Physics 202, Lecture 11

Today's Topics

- RC circuit (ch. 28.4)
- Magnetic Field (ch. 29.1, 29.2)
- Magnetic Field
- Magnetic Forces
 - Between Bar Magnets
 - On A Charged Particle
 - On Current Carrying Wire
- Earth Magnetic Field
- South Pole or North Pole? (Confusing!)
 - Expected from preview: north and south poles, Tesla, magnetic field lines, magnetic force......

Charging A Capacitor in RC Circuit

- Find I and q when a capacitor is being charged in a RC circuit (see board).

\[q(t) = \frac{\Delta Q}{C} (1 - e^{-t/\tau}) \]
\[I(t) = \frac{\Delta E}{R} e^{-t/\tau} \]

Note: \(\tau = RC \) is called time constant

Discharging A Capacitor in RC Circuit

- Find I and q when a capacitor is being discharged in a RC circuit (After class exercise).

\[q(t) = Q e^{-t/\tau} \]
\[I(t) = -\frac{Q}{RC} e^{-t/\tau} \]

Note the time constant \(\tau = RC \)
Demo: Magnetism

- Bar magnets (Permanent magnetic material)
 - Two type of poles
 - Like poles repel, opposite pole attractive
 - Produce a magnetic field
- Ferromagnetic material (e.g. iron)
 - Does not produce magnetic field by itself.
 - Always attracted by magnets (temporarily magnetized)
- Materials of Weak/Non magnetism
 - (e.g. copper, aluminum, wood, plastics etc.)
 - Does not produce magnetic field by itself.
 - Not (or very weakly) attracted by bar magnets

Bar Magnets and Compass

- A magnet always has two opposite magnetic poles. The two poles are conventionally named “north” and “south”
 - Like poles repel, opposite poles attract each other.
 - Both poles attract iron (ferromagnetic material)
 - The two poles are not separable. (i.e. no mono-pole)
- A compass is essentially a bar magnet.
 - Its “north” pole, as conventionally defined, points towards the north direction.

The Magnetic Field

- The magnetic field \(\mathbf{B} \) is a field which can exert forces on magnetic objects
 - It is a vector field:
 - Magnitude: Unit Tesla (T)
 - Direction:
 - As pointed by the “north” pole of a compass

\[
1 \text{ T} = 1 \frac{\text{N}}{\text{C} \cdot \text{m/s}} = 1 \frac{\text{N}}{\text{A} \cdot \text{m}}
\]

Demo: Magnetic Field Lines

- Tips
 - Outside magnet: N→S
 - Inside magnet: S→N
 - Each line forms a closed loop
Typical Magnetic Field Strength

Table 29.1

<table>
<thead>
<tr>
<th>Source of Field</th>
<th>Field Magnitude (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong superconducting laboratory magnet</td>
<td>30</td>
</tr>
<tr>
<td>Strong conventional laboratory magnet</td>
<td>2</td>
</tr>
<tr>
<td>Medical MRI unit</td>
<td>1.5</td>
</tr>
<tr>
<td>Bar magnet</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>Surface of the Sun</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>Surface of the Earth</td>
<td>0.5×10^{-4}</td>
</tr>
<tr>
<td>Inside human brain (due to nerve impulses)</td>
<td>10^{-13}</td>
</tr>
</tbody>
</table>

1 Gauss = 10^{-4} Tesla

Magnetic Force

- A moving charged particle in a magnetic field is subject to a magnetic force: $\mathbf{F} = q \mathbf{v} \times \mathbf{B}$
 - direction: “right hand rule”
 - magnitude: $F_B = |q|v_B \sin \theta$.

Exercise: Direction of Magnetic Force

- Indicate the direction of F_B in the following situations:

1. B out of page:
 - (a)
2. B into page:
 - (b)

Quick Quiz 1: Direction of Magnetic Force

- Which fig has the correct direction of F_B?
Quick Quiz 2 : Direction of Magnetic Force

- Which fig has the correct direction of \mathbf{F}_B?

Properties of Magnetic Force

- Magnetic Force: $\mathbf{F}_B = q \mathbf{v} \times \mathbf{B}$. ($\mathbf{F}_B = |q| \mathbf{v} \mathbf{B} \sin \theta$)
 - $\mathbf{F}_B = 0$ if $\mathbf{v} = 0$
 - $\mathbf{F}_B = 0$ if \mathbf{v} and \mathbf{B} in 0° or 180°
 - \mathbf{F}_B is normal to \mathbf{v}
 - \mathbf{F}_B is normal to \mathbf{B}
 - Work done by \mathbf{F}_B is always zero!
 - Direction of \mathbf{F}_B are opposite for positive charge and negative charges.

Magnetic Force On Current Carrying Wire(1)

- Magnetic force on a current segment of length L in uniform field \mathbf{B}:
 - $\mathbf{F}_B = q \mathbf{v} \times \mathbf{B} = I \mathbf{L} \mathbf{B}$
 - Key steps to derive:
 - Current: moving charges. $I = q \mathbf{v} \mathbf{A}$
 - Magnetic force on charge q: $q \mathbf{v} \mathbf{B}$
 - $\mathbf{F}_B = q \mathbf{v} \mathbf{B} (\mathbf{A} \mathbf{L}) = I \mathbf{L} \mathbf{B}$

The Earth Magnetic Field

- The Earth’s Magnetic Field
- North/South? Magnetic Pole
- Geographic North Pole

The Earth Magnetic Field

-南北? 磁北极
- 地磁北極