Physics 202, Lecture 12

Today’s Topics

- Magnetic Field (Ch 29, part II)
- Force on Current Carrying Wires
- For and Torque on a Current Loop In Uniform B Field
- Magnetic dipoles
- Motion of a Charged Particle In a Uniform B Field
- Applications:
 - Magnetic Confinement
 - First Modern Particle Accelerator: Cyclotron
 - Mass Selector (q/m)
 - Hall Effect.

Magnetic Force On Current Carrying Wire
Segment (Review of Last Lecture)

- Magnetic force on a current segment of length L in uniform field B:
 \[\mathbf{F}_B = \sum q \mathbf{v} \times \mathbf{B} = I \mathbf{L} \times \mathbf{B} \]

 - Key steps to derive:
 - Current: moving charges. \(I = q \mathbf{v} A \)
 - Magnetic force on charge: \(q \mathbf{v} \times \mathbf{B} \)
 - \(\mathbf{F}_B = q \mathbf{v} \times \mathbf{B} \) (ALn) = \(I \mathbf{L} \times \mathbf{B} \)

Demo: Magnetic Force On A Current Carrying Wire

Top View

Also demo: Bending electron beam

Magnetic Force On Current Carrying Wire

- Magnetic force on a curved wire in uniform field \(\mathbf{B} \):
 \[\mathbf{F}_B = I \mathbf{L} \times \mathbf{B} \]

 - Derivation: See board

Note: Net force on a current loop in uniform B field is zero.
Review Exercise: Forces On A Current Loop

- For a current loop in a uniform magnetic field as shown, what is the direction of the force on each side?

 (Lecture 11 review: \(\mathbf{F}_B = I \mathbf{L} \times \mathbf{B} \))

Recall: \(\sum \mathbf{F}_B = 0 \)

Torque on a Current Loop In Uniform B Field

- Exercise: For a current loop in a uniform B field, show that the torque on the loop is: \(\tau = I \mathbf{A} \times \mathbf{B} \)

 (Quiz: In what direction?)

 \(\Rightarrow \) Conveniently, the result can be rewritten as: \(\mathbf{F}_B = I \mathbf{A} \times \mathbf{B} \)

Magnetic Dipole Moments

- Magnetic dipole moment \(\mu \).

 Macroscopic: \(\mu = I \mathbf{A} \)

 Microscopic: \(\mu = \mathbf{L} \) (angular momentum of orbiting or spin)

Review and Compare: Electric Dipole Moments

- Electric dipole moment \(\mathbf{p} \).

 \(\sum \mathbf{F} = 0 \)

 \(\mathbf{\tau} = \mathbf{\mu} \times \mathbf{B} \)

 \(U = -\mathbf{\mu} \cdot \mathbf{B} \) (\(\mu \) in B Field)

\(\sum \mathbf{F} = 0 \)

\(\mathbf{\tau} = \mathbf{p} \times \mathbf{E} \)

\(U = -\mathbf{p} \cdot \mathbf{E} \)
Review of Chapter 8: Stable and Unstable Equilibrium

\[
\begin{align*}
F_B &= 0 \\
\tau_B &= 0 \\
U &= \mp \mu B \text{ (low)} \\
\frac{d^2U}{d\theta^2} &> 0
\end{align*}
\]

\[\Rightarrow\text{Stable Equilibrium}\]

\[
\begin{align*}
F_B &= 0 \\
\tau_B &= 0 \\
U &= \mp \mu B \text{ (high)} \\
\frac{d^2U}{d\theta^2} &< 0
\end{align*}
\]

\[\Rightarrow\text{Unstable Equilibrium}\]

The picture is also true for electric dipole moment

Quick Quiz 1

A magnetic dipole moment initially points at 45°. When a uniform horizontal B field is applied, which of the followings will happen?

1. No change
2. Points towards the B field
3. Points against the B field
4. Points normal to the B field

Quick Quiz 2

A magnetic dipole moment initially points at 135°. When a uniform horizontal B field is applied, which of the followings will happen?

1. No change
2. Points towards the B field
3. Points against the B field
4. Points normal to the B field

Motion Of Charged Particle in a Uniform B Field

Exercise: Show that if a charged particle q of mass m in a uniform B field has an initial velocity \(\mathbf{v} \) in the plane perpendicular to B, its motion is a uniform circular motion in that plane with

- radius \(r = \frac{mv}{qB} \)
- period: \(T = \frac{2\pi}{\nu} = \frac{2\pi m}{qB} \)

Note: \(T \) is independent of \(v \)

Solution: see board.
(recall: uniform circular motion)
Motion Of Charged Particle in a Uniform \mathbf{B} Field – General 3D Case

- On the plane perpendicular to \mathbf{B}:
 - $r = \frac{mv_{\perp}}{qB}$
 - $T = \frac{2\pi m}{qB}$
- Parallel to \mathbf{B}:
 - spacing between helix $d = \frac{v_{\parallel} T}{v_{\perp}} = \frac{v_{\perp} 2\pi m}{qB}$

Application: Magnetic Confinement

- Magnetic Bottle
- Van Allen Belts
- Tokamak

MST: Madison Symmetric Torus

Application: Cyclotron (First Modern Particle Accelerator)

- Explain how a cyclotron works (see board)

First Cyclotron (1934)
Lawrence & Livinston
Application: Mass Selector

- Explain how a mass selector work (next week’s lab)
 - Speed selected: \(v = \frac{E}{B} \)

Mass selected:
\[
\frac{m}{q} = \frac{rB_0}{v} = rB_0/(E/B)
\]

Mass Selector: J.J Thomson Apparatus (1897)

- This is your lab next week: measuring e/m

Application: The Hall Effect

- Explain how Hall Effect works
 \[
 \Delta V_H = \frac{IB}{nqt}
 \]

See demo