Today’s Topics

- Electromagnetic Waves (EM Waves)
- The Hertz Experiment
- Review of the Laws of Electro-Magnetism
- Maxwell’s equation
- Propagation of \mathbf{E} and \mathbf{B}
 - The Linear Wave Equation

Review: Gauss’s Law / Coulomb’s Law

- The relation between the electric flux through a closed surface and the net charge q enclosed within that surface is given by the Gauss’s Law

$$ \oint \mathbf{E} \cdot d\mathbf{A} = \frac{q}{\epsilon_0} $$

Gauss’s Law for Magnetism

- The Gauss’s Law for the electric flux is a reflection of the existence of electric charge. In nature we have not found the equivalent, a magnetic charge, or monopole.
- We can express this result differently: if any closed surface as many lines enter the enclosed volume as they leave it

$$ \oint \mathbf{B} \cdot d\mathbf{A} = 0 $$

Demo: Hertz Experiment

In 1887, Heinrich Hertz first demonstrated that EM fields can transmit over space.
Review: Faraday’s Law

- The emf induced in a “circuit” is proportional to the time rate of change of magnetic flux through the “circuit” or closed path.
 \[\mathcal{E} = -\frac{d\Phi_B}{dt} \]

- Since \(\mathcal{E} = \oint \vec{E} \cdot d\vec{l} \)

- Then \(\oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt} \)

Review: Ampere’s Law

- A magnetic field is produced by an electric current is given by the Ampere’s Law
 \[\oint \vec{B} \cdot d\vec{l} = \mu_0 I \]

- A changing electric field will also produce a magnetic field

Finally;

\[\oint \vec{B} \cdot d\vec{l} = \mu_0 I + \varepsilon_0 \mu_0 \frac{d\Phi_E}{dt} \]

Maxwell Equations

- Gauss’s Law/ Coulomb’s Law: \(\oint \vec{E} \cdot d\vec{A} = \frac{q}{\varepsilon_0} \)
- Gauss’s Law of Magnetism, no magnetic charge: \(\oint \vec{B} \cdot d\vec{A} = 0 \)
- Faraday’s Law: \(\oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt} \)
- Ampere Maxwell Law: \(\oint \vec{B} \cdot d\vec{l} = \mu_0 I + \varepsilon_0 \mu_0 \frac{d\Phi_E}{dt} \)

Also, Lotentz force Law \(\vec{F} = q\vec{E} + q\vec{v} \times \vec{B} \)

These are the foundations of the electromagnetism
Linear Wave Equation

- Linear wave equation
 - Certain physical quantity
 - Wave speed

\[
\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}
\]

Sinusoidal wave

- f: frequency
- \(\phi\): Phase
- \(A\): Amplitude
- \(\lambda\): Wavelength

General wave: superposition of sinusoidal waves

Electromagnetic Waves

- EM wave equations:
 \[
 \frac{\partial^2 E_y}{\partial x^2} = \mu_0 \varepsilon_0 \frac{\partial^2 E_y}{\partial t^2} \quad \frac{\partial^2 B_x}{\partial x^2} = \mu_0 \varepsilon_0 \frac{\partial^2 B_x}{\partial t^2}
 \]

- Plane wave solutions:
 \[
 E = E_{\text{max}} \cos(kx - \omega t + \phi) \quad B = B_{\text{max}} \cos(kx - \omega t + \phi)
 \]

- Properties:
 - No medium is necessary.
 - E and B are normal to each other
 - E and B are in phase
 - Direction of wave is normal to both E and B
 (EM waves are transverse waves)
 - Speed of EM wave:
 \[
 c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 2.9972 \times 10^8 \text{ m/s}
 \]
 - \(E/B = E_{\text{max}}/B_{\text{max}} = c\)
 - Transverse wave: two polarizations possible

The EM Wave

Two polarizations possible (showing one)