Physics 202, Lecture 19

Today’s Topics

- AC Circuits with AC Source
- Resistors, Capacitors and Inductors in AC Circuit
- RLC Series in AC Circuit
- Impedance
- Resonances in Series RLC Circuit

AC Circuit

- Find out current i and voltage difference ΔV_R, ΔV_L, ΔV_C.

Notes:
- Kirchhoff’s rules still apply!
- A technique called phasor analysis is convenient.

Resistors in an AC Circuit

- $\Delta V - IR = 0$ at any time

$\Delta V = \Delta V_{max} \sin \omega t$

$i_R = \Delta V_{max}/R$

- The current through a resistor is in phase with the voltage across it

Inductors in an AC Circuit

- $\Delta V - L di/dt = 0$

$\Delta V = \Delta V_{max} \sin (\omega t - \pi/2)$

$i_L = \Delta V_{max}/X_L$

$X_L = \omega L$ → Inductive reactance

- The current through an inductor is 90° behind the voltage across it
Capacitors in an AC Circuit

- \(\Delta V - q/C = 0 \), \(dq/dt = i \)
- \(i = I_{\text{max}} \sin(\omega t + \pi/2) \)
- \(I_{\text{max}} = \Delta V_{\text{max}} / X_C \)
- \(X_C = 1/(\omega C) \) → capacitive reactance
- The current through a capacitor is 90° ahead of the voltage across it.

Summary of Phasor Relationship

Note that we set \(\Delta V \) w.r.t. \(I \)

RLC Series In AC Circuit

- The current at all point in a series circuit has the same amplitude and phase (set it be \(I_{\text{max}} \sin(\omega t) \))
- \(\Delta V_R = I_{\text{max}} R \sin(\omega t) \)
- \(\Delta V_L = I_{\text{max}} X_L \sin(\omega t + \pi/2) \)
- \(\Delta V_C = I_{\text{max}} X_C \sin(\omega t - \pi/2) \)

Voltage across RLC:
\(\Delta V_{\text{RLC}} = \Delta V_R + \Delta V_L + \Delta V_C \)
\(= I_{\text{max}} R \sin(\omega t) + I_{\text{max}} X_L \sin(\omega t + \pi/2) + I_{\text{max}} X_C \sin(\omega t - \pi/2) \)

Phasor Technique

- The phasor of \(\Delta V_{\text{RLC}} \) = vector sum of phasors for \(\Delta V_R \), \(\Delta V_L \), \(\Delta V_C \)
- \(\Delta V_{\text{max}} = \sqrt{\Delta V_R^2 + (\Delta V_L - \Delta V_C)^2} \)
- \(\phi = \tan^{-1} \left(\frac{X_L - X_C}{R} \right) \)
- \(\Delta V = \Delta V_{\text{max}} \sin(\omega t + \phi) \)

Note: \(X_L = \omega L \), \(X_C = 1/(\omega C) \)
Current And Voltages in a Series RLC Circuit

\[\Delta V_{\text{max}} = \Delta V_{\text{max}} \sin(\omega t + \phi) \]

\[\Delta v_R = (\Delta V_R)_{\text{max}} \sin(\omega t) \]

\[\Delta v_L = (\Delta V_L)_{\text{max}} \sin(\omega t + \pi/2) \]

\[\Delta v_C = (\Delta V_C)_{\text{max}} \sin(\omega t - \pi/2) \]

\[Z = \sqrt{R^2 + (X_L - X_C)^2} \]

\[\phi = \tan^{-1} \left(\frac{X_L - X_C}{R} \right) \]

\[\Delta V = \Delta V_{\text{max}} \sin(\omega t + \phi) \]

Quiz: Can the voltage amplitudes across each component, \((\Delta V_R)_{\text{max}} \), \((\Delta V_L)_{\text{max}} \), \((\Delta V_C)_{\text{max}} \) be larger than the overall voltage amplitude \(\Delta V_{\text{max}} \)?

Impedance

- For general circuit configuration:
 \[\Delta V = \Delta V_{\text{max}} \sin(\omega t + \phi) \]

 \[Z = \frac{\Delta V}{\Delta I} \]

- \(Z \) is called Impedance.

 e.g. RLC circuit:
 \[Z = \sqrt{R^2 + (X_L - X_C)^2} \]

- In general impedance is a complex number, \(Z = Z_e + Z_i \).

 It can be shown that impedance in series and parallel circuits follows the same rule as resistors.

 \[Z = Z_1 + Z_2 + Z_3 + \ldots \] (in series)

 \[\frac{1}{Z} = \frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3} + \ldots \] (in parallel)

 (All impedances here are complex numbers)

Resonances In Series RLC Circuit

- The impedance of an AC circuit is a function of \(\omega \).
 - e.g. Series RLC:
 \[Z = \sqrt{R^2 + (X_L - X_C)^2} = \sqrt{R^2 + \omega^2 L^2 - \frac{1}{\omega^2 C^2}} \]

 - when \(\omega = \omega_0 \):
 \[Z = \frac{1}{\sqrt{LC}} \] (i.e. \(X_L = X_C \))

 - lowest impedance \(\rightarrow \) largest current \(\rightarrow \) resonance

- For a general AC circuit, at resonance:
 - Impedance is at lowest
 - Phase angle is zero. (In phase)
 - \(I_{\text{max}} \) is at highest
 - Power consumption is at highest
Summary of Impedances and Phases

The table below summarizes the impedances and phase angles for various circuit element combinations:

<table>
<thead>
<tr>
<th>Circuit Elements</th>
<th>Impedance</th>
<th>Phase Angle ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>0°</td>
</tr>
<tr>
<td>$\frac{X}{R}$</td>
<td>$-\frac{X}{R}$</td>
<td>-90°</td>
</tr>
<tr>
<td>$\frac{X}{L}$</td>
<td>$\frac{X}{L}$</td>
<td>$+90^\circ$</td>
</tr>
<tr>
<td>$\frac{1}{jR}$</td>
<td>$\frac{1}{R}$</td>
<td>Negative, between -90° and 0°</td>
</tr>
<tr>
<td>$\frac{1}{jL}$</td>
<td>$\frac{1}{L}$</td>
<td>Positive, between 0° and 90°</td>
</tr>
<tr>
<td>$\frac{1}{jC}$</td>
<td>$\frac{1}{C}$</td>
<td>Negative if $X_C > X_L$</td>
</tr>
<tr>
<td>$\frac{1}{jC}$</td>
<td>$\frac{1}{C}$</td>
<td>Positive if $X_C < X_L$</td>
</tr>
</tbody>
</table>

*In each case, an AC voltage (not shown) is applied across the elements.

© 2004 Thomson - Brooks/Cole