<< February 2016 >>
Sun Mon Tue Wed Thu Fri Sat
   1   2   3   4   5   6 
 7   8   9   10   11   12   13 
 14   15   16   17   18   19   20 
 21   22   23   24   25   26   27 
 28   29   
Add an Event Edit This Event

This Week at Physics

<< Fall 2015 Spring 2016 Fall 2016 >>
Subscribe to receive email announcements of events

Event Number 2354

  Friday, February 3rd, 2012

Atomic Physics Seminar
Atomic dipole traps formed in the diffraction pattern of a circular aperture for use in neutral atom quantum computing
Time: 10:00 am
Place: 5310 Chamberlin
Speaker: Katharina Gillen, California Polytechnic State University
Abstract: The quantum computing community is making evermore progress towards constructing a fully functional quantum computer. However, none of the many approaches in the different fields of physics have succeeded to date. In the neutral atom quantum computing approach, which uses atoms trapped by light fields as quantum bits (qubits), many of the requirements for a quantum computer (initialization, readout, single-qubit gates) can be met with well-established spectroscopic techniques. The recent accomplishment of two-qubit gates with neutral atoms leaves only one unattained criterion for a quantum computer: The ability to create an addressable array of many qubits.

We will present computational results on a possible solution to this problem. The diffraction pattern formed by laser light incident on a circular aperture exhibits localized bright and dark spots that can be used as atomic dipole traps. An array of such apertures results in a two-dimensional array of dipole traps that can be individually addressed with a laser beam from the third dimension. By exploiting the polarization dependence of these traps, we can also bring traps together and apart to facilitate the performance of two-qubit gates, thus creating a potential candidate for a scalable quantum memory for a neutral atom quantum computer.
Host: Saffman
Add this event to your calendar

©2013 Board of Regents of the University of Wisconsin System