Today’s Topics

- Inductance (Ch 30 1-4)
- Reminder of Faraday’s and Lenz’s Laws
- Mutual Inductance
- Self Inductance (Inductor L)

- Energy Stored in magnetic Field

- LR Circuit
Review: Who is Prof. Yibin Pan?

- It’s me. (whoever stands here at this moment!)
- Research field: High Energy experiments.
 (Heard of the “Big Bang” machine, LHC, in Geneva?)
- Coordinates:
 - Office: 4283 Chamberlin
 - Email: pan@hep.wisc.edu
- Office hours: any time I am in. (and I shall be in often)

- Priority passes (optional):
 - Appointments before visits
 - “202” somewhere in email subject line.
Review: Faraday’s Law of Induction

- Faraday’s Law in plain words: When the magnetic flux through an area is changed, an emf is produced along the closed path enclosing the area.

Quantitatively:

\[\mathcal{E} = - \frac{d\Phi_B}{dt} \]

Note the - sign
Review: Lenz’s Law

Lenz’s law in plain words: the induced emf always tends to work against the original cause of flux change.

<table>
<thead>
<tr>
<th>Cause of $\frac{d\Phi_B}{dt}$</th>
<th>“Current” due to Induced ε will:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing B</td>
<td>generate B in opposite dir.</td>
</tr>
<tr>
<td>Decreasing B</td>
<td>generate B in same dir.</td>
</tr>
<tr>
<td>Relative motion</td>
<td>subject to a force in opposite direction of relative motions</td>
</tr>
</tbody>
</table>

Note: “Current” may not actually produced if no circuit.
Examples of Lenz’s Law
Magnetically Coupled Coils (Transformers)

Question: Why use iron core?
Mutual Inductance

- For coupled coils:
 \[\varepsilon_2 = - M_{12} \frac{dI_1}{dt} \]
 \[\varepsilon_1 = - M_{21} \frac{dI_2}{dt} \]

Can prove (not here):
\[M_{12} = M_{21} = M \]

\(M \): mutual inductance
(unit: Henry)

\[\varepsilon_2 = - M \frac{dI_1}{dt} \]
\[\varepsilon_1 = - M \frac{dI_2}{dt} \]
Self Inductance

- When the current in a conducting device changes, an induced emf is produced in the opposite direction of the source current. → self inductance.

\[\Phi_B = LI \]

- The magnetic flux due to self inductance is proportional to \(I \): \(\Phi_B = LI \)

- The induced emf is proportional to \(\frac{dI}{dt} \):

\[\varepsilon_L = -L \frac{dI}{dt} \]

\(L \): Inductance, unit: Henry (H)
Exercise: Calculate Inductance of a Solenoid

(Text example 30-3)
show that for an ideal solenoid:

\[L = \frac{\mu_0 N^2 A}{\ell} \]

(see board)

Area: \(A \)

\# of turns: \(N \)

\[B = \mu_0 n I \quad \text{(ideal case)} \]
Inductors

- Inductance is intrinsic to a conductor circuit.
- Two factors that determine the inductance:
 - Geometric configuration of the circuit
 - Filling of magnetic material.
- Specifically configured inductance devices (inductors) are very useful in electronic and electrical applications:
Energy in an Inductor

- When an inductor of inductance L is carrying a current changing at a rate dI/dt, the power supplied is

$$P = I\varepsilon = LI \frac{dI}{dt}$$

- The work needed to increase the current in an inductor from zero to some value I

$$W = \int dW = \int_0^I LI \, dI = \frac{1}{2} LI^2$$
Energy in a Magnetic Field

- \(U = \frac{1}{2} LI^2 \)
 - Solenoid: \(B = \mu_0 \frac{N}{l} I \) and \(L = \mu_0 N^2 A/l \)
 - \(U = \frac{1}{2} B^2/\mu_0 (A\ell) \)

- The energy is in the form of B field:
 - energy density: \(u_B = \frac{1}{2} B^2/\mu_0 \)
 - (recall: \(u_E = \frac{1}{2} \varepsilon_0 E^2 \))

- Compare:
 - Inductor: energy stored \(U = \frac{1}{2} LI^2 \) \(\Rightarrow \) \(\frac{1}{2} B^2/\mu_0 \)
 - Capacitor: energy stored \(U = \frac{1}{2} C(\Delta V)^2 \) \(\Rightarrow \) \(\frac{1}{2} \varepsilon_0 E^2 \)
 - Resistor: no energy stored, (all energy converted to heat)
Basic Circuit Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Symbol</th>
<th>Behavior in circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal battery, emf</td>
<td>![Symbol]</td>
<td>$\Delta V = V_+ - V_- = \varepsilon$</td>
</tr>
<tr>
<td>Resistor</td>
<td>![Symbol]</td>
<td>$\Delta V = -IR$</td>
</tr>
<tr>
<td>Realistic Battery</td>
<td>![Symbol]</td>
<td>$\Delta V = 0 \ (\Rightarrow R=0, L=0, C=0)$</td>
</tr>
<tr>
<td>(Ideal) wire</td>
<td>![Symbol]</td>
<td>$\Delta V = 0 \ (\Rightarrow R=0, L=0, C=0)$</td>
</tr>
<tr>
<td>Capacitor</td>
<td>![Symbol]</td>
<td>$\Delta V = V_- - V_+ = -\frac{q}{C}, \frac{dq}{dt} = I$</td>
</tr>
<tr>
<td>Inductor</td>
<td>![Symbol]</td>
<td>$\Delta V = -L\frac{dI}{dt}$</td>
</tr>
<tr>
<td>(Ideal) Switch</td>
<td>![Symbol]</td>
<td>$L=0, C=0, R=0 \ (on), R=\infty \ (off)$</td>
</tr>
<tr>
<td>Transformer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diodes, Transistors,...</td>
<td></td>
<td>Future Topics</td>
</tr>
</tbody>
</table>
LR Circuit

- Current as a function of time after switching on: \(I(t) \)

\[
I(t) = \frac{\varepsilon}{R} \left(1 - e^{-\frac{t}{L/R}} \right)
\]

- Switching on at \(t=0 \)

- \(\varepsilon \) is the voltage source
- \(R \) is the resistor
- \(L \) is the inductor

- \(\tau = \frac{L}{R} \)

Note: the time constant is \(\tau = \frac{L}{R} \)

Quiz: What is the current when \(t=\infty \)?

Homework: “Switching off”
Turn on LR Circuit: Algebra Details

Apply Kirchhoff loop rule

\[V_0 dt - IR dt - LdI = 0 \]

\[\frac{dI}{V_0 - IR} = \frac{dt}{L} \]

\[\int_0^I \frac{dI}{V_0 - IR} = \int_0^t \frac{dt}{L} \]

\[-\frac{1}{R} \ln \left(\frac{V_0 - IR}{V_0} \right) = \frac{t}{L} \]

\[I = \frac{V_0}{R} \left(1 - e^{-\frac{t}{L/R}}\right) \]
LR Circuit: Time Constant

turning on

\[I = \frac{V_0}{R} \left(1 - e^{-\frac{t}{L/R}} \right) \]

\[I_{\text{max}} = \frac{V_0}{R} \]

\[0.63 I_{\text{max}} \]

\[t = \frac{L}{R} \text{ Time} \]

turning off

\[I = I_0 e^{-\frac{t}{L/R}} \]

\[0.37 I_0 \]

Time Constant of the LR circuit: \(\tau = \frac{L}{R} \)

Quiz: What is \(\tau \) for RC circuit?