
Let x 2 f1; 2; 4; 8g be the number of bits per pixel. Then we have that

there are 8

x
2 Z pixels per byte. Suppose we want to calculate the number

of bytes per row, B, needed to to display our image. That's simple,... Given

n as the number of pixels per row, the number of bytes will be b = n

(8
x
)
. The

one limitation we have is that B 2 Z (i.e. we can't have fractional bytes in

a row). So what if n

(8
x
)
62 Z?

Here is how B is determined. Using the division algorithm we have that

n =

�
8

x

�
b+m; 0 � m <

8

x
:

If n � 0 (mod 8

x
)) m = 0 and thus B = b. Suppose n 6� 0 (mod 8

x
))

0 < m <
8

x
. This gives us b bytes but leaves a fraction of a byte behind.

Precisely, we are left with mx

8
< 1 bytes. So to have an integral number

of bytes per row in our PostScript �le, and include the entire image, we

set B = b + 1. But now, if we count the number of pixels per row in our

PostScript �le we get

B
8

x
= (b + 1)

8

x
= b

8

x
+

8

x
= n�m+

8

x
= n+ (

8

x
�m)

pixels. Furthermore, since m <
8

x
, this leaves us with 8

x
�m extra pixels per

row in the PostScript �le.

Lets look at an example. Suppose that x = 4 (4 bits per pixel which

implies 2 pixels per byte) and n = 5 (our image has 5 pixels per row). First

note that 5 � 1 6� 0 (mod 2). Hence we will have 2 � 1 = 1 extra pixel

added to each row. A worst case scenario would be if we set x = 1 (1 bit

per pixel which implies 8 pixels per byte) and n � 1 (mod 8) (n = 9 for

example). This would result in 8� 1 = 7 extra pixels per row. To avoid this

problem completely, set x = 8. This way n

(8

x
)
= n 2 Z and the remainder m

will always be 0.

What does PostScript do with these extra pixels? It sets their value to

255 which will be white in many color tables. In this case you won't see

these extra pixels,... But they're there! In some cases however, the color

table being used has a color other than white for index 255. In this case the

extra pixels will be visible in the PostScript �le.

1

