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I. Future cosmology with CMB lensing and galaxy clustering 
 
 
 
 

II. Galaxy clustering: Theory & Analysis (~15 min.)

Outline

13

Figure 1. 2-d slices of the overdensity �h(x) of simulated 1010.8 � 1011.8 h�1M� halos (top), compared with the cubic bias
model (center), and the linear Standard Eulerian bias model (bottom). Each panel is 500 h�1Mpc wide and 110 h�1Mpc high,
and each density is smoothed with a R = 2 h�1Mpc Gaussian, WR(k) = exp[�(kR)2/2]. The colorbar indicates the values of
this smoothed overdensity �h(x).

Figure 2. Same as Fig. 1 but for more massive and less abundant 1011.8 � 1012.8 h�1M� halos.

simulations. The variance, skewness and kurtosis of the densities shown in the histograms are listed in Table II for
the full simulated and modeled densities, and in Table III for the model error.

The linear Standard Eulerian bias model tends to underpredict troughs and overpredict peaks of the halo density,
as shown in Fig. 3. The model error is not Gaussian for any of the shown smoothing scales; in particular its kurtosis
is larger than 1 for all smoothing scales.

The cubic model provides a more accurate description of the halo density pdf, as shown in Fig. 4. This emphasizes
the importance of using nonlinear bias terms even on rather large scales. Still, the cubic model tends to underpredict
the peaks of the true halo density, especially on small scales. This agrees with Fig. 2 where the model also underpredicts
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Nature of each building block is unknown

Inflation 
How did our Universe begin? 
What drives the inflationary expansion? 

Dark energy 
What drives the current accelerated expansion?  
Is it a cosmological constant? Is General Relativity valid? 

Dark matter  
What particle(s) is it made of? 

Relativistic degrees of freedom  
What is the mass (hierarchy) of neutrinos?  
Are there additional light relic particles?
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Constraining the energy scale of inflation

Energy scale at which inflation takes place is completely unknown 
and can range across 10 orders of magnitude 

Highest-energy models (>1016 GeV) produce gravitational waves
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Figure 10. Forecast of CMB-S4 constraints in the ns–r plane for a fiducial model with r = 0.01.
Constraints on r are derived from the expected CMB-S4 sensitivity to the B-mode power spectrum as
described in Section 2.3. Constraints on ns are derived from expected CMB-S4 sensitivity to temperature
and E-mode power spectra as described in Section 8.10.2. Also shown are the current best constraints from a
combination of the BICEP2/Keck Array experiments and Planck [8]. Chaotic inflation with V (�) = µ4�p�p

for p = 2/3, 1, 2 are shown as blue lines for 47 < N? < 57 (with smaller N? predicting lower values of ns).
The Starobinsky model and Higgs inflation are shown as small and large filled orange circles, respectively.
The lines show the classes of models discussed in Section 2.5. The green band shows the predictions for
quartic hilltop models, and the gray band shows the prediction of a sub-class of ↵-attractor models [60].

2.5 Implications of an improved upper limit on r

As detailed in previous sections, a detection of primordial gravitational waves would have profound implica-
tions. However, even excluding the presence of gravitational waves at a level observable by CMB-S4 would
have important consequences for the theory of inflation. Current constraints already strongly disfavor models
that were plausible candidates, such as chaotic inflation with a quadratic potential [7, 66, 8]. Upper limits
from CMB-S4 would rule out large classes of inflationary models. In particular, all models that explain the
observed value of ns naturally (in the sense detailed below), with a scale of the characteristic variation of
the potential exceeding the Planck scale would be excluded.

We present a version of an argument for the implications of an upper limit on r, developed in Refs. [67, 68, 69],
which does not rely on the microscopic details of inflationary models. In the limit where the slow-roll
parameter ✏ ⌧ 1, Eqs. (2.6) and (2.8) lead to a di↵erential equation

d ln ✏

dN
� (ns(N ) � 1) � 2✏ = 0 , (2.19)

where N is the number of e-folds until the end of inflation, and ns(N )�1 denotes the spectral index evaluated
at the wavenumber of the mode that exits the horizon N e-folds before the end of inflation. Note that ✏ is
small (but positive) during inflation and ✏ ⇠ 1 when inflation ends. If ✏ is a monotonic function of N this
implies ns(N ) � 1  0, in agreement with observations.

CMB-S4 Science Book

Slope of scalar fluctuations ns

CMB-S4 science book

⇣ r

0.01

⌘1/4
' V 1/4
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Constraining inflation

Lower-energy models (<1016 GeV) produce no observable 
primordial gravitational waves 

The only way to probe this class of models is primordial non-
Gaussianity: Fluctuations not normally distributed.

Complements GW searches

e.g. Meerburg et al. (2019)
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Inflation

Single field

fNL ⌧ 1
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Multi-field

Gaussian fluctuations Non-Gaussian fluctuations

Non-Gaussian fluctuations from inflation



Schematically, expectation value of a quantum field perturbation       
with Lagrangian     during inflation: 

Free theory                generates Gaussian fluctuations 

Interacting theory                              or couplings between multiple 
fields generate non-Gaussian fluctuations

Maldacena (2003), Chen, Huang, Kachru & Shiu (2006), Chen (2010), lecture notes by L. Senatore (1609.00716)
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[ Non-Gaussian fluctuations from inflation ]



Single field theorem

For any single field inflation model, where there is only one degree 
of freedom during inflation 

Detection of                     would rule out all single field inflation 
models regardless of 
- the form of the potential  
- the form of kinetic terms  
- the initial vacuum state

Maldacena (2003), Creminelli & Zaldarriaga (2004), Seery & Lidsey (2005)

fNL ' 5

12
(1� ns) ' 0.02
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[ Can also detect derivative operators and non-standard vacuum state using 
shape of skewness or 3-point function ]
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WMAP satellite:  

Planck satellite: 

Both consistent with zero (2σ)

fNL = 37± 19.9 (1�)
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Tightest limits today
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WMAP Collaboration, Bennett et al. (2013)

Planck Collaboration, Akrami et al. (1905.05697)
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Tightest limits tomorrow
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SNR2 ~ Number of modes ~ Volume  
⇒ Galaxies & large-scale structure will give tightest limits in the future 

Spoiler alert: Will reach �(fNL) ' 1
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Galaxies form at peaks of the dark 
matter distribution

Signature of multi-field inflation for galaxies

Kaiser (1984), Dalal et al. (2007), Top figure: J. Peacock
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peaks to the background potential 

⇒ Galaxies are modulated by the 
background potential



Galaxies form at peaks of the dark 
matter distribution

Signature of multi-field inflation for galaxies

Kaiser (1984), Dalal et al. (2007), Top figure: J. Peacock
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     ‘Scale-dependent galaxy bias’

(local) Primordial non-Gaussianity 

Simone Ferraro (Berkeley)
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MegaMapper?

Puma?

LSST

SPHEREx

Subaru HSC

Galaxy surveys

2020 2022 2030
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LSST — now NSF Vera C. Rubin Observatory

LSST Project/NSF/AURA 01/31/2020

- Cerro Pachón, Chile (2,663 m / 8,737 ft)

- 8.4m / 27-ft mirror

- Cover entire southern sky every few nights

- 10 year survey over 18,000 deg2

- 37 billion stars and galaxies

- First light 2021, full operations 2022-2032



LSST Project/NSF/AURA 02/03/2020



(1) Observational systematics  
- Dust extinction in our galaxy (affects galaxy spectra)  
- Galaxy/star confusion 
- Noise & observation conds. can vary across different patches 

(2) Sample variance  
- Few long-wavelength modes fit into observed volume

Two types of challenges on large scales

Milky Way dust



(1) Observational systematics  
- Dust extinction in our galaxy (affects galaxy spectra)  
- Galaxy/star confusion 
- Noise & observation conds. can vary across different patches 

(2) Sample variance  
- Few long-wavelength modes fit into observed volume

Two types of challenges on large scales

Milky Way dust

Planck Collaboration: Planck 2018 lensing

Fig. 1. Mollweide projection in Galactic coordinates of the lensing-deflection reconstruction map from our baseline minimum-
variance (MV) analysis. We show the Wiener-filtered displacement-like scalar field with multipoles ↵̂MV

LM
=
p

L(L + 1)�̂MV
LM

, corre-
sponding to the gradient mode (or E mode) of the lensing deflection angle. Modes with L < 8 have been filtered out.

Our baseline lensing reconstruction map is shown in Fig. 1.
In Sect. 2 we explain how this was obtained, and the changes
compared to our analysis in PL2015. We also describe the new
optimal filtering approach used for our best polarization anal-
ysis. In Sect. 3 we present our main results, including power-
spectrum estimates, cosmological parameter constraints, and a
joint estimation of the lensing potential using the CIB. We end
the section by using the estimates of the lensing map to delens
the CMB, reducing the B-mode polarization power and sharpen-
ing the acoustic peaks. In Sect. 4 we describe in detail a number
of null and consistency tests, explaining the motivation for our
data cuts and the limits of our understanding of the data. We also
discuss possible contaminating signals, and assess whether they
are potentially important for our results. In Sect. 5 we briefly de-
scribe the various data products that are made available to the
community, and we end with conclusions in Sect. 6. A series of
appendices describe some technical details of the calculation of
various biases that are subtracted, and derive the error model for
the Monte Carlo estimates.

2. Data and methodology

This final Planck lensing analysis is based on the 2018 Planck

HFI maps as described in detail in Planck Collaboration III
(2018). Our baseline analysis uses the SMICA foreground-
cleaned CMB map described in Planck Collaboration IV (2018),
and includes both temperature and polarization information. We
use the Planck Full Focal Plane (FFP10) simulations, described
in detail in Planck Collaboration III (2018), to remove a num-
ber of bias terms and correctly normalize the lensing power-
spectrum estimates. Our analysis methodology is based on the

previous Planck analyses, as described in PL2013 and PL2015.
After a summary of the methodology, Sect. 2.1 also lists the
changes and improvements with respect to PL2015. Some de-
tails of the covariance matrix are discussed in Sect. 2.2, and de-
tails of the filtering in Sect. 2.3. The main set of codes applying
the quadratic estimators will be made public as part of the CMB
lensing toolbox LensIt.2

2.1. Lensing reconstruction

The five main steps of the lensing reconstruction are as follows.

1. Filtering of the CMB maps. The observed sky maps are cut
by a Galactic mask and have noise, so filtering is applied to
remove the mask and approximately optimally weight for the
noise. The lensing quadratic estimators use as input optimal
Wiener-filtered X = T , E, and B CMB multipoles, as well as
inverse-variance-weighted CMB maps. The latter maps can be
obtained easily from the Wiener-filtered multipoles by divid-
ing by the fiducial CMB power spectra C

fid
` before projecting

onto maps. We write the observed temperature T and polariza-
tion (written as the spin ±2 combination of Stokes parameters
±2P ⌘ Q ± iU) pixelized data as

0
BBBBBBBBBBBB@

T
dat

2P
dat

�2P
dat

1
CCCCCCCCCCCCA
= BY

0
BBBBBBBBBBBB@

T

E

B

1
CCCCCCCCCCCCA
+ noise, (1)

2
https://github.com/carronj/LensIt
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Galaxy catalog

Distribution of DM

Cross-correlating galaxy catalog with the 
distribution of dark matter can help with both 

MS & Seljak (2018)



Imagine you come up with a new image compression algorithm 

Is it better than JPEG?

How to avoid sample variance?



Method 1

a. Ask people to rate JPEG-compressed 
images 
 

b. Ask other people to rate other images 
compressed with new algorithm  
 
 

c. Compare ratings to find winner 

…

…

Subject to sample variance (error of the mean)

JPEG JPEG

New algorithm New algorithm



Original

JPEG New algorithm

a. Ask people to rate same image compressed with JPEG & new algorithm 
b. Compare ratings 1-by-1 for each image

Method 2

No sample variance (can tell winner with 1 image)!



Method 1: Measure galaxy power spectrum

Seljak (2009), McDonald & Seljak (2009), MS & Seljak (2018)

Wavenumber k (~ 1/scale)

Multi-field inflation

Measured galaxy power 
(=Gaussian realization with 
mean given by dashed)

Sample variance 
(error on the mean)

Single field inflation



Method 1: Measure galaxy power spectrum

Seljak (2009), McDonald & Seljak (2009), MS & Seljak (2018)

Wavenumber k (~ 1/scale)

Multi-field inflation

Measured galaxy power 
(=Gaussian realization with 
mean given by dashed)

Sample variance 
(error on the mean)

Single field inflation

Cannot tell if single field or multi-field inflation because of sample variance



Method 2: Compare 1-by-1 to dark matter

Seljak (2009), McDonald & Seljak (2009), MS & Seljak (2018)

Wavenumber k (~ 1/scale)

Multi-field inflation

Measured dark matter power

Measured galaxy power

Sample variance 
(error on the mean)

Single field inflation



Method 2: Compare 1-by-1 to dark matter

Seljak (2009), McDonald & Seljak (2009), MS & Seljak (2018)

Sample variance cancels so we detect multi-field inflation

Wavenumber k (~ 1/scale)

Multi-field inflation

Measured dark matter power

Measured galaxy power

Sample variance 
(error on the mean)

Single field inflation



Method 2: Compare 1-by-1 to dark matter

Seljak (2009), McDonald & Seljak (2009), MS & Seljak (2018)

Sample variance cancels so we detect multi-field inflation

Wavenumber k (~ 1/scale)

Multi-field inflation

Measured dark matter power

Measured galaxy power

Sample variance 
(error on the mean)

Single field inflation

Wavenumber k (~ 1/scale)



Use gravitational lensing

How to measure the distribution of dark matter?



Dark matter also distorts the Cosmic Microwave Bg.

Figure 1.2: Illustration of gravitational lensing of CMB photons by large-scale
structure (adapted from [10]).

reconstructing these lenses from the observed CMB we can obtain crucial infor-

mation on e.g. dark energy or the geometry of the universe. Several experiments

will provide high quality CMB data in the next few years, e.g. full-mission Planck

data including polarization, ACT/ACTPol, Polarbear and SPT/SPTpol.

The contribution of this thesis, presented in Chapter 5, is a thorough analysis

of how the reconstructed lensing information can be combined with the primary

CMB data to perform reliably a joint parameter estimation. Such joint analy-

ses are important to break degeneracies that limit the information that can be

extracted from the CMB fluctuations laid down at recombination. The joint anal-

ysis is non-trivial because the part of the lensing information that is present in

the primary CMB power spectrum as well as in the lensing reconstruction is po-

tentially double-counted. We quantify the temperature-lensing cross-correlation

analytically, finding two physical contributions and confirming the results with

simulated lensed CMB maps. This cross-correlation has not been considered be-

fore and it could have turned out to be anywhere between zero and unity. We

also use simulations to test approximations for the likelihood of the lensing re-

3



Cosmic Microwave Background (CMB)

Right after Big Bang 
light scatters frequently 
—> opaque 

As Universe expands, 
turns transparent 

See surface where light 
last scattered — 
13.6996 bn yrs ago 

This is the CMB



Cosmic Microwave Background (CMB)

Hot and cold blobs: Picture of the Universe 13.6996 bn years ago

T = 2.7K, �T/T ⇠ 10�5
<latexit sha1_base64="g5rqHxeTKPCg/l8FrvHHuKmp5zA="></latexit>



Statistics of the CMB before lensing

Lensed

Normally distributed as far as we can tell



Statistics of the CMB before lensing

Lensed

Va
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e Power spectrum



Lensed

Local 
power 
spectrum

Local 
power 
spectrum

Local power spectrum is the same in each patch

Local 
power 
spectrum

Statistics of the CMB before lensing



Lensed

Local 
power 
spectrum

Local power is magnified or de-magnified

Local 
power 
spectrum

Local 
power 
spectrum

Local 
power 
spectrum

Statistics of the CMB after lensing



Lensed

3

ISW and lensing-SZ, we calculate

TΘ(li,−li, lj ,−lj) =

2 (li · lj)
2

[

(

Cφs
li

)2

CΘ
lj
+
(

Cφs
lj

)2

CΘ
li

]

−

[

[li · (li + lj)]
2
(

Cφs
li

)2

+ [lj · (li + lj)]
2
(

Cφs
lj

)2
]

CΘ
|li+lj |

−

[

[li · (li − lj)]
2
(

Cφs
li

)2

+ [lj · (li − lj)]
2
(

Cφs
lj

)2
]

CΘ
|li−lj |

+ 2 [li · (lj − li)] [lj · (lj − li)]C
φs
li
Cφs

lj
CΘ

|lj−li|

− 2 [li · (li + lj)] [lj · (li + lj)]C
φs
li
Cφs

lj
CΘ

|li+lj |

(7)

where the s is a place holder denoting either the ISW
or SZ contribution.

B. SZ Trispectrum

In addition to the lensing contributions to the trispec-
trum above, we consider contributions from the inverse
Compton scattering of the CMB photons. The SZ con-
tribution to the trispectrum is given by [17, 25]:

TΘ
ij = g4ν

∫ zmax

0

dz
dV

dz

∫ Mmax

Mmin

dM
dn(M, z)

dM

× |ỹi(M, z)|2 |ỹj(M, z)|2 , (8)

where gν is the spectral function of the SZ effect,
V (z) is the comoving volume of the universe integrated
to a redshift of zmax = 4, M is the virial mass such
that [log10(Mmin), log10(Mmax)] = [11, 16], dn/dM is the

FIG. 1: The impact of varying the lensing scaling parameter
on the lensed CMB temperature power spectrum, for AL =
[0,2,5,10].

mass function of dark matter halos as rendered by [18]
utilizing the linear transfer function of [19], and ỹ is the
dimensionless two-dimensional Fourier transform of the
projected Compton y-parameter, given via the Limber
approximation [20] by:

ỹl =
4πrs
l2s

∫ ∞

0

dxx2y3D(x)
sin(lx/ls)

lx/ls
, (9)

where the scaled radius x = r/rs and ls = dA/rs such
that dA is the angular diameter distance and rs is the
scale radius of the three-dimensional radial profile y3D
of the Compton y-parameter. This profile is a function
of the gas density and temperature profiles as modeled
in [21]. Hence, we incorporate the contributions obtained
from the SZ effect along with those from lensing, lensing-
ISW, and lensing-SZ effects to the covariance matrix in
Eqn. 3.

C. The Weak Lensing Scaling Parameter AL

To first order in φ, the weak lensing of the CMB
anisotropy trispectrum can be expressed as the con-
volution of the power spectrum of the unlensed tem-
perature Cl and that of the weak lensing potential
Clφφ [15, 22, 23]. The magnitude of the lensing poten-
tial power spectrum can be parameterized by the scaling
parameter AL, defined as

Cφφ
l → ALC

φφ
l . (10)

Thus, AL is a measure of the degree to which the ex-
pected amount of lensing appears in the CMB, such that
a theory with AL = 0 is devoid of lensing, while AL = 1
renders a theory with the canonical amount of lensing.
Any inconsistency with unity represents an unexpected
amount of lensing that needs to be explained with new
physics, such as dark energy or modified gravity [15, 24].
The impact of this scaling parameter on the lensed CMB
temperature power spectrum can be seen in Fig. 1. Qual-
itatively, AL smoothes out the peaks in the power spec-
trum and can therefore also be viewed as a smoothing
parameter in addition to its scaling property. Given that
AL primarily affects the temperature power spectrum on
small angular scales, we also explore the possibility that
it deviates from unity as secondary non-Gaussianities are
accounted for in the analysis.

Smidt+ (2010)


Global power 
spectrum

unlensed
lensed

Peaks of global power are smeared out

Statistics of the CMB after lensing



Lensed

Local 
power 
spectrum

Local 
power 
spectrum

Local 
power 
spectrum

Local 
power 
spectrum

Rather than averaging the modulation, measure it as a signal  
—> magnification map

Statistics of the CMB after lensing



Measured CMB lensing magnification

Planck Collaboration: Planck 2018 lensing

Fig. 1. Mollweide projection in Galactic coordinates of the lensing-deflection reconstruction map from our baseline minimum-
variance (MV) analysis. We show the Wiener-filtered displacement-like scalar field with multipoles ↵̂MV

LM
=
p

L(L + 1)�̂MV
LM

, corre-
sponding to the gradient mode (or E mode) of the lensing deflection angle. Modes with L < 8 have been filtered out.

Our baseline lensing reconstruction map is shown in Fig. 1.
In Sect. 2 we explain how this was obtained, and the changes
compared to our analysis in PL2015. We also describe the new
optimal filtering approach used for our best polarization anal-
ysis. In Sect. 3 we present our main results, including power-
spectrum estimates, cosmological parameter constraints, and a
joint estimation of the lensing potential using the CIB. We end
the section by using the estimates of the lensing map to delens
the CMB, reducing the B-mode polarization power and sharpen-
ing the acoustic peaks. In Sect. 4 we describe in detail a number
of null and consistency tests, explaining the motivation for our
data cuts and the limits of our understanding of the data. We also
discuss possible contaminating signals, and assess whether they
are potentially important for our results. In Sect. 5 we briefly de-
scribe the various data products that are made available to the
community, and we end with conclusions in Sect. 6. A series of
appendices describe some technical details of the calculation of
various biases that are subtracted, and derive the error model for
the Monte Carlo estimates.

2. Data and methodology

This final Planck lensing analysis is based on the 2018 Planck

HFI maps as described in detail in Planck Collaboration III
(2018). Our baseline analysis uses the SMICA foreground-
cleaned CMB map described in Planck Collaboration IV (2018),
and includes both temperature and polarization information. We
use the Planck Full Focal Plane (FFP10) simulations, described
in detail in Planck Collaboration III (2018), to remove a num-
ber of bias terms and correctly normalize the lensing power-
spectrum estimates. Our analysis methodology is based on the

previous Planck analyses, as described in PL2013 and PL2015.
After a summary of the methodology, Sect. 2.1 also lists the
changes and improvements with respect to PL2015. Some de-
tails of the covariance matrix are discussed in Sect. 2.2, and de-
tails of the filtering in Sect. 2.3. The main set of codes applying
the quadratic estimators will be made public as part of the CMB
lensing toolbox LensIt.2

2.1. Lensing reconstruction

The five main steps of the lensing reconstruction are as follows.

1. Filtering of the CMB maps. The observed sky maps are cut
by a Galactic mask and have noise, so filtering is applied to
remove the mask and approximately optimally weight for the
noise. The lensing quadratic estimators use as input optimal
Wiener-filtered X = T , E, and B CMB multipoles, as well as
inverse-variance-weighted CMB maps. The latter maps can be
obtained easily from the Wiener-filtered multipoles by divid-
ing by the fiducial CMB power spectra C

fid
` before projecting

onto maps. We write the observed temperature T and polariza-
tion (written as the spin ±2 combination of Stokes parameters
±2P ⌘ Q ± iU) pixelized data as

0
BBBBBBBBBBBB@

T
dat

2P
dat

�2P
dat

1
CCCCCCCCCCCCA
= BY

0
BBBBBBBBBBBB@

T

E

B

1
CCCCCCCCCCCCA
+ noise, (1)

2
https://github.com/carronj/LensIt

3



CMB experiments

Today 2022 2030

LiteBIRD

POLARBEAR

Funding by DOE, Heising-Simons, JAXA, NASA, NSF, Simons Foundation, …



Future CMB lensing

Signal

Planck

Simons Observatory

CMB-S4

PICO

Derived from foreground deprojection forecasts by Colin Hill
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Derived from foreground deprojection forecasts by Colin Hill



The Simons Observatory

- Cerro Toco, Atacama desert, Chile

- 5200m / 17,100 ft

- Currently home to Atacama Cosmology 

Telescope, POLARBEAR, Simons Array, 
CLASS

- 60,000 detectors

- 6 spectral bands at 27-280 GHz

- Science observations 2022-2027

- 260+ researchers at 40+ institutions 

in 10+ countries



Primordial non-Gaussianity with Simons + LSST

MS & Seljak (2018), Simons Observatory Science White Paper (2019)
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FIG. 1: The redshift distribution of the CMB lensing convergence
(red curve, normalized to a unit maximum) and LSST galaxy sam-
ples, both Optimistic (light gray) and Gold (dark gray). We as-
sume 16 tomographic redshift bins in the range 0 < z < 7, cross-
correlation bin widths indicated with vertical dotted lines.

our forecasts when all external datasets, such as primor-
dial CMB and DESI information, are included. Hence,
we use the linear matter power spectrum in all forecasts.
We assume the survey area of 18,000 deg2, which corre-
sponds to fsky ⇡ 0.4. Finally, we neglect any redshift
space distortion e↵ects in the LSST power spectra.

C. CMB-S4 Specifications

For CMB lensing, we use a CMB-S4 experiment with
the following configurations: beam FWHM = 10, �T =
1µK 0, and �E,B = 1.4µK 0. We assume fsky = 0.4, with
CMB-S4 fully overlapping with the LSST [9]. White
noise is assumed, as we expect the impact of non-
white noise to be small for lensing reconstruction from
polarization-dominated experiments. With quicklens
[30, 31], we compute the minimum variance quadratic
estimator lensing reconstruction on the full sky with
l
T,E,B
min = 50, l

T
max = 3000, and l

E,B
max = 5000. We take

into account the improvement from iterative lens recon-
struction by rescaling the EB noise [32, 33]. In Table I
and II, we show forecasts assuming the resulting CMB-
S4 lensing reconstruction noise. For the CMB lensing
convergence , we set lmin = 30 and lmax = 2000.

Additionally, with the CMB-S4 specifications as de-
scribed above, we compute the CMB-S4 Fisher matrix,
using temperature and polarization power spectra from
S4, to break the parameter degeneracies. We also con-
sider Planck primary CMB data for l > 30 in the region
not overlapping with the CMB-S4 (fsky = 0.25 accord-
ingly) [9]. Since we aim here to investigate neutrino mass
constraints without ⌧ information, no prior on the optical
depth to reionization ⌧ is included, unless we explicitly
note otherwise. Here we use the unlensed CMB power
spectra because the lensing auto-power spectrum C


l

FIG. 2: Forecasted 1� constraints on the sum of the neutrino
masses without optical depth information, for di↵erent experiment
configurations: CMB-S4 lensing and LSST clustering (black) +
primordial CMB data (green dotted for Planck and green solid for
S4) + DESI BAO measurements (red solid for LSST Optimistic
and red dotted for LSST Gold). S4 primary CMB (with Planck
co-added) + DESI BAO gives �(

P
m⌫) = 42 meV, which further

tightens to 37 meV with the reconstructed CMB lensing potential
included. Including the LSST galaxies at higher redshift extends
the redshift lever arm and increases the volume probed, which re-
sults in a significant improvement in the constraints.

already provides nearly all the CMB lensing information
[34] and because then the source of lensing information
is entirely clear.

D. DESI Specifications

We include the forecasted galaxy baryon acoustic os-
cillation (BAO) information from the Dark Energy Spec-
troscopic Instrument (DESI) [35] which measures the
distance-redshift relation at low redshift. (We neglect
RSD and other broadband sources of information in the
DESI galaxy power spectrum, but assume BAO recon-
struction.) Including DESI measurements significantly
improves neutrino mass forecasts by better constraining
⌦m and further breaking parameter degeneracies. We
use the expected uncertainties on the distance ratio from
18 bins in the range 0.15 < z < 1.85 with �z = 0.1,
given in [11, 36].

E. Fisher Matrix Analysis

If we have N tomographic galaxy redshift bins, our ob-
servables are 1 + N (lensing-lensing and galaxy-galaxy)
auto-power spectra and N +N(N � 1)/2 (lensing-galaxy
and galaxy-galaxy) cross-spectra. For the CMB lens-
ing convergence auto-spectra, we consider the lensing re-
construction noise N


l , and for the galaxy-galaxy auto-

spectra, we take into account the shot noise N
gg
l = 1/n.

The Gaussian covariance matrix of the CMB lensing
convergence and the LSST galaxy auto- and cross-power

LSST galaxies

Gold sample Optimistic sample

At low z, use clustering redshifts (Gorecki+ 2014) 
At high z, add Lyman-break dropout galaxies (extrapolated from HSC observations)


Details: MS & Seljak (2018)

~1 billion galaxies each at z = 0-0.5, 0.5-1,1-2, 2-4

CMB lensing kernel



Lyman-break dropout galaxies
Young star-forming galaxies that have lots of neutral hydrogen 
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Lyman-break dropout galaxies
Young star-forming galaxies that have lots of neutral hydrogen 

Photons with enough energy ionize that and don’t get out of galaxy
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gu

re
: E

llis
 (1

99
8)

HSC found 0.5M at z=4-7 in 100 deg2, so expect ~100M with LSST 

Also MegaMapper

Ono, Ouchi+ (2018)

Wilson & White (2019), Ferraro et al. (1903.09208), Schlegel et al. (1907.11171) 
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Other CMB experiments

Today 2022 2030

LiteBIRD

POLARBEAR

Funding by DOE, Heising-Simons, JAXA, NASA, NSF, Simons Foundation, …



10x better than Planck, even with LSST gold (conservative)
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Other science goals of Simons Observatory

SO can detect any particle  
with spin that decoupled  
after the start of the QCD  
phase transition (at 2σ)
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Deviations from a cosmological constant

Lensing = line of sight integral so cannot resolve time dependence 

Galaxy clustering amplitude depends on galaxy type (unknown) 

⇒ Either alone cannot measure dark energy as function of time 

But joint analysis of lensing + clustering can!

Figure 1.2: Illustration of gravitational lensing of CMB photons by large-scale
structure (adapted from [10]).

reconstructing these lenses from the observed CMB we can obtain crucial infor-

mation on e.g. dark energy or the geometry of the universe. Several experiments

will provide high quality CMB data in the next few years, e.g. full-mission Planck

data including polarization, ACT/ACTPol, Polarbear and SPT/SPTpol.

The contribution of this thesis, presented in Chapter 5, is a thorough analysis

of how the reconstructed lensing information can be combined with the primary

CMB data to perform reliably a joint parameter estimation. Such joint analy-

ses are important to break degeneracies that limit the information that can be

extracted from the CMB fluctuations laid down at recombination. The joint anal-

ysis is non-trivial because the part of the lensing information that is present in

the primary CMB power spectrum as well as in the lensing reconstruction is po-

tentially double-counted. We quantify the temperature-lensing cross-correlation

analytically, finding two physical contributions and confirming the results with

simulated lensed CMB maps. This cross-correlation has not been considered be-

fore and it could have turned out to be anywhere between zero and unity. We

also use simulations to test approximations for the likelihood of the lensing re-

3



Test acceleration of the Universe and dark energy with 1-2% precision 
(currently >7%)

Deviations from a cosmological constant

32

5.3. Cross-correlations

Cross-correlations between maps of the reconstructed
CMB lensing potential and low-redshift tracers of the
matter distribution provide a handle on the growth of
structure, primordial non-Gaussianity, curvature, and
dark energy. Here we forecast the science obtainable
from cross-correlations of the SO reconstructed lensing
potential with LSST, which is particularly suited for this
type of analysis because it will observe a large number
of galaxies out to high redshift, covering a large fraction
of the CMB lensing redshift kernel. The LSST galaxy
samples we consider are described in Sec. 2.
For the gold sample, we forecast the cross-correlation

coe�cient between the SO lensing field,  (using the min-
imum variance estimator), and the galaxy overdensity
field, g, given by ⇢ = C

g
L /(C

L C
gg
L )1/2, to be ⇢ � 80%

for lensing scales L  80, with a maximum correlation of
⇢ ' 86% for 10  L  20, if the LSST galaxies are opti-
mally weighted in redshift to match the CMB lensing ker-
nel (Sherwin and Schmittfull 2015; Schmittfull and Seljak
2018). We forecast that the optimistic LSST sample will
improve the cross-correlation coe�cient to ⇢ � 80% for
L  150, with a maximum correlation of ⇢ ' 90% for
15  L  25.
These high cross-correlation coe�cients imply that

sample variance cancellation can be useful (Seljak 2009),
and thus that the naive signal-to-noise ratio calculation
for a cross spectrum can understate the potential con-
straining power of combining CMB and large-scale struc-
ture (LSS). We include this sample variance cancella-
tion by forecasting joint constraints from SO lensing and
LSST clustering power spectra, C


L , C

g
L , and C

gg
L , ac-

counting for (Gaussian) covariances between these power
spectra.
Here and in Sec. 5.4, we assume a CMB lens-

ing estimator where only the CMB gradient in the
quadratic estimator pair has explicit deprojection of fore-
grounds (Madhavacheril and Hill 2018), which is suitable
for cross-correlation measurements. We discuss this gra-
dient foreground cleaning in Sec. 5.5.

5.3.1. Growth of structure: �8(z)

We forecast how well the growth of structure as a func-
tion of redshift, parametrized by the amplitude of matter
perturbations, �8(z), could be constrained by combining
LSST galaxies and SO CMB lensing data, for di↵erent
sky fractions and sensitivities. We consider six tomo-
graphic redshift bins (z = 0–0.5, 0.5–1, 1–2, 2–3, 3–4, 4–
7) and marginalize over one linear galaxy bias parameter
in each bin. As in Sec. 5.3, our observables are C


L , C

g
L

and C
gg
L . We assume scale-cuts in both L and k (which

the Limber approximation maps to an L for each red-
shift bin) of Lmin = 50 and kmax = 0.3h/Mpc. We follow
the standard methods described in Sec. 2, marginalizing
over ⇤CDM parameters and including DESI BAO infor-
mation. In this analysis, however, we allow �8(z) to vary
independent of the expansion history. We assume ⇤CDM
for the background expansion; we also neglect any e↵ect
on the CMB power spectra.
We show projected constraints in Fig. 29, finding fore-

casts for �8(z) that are competitive with cluster and weak
lensing probes, with percent-level forecast constraints on
the amplitude of structure for a significant number of

0 1 2 3 4 5 6 7
z

-0.04
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0.04
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8(
z)
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�

8(
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fsky = 0.1

SO Baseline + LSST gold; fsky = 0.4

SO Goal + LSST gold

SO Goal + LSST optimistic

Figure 29. The relative uncertainty on �8, defined in six tomo-
graphic redshift bins (z=0–0.5, 0.5–1, 1–2, 2–3, 3–4, 4–7), as a func-
tion of redshift. The forecast assumes a joint analysis of C


L , C

g
L

and C
gg
L , where  is SO CMB lensing and g denotes LSST galax-

ies binned in tomographic redshift bins. We use multipoles from
Lmin = 30 to Lmax corresponding to kmax = 0.3hMpc�1 in each
tomographic bin. We marginalize over one linear galaxy bias pa-
rameter in each tomographic bin and over ⇤CDM parameters. We
also include Planck CMB information – with a ⌧ prior, �(⌧) = 0.01
– and BAO measurements (DESI forecast). The filled bands and
single lines distinguish between an SO survey over fsky = 0.4 and
0.1, respectively. Di↵erent colors distinguish between the SO base-
line and goal configurations, and for this latter case di↵erent LSST
number density, with 29.4 and 66 arcmin�2 galaxies for the gold
and optimistic sample, respectively.

redshift bins. We find that constraints improve moder-
ately as sky area and sensitivity are increased, as shown
in Fig. 29. For the nominal SO survey we project

�(�8)/�8=0.015 (z = 1–2), SO Baseline + LSST

=0.015 (z = 2–3). (19)

These measurements would provide unique constraints
on deviations from the cosmological constant, ⇤, at red-
shifts higher than typically accessible to optical cluster
and weak lensing probes. These deviations could include
modified gravity, non-standard dark energy models, as
well as other deviations from ⇤CDM.

5.3.2. Local primordial non-Gaussianity

Local primordial non-Gaussianity, parameterized by
the amplitude fNL, can be generated by multi-field in-
flation models, and a measurement of non-zero |fNL| & 1
would robustly rule out all single-field inflation models
with standard Bunch-Davies initial conditions (Malda-
cena 2003; Creminelli and Zaldarriaga 2004). Observa-
tionally, in addition to the e↵ect on higher-point func-
tions described in Sec. 6, this type of non-Gaussianity
leads to a distinct scale-dependence of galaxy bias on
large scales, scaling as a function of comoving wavenum-
ber k as fNL/k

2 (Dalal et al. 2008). A joint analysis of
CMB lensing and galaxy clustering data can search for
this e↵ect by comparing the scale-dependence of lens-
ing and clustering auto- and cross-spectra on the largest
scales. The high cross-correlation coe�cient between SO
lensing and LSST clustering discussed above allows us

MS & Seljak (2018), Simons Observatory Science White Paper (2019), Figure: B. Yu
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- Getting redshift errors down to LSST requirement is crucial  
- Reducing redshift errors further would help (clustering redshifts, …)

More careful forecast

Cawthon (2018)
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No prior
p(z0) = 0.03(1 + z)

p(�z) = 0.03(1 + z)

p(both) = 0.03(1 + z)

p(z0) = 0.003(1 + z)

p(�z) = 0.003(1 + z)

p(both) = 0.003(1 + z)

FIG. 17. Constraints on �8 for our fiducial LSST/CMB-S4 analysis when adding priors on redshift parameters. Left: constraints when having
lmax = 1000. Right: constraints when having lmax = 2000. Each curve adds either a prior on z0, on �z or an equal prior on each. We compare
the curves with priors to the fiducial case of no priors, and the opposite extreme of no redshift uncertainty with z0 and �z fixed in the Fisher
analysis. The priors of 0.003(1 + z) and 0.03(1 + z) come from the LSST DESC SRD requirements ([54]) for z0 and �z, respectively. The
prior of 0.0004(1 + z) is a plausible future achievement by clustering redshifts at low z found in [55].

the DES/SPT-SZ era as the future LSST/CMB-S4. Tightening
the redshift priors brings results closer to the case of no red-
shift uncertainty. We again see that �z is more important than
z0 for constraining �8. In the DES year 1 analysis ([6] and
the others mentioned above), only z0 was constrained. Figure
18 (left) shows that adding a 0.02 prior on �z to the already
achieved 0.02 prior on z0 would improve constraints on �8

for the highest two redshift bins by about 30%. If lmax can be
extended to 2000 (right side of 18), the gains of a 0.02 prior
on �z only go up to 15%.

VIII. CONSTRAINTS ON REDSHIFT PARAMETERS

We focus briefly again in this section on the ability of
galaxy clustering and galaxy-CMB lensing correlation mea-
surements to ‘self-calibrate’ redshifts and compare those con-
straints to photometric redshift techniques. The idea of cali-
brating redshifts strictly from correlation functions was stud-
ied in more detail recently in [28]. A significant difference in
this work though is not fixing the cosmology while solving for
redshift parameters.

As mentioned in Section VII F, the Dark Energy Survey is
already calibrating the mean redshift of bins to an uncertainty
of about 0.02. The Large Synoptic Survey Telescope broadly
has a requirement of constraining the mean of redshift bins to
0.003(1 + z), though likely that number can be beaten at low
redshifts as mentioned in Section VII F. In Figure 19, we com-
pare the LSST DESC SRD [54] required redshift constraints,
and the current DES redshift constraints to our Fisher analysis
of �z and z0 with no priors applied. We show results for both
lmax = 1000 and 2000 in Figure 19. The projections on DES
from correlations with SPT beat the current threshold of 0.02

constraints on the redshift parameters in the first three redshift
bins, even if only lmax = 1000 can be used. As mentioned
previously, currently DES has only constrained the mean red-
shift of bins, z0 and not the width, �z. Work in e.g., [24]
suggests constraints on each parameter should be compara-
ble though from spatial cross-correlations with spectroscopic
galaxies. For LSST, the constraints for lmax = 2000 at low
redshifts (z < 1.5) are stronger than the goal 0.003(1+z) un-
certainty on z0. For lmax = 1000, the constraints are weaker
than this goal, though within a factor of 2 for z < 3. All of
the constraints for both lmax values are better than the LSST re-
quirement on �z of 0.03(1+z) for large-scale structure analy-
ses. Even if the constraints of ‘self-calibrating’ redshifts from
power spectra measurements are merely comparable to tradi-
tional methods of photometric redshift estimation, this could
add significant information to cosmic surveys. A discrepancy
could point to systematics in either the photometric redshift or
power spectra measurements.

IX. CONCLUSIONS

In this work, we sought to answer two questions: 1. How
are analyses of galaxy clustering and CMB lensing affected
by uncertainties in redshift parameters and 2. Can redshift pa-
rameters be self-calibrated by galaxy and CMB lensing cor-
relations. We found in Section VI that the presence of red-
shift uncertainties can increase errors on e.g., �8(z) by an or-
der of magnitude. We showed the importance of using the
cross-correlations of different galaxy bins (Cgigj

l ), which in
the assumption of perfect redshift knowledge is not a neces-
sary measurement.

Though the redshift uncertainties degrade the analysis, the
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FIG. 4: 1� constraints on the matter amplitude �8 in 6 tomo-
graphic redshift bins, z = 0� 0.5, 0.5� 1, 1� 2, 2� 3, 3� 4, 4� 7,
from the combination of LSST galaxies and CMB-S4 lensing. kmax

= 0.3 hMpc�1 is assumed. �8/�8,fiducial = 1 corresponds toP
m⌫ = 0. Massive neutrinos suppress the growth of density fluc-

tuations, which can be shown by how the matter density contrast

scales with the scale factor: �m / a1�
3
5 f⌫ [9]. Assuming the mini-

mal mass sum 60 meV, the black dotted curve plots such suppres-
sion. We either (1) marginalize over ⇤CDM parameters and linear
biases in each bin (light blue blocks) or (2) fix ⇤CDM parameters
(dark blue). In both scenarios, subpercent-level constraints on �8

can be achieved, leading to a significant improvement in the
P

m⌫

detection.

ing a broader redshift binning; with 6 bins in the same
redshift range, �(

P
m⌫) degrades by ⇡ 15%.

Table I provides the 1� constraints on the neutrino
mass with di↵erent kmax limits, for both LSST Gold and
Optimistic samples. Having just CMB lensing and LSST
clustering, we find significant improvements as we assume
a higher kmax. However, with all external datasets in-
cluded, we find only moderate dependence on kmax, with
a degradation of only 10 � 15% when using kmax = 0.1
hMpc�1 instead of kmax = 0.3 hMpc�1. The dependence
on CMB sensitivity is similar: Improved CMB sensitiv-
ity improves constraints from CMB lensing and LSST
clustering alone significantly, but only mildly when in-
cluding all other probes. We note that such modest im-
provements of the neutrino mass constraints with the S4
lensing reconstruction noise have been recognized previ-
ously [14].

We emphasize that the forecasts shown in Fig. 2 and
Table I assume no prior information on the optical depth.
We therefore conclude that the ⌧ -less cross-correlation to-
mography combining LSST clustering and CMB-S4 lens-
ing provides a di↵erent and competitive way to measure
the sum of the neutrino masses. This is better illustrated
in Fig 3. We obtain slightly tighter bounds on

P
m⌫ and

⌧ (red solid curve) compared to the ⌧ -limited bounds pos-
sible with CMB-S4 (blue dotted). Still, including a tight
prior on ⌧ constrains

P
m⌫ better. Table II summarizes

the e↵ects of the optical depth measurements on the neu-
trino mass constraints in our forecasts. Assuming kmax

FIG. 5: The relative contribution of the growth and spectrum shape
e↵ects to the

P
m⌫ constraint without optical depth information.

kmax = 0.3 hMpc�1 assumed. From the full information combin-
ing both galaxies and CMB lensing (red curve), we remove either
the growth e↵ect by excluding all CMB lensing information (blue
curve) or the spectrum shape e↵ect by artificially removing the
neutrino step feature (green curve). The removal of either e↵ect
substantially weakens our constraints, and removing both growth
and shape e↵ects (yellow curve) eliminates the majority of the con-
straining power of our data.

= 0.3 hMpc�1, adding a flat prior �(⌧) = 0.01 improves
our constraints by 15 � 20%. A better determination of
⌧ reduces the uncertainty on the

P
m⌫ detection; �(⌧)

= 0.005 tightens our 1� constraint to 16 meV, and im-
posing the cosmic variance limit on the ⌧ measurements
brings �(

P
m⌫) down to 10 meV, ⇡ 6� detection on the

minimal sum of the neutrino masses (LSST Optimistic
sample with S4 lensing noise assumed).

What is the physical origin of these neutrino mass con-
straints without optical depth information? We consider
two possible mechanisms by which the constraints could
arise.

First, they could originate by probing neutrinos’ ef-
fect on the growth of structure over a wider range of
low redshifts. (We will henceforth refer to this as the
“growth e↵ect”.) To illustrate this, we forecast the
constraints on the amplitude of matter fluctuations �8

as a function of redshift, by defining a parameter Ai

which quantifies how the measured power spectra devi-
ate from the standard growth of structure: Pmm(k, zi) =
A

2
iP

fiducial
mm (k, zi), with Ai = 1 for the fiducial cosmol-

ogy. Following [13], we consider broader redshift bins,
z = 0�0.5, 0.5�1, 1�2, 2�3, 3�4, 4�7, and treat Ai in all
6 bins as a free parameter. Marginalizing over 6 ⇤CDM
parameters (H0, ⌦bh

2
, ⌦ch

2
, ns, As, ⌧) and linear bi-

ases in each bin and adding external datasets, such as
primary CMB and DESI, we can convert Ai constraints
to subpercent-level constraints on �8 at each redshift, as
shown in Fig 4. This enables us to measure (to some
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Redshift z

Can measure neutrino mass using 
z<7 lever arm, without need for 
optical depth to CMB


Independent from usual probes


With CMB-S4 and BAO, can reach 
~25 meV uncertainty (1σ)


Guaranteed >2σ signal (>60meV 
from oscillation expts.)

Sum of neutrino masses
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Within the SO collaboration we currently 
prepare the analysis pipeline for cross-
correlation with LSST   

(L3.2) CMB lensing cross-correlations 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(LT) Likelihood and Theory  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Simons Observatory Analysis Working Groups

I’m also a member of the CMB-S4, PICO and LSST collaborations, 
where related efforts are currently underway



Other CMB lensing research interests (ask me later)

(1) Covariance for joint analysis of CMB and CMB magnification 

(2) Estimate unlensed CMB using galaxies  
 
 
 

(3) New bias of the magnification estimator

Figure 1.2: Illustration of gravitational lensing of CMB photons by large-scale
structure (adapted from [10]).

reconstructing these lenses from the observed CMB we can obtain crucial infor-

mation on e.g. dark energy or the geometry of the universe. Several experiments

will provide high quality CMB data in the next few years, e.g. full-mission Planck

data including polarization, ACT/ACTPol, Polarbear and SPT/SPTpol.

The contribution of this thesis, presented in Chapter 5, is a thorough analysis

of how the reconstructed lensing information can be combined with the primary

CMB data to perform reliably a joint parameter estimation. Such joint analy-

ses are important to break degeneracies that limit the information that can be

extracted from the CMB fluctuations laid down at recombination. The joint anal-

ysis is non-trivial because the part of the lensing information that is present in

the primary CMB power spectrum as well as in the lensing reconstruction is po-

tentially double-counted. We quantify the temperature-lensing cross-correlation

analytically, finding two physical contributions and confirming the results with

simulated lensed CMB maps. This cross-correlation has not been considered be-

fore and it could have turned out to be anywhere between zero and unity. We

also use simulations to test approximations for the likelihood of the lensing re-
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(a) Theoretical matter cosmic variance contribution (D9) (b) Simulations

FIG. 5. (a) Theoretical matter cosmic variance contribution (D9) to the correlation of the unbinned power spectra of recon-
structed lensing potential and lensed temperature. The covariance (D9) is converted to a correlation using the same conversion

factor as in (38). (b) Measured correlation ˆcorrel(Ĉ�̂in�̂in
L�

, ĈT̃ T̃
LT

� ĈTT
LT

) of the input lensing potential power and the di↵erence

of noise-free lensed and unlensed temperature powers in 1000 simulations.

FIG. 6. Left : The approximate contribution to the covariance between [L(L + 1)]2Ĉ�̂�̂
L /(2⇡) and L0(L0 + 1)ĈT̃ T̃

L0 /(2⇡) from
cosmic variance of the lenses, derived from Eq. (D9). Right : The rank-one approximation to the matrix on the left from
retaining only the largest singular value.TODOO: discuss this in main text or appendix

C
T� correlations in all calculations we try to eliminate correlations between the lensing potential and the unlensed

temperature in the simulations by considering

ˆcov(Ĉ �̂�̂
L , Ĉ

T̃ T̃
L0 )|CV(�) = ˆcov(Ĉ �̂in�̂in

L , Ĉ
T̃ T̃
L0 � Ĉ

TT
L0 ), (52)

where Ĉ
�̂in�̂in is the empirical power of the input lensing potential and Ĉ

TT is the empirical power of the unlensed
temperature. Subtracting the unlensed from the lensed empirical power spectrum also reduces the noise of the
covariance estimate because it eliminates the scatter due to cosmic variance of the unlensed temperature. We estimate
the covariance in simulations similarly to (48). As shown in Fig. 5b these measurements agree with the theoretical
expectation from (D9).
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Planck Collaboration: Gravitational lensing by large-scale structures with Planck
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Fig. 15. Two views of the geometric degeneracy in curved ⇤CDM models which is partially broken by lensing. Left: the degeneracy
in the⌦m-⌦⇤ plane, with samples from Planck+WP+highL colour coded by the value of H0. The contours delimit the 68% and 95%
confidence regions, showing the further improvement from including the lensing likelihood. Right: the degeneracy in the ⌦K-H0
plane, with samples colour coded by ⌦⇤. Spatially-flat models lie along the grey dashed lines.

6.2. Correlation with the ISW Effect

As CMB photons travel to us from the last-scattering surface,
the gravitational potentials they traverse may undergo a non-
negligible amount of evolution. This produces a net redshift or
blueshift of the photons concerned, as they fall into and then
escape from the evolving potentials. The overall result is a con-
tribution to the CMB temperature anisotropy known as the late-
time ISW e↵ect, or the Rees-Sciama (R-S) e↵ect depending on
whether the evolution of the potentials concerned is in the linear
(ISW) or non-linear (R-S) regime of structure formation (Sachs
& Wolfe 1967; Rees & Sciama 1968). In the epoch of dark en-
ergy domination, which occurs after z ⇠ 0.5 for the concor-
dance ⇤CDM cosmology, large-scale potentials tend to decay
over time as space expands, resulting in a net blueshifting of the
CMB photons which traverse these potentials.

In the concordance ⇤CDM model, there is significant over-
lap between the large-scale structure which sources the CMB
lensing potential � and the ISW e↵ect (greater than 90% at
L < 100), although it should be kept in mind that we cannot
observe the ISW component by itself, and so the e↵ective cor-
relation with the total CMB temperature is much smaller, on the
order of 20%.

The correlation between the lensing potential and the ISW
e↵ect results in a non-zero bispectrum or three-point function
for the observed CMB fluctuations. This bispectrum is peaked
for “squeezed” configurations, in which one short leg at low-`
supported by the ISW contribution is matched to the lensing-
induced correlation between two small-scale modes at high-
`. Constraints on the amplitude of the lensing-ISW bispec-
trum using several di↵erent estimators are presented in Planck
Collaboration XXIV (2014). Here we will present an additional
constraint, in which the bispectrum measurement is recast as an
estimate for the amplitude of the cross-spectrum CT�

L , using the
filtering and frequency map combinations of our baseline lensing
reconstruction. Our measurements are in good agreement with
those made in Planck Collaboration XXIV (2014); a detailed
comparison of several lensing-ISW bispectrum estimators, in-
cluding the one used here, is presented in Planck Collaboration
XIX (2014).

Following Lewis et al. (2011), we begin with an estimator for
the cross-spectrum of the lensing potential and the ISW e↵ect as

ĈT�
L =

f �1
sky

2L + 1

X

M

T̂LM�̂
⇤

LM , (45)

where T̂`m = CTT
` T̄`m is the Wiener-filtered temperature map

and �̂ is given in Eq. (13). In Fig. 16 we plot the measured cross-
spectra for our individual frequency reconstructions at 100, 143,
and 217 GHz as well as the MV reconstruction. We also plot the
mean and scatter expected in the fiducial ⇤CDM model.

To compare quantitatively the overall level of the measured
CT�

L correlation to the value in ⇤CDM, we estimate an overall
amplitude for the cross-spectrum as

ÂT� = NT�
LmaxX

L=Lmin

(2L + 1)CT�,fid.
L ĈT�

L /(C
TT
L N��L ). (46)

The overall normalizationNT� is determined from Monte-Carlo
simulations. For our processing of the data, we find that it is well
approximated (at the 5% level) by the analytical approximation

N
T�
⇡

2
6666664

LmaxX

L=Lmin

(2L + 1)
⇣
CT�,fid.

L

⌘2
/(CTT

L N��L )

3
7777775

�1

. (47)

The estimator above is equivalent to the KSW and skew-
C` estimators of Komatsu et al. (2005); Munshi et al.
(2011b) for the lensing-ISW bispectrum that are used in
Planck Collaboration XXIV (2014) (up to implementation de-
tails such as filtering). The mean-field subtraction performed
when computing �̂LM can be identified with the linear term of
Creminelli et al. (2006), which is necessary to minimize the es-
timator variance. The contribution to the total S/N of this esti-
mator as a function of the short leg L is plotted in Fig. 2, where
it can be seen that the constraining power for the fiducial corre-
lation is almost entirely at L < 100.

In Table 2 we present measured values for the amplitude of
the lensing-ISW bispectrum using Eq. (45). The uncertainties on
ÂT� are determined by Monte-Carlo. We use the multipole range
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II.  Galaxy clustering: Theory & Analysis

(1) Modeling galaxy clustering 

(2) Cosmological parameter analysis 

(3) Accounting for skewness 

(4) Getting initial from final conditions

13

Figure 1. 2-d slices of the overdensity �h(x) of simulated 1010.8 � 1011.8 h�1M� halos (top), compared with the cubic bias
model (center), and the linear Standard Eulerian bias model (bottom). Each panel is 500 h�1Mpc wide and 110 h�1Mpc high,
and each density is smoothed with a R = 2 h�1Mpc Gaussian, WR(k) = exp[�(kR)2/2]. The colorbar indicates the values of
this smoothed overdensity �h(x).

Figure 2. Same as Fig. 1 but for more massive and less abundant 1011.8 � 1012.8 h�1M� halos.

simulations. The variance, skewness and kurtosis of the densities shown in the histograms are listed in Table II for
the full simulated and modeled densities, and in Table III for the model error.

The linear Standard Eulerian bias model tends to underpredict troughs and overpredict peaks of the halo density,
as shown in Fig. 3. The model error is not Gaussian for any of the shown smoothing scales; in particular its kurtosis
is larger than 1 for all smoothing scales.

The cubic model provides a more accurate description of the halo density pdf, as shown in Fig. 4. This emphasizes
the importance of using nonlinear bias terms even on rather large scales. Still, the cubic model tends to underpredict
the peaks of the true halo density, especially on small scales. This agrees with Fig. 2 where the model also underpredicts



(1) Modeling galaxy clustering 

(2) Cosmological parameter analysis 

(3) Accounting for skewness 

(4) Getting initial from final conditions

13

Figure 1. 2-d slices of the overdensity �h(x) of simulated 1010.8 � 1011.8 h�1M� halos (top), compared with the cubic bias
model (center), and the linear Standard Eulerian bias model (bottom). Each panel is 500 h�1Mpc wide and 110 h�1Mpc high,
and each density is smoothed with a R = 2 h�1Mpc Gaussian, WR(k) = exp[�(kR)2/2]. The colorbar indicates the values of
this smoothed overdensity �h(x).

Figure 2. Same as Fig. 1 but for more massive and less abundant 1011.8 � 1012.8 h�1M� halos.

simulations. The variance, skewness and kurtosis of the densities shown in the histograms are listed in Table II for
the full simulated and modeled densities, and in Table III for the model error.

The linear Standard Eulerian bias model tends to underpredict troughs and overpredict peaks of the halo density,
as shown in Fig. 3. The model error is not Gaussian for any of the shown smoothing scales; in particular its kurtosis
is larger than 1 for all smoothing scales.
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the importance of using nonlinear bias terms even on rather large scales. Still, the cubic model tends to underpredict
the peaks of the true halo density, especially on small scales. This agrees with Fig. 2 where the model also underpredicts

II.  Galaxy clustering: Theory & Analysis



If we had the data today, would not be able to make cosmology 
inference because some components are not ready yet 

- Theoretical modeling of galaxy clustering 
   - Simplified in forecasts  
   - Good enough for current data but not next-generation data 

- Relation between galaxies and dark matter (‘galaxy bias’) 

- Redshift space: Redshift errors, redshift space distortions, fingers of God 

- Galaxy formation/baryonic physics: stellar feedback, blackhole feedback, 
radiative transfer, magnetic fields, … 

 
Data will be amazing. Let’s make the theory & analysis adequate.

Motivation



Must connect dark matter distribution to galaxy distribution

Modeling galaxy clustering

Simplest model: Linear ‘bias’ relation 

 
 
Can prove this is correct on very 
large scales (Peebles, Kaiser, …) 

But breaks down on smaller scales 

Need nonlinear corrections

�g(x) = b1�m(x)
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This approach has been extensively studied in the past

Most of the analyses use n-point functions. Disadvantages: 

- Sample variance, compromise on resolution/size of simulation 
- On small scales hard to disentangle different sources of nonlinearity 
- Overfitting (smooth curves, many parameters) 
- Only few lowest n-point functions explored in practice 
- Difficult to isolate and study the noise

Modeling galaxy clustering

Review by Desjacques, Jeong, Schmidt (2018): Large-Scale Galaxy Bias



New setup: Field level comparison

Initial conditions

Sim
ula
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n
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Pert. model

MS, Simonović, Assassi & Zaldarriaga (2019)



Benefits of using 3D fields rather than summary statistics

+ No sample variance, can use small volumes with high resolution 
+ No overfitting (6 parameters describe >1 million 3D Fourier modes) 
+ ‘All’ n-point functions measured simultaneously 
+ Easy to isolate the noise 
+ Applicable to field-level likelihood and initial condition reconstruction

Benefits

MS, Simonović, Assassi & Zaldarriaga (2019)
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Questions we studied
1. How well does perturbative bias model work? 

2. How correlated is the galaxy density field with the initial conditions? 

3. What are the properties of the noise?



Simulation

Ran N-body code on local cluster with ~2000 CPUs 

15363 = 3.6B particles in a 3D cubic box  
30723 = 29B grid points for long-range force computation  
4000 time steps  
5 realizations 

~ 1M CPU hours 13

Figure 1. 2-d slices of the overdensity �h(x) of simulated 1010.8 � 1011.8 h�1M� halos (top), compared with the cubic bias
model (center), and the linear Standard Eulerian bias model (bottom). Each panel is 500 h�1Mpc wide and 110 h�1Mpc high,
and each density is smoothed with a R = 2 h�1Mpc Gaussian, WR(k) = exp[�(kR)2/2]. The colorbar indicates the values of
this smoothed overdensity �h(x).

Figure 2. Same as Fig. 1 but for more massive and less abundant 1011.8 � 1012.8 h�1M� halos.

simulations. The variance, skewness and kurtosis of the densities shown in the histograms are listed in Table II for
the full simulated and modeled densities, and in Table III for the model error.

The linear Standard Eulerian bias model tends to underpredict troughs and overpredict peaks of the halo density,
as shown in Fig. 3. The model error is not Gaussian for any of the shown smoothing scales; in particular its kurtosis
is larger than 1 for all smoothing scales.

The cubic model provides a more accurate description of the halo density pdf, as shown in Fig. 4. This emphasizes
the importance of using nonlinear bias terms even on rather large scales. Still, the cubic model tends to underpredict
the peaks of the true halo density, especially on small scales. This agrees with Fig. 2 where the model also underpredicts

MS, Simonović, Assassi & Zaldarriaga (2019)



Comparison with linear model

Reasonable prediction on large scales 

Missing structure on small scales
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the importance of using nonlinear bias terms even on rather large scales. Still, the cubic model tends to underpredict
the peaks of the true halo density, especially on small scales. This agrees with Fig. 2 where the model also underpredicts
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Nonlinear model

Include all nonlinear terms allowed by symmetries  
(= Effective Field Theory) 

 
 
 
Fit parameters     by minimizing mean-squared error  
(= least-squares ‘polynomial’ regression) 
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Figure 1. 2-d slices of the overdensity �h(x) of simulated 1010.8 � 1011.8 h�1M� halos (top), compared with the cubic bias
model (center), and the linear Standard Eulerian bias model (bottom). Each panel is 500 h�1Mpc wide and 110 h�1Mpc high,
and each density is smoothed with a R = 2 h�1Mpc Gaussian, WR(k) = exp[�(kR)2/2]. The colorbar indicates the values of
this smoothed overdensity �h(x).

Figure 2. Same as Fig. 1 but for more massive and less abundant 1011.8 � 1012.8 h�1M� halos.

simulations. The variance, skewness and kurtosis of the densities shown in the histograms are listed in Table II for
the full simulated and modeled densities, and in Table III for the model error.

The linear Standard Eulerian bias model tends to underpredict troughs and overpredict peaks of the halo density,
as shown in Fig. 3. The model error is not Gaussian for any of the shown smoothing scales; in particular its kurtosis
is larger than 1 for all smoothing scales.

The cubic model provides a more accurate description of the halo density pdf, as shown in Fig. 4. This emphasizes
the importance of using nonlinear bias terms even on rather large scales. Still, the cubic model tends to underpredict
the peaks of the true halo density, especially on small scales. This agrees with Fig. 2 where the model also underpredicts
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Figure 1. 2-d slices of the overdensity �h(x) of simulated 1010.8 � 1011.8 h�1M� halos (top), compared with the cubic bias
model (center), and the linear Standard Eulerian bias model (bottom). Each panel is 500 h�1Mpc wide and 110 h�1Mpc high,
and each density is smoothed with a R = 2 h�1Mpc Gaussian, WR(k) = exp[�(kR)2/2]. The colorbar indicates the values of
this smoothed overdensity �h(x).

Figure 2. Same as Fig. 1 but for more massive and less abundant 1011.8 � 1012.8 h�1M� halos.

simulations. The variance, skewness and kurtosis of the densities shown in the histograms are listed in Table II for
the full simulated and modeled densities, and in Table III for the model error.

The linear Standard Eulerian bias model tends to underpredict troughs and overpredict peaks of the halo density,
as shown in Fig. 3. The model error is not Gaussian for any of the shown smoothing scales; in particular its kurtosis
is larger than 1 for all smoothing scales.

The cubic model provides a more accurate description of the halo density pdf, as shown in Fig. 4. This emphasizes
the importance of using nonlinear bias terms even on rather large scales. Still, the cubic model tends to underpredict
the peaks of the true halo density, especially on small scales. This agrees with Fig. 2 where the model also underpredicts
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simulations. The variance, skewness and kurtosis of the densities shown in the histograms are listed in Table II for
the full simulated and modeled densities, and in Table III for the model error.

The linear Standard Eulerian bias model tends to underpredict troughs and overpredict peaks of the halo density,
as shown in Fig. 3. The model error is not Gaussian for any of the shown smoothing scales; in particular its kurtosis
is larger than 1 for all smoothing scales.

The cubic model provides a more accurate description of the halo density pdf, as shown in Fig. 4. This emphasizes
the importance of using nonlinear bias terms even on rather large scales. Still, the cubic model tends to underpredict
the peaks of the true halo density, especially on small scales. This agrees with Fig. 2 where the model also underpredicts

Much better agreement than linear model

Simulation 
(= truth)

MS, Simonović, Assassi, Zaldarriaga (2019)
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White noise error is crucial to avoid biasing cosmology parameters

MS, Simonović, Assassi, Zaldarriaga (2019)



Tried many other nonlinear bias operators

3-6x larger model error. Reason: Bulk flows, need ‘shifted’ operators 

Fourier wavenumber k

41

Figure 20. Left panel: Model error power spectrum for Standard Eulerian bias models, for the lowest halo mass bin. Using the
nonlinear dark matter �NL from simulations as the input for the Standard Eulerian bias model (purple) creates a large error on
large scales because it involves squaring �NL, which is rather UV-sensitive. Alternatively, using the perturbative dark matter
density as the input to the bias model (dark orange) is treating large bulk flows perturbatively, which causes a decorrelation
between the model and the true halo density that shows up as a bump in the model error at k & 0.1 hMpc�1. The quadratic
model with shifted bias operators (bright orange) avoids both of these issues by squaring the linear density in Lagrangian
space, where this operation is less UV sensitive, and then shifting the resulting field to Eulerian space to achieve coherence with
the Eulerian-space halo density of the simulations. Right panel: Similar, but with Gaussian smoothing applied to �NL before
computing the quadratic bias operators. For larger smoothing scale R, the model error becomes larger because we keep less
of the small-scale modes in �2NL that describe the large-scale halo density. Gaussian smoothing does therefore not resolve the
above issues of Standard Eulerian bias. In both panels, the width of the shaded regions at low k represents the 1� uncertainty
estimated as the standard error of the mean of the five independent simulations; at high k, the uncertainty is smaller than the
width of the curves.

Let us compute the r.h.s. of this equation using Standard Eulerian perturbation theory. On large scales we expect
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where P13 is one of the two contributions to the matter power spectrum at one loop Ploop ⌘ 2P13+P22 [104]. Famously,
due to a large contribution from the IR shift terms, P13 is much larger than Ploop [66], and being large and negative
causes a significant decay of the transfer function even on scales larger than the nonlinear scale. This decorrelation
means that even in the perturbative regime the model fails to predict the halo density field. As a result, the residual
noise becomes large and strongly scale-dependent. We find
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Of course, the residual noise gets corrections from higher-order loop contributions too. However, the P22 term is
already much larger than the naive expectation—the one-loop power spectrum. To conclude, if Standard Eulerian
perturbation theory is used to predict the realization of the halo density field, we expect to find a model error which
becomes large and strongly scale dependent around the nonlinear scale.

To test this expectation we use the model in Eq. (94) and compare it to simulations. The plot of the power spectrum
of the model error normalized to the Poisson prediction is shown in Fig. 20. As we expect, this model works very
well at large scales, and in the limit k ! 0 the noise is close to the Poisson expectation. However, already around
k ⇠ 0.1 hMpc�1 the noise becomes scale-dependent and sharply rises. This is due to the decorrelation of the predicted
and simulated halo density fields at these scales. In the high k limit, when the transfer functions approach zero, the
power spectrum of the model error by definition approaches the halo power spectrum (black dotted curve). This
creates a characteristic bump in the noise curve. Notice that the same quadratic model written in terms of shifted
operators performs much better and has the constant noise practically all the way to k ⇠ 1 hMpc�1.
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Increase in wavenumber corresponds to 8-30x larger volume 



Model must account for bulk flows to get small model error  

Bulk flows

Model accounts for bulk flows

✏(x) ⌘ �truth � �model
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(1) Modeling galaxy clustering 

(2) Cosmological parameter analysis 

(3) Accounting for skewness 

(4) Getting initial from final conditions
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Figure 1. 2-d slices of the overdensity �h(x) of simulated 1010.8 � 1011.8 h�1M� halos (top), compared with the cubic bias
model (center), and the linear Standard Eulerian bias model (bottom). Each panel is 500 h�1Mpc wide and 110 h�1Mpc high,
and each density is smoothed with a R = 2 h�1Mpc Gaussian, WR(k) = exp[�(kR)2/2]. The colorbar indicates the values of
this smoothed overdensity �h(x).

Figure 2. Same as Fig. 1 but for more massive and less abundant 1011.8 � 1012.8 h�1M� halos.

simulations. The variance, skewness and kurtosis of the densities shown in the histograms are listed in Table II for
the full simulated and modeled densities, and in Table III for the model error.

The linear Standard Eulerian bias model tends to underpredict troughs and overpredict peaks of the halo density,
as shown in Fig. 3. The model error is not Gaussian for any of the shown smoothing scales; in particular its kurtosis
is larger than 1 for all smoothing scales.

The cubic model provides a more accurate description of the halo density pdf, as shown in Fig. 4. This emphasizes
the importance of using nonlinear bias terms even on rather large scales. Still, the cubic model tends to underpredict
the peaks of the true halo density, especially on small scales. This agrees with Fig. 2 where the model also underpredicts

II.  Galaxy clustering: Theory & Analysis



Application to data

Model was applied to SDSS BOSS data (~1 million galaxy spectra) 

MCMC sampling of posteriors was enabled by fast evaluation of the 
model power spectrum (reducing 2D loop integrals to 1D FFTs) 
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Cataneo, Foreman & Senatore (2017)

Simonović, Baldauf, Zaldarriaga et al. (2018)

D’Amico, Gleyzes, Kokron et al. (1909.05271)

Ivanov, Simonović & Zaldarriaga (1909.05277)

Tröster, Sanchez, Asgari et al. (2020)



Similar precision as Planck for some parameters

Figure 2: The 2d posterior distribution for cosmological parameters extracted from
the BOSS DR12 power spectrum likelihood. We show results for four independent
samples of the BOSS data separately (left panel) and the combined likelihoods (right
panel). In the latter case we also plot the posterior distribution for the parameters
of a similar model (⇤CDM with massive neutrinos) measured from the final Planck
2018 CMB data. H0 is quoted in units [km/s/Mpc].

that the high-z data prefer a smaller �8 than Planck. This tendency has already been
observed in the previous BOSS full-shape analyses [6, 79]. However, the obtained
difference between the Planck and our BOSS measurements is still consistent with a
statistical fluctuation.

The statistical errors of our H0 and ⌦m measurement are comparable with Planck
errorbars for the parameters of the same cosmological model with massive neutrinos.
Note that these parameters do not form principal components for the Planck data,
and hence are relatively poorly measured, e.g. compared to the combination ⌦mh

3,
which controls the angular position of acoustic oscillations in the CMB temperature
power spectrum [80]. This fact is reflected in a well-known degeneracy between H0

and ⌦m, which can be clearly observed in the Planck contours shown in the right
panel of Fig. 2. On the contrary, the degeneracy between these two parameters is
not very strong in the BOSS data, which provide us with more direct measurements
of H0 and ⌦m than Planck.

Our main conclusions remain exactly the same if we use the BBN prior on !b.
Even in this case one can measure H0 and ⌦m quite well using no information from
CMB whatsoever. Remarkably, our ⇠ 3% limit on the late-time matter density
fraction ⌦m is one of the best measurements of this parameter from the LSS data.
We emphasize that this constraint is driven by the shape of the power spectrum.
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Future: Dark Energy Spectroscopic Instrument DESI

https://www.desi.lbl.gov/

- 35 million galaxy spectra over 14,000 deg2

- 5,000 robots to position fibers that take spectra

- 5 year survey, first light October 2019

- 600 scientists from 82 institutions

- Funding by DOE, NSF, Heising-Simons, Moore, STFC, …

Dark Energy 
Spectroscopic Instrument 

The Dark Energy Spectroscopic Instrument (DESI) will conduct a world-leading redshift survey, making a three-
dimensional map of the universe reaching to redshift 3.5 over more than 1/3 of the sky.  Using 35 million galaxies and 
quasars observed from the Kitt Peak National Observatory Mayall telescope, DESI will make precise measurements of 
the expansion history of the Universe and use the growth of cosmological structure to study the properties of gravity, 
neutrinos, and the inflationary epoch in the early Universe.  

Through its large and well-characterized survey, the DESI survey will provide a rich tool for cosmology. DESI will make 
exquisite measurements of the cosmic distance scale and the impact of dark energy using the baryon acoustic 
oscillations imprinted in the distribution of galaxies, quasars, and the Lyman-α forest.  Dark energy and dark matter will 
be further studied using measurements of peculiar velocities and galaxy clustering.  The DESI survey will probe these 
cosmological effects over a wide range of redshifts, from the clustering of intergalactic hydrogen at redshift 3 to large 
galaxy samples at intermediate redshift to dense samples of low-redshift galaxies. In addition the study of dark energy, 
DESI will allow investigations into the evolution of the intergalactic medium, the origin of black holes, the astrophysics 
of stellar evolution, the structure of the Milky Way, and the mass/energy/chemical cycles within galaxies.

DESI

The Instrument
DESI is constructing a new 5000-fiber multi-object spectrograph for the 
Mayall 4-m telescope at Kitt Peak in Arizona.  A new wide-field corrector 
will provide an 8 square degree field-of-view at prime focus.  Optical fibers 
will feed 10 triple-arm high-throughput spectrographs, simultaneously 
covering 360–980 nm and reaching spectral resolution R = 4000 in the 
infrared.  The fibers will be rapidly positioned by individual actuators, 
allowing a rapid cadence of observations.  When completed in 2019, DESI 
will be the world’s most powerful wide-field optical spectrograph for wide-
field galaxy surveys.  

The Survey
DESI aims to study a very large volume of the Universe by 
targeting specific classes of objects (luminous red galaxies, 
emission line galaxies, and quasars) for which one can most 
easily measure redshifts.  Over its five-year survey, DESI will map 
25 million galaxies and quasars out to redshift 3.5 over 14,000 
deg2 of sky.  It will also measure redshifts for 10 million additional 
bright (r<19.5) galaxies to create a dense map of the low-redshift 
Universe.

The DESI Collaboration
DESI is managed by the Lawrence Berkeley National Laboratory for the 
U.S. Department of Energy, and involves more than 200 collaborators 
from ~40 US and International Institutions.  The DESI Project is led by 
Project Director Michael Levi and Project Scientists Brenna Flaugher and 
David Schlegel.  The DESI Collaboration is led by Spokespersons Daniel 
Eisenstein and Risa Wechsler, and the chairs of ten science working 
groups.



Future: Dark Energy Spectroscopic Instrument DESI

https://www.desi.lbl.gov/

- 35 million galaxy spectra over 14,000 deg2

- 5,000 robots to position fibers that take spectra

- 5 year survey, first light October 2019

- 600 scientists from 82 institutions

- Funding by DOE, NSF, Heising-Simons, Moore, STFC, …

Dark Energy 
Spectroscopic Instrument 

The Dark Energy Spectroscopic Instrument (DESI) will conduct a world-leading redshift survey, making a three-
dimensional map of the universe reaching to redshift 3.5 over more than 1/3 of the sky.  Using 35 million galaxies and 
quasars observed from the Kitt Peak National Observatory Mayall telescope, DESI will make precise measurements of 
the expansion history of the Universe and use the growth of cosmological structure to study the properties of gravity, 
neutrinos, and the inflationary epoch in the early Universe.  

Through its large and well-characterized survey, the DESI survey will provide a rich tool for cosmology. DESI will make 
exquisite measurements of the cosmic distance scale and the impact of dark energy using the baryon acoustic 
oscillations imprinted in the distribution of galaxies, quasars, and the Lyman-α forest.  Dark energy and dark matter will 
be further studied using measurements of peculiar velocities and galaxy clustering.  The DESI survey will probe these 
cosmological effects over a wide range of redshifts, from the clustering of intergalactic hydrogen at redshift 3 to large 
galaxy samples at intermediate redshift to dense samples of low-redshift galaxies. In addition the study of dark energy, 
DESI will allow investigations into the evolution of the intergalactic medium, the origin of black holes, the astrophysics 
of stellar evolution, the structure of the Milky Way, and the mass/energy/chemical cycles within galaxies.

DESI

The Instrument
DESI is constructing a new 5000-fiber multi-object spectrograph for the 
Mayall 4-m telescope at Kitt Peak in Arizona.  A new wide-field corrector 
will provide an 8 square degree field-of-view at prime focus.  Optical fibers 
will feed 10 triple-arm high-throughput spectrographs, simultaneously 
covering 360–980 nm and reaching spectral resolution R = 4000 in the 
infrared.  The fibers will be rapidly positioned by individual actuators, 
allowing a rapid cadence of observations.  When completed in 2019, DESI 
will be the world’s most powerful wide-field optical spectrograph for wide-
field galaxy surveys.  

The Survey
DESI aims to study a very large volume of the Universe by 
targeting specific classes of objects (luminous red galaxies, 
emission line galaxies, and quasars) for which one can most 
easily measure redshifts.  Over its five-year survey, DESI will map 
25 million galaxies and quasars out to redshift 3.5 over 14,000 
deg2 of sky.  It will also measure redshifts for 10 million additional 
bright (r<19.5) galaxies to create a dense map of the low-redshift 
Universe.

The DESI Collaboration
DESI is managed by the Lawrence Berkeley National Laboratory for the 
U.S. Department of Energy, and involves more than 200 collaborators 
from ~40 US and International Institutions.  The DESI Project is led by 
Project Director Michael Levi and Project Scientists Brenna Flaugher and 
David Schlegel.  The DESI Collaboration is led by Spokespersons Daniel 
Eisenstein and Risa Wechsler, and the chairs of ten science working 
groups.

DESI Science

w Bright Galaxy Survey (r < 19.5)
w Clustering, Clusters, and Cross-

Correlations
w Galaxy & Quasars
w Ly-alpha forest
w Milky Way
w Time Domain Figure: O. Lahav



II.  Galaxy clustering: Theory & Analysis

(1) Modeling galaxy clustering 

(2) Cosmological parameter analysis 

(3) Accounting for skewness 

(4) Getting initial from final conditions
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Figure 1. 2-d slices of the overdensity �h(x) of simulated 1010.8 � 1011.8 h�1M� halos (top), compared with the cubic bias
model (center), and the linear Standard Eulerian bias model (bottom). Each panel is 500 h�1Mpc wide and 110 h�1Mpc high,
and each density is smoothed with a R = 2 h�1Mpc Gaussian, WR(k) = exp[�(kR)2/2]. The colorbar indicates the values of
this smoothed overdensity �h(x).

Figure 2. Same as Fig. 1 but for more massive and less abundant 1011.8 � 1012.8 h�1M� halos.

simulations. The variance, skewness and kurtosis of the densities shown in the histograms are listed in Table II for
the full simulated and modeled densities, and in Table III for the model error.

The linear Standard Eulerian bias model tends to underpredict troughs and overpredict peaks of the halo density,
as shown in Fig. 3. The model error is not Gaussian for any of the shown smoothing scales; in particular its kurtosis
is larger than 1 for all smoothing scales.

The cubic model provides a more accurate description of the halo density pdf, as shown in Fig. 4. This emphasizes
the importance of using nonlinear bias terms even on rather large scales. Still, the cubic model tends to underpredict
the peaks of the true halo density, especially on small scales. This agrees with Fig. 2 where the model also underpredicts
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Not normally distributed, highly skewed
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Information in the tails can improve precision of parameter estimates



Measuring skewness

Challenging: Can form too many Fourier mode triplets 

Solution 1  
In space of all triplets, expand in simple basis functions 

Solution 2  
Given parameter of interest, compute max. likelihood estimator (matched filter). 
Sum over all triplets can be computed using a few 3D FFTs.

Regan, MS, Shellard & Fergusson (2011)

MS, Regan & Shellard (2013)

MS, Baldauf & Seljak (2015)


Moradinezhad Dizgah, Lee, MS & Dvorkin (2020)



Modeling skewness

Modeling skewness on mildly nonlinear scales is challenging 

Large literature 

Still no good model for galaxies in redshift space including 
primordial non-Gaussianity 

We should improve modeling and estimators for DESI & SPHEREx

Angulo, Foreman, MS & Senatore (2015)

Lazanu, Giannantonio, MS & Shellard (2016)

Lazanu, Giannantonio, MS & Shellard (2017)


+ many more papers by others, incl. Baldauf, Gil-Marin, Porciani, Scoccimarro, Sefusatti



(1) Bias model at the field level 

(2) Cosmological parameter analysis 

(3) Accounting for skewness 

(4) Getting initial from final conditions
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Figure 1. 2-d slices of the overdensity �h(x) of simulated 1010.8 � 1011.8 h�1M� halos (top), compared with the cubic bias
model (center), and the linear Standard Eulerian bias model (bottom). Each panel is 500 h�1Mpc wide and 110 h�1Mpc high,
and each density is smoothed with a R = 2 h�1Mpc Gaussian, WR(k) = exp[�(kR)2/2]. The colorbar indicates the values of
this smoothed overdensity �h(x).

Figure 2. Same as Fig. 1 but for more massive and less abundant 1011.8 � 1012.8 h�1M� halos.

simulations. The variance, skewness and kurtosis of the densities shown in the histograms are listed in Table II for
the full simulated and modeled densities, and in Table III for the model error.

The linear Standard Eulerian bias model tends to underpredict troughs and overpredict peaks of the halo density,
as shown in Fig. 3. The model error is not Gaussian for any of the shown smoothing scales; in particular its kurtosis
is larger than 1 for all smoothing scales.

The cubic model provides a more accurate description of the halo density pdf, as shown in Fig. 4. This emphasizes
the importance of using nonlinear bias terms even on rather large scales. Still, the cubic model tends to underpredict
the peaks of the true halo density, especially on small scales. This agrees with Fig. 2 where the model also underpredicts

II.  Galaxy clustering: Theory & Analysis



Getting initial from final conditions

Gravitational force

Initial conditions
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Getting initial from final conditions

Gravitational force

Goal: Reconstruct initial conditions & measure their power spectrum

Reconstruction

Initial conditions

Galaxies



Many proposed algorithms

First by J. Peebles in late 1980’s, then for BAO by D. Eisenstein 2007 

Renewed interest in last ~5 years  
MS, Feng+ (2015), MS, Baldauf+ (2017) 
Zhu, Yu+ (2017), Wang, Yu+ (2017) 
Seljak, Aslanyan+ (2017), Modi, Feng+ (2018) 
Shi+ (2018), Hada+ (2018), Modi, White+ (2019), Sarpa+ (2019), Schmidt+ (2019), Elsner+ 
(2019), Yu & Zhu (2019), Zhu, White+ (2019) 
 
 

Also sampling 
Jasche, Kitaura, Lavaux, Wandelt, … 

Machine learning  
Li, Ho, Villaescusa-Navarro, …


Theory 
work by Eisenstein, Padmanabhan, White etc, later e.g. MS+ (2015), Cohn+ (2016), Hikage+ 
(2017), Wang+ (2018), Sherwin+ (2018)



True initial conditions

Halo density before reconstruction

MS, Baldauf & Zaldarriaga (2017)

Reconstruction



True initial conditions

Halo density before reconstruction

Reconstruction

MS, Baldauf & Zaldarriaga (2017)
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No reconstruction

Correlation with true initial conditions

MS, Baldauf & Zaldarriaga (2017), similar to Zhu, Yu+ (2017); noise-free DM
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For SDSS/BOSS, standard reconstruction gave ~2x tighter 
measurement of BAO scale and Hubble parameter (= 4x volume) 

For DESI, more optimal BAO reconstruction gives 

(a) 30-40% tighter Hubble parameter than standard rec. (= 2x volume) 

(b) 70-120% tighter constraints on primordial features from some inflation models 

(c) Unbiased and tighter constraints on compensated isocurvature perturbations

Reconstruction of the linear BAO scale

(a), (b) Preliminary forecasts by M. Ivanov, B. Wallisch, (c) Heinrich & Schmittfull (2019)

Large additional gains possible if we can also get broadband linear power spectrum.

BAO as a Standard Ruler

•This distance of 150 Mpc is very accurately computed 
from the anisotropies of the CMB. 
–0.4% calibration with current CMB.

Image Credit: E.M. Huff, the SDSS-III team, and the 
South Pole Telescope team.  Graphic by Zosia Rostomian



Use gradient descent to maximize posterior distribution of initial 
conditions given observed galaxy density 

 
Optimization in 1M+ dimensions 
Gradients: 
- Automatic differentiation of simulation code  
- or analytical derivative of bias model (simpler)

Reconstruct by inverting forward model

From simulation or bias model

P (�IC|�g) =
L(�g|�IC)P (�IC)

P (�g)
<latexit sha1_base64="nhsW14myFMFirXMZIHaJK2sdCWM="></latexit> Normal distribution 

(Gaussian ICs)

Seljak, Aslanyan et al. (2017)

Schmidt, Elsner et al. (2019)


Modi, White et al. (arXiv:1907.02330)



Recovering modes from the 21cm wedge

Modi, White et al. (arXiv:1907.02330)

Foregrounds destroy long modes: ‘21cm wedge’ 

Reconstruction inverting bias model with shifted  
operators recovers these modes

Figure 5: We show the cross-correlation (left) and transfer function (right) of the reconstructed HI
field at z = 2, 4 and 6 for three di↵erent thermal noise levels as well as two wedge configurations
(optimistic and pessimistic; see text for more details). For comparison, we also show these quantities
for the noisy and masked data which was used as the input for reconstruction with light colors.

the foreground wedge a↵ects reconstruction on all scales, thermal noise does not a↵ect reconstruction
on the large scales. On small scales, reconstruction is slightly worse with increasing noise, again
penalizing higher redshifts more than lower redshifts.

With our procedure, along with reconstructing the observed data, we also reconstruct the ini-
tial and final matter field. Its instructive to see how close are these to the true fields since they
have di↵erent science applications. The initial (Lagrangian) field can be used to reconstruct Baryon
Acoustic Oscillations (BAOs), while the final matter field across redshifts has applications in CMB
and weak lensing science. Here we briefly look at the recovery of these fields. In Fig. 6, we show the
cross-correlation and transfer function of the reconstructed initial matter, final matter and HI field
for our fiducial setup at z = 4. As for the HI data field, the cross correlation and transfer function
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Recon- 
struction

Figure 1: The fraction of the total power that is signal, S/(S +N), vs. k? and kk for a 5 yr PUMA-
like survey at z = 2 (left), 4 (middle) and 6 (right). The dotted and dashed lines in each panel show
a pessimistic and optimistic forecast for the foreground wedge (see text). The loss of low k? modes,
most visible at z = 2, is due to the constraint that dishes must be further apart than their diameters,
leading to a minimum baseline length.

in the wedge are illustrated by the gray dashed (optimistic) and dotted (pessimistic) lines. Modes
below and to the right of these lines would be contaminated by foregrounds. In addition we expect to
lose modes with kk < k

min

k where kmin

k = 0.01�0.1hMpc�1. At z = 2 and low k the signal dominates,
at intermediate k the shot-noise starts to become important and at high kk the thermal noise from
the instrument dominates.

3 Data: Hidden Valley simulations

To test the e�cacy of our method we make use of the Hidden Valley1 simulations [37], a set of
trillion-particle N-body simulations in gigaparsec volumes aimed at intensity mapping science. Our
workhorse simulation will be HV10240/R, which evolved 102403 particles in a periodic, 1024h�1Mpc
box from Gaussian initial conditions using a particle-mesh code [38] with a 204803 force mesh. At this
resolution, one is able to resolve halos down to M ⇠ 109 h�1M�, which host the majority (> 95%)
of the cosmological HI signal, while the volume allows robust measurement of observables such as
baryon acoustic oscillations.

The halos in the simulation were assigned neutral hydrogen with a semi-analytic recipe, outlined
in more detail in ref. [37]. We make use of their fiducial model, ‘Model A’, at z = 2, 4 and z = 6.
Briefly, this model populates halos with centrals and satellites following a halo occupation description
and these galaxies are then assigned HI mass following a Mh � MHI relation. Our mock HI data
lives in redshift space and captures the small scale non-linear redshift space distortion e↵ects due
to satellite motion. We also caution the reader that while we have made use of a particular semi-
analytic model, the manner in which HI traces the matter field at high z is currently poorly constrained
observationally. While our model is consistent with our best current knowledge, the particular values
of various modeling parameters we have assumed may not be correct. However as long as this field
can be modeled with a flexible bias framework and the scatter between the HI mass and halo mass
(or underlying dark matter density) is similar to other tracers, such as stellar mass, we believe our
qualitative results do not depend critically upon these details.

For our analysis, we will use two Cartesian meshes (discussed further in Section 4.4) with 256 and
512 cells along each dimension, which have resolutions of 4 and 2h�1Mpc respectively. To generate
the HI data, we desposit the galaxies, weighted by their HI mass, on these meshes with a cloud-
in-cloud (CIC) interpolation scheme and then estimate the HI overdensity field (�HI) in the usual
way. Similarly, to generate the final, Eulerian matter field at the redshifts of interest, we use a 4%

1
http://cyril.astro.berkeley.edu/HiddenValley
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Figure 5: We show the cross-correlation (left) and transfer function (right) of the reconstructed HI
field at z = 2, 4 and 6 for three di↵erent thermal noise levels as well as two wedge configurations
(optimistic and pessimistic; see text for more details). For comparison, we also show these quantities
for the noisy and masked data which was used as the input for reconstruction with light colors.

the foreground wedge a↵ects reconstruction on all scales, thermal noise does not a↵ect reconstruction
on the large scales. On small scales, reconstruction is slightly worse with increasing noise, again
penalizing higher redshifts more than lower redshifts.

With our procedure, along with reconstructing the observed data, we also reconstruct the ini-
tial and final matter field. Its instructive to see how close are these to the true fields since they
have di↵erent science applications. The initial (Lagrangian) field can be used to reconstruct Baryon
Acoustic Oscillations (BAOs), while the final matter field across redshifts has applications in CMB
and weak lensing science. Here we briefly look at the recovery of these fields. In Fig. 6, we show the
cross-correlation and transfer function of the reconstructed initial matter, final matter and HI field
for our fiducial setup at z = 4. As for the HI data field, the cross correlation and transfer function
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Anticipate large influx of high-quality data over the next decade 

Many synergies between datasets 

CMB lensing and galaxy clustering can 
- Rule out single field inflation 
- Measure deviation from cosmological constant / standard growth at 1% level 
- Provide independent and competitive measurement of neutrino mass 

To exhaust scientific potential of the data, we must 
- Develop adequate theoretical models 
- Taylor our analysis methods to the datasets and make them optimal 
- Test both very carefully with simulations

Conclusion
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Figure 1. 2-d slices of the overdensity �h(x) of simulated 1010.8 � 1011.8 h�1M� halos (top), compared with the cubic bias
model (center), and the linear Standard Eulerian bias model (bottom). Each panel is 500 h�1Mpc wide and 110 h�1Mpc high,
and each density is smoothed with a R = 2 h�1Mpc Gaussian, WR(k) = exp[�(kR)2/2]. The colorbar indicates the values of
this smoothed overdensity �h(x).

Figure 2. Same as Fig. 1 but for more massive and less abundant 1011.8 � 1012.8 h�1M� halos.

simulations. The variance, skewness and kurtosis of the densities shown in the histograms are listed in Table II for
the full simulated and modeled densities, and in Table III for the model error.

The linear Standard Eulerian bias model tends to underpredict troughs and overpredict peaks of the halo density,
as shown in Fig. 3. The model error is not Gaussian for any of the shown smoothing scales; in particular its kurtosis
is larger than 1 for all smoothing scales.

The cubic model provides a more accurate description of the halo density pdf, as shown in Fig. 4. This emphasizes
the importance of using nonlinear bias terms even on rather large scales. Still, the cubic model tends to underpredict
the peaks of the true halo density, especially on small scales. This agrees with Fig. 2 where the model also underpredicts
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