This sheet is the lab document your TA will use to score your lab. It is to be turned in at the end of lab. To receive full credit you must use complete sentences and explain your reasoning clearly.

M-3 Static Forces and Moments:

Follow the instructions as given in the lab manual except do not do suggested procedure 6, which is to choose a different rotation axis and verify that about any axis the sum of the torques equal zero for a static object. The lab does ask for the uncertainty in \(m_3 \) but you will not be asked for any error analysis.

1) Before placing a load on the \(m_2 \), make sure the equipment is assembled correctly and accurately. You can find the center of gravity and the mass of the derrick before assembling the experiment. The knife edge is mounted on a stand and when finding the CG make sure you get the derrick as level as possible. Make sure the string to \(m_3 \) is horizontal and that all screws are tight enough to prevent slipping.

2) Following the instructions in 2, find \(m_3 \) and its uncertainty. Record your data below using the labels used in the lab manual figure. The mass \(m_3 \) is likely the most uncertain so ignore the uncertainties in all the other values.

<table>
<thead>
<tr>
<th>(d_1)</th>
<th>(d_2)</th>
<th>(d_3)</th>
<th>(m)</th>
<th>(m_2)</th>
<th>(m_3)</th>
<th>(\delta (m_3))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3) Calculate \(m_3 \) from the other data. Show all your work including an extended free-body diagram on the figure provided below. Compare this calculated value to that recorded above and comment.

4) Calculate the force the axis (stirrup) puts on the derrick. Find both magnitude and direction.
M-10 Young’s Modulus of Elasticity and Hooke’s Law:

The equipment for this lab is not as advertised in the lab manual. The physics is the same but the length of the wire is measured with a dial indicator, not an optical lever. Read the introduction in the lab manual that defines Young’s modulus, M_y, and the spring constant, k. M_y is constructed so it is independent of the wire’s geometry and so only depends on the material properties of the wire. That is, M_y depends on the strength of the atomic or molecular bonds in the material. The spring constant, k, does depend on the wire’s geometry and is useful for describing certain kinds of motion such as simple harmonic motion.

The equipment you will use is shown at right. The wire is clamped at the top and another wire clamp is located near the dial indicator. This clamp moves with the wire inside a sleeve so when weight is added, the wire stretches, and the sleeve-clamp moves down. The dial indicates the amount of stretch in the wire to 0.01mm. (Note that the readings on the dial decrease as the wire stretches.)

1) Follow the instructions and record your data below.

<table>
<thead>
<tr>
<th>mass</th>
<th>3kg</th>
<th>4kg</th>
<th>5kg</th>
<th>6kg</th>
<th>7kg</th>
<th>8kg</th>
<th>9kg</th>
<th>10kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>increasing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>decreasing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2) Pick an appropriate scale and plot the data. Find the slope of the best fit line through the data. This is k, the spring constant. Estimate your uncertainty in k.
3) Measure A with calipers and L with a meter stick and then compute M_y. Take a look at the appendix in your lab manual for instructions on using the calipers. Your TA will help too.

4) Estimate your uncertainty in A and in L. Based on these uncertainties and the uncertainty in k, what is your uncertainty in M_y? Is your result consistent with the expected value for M_y?

5) Answer question 1 in your lab manual in detail. Explain all your reasoning.
6) At one end of the lab room there is a coat rack and some nylon fishing line. Tie the line to the rack and add some weights. Determine the dependence of its elongation on stretching force over a wide range of elongations – see if you can get it to break. Plot up your data below. Does it obey Hooke's law? Can you suggest reasons for its behavior?
7) Two identical wires of spring constant k_0 are connected together as shown in parts a) and b) below. In each case answer the following questions in terms of k_0.

- What is the tension in each wire when the system is pulled down 1mm?
- What force is required to pull the system down 1mm?
- What is the effective spring constant, k, of the system?

a) The wires are connected side by side.

b) The wires are connected end-to-end.