Charge Motion in a Conductor

Electrons in a conductor have random motion ($\vec{v}_{\text{ave}} = 0$)

In an external electric field (e.g. as supplied by a source of potential difference such as a battery), electrons accelerate, producing current:

Average current:

$$I = \frac{\Delta Q}{\Delta t}$$

Instantaneous current:

$$I = \frac{dQ}{dt}$$

direct current (DC): I constant

Current: Macroscopic View

Current: rate at which charge flows through surface:

Unit: 1 Ampere = 1 C/s

Current is directional: Follows positive charge (convention)

+q moving in +x direction \leftrightarrow –q in moving –x direction

Charge conservation \rightarrow Current conservation

$I_{\text{in}} = I_{\text{out}}$

Current: Microscopic View

Current: motion of charged particles

Current density: (vector)

$$J = \frac{I}{A} = nqv_d$$

$$\int \vec{J} \cdot d\vec{A} = I$$

v_d: average drift velocity

n: number density
Ohm’s Law: Resistance

- Ohm determined experimentally that the electric current through a wire is proportional to \(\Delta V \):

\[I \propto V \]

- For a fixed material and geometry

\[I = \frac{V}{R} \text{ or } V = RI \]

Conductivity, Resistivity, Resistance

Ohm’s Law (microscopic): \(\mathbf{J} = \sigma \mathbf{E} \)

Ohm’s Law (macroscopic): \(\Delta V = IR \)

Resistance \(R \) (unit: Ohm \(\Omega \))

Exercise: relate \(R \) to \(\rho \)

Resistivity (intrinsic)

Length & Cross-section (shape)

Resistance

Ohmic and non-Ohmic Materials

Ohmic:
Linear I-V relationship
(constant resistance over wide range of voltages)

non-Ohmic:
Nonlinear I-V relationship

Resistivity For Various Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Resistivity ((\Omega \cdot \text{m}))</th>
<th>Temperature Coefficient ((\Omega \cdot \text{m} \cdot ^\circ \text{C}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>(1.59 \times 10^{-8})</td>
<td>(5.8 \times 10^{-3})</td>
</tr>
<tr>
<td>Copper</td>
<td>(1.7 \times 10^{-8})</td>
<td>(5.9 \times 10^{-3})</td>
</tr>
<tr>
<td>Gold</td>
<td>(2.44 \times 10^{-8})</td>
<td>(5.6 \times 10^{-3})</td>
</tr>
<tr>
<td>Aluminum</td>
<td>(2.82 \times 10^{-8})</td>
<td>(5.5 \times 10^{-3})</td>
</tr>
<tr>
<td>Tungsten</td>
<td>(5.6 \times 10^{-8})</td>
<td>(4.5 \times 10^{-3})</td>
</tr>
<tr>
<td>Iron</td>
<td>(10 \times 10^{-8})</td>
<td>(5.0 \times 10^{-3})</td>
</tr>
<tr>
<td>Platinum</td>
<td>(11 \times 10^{-8})</td>
<td>(3.92 \times 10^{-3})</td>
</tr>
<tr>
<td>Lead</td>
<td>(22 \times 10^{-8})</td>
<td>(5.9 \times 10^{-3})</td>
</tr>
<tr>
<td>Nichrome(^a)</td>
<td>(1.50 \times 10^{-8})</td>
<td>(0.4 \times 10^{-3})</td>
</tr>
<tr>
<td>Carbon</td>
<td>(3.5 \times 10^{-8})</td>
<td>(-0.5 \times 10^{-3})</td>
</tr>
<tr>
<td>Germanium</td>
<td>(0.46)</td>
<td>(-48 \times 10^{-3})</td>
</tr>
<tr>
<td>Silicon</td>
<td>(690)</td>
<td>(-75 \times 10^{-3})</td>
</tr>
<tr>
<td>Glass</td>
<td>(10^{10}) to (10^{11})</td>
<td></td>
</tr>
<tr>
<td>Hard rubber</td>
<td>(-10^{11})</td>
<td></td>
</tr>
<tr>
<td>Sulfur</td>
<td>(10^{10})</td>
<td></td>
</tr>
<tr>
<td>Quartz (fused)</td>
<td>(75 \times 10^{11})</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) All values at 30°C.

\(^b\) See Section 27A.

\(^c\) A nickel–chromium alloy commonly used in heating elements.
Resistance And Temperature

Resistivity is usually temperature dependent.

- **Normal Metal**
- **Semiconductor**
- **Superconductor**

Superconductivity

Superconductors: temperature $T < T_c$, resistivity $\rho = 0$
(a quantum phenomenon!)

Critical Temperatures for Various Superconductors

<table>
<thead>
<tr>
<th>Material</th>
<th>T_c (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HgBa$_2$CuO$_4$</td>
<td>134</td>
</tr>
<tr>
<td>Tl$_2$Ba$_2$Ca$_2$Cu$_2$O$_8$</td>
<td>125</td>
</tr>
<tr>
<td>Bi$_2$Sr$_2$CaCu$_2$O$_8$</td>
<td>105</td>
</tr>
<tr>
<td>YBa$_2$Cu$_3$O$_7$</td>
<td>92</td>
</tr>
<tr>
<td>Nb$_3$Ge</td>
<td>23.2</td>
</tr>
<tr>
<td>Nb$_5$Sn</td>
<td>18.05</td>
</tr>
<tr>
<td>Nb</td>
<td>9.46</td>
</tr>
<tr>
<td>Pd</td>
<td>7.18</td>
</tr>
<tr>
<td>Hg</td>
<td>4.15</td>
</tr>
<tr>
<td>Sn</td>
<td>3.72</td>
</tr>
<tr>
<td>Al</td>
<td>1.19</td>
</tr>
</tbody>
</table>

Electrical Power

Electrical Power:

$P = \frac{dU}{dt} = \frac{d(Q\Delta V)}{dt} = I\Delta V$

Ohmic:

$P = I^2R = \frac{(\Delta V)^2}{R}$

Unit: watts (W)

1 KWH = 3.6 MJ

(power delivered to resistor)

Example: Battery Connected To A Resistor

Energy flow of this battery-resistor set-up

- Chemical Process $\rightarrow \Delta V = 1.5V$
- ΔV on Resistor \rightarrow Current $I = \Delta V/R$

Charge flow through the resistor in Δt:

$Q = I\Delta t = \Delta V/R\Delta t$

Electrical potential energy released:

$U = Q\Delta V = \Delta V/R\Delta t \Delta V = (\Delta V)^2/R\Delta t$

Power: $P = U/dt = (\Delta V)^2/R$

Energy Flow:
- Chemical \rightarrow Electrical $U \rightarrow K_E \rightarrow$ thermal/light