University of Wisconsin-Madison Skip navigationDepartment of Physics Search Site Map UW Home
 

 

UW Home Page

 

This Week at Physics

Physics Events this
Semester

Colloquia & Seminars
Home

Physics Department
Home




Astronomy Colloquia

Chaos & Complex
Systems Seminars

College of Engineering
Events

High Energy Seminars

Medical Physics
Seminars

NPAC Forums

Physics Department
Colloquia

"Physics Today"
Undergraduate
Colloquia

Physics/ECE/NE 922
Seminars

R. G. Herb Materials
Physics Seminars

String Theory Seminars

Theory/Phenomenology Seminars

Wonders of Physics

Department of Physics
Colloquia & Seminars


Physics Department Colloquium
Anderson Localization looking forward
Time: 4:00 PM
Place: 2241 Chamberlin Hall (coffee at 330 pm)
Speaker: Boris Altshuler, Columbia University
Abstract: Localization of the eigenfunctions of quantum particles in a random potential was discovered by P.W. Anderson more than 50 years ago. In spite of its respectable age and rather intensive theoretical and experimental studies this field is by far not exhausted. Anderson localization was originally discovered and studied in connection with spin relaxation and charge transport in disordered conductors. Later this phenomenon was observed for light, microwaves, sound, and more recently for cold atoms. Moreover, it became clear that the domain of applicability of the concept of localization is much broader. For example, it provides an adequate framework for discussing the transition between integrable and chaotic behavior in quantum systems. This talk is an introduction into the current understanding of the Anderson localization and its manifestation in different systems. In particular, we will see that the ideas developed for understanding quantum mechanics of a single particle can be extended to attack many-body problems in the presence of disorder.
Host: Chubukov
Download this video



Do you have questions? Oh yes you do!
Contact help@physics.wisc.edu (access restricted)

 
  $Id: page_template.py,v 1.1 2011/10/25 17:40:19 rader Exp $