<< December 2013 >>
 
 >>
 >>
 >>
 >>
 >>
Sun Mon Tue Wed Thu Fri Sat
 1   2   3   4   5   6   7 
 8   9   10   11   12   13   14 
 15   16   17   18   19   20   21 
 22   23   24   25   26   27   28 
 29   30   31   
 
Add an Event Edit This Event

This Week at Physics

<< Spring 2013 Fall 2013 Spring 2014 >>
Subscribe to receive email announcements of events

Event Number 3026

  Thursday, December 12th, 2013

R. G. Herb Condensed Matter Seminar
Topological Kondo Insulators
Time: 10:00 am
Place: 5310 Chamberlin
Speaker: Victor Galitski, University of Maryland
Abstract: In this talk I will review recent theoretical work on a new class of topological material systems - topological Kondo insulators, which appear as a result of interplay between strong correlations and spin-orbit interactions. I will start with introducing the by now standard theory of topological band insulators and explain the Fu-Kane method to calculate the Z2 topological index for time-reversal-invariant band structures in three dimensions. The method will be used to show that hybridization between the conduction electrons and localized f-electrons in certain heavy fermion compounds gives rise to interaction-induced topological insulating behavior. A mean field theory of these Kondo topological insulators will be derived. I will also discuss recent experimental results, which have conclusively confirmed our predictions in the Samarium hexaboride compound, where the long-standing puzzle of the residual low-temperature conductivity has been shown to originate from topological surface states. This material system represents the first true topological insulator observed experimentally with low-temperature transport dominated by the surface and essentially no conduction in the bulk. In conclusion, I will mention our ongoing theory work, which focuses on very unusual non-linear transport properties of Samarium hexaboride devices, which mimic neuron-like behavior in biological systems.
Host: Vavilov
Add this event to your calendar

©2013 Board of Regents of the University of Wisconsin System