<< November 2011 >>
 
 >>
 >>
 >>
 >>
 >>
Sun Mon Tue Wed Thu Fri Sat
   1   2   3   4   5 
 6   7   8   9   10   11   12 
 13   14   15   16   17   18   19 
 20   21   22   23   24   25   26 
 27   28   29   30   
 
Add an Event

This Week at Physics

<< Spring 2011 Fall 2011 Spring 2012 >>
Subscribe to receive email announcements of events

Events on Friday, November 18th, 2011

Cosmology Journal Club
An Informal discussion about a broad variety of arXiv papers related to Cosmology
Time: 12:00 pm
Place: 5242 Chamberlin Hall
Abstract: Please visit the following link for more details:
    http://cmb.physics.wisc.edu/journal/index.html
Please feel free to bring your lunch!
If you have questions or comments about this journal club, would like to propose a topic or volunteer to introduce a paper, please email Le Zhang (lzhang263@wisc.edu)
Host: Peter Timbie
Add this event to your calendar

Physics Department Colloquium
Condensation of excitons and polaritons
Time: 3:30 pm
Place: 2241 Chamberlin Hall (coffee at 4:30 pm)
Speaker: Peter Littlewood, Argonne National Laboratory
Abstract: Macroscopic phase coherence is one of the most remarkable manifestations of quantum mechanics, yet it seems to be the inevitable ground state of interacting many-body systems. In the last two decades, the familiar examples of superfluid He and conventional superconductors have been joined by exotic and high temperature superconductors, ultra-cold atomic gases, both bosonic and fermionic, and recently systems of excitons, magnons, and exciton-photon superpositions called polaritons, the subject of this talk.

An exciton is the solid-state analogue of positronium, made up of an electron and a hole in a semiconductor, bound together by the Coulomb interaction. The idea that a dense system of electrons and holes would be unstable toward an excitonic (electrical) insulator is one of the key ideas underlying metal-insulator transition physics. The further possibility that an exciton fluid would be a Bose-Einstein condensate was raised over 40 years ago, and has been the subject of an extensive experimental search in a variety of condensed matter systems. Such a condensate would naturally exhibit phase coherence. Lately, some novel experiments with planar optical microcavities make use of the mixing of excitons with photons to create a composite boson called a polariton that has a very light mass, and is thus a good candidate for a high-temperature Bose condensate. Good evidence for spontaneous coherence has now been obtained, though there are special issues to resolve considering the effects of low dimensionality, disorder, strong interactions, and especially strong decoherence associated with decay of the condensate into environmental photons---since the condensate is a special kind of laser.
Host: Perkins
Poster: http://www.physics.wisc.edu/twap/posters/2011/2291.pdf
Video: http://www.physics.wisc.edu/vod/2011/11/18.html
Add this event to your calendar

©2013 Board of Regents of the University of Wisconsin System