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In Lab M6 for Physics 201/207, a rotating turntable is used to provide azimuthal

forces on a mass-spring system. The mass seeks radial equilibrium under the action

of centrifugal force and the force due to the spring. In this note we explore the range

of validity of a simple estimate of the correction due to non-zero mass of the spring,

by comparison with an exact calculation (cf. R. Weinstock, Spring-mass Correction

in Uniform Circular Motion, AJP, 32, 370 (1964)).

I. INTRODUCTION

Consider a massless spring with unstretched length L0 that is linear, i.e. if it is stretched

to length L, each point in the spring is under a tension T = −k(L−L0) and the spring as a

whole has potential energy U = 1
2
k(L− L0)

2. Attach one end of the spring to the axis of a

rotating table (axis of rotation being parallel to local gravity), and attach a mass m to the

other end. Rotate the table with angular frequency ω, enforcing that the table provides all

azimuthal forces necessary to keep the spring and mass aligned along a radius at all times.

The mass m will find equilibrium when the spring is stretched to a length L such that

k(L− L0) = mω2L .

What will happen if the mass m0 of the spring differs from 0?

II. ESTIMATE

A diagram of the situation is shown in Fig. 1. Assume the spring stretches uniformly

under the centrifugal force due to its mass and the mass m. Under these conditions, the

kinetic energy of the block is zero (in the rotating frame) and the equilibrium condition

reads
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FIG. 1: Diagram of spring-mass set-up.

where L is both the radial position of the mass m and the length of the spring. This gives

k(L− L0) = mω2L+ d
dL

[
m0

L
ω2

2
L3

3

]
, or

k(L− L0) = ω2L(m+
m0

3
). (1)

III. EXACT CALCULATION

The estimate turns out to be correct for small m0, but we don’t know what “small”

means. Relax the assumption that the spring stretches uniformly, as fits the intuition that

the parts of the spring with smaller r will be under greater tension, and will therefore stretch

more, than the parts of the spring with larger r. Retain the linearity of the spring. Consider
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FIG. 2: Picture to go with Eq. 2.
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a non-rotating spring stretched by an external force T , and write for an infinitesimal element

T = k(L− L0) = kL0

(
L

L0

− 1

)
= kL0

(
dr′

dr
− 1

)
= T. (2)

The last inequality is also true for a rotating spring, in which case T is a function of position.

Now write radial force balance for an infinitesimal element of the rotating spring in

equilibrium: T (r′ − dr′

2
)− T (r′ + dr′

2
) = dm

dr′
dr′ω2r′, or

 dr__ dr__
2

T(r +     )
2

dm__
dr

dr
T(r       )

FIG. 3: Picture to go with Eq. 3.

−dT
dr′

=
dm

dr′
ω2r′ .

When ω = 0, the unstretched infinitesimal mass element has radial extent dr = L0

m0
dm.

When ω ≥ 0, there is stretching: dr′ = dr′

dr
dr =

(
T

kL0
+ 1
)
dr ≥ dr.

Thus force balance is now

−dT
dr′

(
T

kL0

+ 1

)
=
m0

L0

ω2r′ . (3)

The tension at r′ = L is known: T (L) = mω2L. Thus Eq. 3 can be integrated to find T (r′).

This results in a quadratic equation for T (r′),

T (r′)2

2kL0

+ T (r′)−
[

(mω2L)2

2kL0

+mω2L

]
=
m0ω

2

2L0

(L2 − r′2),

which can be solved to give

T (r′) = −kL0 +
[
(kL0 +mω2L)2 + km0ω

2(L2 − r2)
]1/2

.

Note that L = L(ω); the problem isn’t yet solved. However, since now T (r′) is known, the

last equality in Eq. 2 can be written

dr

L0

=
dr′

T/k + L0

=
kdr′

[(kL0 +mω2L)2 + km0ω2L2 − km0ω2r′2]1/2
,
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and integrated.

∫ outside

inside

dr

L0

= 1 =

∫ L

0

kdr′√
A−Br′2

A ≡ (kL0 +mω2L)2 + km0ω
2L2

B ≡ km0ω
2

(4)

After some algebra this gives

Q = q cot q,
q ≡

√
m0

k
ω

Q ≡ L0

L
+ mω2

k

(5)

which is a transcendental equation that gives L in terms of L0, m0, k, m, and ω.

IV. LIMITS

Consider Eq. 4 when m0 = 0 (massless spring). Then we get

1 =
L

L0 + mω2

k
L
→ L =

L0

1− mω2

k

,

which shows that L→∞ when mω2/k → 1, reflecting the fact that you can break a spring

with this set-up by rotating the table too fast. If the spring isn’t massless, this limit on ω

decreases, so that the spring breaks when

q

tan q
=
mω2

k
.

Even if there isn’t any mass m attached the the spring, the spring will break when

q

tan q
= 0→ q =

π

2
, ω =

π

2

√
k

m0

.

V. RANGE OF APPLICABILITY OF ESTIMATE

The initial estimate required dr′/dr to be independent of r′, and gave Eq. 1, which can

be rewritten as Q = 1− q2/3. This can be compared with the exact result, Eq. 5:

Q = q cot q ∼ 1− q2

3
− q4

45
− 2q2

945
− . . . .

The difference between the two is small when the spring is not stretched much, and becomes

increasingly important as the spring nears the breaking point, which comes at a smaller ω

than the estimate predicts. For example, when m0/m = π/4, the estimate predicts that the
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spring breaks at ω = 0.78895
√
k/m0, while the exact calculation gives ω = 0.78540

√
k/m0.

Figure 4 summarizes the agreement between estimate and exact result for the range 0.1 ≤

m0/m ≤ 10.0: below the solid line, the estimated length of the spring is within 1% of the

exact length; the spring breaks at the dashed line; in between the dashed line and the solid

line the estimated length is less than the exact length by more than 1%.

FIG. 4: Comparison of estimate and exact calculation. As ω is increased for a given m0/m, the

estimate increasingly underestimates the actual length of the spring. This underestimation reaches

1% at the solid line, and grows infinite at the dashed line.

VI. CONCLUSION

As shown in Fig. 4, as long as the spring is not very massive compared to the mass hooked

to its end, the estimate does quite well, even if the spring is stretched to near breaking. To

be directly relevant to Lab M6, the above analysis would have to be repeated to take into

account the fact that the inner end of the spring is attached to a rigid support at r0 6= 0. This

does not complicate the analysis, although the various numerical results would be changed.

It seems clear that for the springs, masses, and angular frequencies relevant to lab M6, the

estimate of the effect of spring-mass (Eq. 1) is quite probably sufficient, with other sources

of error, such as non-linearity of the spring, dominating.


