Physics 202, Lecture 11

Today’s Topics

- Magnetic Forces (Ch. 29)
- Review: magnetic force
- Motion of charge in uniform B field:
 Applications: cyclotron, velocity selector, Hall effect
Magnetic Fields and Forces: Recap

Magnetic Force: experienced by moving charges

\[\vec{F} = q \vec{v} \times \vec{B} \]
(point charges)

\[\vec{F} = \int I d\vec{l} \times \vec{B} \]
(currents)

Magnetic Field B: sourced by moving charges
direction: as indicated by north pole of compass

Units: 1 Tesla (T) = 1 N/(A m)

Field lines: closed loops!
Outside magnet: N to S
Inside magnet: S to N
Suppose charge q enters a uniform B-field with velocity v. What will be the path that q follows?

Force perpendicular to velocity: uniform circular motion

Note: magnetic force does no work on the charge!
Kinetic energy constant
Trajectory in Uniform B Field

- **Force:**
 \[F = qvB \]

- **centripetal acc:**
 \[a = \frac{v^2}{R} \]

- **Newton's 2nd Law:**
 \[F = ma \quad \Rightarrow \quad qvB = m\frac{v^2}{R} \]

 \[\Rightarrow \quad R = \frac{mv}{qB} = \frac{p}{qB} \]

 (an important result, with useful experimental consequences!)

- **“Cyclotron” frequency:**
 \[\omega = \frac{v}{R} = \frac{qB}{m} \quad T = \frac{2\pi}{\omega} = \frac{2\pi m}{qB} \]
Application: Cyclotron

First Modern Particle Accelerator

First Cyclotron (1934)
Lawrence & Livingston
Trajectory in Uniform B Field: 3D case

General 3D case:

- In the plane perpendicular to B:
 \[R = \frac{mv_{\perp}}{qB} \quad T = \frac{2\pi m}{qB} \]

- Parallel to B: spacing b/w turns of helix
 \[d = v_{\parallel}T = \frac{v_{\parallel}2\pi m}{qB} \]
Application: Velocity, Mass Selectors

Velocity and mass selector:

speed selected:

\[v = \frac{E}{B} \]

mass selected:

\[\frac{m}{q} = \frac{rB_0}{v} = \frac{rB_0}{(E/B)} \]
Magnetic Force On A Current Carrying Wire

Top View

(a)

(b)
$I = 0$

(c)
I

(d)
I

©2004 Thomson - Brooks/Cole
For forces on a current loop, in a uniform magnetic field as shown, what is the direction of the force on each side?

Case 1:
1. Upward force on side 1.
2. Downward force on side 3.
3. No force on side 2.

Case 2:
1. Upward force on side 1.
2. Downward force on side 3.
3. No force on side 2.

Recall: \(\sum F_B = 0 \)
Torque on a Current Loop

(a) Axis of rotation

(b) \vec{F}_1, \vec{F}_2,

(c) \vec{F}_1 (perpendicular to coil face)

$\vec{\mu} = NIA$
The Galvanometer
The Hall Effect

Potential difference on current-carrying conductor in B field:

Equilibrium between electrostatic & magnetic forces:

\[F_{\text{up}} = qv_d B \quad F_{\text{down}} = qE_{\text{ind}} = q \frac{V_H}{W} \quad V_H = v_d Bw = "\text{Hall Voltage}" \]

(first evidence that electrons are charge carriers in most metals)