non-level track. In the data from Exp. 0, is there any evidence of a non-
level track? If so–estimate the change in speed a cart experiences between passing
through the two photogates, and state which end of the track is higher, left or right.

9. Uncertainty in measurements of speed; effect of friction; effect of non-level track :
which of these is a random error, and which is a systematic error?

10. Based on the data, which is the largest: uncertainty in measurements of speed; effect
of friction; or non-levelness of the track?
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11. Based on your calculations in steps 4, 6, 7, and 8, is there evidence for an additional
source of uncertainty or error (i.e. loss of energy and/or momentum) that has not
been accounted for? If so, state a hypothesis of what it might be.
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M-212 Simple Harmonic Motion

This lab introduces the harmonic oscillator, and several phenomena pertaining thereto.

OBJECTIVES:

1. To study the period of the simple harmonic oscillator as a function of oscillation
amplitude.

2. To investigate whether Hooke’s Law holds for real springs.

3. To observe the transfer of energy from potential energy to kinetic energy, and back
again, as the phase of oscillation changes.

4. To observe the exponential decay of amplitude of the damped harmonic oscillator.

THEORY:

The restoring force F on a mass m attached to a “simple” one-dimensional spring
is proportional to the displacement from equilibrium: F = −k(x − x0), where k is
the spring constant (or “stiffness”) in N/m, x0 is the position of equilibrium (no net
force) and x is the actual position of the object. This is Hooke’s Law.

The equation of motion of the simple spring-mass system, F = ma = −k(x− x0), is
a 2nd order differential equation:

a =
d2x′

dt2
= − k

m
(x′) ,

where x′ ≡ x− x0. The most general solution for this equation may be given as

x′(t) = A sin(ω0t+ φ0) ,

where the starting phase φ0 and the amplitude A may take on any values, but
ω0 ≡

√
k/m is determined.

In mathematics the adjective “harmonic” has the meaning “capable of being repre-
sented by a sine or cosine function”, so the spring-mass system is often referred to
as a harmonic oscillator. ω0 is the natural frequency of the harmonic oscillator, and
T ≡ 2π/ω0 is called the period.

The general solution written above is time-dependent and periodic. When the
phase varies by 2π (when one period T = 1/f = 2π/ω0 has elapsed), both the po-
sition, x′(t+T ) = x′(t), and velocity, v′(t+T ) = v′(t) return to their previous values.

Total energy (TE) is conserved in harmonic oscillation. As time passes kinetic energy
(KE) is transformed to potential energy (PE) and back again. Thus at any time t:

TE = constant = KE(t) + PE(t) =
1

2
m[v′(t)]2 +

1

2
k[x′(t)]2 .
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APPARATUS:

Basic equipment: Air track; assorted slotted masses; air supply; hose; adjustable
stop; glider; springs; timer; photogate & support stand; Hooke’s law apparatus.

Computer equipment: PASCO interface; photogate; motion sensor; speaker with
driver stem; power amplifier module.

PRECAUTIONS:

The soft aluminum gliders and track surfaces damage easily: Don’t drop!
With the air pressure on, check that the glider moves freely, and that the track is
level, and free of high-friction areas from scratches or plugged air holes.

Figure 1: Sketch of the air track configuration for Expt. 0.

EXPERIMENT 0: EQUIPMENT SETUP AND CHECKOUT:

1. Choose two springs of similar lengths.

2. Attach the springs to the air track as in the diagram above, setting the adjustable
end stop so that the springs are neither stretched beyond their elastic limits nor
capable of sagging onto the track as the glider oscillates (oscillation amplitudes ≤
20 cm will be requested below).

3. Choose the horizontal position of the photogate so the timing plate just cuts off the
beam when glider is in the equilibrium position (x− x0 = 0). The photogate phone
jack should be in the PASCO input 1.

4. Turn on the air supply and increase the blower speed until the the force of friction
appears to be small.

5. Displace the glider from equilibrium and then release it. Use your natural time-
keeping ability to estimate the period of oscillation.

6. Initiate the Pasco software by double-clicking the “Experiment M-212 Part I” file in
the Lab Software/201 folder on the desktop.

7. Displace the glider from equilibrium, release it, and click Record. Let the glider
oscillate for about 10 periods. Click Stop. Print a screenshot of your data and
include it in your report.
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8. Compare the mean period calculated by the computer to your estimate from above.
Do you trust the computer’s calculation?

9. Click on the “Glider Period (Small Amplitude) (s)” button near the top of the data
table. Note that there are two choices for “Custom Timer”: “Glider Period (Small
Amplitude)” and “Glider Period (Large Amplitude)”.

10. Inspect the “Timer Setup” window, in particular the “Timing Sequence” section,
which gives the algorithm for how the computer calculates the glider period. Com-
pare the timing sequences of the two custom timer measurements noted in the last
step.

11. What is the minimum amplitude of oscillation that requires use of the Glider Period
(Large Amplitude) custom timer, and what is special about this amplitude?

EXPERIMENT I: DEPENDENCE OF PERIOD ON AMPLITUDE:

1. Use the computer to measure the period for oscillation with initial amplitudes of
4 cm, 8 cm, 12 cm, 16, and 20 cm: acquire data for 10 oscillations for each initial
amplitude. Use the appropriate custom timer for each measurement. If any period
measurements seem untrustworthy, reject them and take another dataset.

2. Make a table with the following columns: “initial amplitude of oscillations A (cm)”;
“mean period T (s)”; “standard deviation of the mean σT (s)”. Recall the distinction
between “standard deviation” and “standard devation of the mean” (see “Charac-
terization of Uncertainties” on page 3). Which of the two does the Pasco software
tell you?

3. The theory presented in the “Theory” section predicts that period is independent
of amplitude. Does your data support this? Frame your answer using the formal
language of error analysis, e.g. “The discrepancies between the five measurements
of mean amplitude are of the same order as the uncertainties in each measurement
(as characterized by the standard deviation of the mean), so therefore yes, the
experimental measurements are consistent with the theoretical prediction that period
is independent of amplitude.”

EXPERIMENT II: DOES HOOKE’S LAW HOLD FOR REAL SPRINGS?:

1. Make two sketches in your lab book, of the glider at equilibrium and after a dis-
placement from equilibrium.

2. Show that the effective force constant for two identical springs of force constant k
on either side of an oscillating mass is 2k.

3. Let us try to verify whether real springs satisfy Hooke’s Law, F = −k(x − x0).
Choose one of your two springs, hang it vertically from the Hooke’s Law apparatus,
and set the vertical scale so that the “zero” mark aligns with the bottom end of the
spring.

4. Make a table with columns “mass m (g)”, “weight F (N)”, “elongation x−x0 (cm)”.
Your first row of data should have zeroes in all three columns.
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5. Starting with 2 g, add 5 g masses to the bottom of the spring, and measure the
elongation x − x0 of the spring for successively larger masses, until the elongation
exceeds the 14.5 cm range of the vertical scale.

6. Plot the data using Excel in such a way that the slope of a straight line fit to the
data is k (and not, say, 1/k).

7. Inspect the plot: do all data points fall neatly on a straight line?
If “yes”: fit a straight line to the points, and write down “k” as given by the fit.
If “no”: is it possible that if a data point or range of data points were excluded,
the remainder could be well fit by a straight line? If it is, fit a straight line to the
remainder points, and write down k as given by the fit, as well as the range of values
of F which went into this determination of k.

8. Use LINEST to find the uncertainty in your determination of k (for an example of
the usage of LINEST see p. 23 (M-204), or look in M-200.xlsx).

9. Measure the mass m of the glider, and estimate the uncertainty ∆m of your mea-
surement.

10. Using these measurements of k and m, predict the period of the glider in the setup
for Expt. 1, using T = 2π

√
m/2k . Calculate the percentage discrepancy between

prediction and measurement (|(Tcalc − Tmeas)/Tmeas| × 100%).

11. Write down the percentage uncertainty in the three experimentally measured quan-
tities involved in the calculation in the previous step (T as measured in Expt. 1, m
and k found here). Which quantity is the most uncertain? Are the uncertainties in
the experimentally measured quantities sufficiently large to explain the discrepancy
between the calculated and measured periods?

EXPERIMENT III: MEASURING x(t):

As mentioned in the “Theory” section, the general solution of the equation of motion
of the harmonic oscillator may be written (note ′ does not mean derivative):

x′(t) = A sin(ω0t+ φ0) ,

where x′(t) is the displacement from equilibrium. This implies

v′(t) = Aω0 cos(ω0t+ φ0) = Aω0 sin(ω0t+ φ0 +
π

2
)

where v′(t) is the velocity. A is the amplitude, ω0 the natural angular frequency,
and φ0 is the starting phase, as before. Notice that the velocity has a phase shift of
π
2 relative to the displacement.

This means that kinetic energy of motion (1/2mv′2) is transferred into potential
energy (1/2 kx′2) and back again.

To capture this cyclic process we will again use the PASCO interface, replacing the
photogate with the motion sensor.
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Figure 2: Photo of setup for Expt. III.

1. Remove the timing plate and attach an aluminum vane to the glider. Measure the
mass mvane of this glider and predict the new natural frequency ω =

√
k/mvane.

2. See setup picture below. Place the motion sensor approximately 60 cm from the
vane, collinear with the direction of oscillatory motion. Point the motion sensor at
the vane and tilt it about 10◦ upwards, and orient the vane so that its normal points
toward the motion sensor. Make sure the yellow phone jack is in Digital Input 1 and
the black phone jack is in Digital Input 2.

3. Double click on the “Experiment M-212 Part III” file in the Lab Software/201 folder
on the desktop.

4. Displace the glider approximately 20 cm from equilibrium to initiate the oscillatory
motion. Click on the the Record icon to start your data acquisition. The graph will
simultaneously display both absolute position and velocity versus time.

5. Inspect the position measurement for “outlier” data points which indicate faulty
measurement. If any appear, stop the data acquisition, reorient the motion sensor
and/or the aluminum vane, and try again.

6. Practice a few times to make sure you can reliably obtain outlier-free, smoothly-
varying sinusoidal curves. Then run the data acquisition for just over five cycles.

7. Using x′(t) = A sin(ω0t + φ0) , and x′ ≡ x− x0, determine the initial phase φ0 and
the equilibrium position x0 (note that x0 is not x(t = 0)).

8. Use the Data Highlight feature of the graph toolbar to better view a single full

cycle by highlighting the desired data and then clicking the Zoom-to-Fit button .

9. Use the cross-hair option to read out time, position and velocity. Convert
position to displacement-from-equilibrium (x′) by subtracting x0. Make a table as
below and fill in the missing entries. Identify units.
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time phase( ω0t+ φ0 ) x′(t) v′(t) KE PE TE
0

π/4 ( 45 deg)
π/2 ( 90 deg)
3π/4 (135 deg)
π (180 deg)

10. Plot TE vs. time. Neglecting friction, should TE be a constant of the motion?

11. Record five full cycles of motion, and print out a copy of your waveforms. What
fraction of the initial energy is lost after five full cycles?

EXPERIMENT IV: DAMPING OF THE MOTION:

We expect that by this point in the lab you have seen the the amplitude of the
motion diminishes over time. This suggests there might be friction. To our model
from the “Theory” section, add a velocity-dependent friction force Ffriction = mRv′,
where R is the drag coefficient, so that the equation of motion becomes

F = ma = −kx′ −mRv′ .

This is still a linear, second-order differential equation, so the solution can still be
written with two free parameters, as in the “Theory” section, and turns out to be

x′(t) = Ae−Rt/2 sin(ωt+ φ) ,

where ω =
√
k/m−R2/4. The graph below shows an example of this “exponential

damping”.

Figure 3: Exponential damping: R=0.0344 s−1, ω = 5.17 s−1.

1. Displace the cart by approximately 20 cm from equilibrium, let it go, and click
Record. Make sure the position measurement is reliably free from outliers.

2. Once the position measurement is reliably free of outliers, start over: displace the
cart by 20 cm from equilibrium, let it go, and click Record. Keep recording data
until the amplitude of the motion has reduced to 10 % of what it was initially. This
should take a few minutes.
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3. Use the Data Highlight button to select as much data as possible, then click the

button and choose the Damped Sine fit to estimate the drag coefficient, R. If
there are outliers, the fit may be visibly poor.

4. State the mathematical condition that the approximation ω ∼
√
k/m is valid. Is

this condition satisfied by your values of R and
√
k/m?
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H-201 The Ideal Gas Law and Absolute Zero

OBJECTIVES:

To observe the behavior of an “ideal” gas (air); to determine absolute zero (in
Centigrade).

PRECAUTIONS:

This lab uses liquid N2. It is fascinating to work with. However, please keep in mind
the following simple safety precautions:

(a) Never stopper a flask of liquid N2 with an unperforated stopper. This
can result in a dangerous explosion with risk of major injury. Stu-
dents found attempting this will be referred to the Dean of Students
for disciplinary action.

(b) Have a perforated stopper on the Dewar throughout the experiment to prevent
condensation of moisture from the air on the inside of the flask.

(c) Avoid contact of liquid N2 with your skin. The insulating vapor may
disappear and severe frost-bite may result.

FUNDAMENTAL CONCEPTS:

The behavior of an ideal gas under varying conditions of pressure and temperature
is described by the “Ideal Gas Law”:

PV = nRT (1)

Where P is the pressure (in Pascals, Pa), V is the volume (in m3), T is the tem-
perature in Kelvins (K= C+273.15), n is the number of moles present (1 mole
≡ 6.023× 1023), and R is the gas constant (8.31 J/mol ·K).
This equation is a combination of two laws which were discovered previously:

(a) Boyle’s Law relates volume and pressure of a fixed quantity of gas at a constant
temperature: PV = constant

(b) Charles’s Law relates volume and temperature of a fixed quantity of gas at a
constant pressure V/T = constant

Gay-Lussac finally combined the two laws into the ideal gas law shown in Eqn. 1.
In Expt. I Boyle’s law will be verified by varying V and P (assuming fixed T ).
In Expt. II You will vary T and V to determine the value of absolute zero.

APPARATUS:

Lab stand; 60 cm3 plastic syringe attached to a plastic “quick-connect” coupling;
PASCO pressure sensor (mounted on lab stand); PASCO interface module; PASCO
steam generator; water jacket container; steel Dewar flask; small stainless steel can
with a volume of 98 cm3 with a “quick release” connector; FLUKE digital ther-
mometer and temperature probe; liquid N2 (kept in 4329 Chamberlin).

EXPERIMENT I: BOYLE’S LAW

1. Launch the Pasco interface software by double clicking the “Experiment H-201a”
file in the Lab Software/201 folder on the desktop.
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Figure 1: Image of PASCO Capstone display.

2. The computer screen should look like Fig. 1. In this window there is a graph
configured to display pressure vs. volume, a table for these values, and a panel
meter for the instantaneous pressure reading.

Run the Pasco software in “Keep Mode”: after clicking the “Preview” button it

will then change to the “Keep” button . Clicking on this button will generate
a pop-up window for data entry. To terminate the run you must click on the red
square immediately to the left of the Keep button.

The volume is recorded in milliliters (1 mL = 1 cm3) and the pressure in kilo-
pascals (kPa). In this case the ideal gas law (PV = nRT , T in Kelvin) uses
R = 8.31× 103(kPa·cm3)/(mol·K).

3. If the syringe is attached to the pressure sensor, disconnect it at the twist-lock quick
connect coupling. Set the syringe plunger to the 60 cm3 mark and then reconnect it
to the pressure sensor. Make sure that the equipment looks as sketched in Fig. 2.
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Figure 2: Sketch of pressure sensor and syringe/plunger assembly.
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4. Initiate the data acquisition by clicking on the Preview button. Write in your lab-
book the readout precision of the pressure sensor. Check for leaks: slowly push the
plunger in to the 50 cm3 position (about 10 seconds) and back to the original setting
while watching the panel pressure meter. What would be the evidence of a leak?
Is there evidence of a leak? Record the measurements you used to back up your
determination that there is/is not evidence for a leak.

5. Now begin taking data. With the plunger at 60 cm3, press the Keep button to
record a data point. Confirm that a new data point appears on the plot and new
values in the appropriate row of the table.

6. Reduce the volume slowly in discrete 5 cm3 increments while recording a data point
at each step (see the previous item) until you reach 20 cm3. Then, as a check, slowly
increase the volume in 5 cm3 steps (recording a data point at each step) until you
return to 60 cm3.

7. Stop the data acquisition and transfer your data to a table in your lab write-up and
comment on the reproducibility of your measurements. You should make two plots,
one with respect to volume and one with respect to inverse volume. Do your plots
have the correct functional behavior? Refrain from printing out the graphs until
you have performed a linear regression using either the PASCO graphical analysis
capabilities or Excel.

8. Which of the two graphs do you expect to be a straight line and why? For this
“curve” what is the expected y intercept? Now fit this data to a line (using linear
regression) and record the slope and intercepts with the appropriate units. Print
out the respective plots and include them in your lab write-up.

9. OPTIONAL: Repeat the procedure of item 6 except move from 60 cm3 to 20 cm3

as rapidly as possible. Are the pressure readings similar to those of the slow-moving
experiment? If not, can you suggest a reason?

QUESTIONS:

I. Does the line go through the origin as expected? By how much should you change
the pressure readings so that the line goes through the origin?

II. What are the possible sources of error in this experiment? For each source, try to
decide what effect it might have on the experimental results.

III. If a barometer is available: read the barometer. Ask your instructor for help if you
are having trouble. Convert the pressure from cm of Hg to kPa and compare this
value with the one obtained at 60 cm3 in step 5. Is the difference between the two
readings important? Does it affect your conclusions?

IV. OPTIONAL: Assuming that there are 22.4 liters per mole of an ideal gas at STP,
how well does your observed slope agree with your expected slope?
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EXPERIMENT II: IDEAL GAS LAW

In this part the Ideal Gas Law is verified by observing the pressure of a fixed volume
of gas at four different temperatures: room temperature, 100 ◦C, 0 ◦C and -197 ◦C.
Since T = TC + T0, where TC is the temperature in Celsius and T0 is absolute zero
on the Celsius scale, we can rewrite the Ideal Gas Law PV = nRT as

P (Tc) =
nR

V
TC +

nR

V
T0 ,

and thereby determine the value of absolute zero from a straight-line fit to P as a
function of TC .

SUGGESTED PROCEDURE:

1. Double click on the “Experiment H-201b” file in the Lab Software/201 folder on the
desktop.

2. Attach the small stainless steel can (volume of 98 cm3) as shown below to the PASCO
pressure sensor using the plastic “quick release” connector. Raise the assembly up if
necessary. Turn on the Fluke thermometer. Unless the stainless steel can has been
recently used it should now be at room temperature.
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Figure 3: Sketch of pressure sensor and stainless-steel can assembly.

3. Once again initiate the experiment by clicking on the Preview icon. There should be
a single plot (pressure vs. keyboard entry or, equivalently, temperature). Record the
Fluke meter reading by clicking on the Keep icon and then entering the temperature
in the keyboard entry window.

4. Fill the PASCO steam generator with water and turn it on. The level of the water
should be ∼3 cm below the top, or about 1/2 – 3/4 full (Fig. 4). Turn the knob to
9 until the water boils and then turn it down somewhat.

5. As soon as the water in the steamer is boiling, raise the pressure sensor stand and
then lower it so as to submerge the stainless steel can in the boiling water.

6. Wait until the water is boiling again and then put the temperature probe in the
boiling water. Resume the data acquisition by clicking on the Record icon. Watch
the pressure readout and after it is stable (with time) record the Fluke meter reading
in the data entry window. Turn the PASCO steam generator off and remove the
small stainless steel can from the bath. Pause the data acquisition.
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Figure 4: PASCO steam generator.

7. Fill the water jacket container with water and ice. The level of the water should be
∼5 cm below the top. Note that water reaches maximum density at 4 ◦ C, and that
the sensitive part of the temperature probe is at the tip, and place the temperature
probe tip accordingly. Obtain the 0 ◦C pressure reading by submerging the can as
you did before, and waiting for the pressure readout to stabilize as you did before.
Empty and dry the stainless steel dewar.

8. Take the stainless steel dewar and ask the instructor to fill your dewar with liquid
Nitrogen and repeat step 3 for the container at liquid Nitrogen temperature.

9. Stop the data acquisition and transfer your data to a table in your write-up. Plot
P as a function of TC : does it look like a straight line, as predicted by the Ideal Gas
Law?

10. Fit this data to a straight line and record the slope and intercepts with the appro-
priate units. Print out the plot and include it in your lab write-up.

11. Calculate absolute zero using the appropriate fit parameters. State the accepted
value of absolute zero, and identify the largest source of uncertainty in your mea-
surements.

QUESTIONS

I. What is the percentage difference between the value you found and the accepted
value for absolute zero?

III. OPTIONAL: Qualitatively, what error results from the gas in the small tube not
being always at the can temperature?

IV. OPTIONAL: Does thermal expansion of the can affect your results? In what way?
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S-201 Transverse Standing Waves on a String

OBJECTIVE: To study propagation of transverse waves in a stretched string.

INTRODUCTION:

A standing wave in a string stretched between two points is equivalent to superposing
two traveling waves on the string of equal frequency and amplitude, but opposite
directions. The distance between nodes (points of minimum motion) is one half
wavelength, (λ/2). Since the ends of the string are fixed, the only allowed values of
λ are are λk = 2L/k, k = 1, 2, 3 . . .

The wave velocity, v, for a stretched string is v =
√
F/µ where F = tension in

the string and µ = mass per unit length. But v = fλ and hence only certain
frequencies are allowed:

fk =

√
F/µ

λk
= k

√
F/µ

2L
. (1)

N

A

N

N N

A

N

First mode

Second mode

Fourth modeN N

Figure 1: The Modes of a String

λ

2

λ

Figure 2: A close-up

PART A: Waves from a mechanical driver (i.e. a speaker)

APPARATUS:

Basic equipment: Pasco interface; electrically driven speaker; pulley & table clamp
assembly; weight holder & selection of slotted masses; black Dacron string; electronic
balance; stroboscope.

The set-up consists of an electrically driven speaker which sets up a standing wave
in a string stretched between the speaker driver stem and a pulley. Hanging weights
on the end of the string past the pulley provides the tension.

The computer is configured to generate a digitally synthesized sine wave (in volts
versus time) with adjustable frequency and amplitude (max: ∼10 V).
PASCO interface: This transforms the digital signal into a smooth analog signal.
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Precautions: Decrease the amplitude of the signal if the speaker makes a rattling
sound. The generator is set to produce sine waves; do not change the waveform.

Note: Although the speaker is intended to excite string vibrations only in a plane,
the resultant motion often includes a rotation of this plane. This arises from non-
linear effects since the string tension cannot remain constant under the finite ampli-
tude of displacement. [See Elliot, Am. J Phys. 50, 1148, (1982)]. Other oscillatory
effects arise from coupling to resonant vibrations of the string between pulley and
the weight holder; hence keep this length short.

Bridge
Speaker

L

Table

Figure 3: The apparatus

PROCEDURE: CHECKING EQUATION (1)

1. Procure a length of string about 1.5 m long.

2. Carefully weigh the string, and calculate µ. Note this in your lab notebook.

3. Set up the speaker, bridge, and pulley as in the above figure. To connect the string
to the speaker: tie the string to the metal support, push (gently) the spring down,
and thread the string through the notch in the pin mounted on the speaker cone.
Make the distance, L, between the bridge and the pin of the speaker be about 0.75
m, and measure it accurately using the two meter ruler; record this in your lab
notebook.

4. Place the sheet of paper provided on the table; this will make it easier to see the
vibration of the string.

5. Double click on the “Experiment S-201” file in the Lab Software/201 folder on the
desktop. The display will appear as shown in Fig. 4.

6. You will see that the computer is set to produce a 60 Hz sine wave with an amplitude
of 2 V. To start the string vibrating click the “On” button.

7. Click on the up/down arrow in order to change the amplitude or the frequency of
the signal.

NOTE: The nominal step sizes for adjusting the amplifier frequency and voltage

may be much too large. To alter the step size use the buttons. To alter the
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Figure 4: The Pasco Capstone display.

current or voltage use the buttons. You can also change the value directly by
clicking the mouse cursor in the numeric window and entering a new value with
keyboard number entry.

8. Stop the signal generator, put a 200 g mass on the mass hanger and restart the signal
generator. Record the total mass and tension in your lab notebook. In the next few
steps you’ll keep the tension in the string constant and look for the frequencies of
different modes.

9. Predict the frequencies fk for k = 1 to k = 6.

10. Measure the frequency f2 of the k = 2 mode using the following method. First,
obtain the k = 2 mode, then decrease the voltage to the smallest value at which you
can clearly see the mode.

11. Next, decrease the frequency until the mode is too small to see. Then, increase
the frequency in 1 Hz steps, noting the frequency at which the mode amplitude is
maximum. Continue increasing the frequency until the mode amplitude is again too
small to see. Then, decrease the frequency by 1 Hz steps, and note when the mode
amplitude is maximum. Once you have done this, discuss with your lab partners
what is the best choice for f2.

12. (Optional) Use the stroboscope to confirm f2 (note the stroboscope is calibrated in
cycles per minute, not Hz). The value should be close to 70 Hz.
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13. Find and record the frequencies f3, f4, f5,...of as many higher-order modes as you
can.

14. Find and record f1. Be especially careful to use the lowest possible amplitude,
because the mode amplitude can become large.

15. Divide the various frequencies fk by k and enter the values in a table. Calculate the
average value of fk/k.

QUESTION:

Q1: Use this average value of fk/k to calculate the mass per unit length of the
string. How does it compare with your measurement?

16. Choose six masses between 100 g and 500 g and enter the values in a data table.

17. Determine the resonant frequency of the second mode of the string under these
different tensions and record your results. (Hint: increasing the mass by a factor of
two increases f2 by nominally a factor of

√
2.)

18. Plot a graph of frequency versus mass, m, and include the zero value.

19. Plot a graph of frequency versus
√
m and again include the zero value.

QUESTIONS:

Q2: Which of the two graphs can be fit with a straight line? A parabola? Why?
State your reasoning.

Q3: From the slope of the graph having the linear relationship obtain the mass per
unit length of the string.

Q4: Which of the three methods of estimating the mass per unit length of the string
seems most accurate?

FOR FURTHER INVESTIGATION:

Vibrations on a circular membrane are made visible here:

http://www.acs.psu.edu/drussell/Demos/MembraneCircle/Circle.html
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Appendices

A Precision Measurement Devices

Vernier Calipers:

outside calipers

0
1 2 3 4 5

1 2 3 4 5 6 7 8 9 10 11 12 13

INCH

mm

cenco
3

8 9

inside calipers

vernier scale

depth gauge

fixed scale

Figure 1: The vernier caliper

A Vernier consists of a fixed scale and a moving vernier scale. In a metric vernier
the fixed scale is marked in centimeters and millimeters, the vernier scale is nine mil-
limeters long, and is divided into ten parts each 0.9 millimeters long. The distances
of each line from the first are therefore 0.9, 1.8, 2.7 . . . mm or generally: di = 0.9× i,
where di is the distance between the zero line and the ith line of the vernier scale. If
the vernier caliper is closed, so that the two jaws touch each other, the zero of the
fixed scale should coincide with the zero of the vernier scale. Opening the jaws 0.03
cm = 0.3 mm will cause the fourth line (the three line which is a distance of 2.7 mm
from the zero line of the of the vernier scale) to coincide with the 3 mm line of the
fixed scale as shown below.

0
1

Figure 2: The vernier reads 0.03 cm

Below is another example of vernier reading; the arrow shows which mark on the
vernier scale is being used.

9 10

Figure 3: The vernier reads 9.13 cm
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EXERCISES:

A. Close the vernier and observe that the first vernier mark coincides with the zero of
the centimeter scale.

B. Open the jaws of the vernier very slowly and observe how the different vernier marks
coincide successively with the millimeter marks on the fixed scale: the first mark
coincides with the 1 mm mark on the fixed scale; then the second mark coincides
with the 2 mm mark on the fixed scale; then the third mark coincides with the 3
mm mark on the fixed scale and so on.

C. Estimate the dimension of an object using a meter stick and then Use the vernier
caliper to measure the dimension precisely.

D. In the four examples of Fig. 4 determine the actual reading.

3 4 4 5

a) b)

6 7 1 2

c) d)

Figure 4: Test cases

Micrometer:

A micrometer can measure distances with more precision than a vernier caliper.
The micrometer has a 0.5 mm pitch screw, this means that you read millimeters
and half millimeters along the barrel. The sleeve is divided into 50 divisions
corresponding to one hundredth of a millimeter (0.01 mm) or 10 µm each. The
vernier scale on the micrometer barrel has ten divisions, marked from 2 to 10 in
steps of two. The “zero” line is not marked ‘0’, but is longer than the others. The
vernier allows you to read to the nearest thousandth of a millimeter, i.e., to the
nearest micron (0.001 mm = 1 µm).

Precaution:

Great care must be taken in using the micrometer caliper; A ratchet
knob is provided for closing the caliper on the object being mea-
sured without exerting too much force. Treat the micrometer with
care, ALWAYS close the calipers using the ratchet knob, this pre-
vents tightening the screw too strongly. Closing the calipers too hard
damages the precision screw.
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Mitutoyo
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Figure 5: The micrometer calipers

Below are two examples of micrometer reading; the arrow shows which mark on the
vernier scale is being used.
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Figure 6: The micrometer reads 20.912 mm.
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Figure 7: The micrometer reads 3 µm.

An uncalibrated micrometer may have a zero error–may read something other than
zero when the anvil and spindle are touching. Before attempting precise work with
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a micrometer, the zero error should be measured, so that it may be subtracted from
subsequent measurements.

In Fig. 7 the zero line on the barrel is barely visible, and the vernier reads 0.003 mm
= 3 µm; the zero error is ε0 = 3µm.

A negative zero error, as shown below, requires a moment of thought:
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Figure 8: The micrometer reads −4 µm

In Fig. 8 the zero line on the barrel of the micrometer is obscured by the sleeve, (the
“zero” line on the sleeve is above the “zero” line on the barrel); this corresponds to a
reading of −0.5 mm. The vernier reads 0.496 mm. The zero error is then ε0 = −0.5
mm + 0.496 mm = −0.004 mm = −4 µm.
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B Parallax and Parallax Error

1. Parallax:

To do quantitative work in optics one must understand parallax and how it may be
eliminated. PARALLAX is defined as apparent motion of an object caused by actual
motion of the observer.

As the observer moves left and right, object 1
appears to move to the left and right of object
2. The amount by which object 1 appears to
move is proportional to the distance between
object 1 and object 2. If object 1 comes in
front of object 2, the direction of its apparent
motion reverses.
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Try this with two fingers.

2. Parallax Error:

If an observer wants to measure the location of the object 2 using a measuring scale in
the location of object 1 (that is, “behind” object 2), the apparent position of object
2 will depend on the location of the observer. The observer has no way of knowing
which location is the “correct” location from which to make the measurement. Such
a measurement is said to include a “parallax error”.

One solution is to make sure that the object and the measuring scale are at the same
distance from the observer (that is, the object is right next to the measuring scale).

Another solution is to have a mirror run alongside the measuring scale. The observer
then knows that the correct location from which to make a measurement is the
location at which the object appears to be directly in front of its reflection in the
mirror. This solution is used in high-quality analog measuring devices.


