
Unofficial Format Specification
of the IDL “SAVE” File

Craig Markwardt1

Last Modified
11 Jan 2010

Abstract

I describe the file format of IDL SAVE files, and a set of accessor
routines written in IDL which can read and write SAVE files
directly. Data and compiled functions in an IDL session can be
stored on a disk file, and restored to a new session at a later
point in time. The data are stored using a tag-based format to
encourage forward and backward compatibility. Programmers
who wish to implement the ability to read, write and interrogate
SAVE files, and people who are just interested in “how it works”
should read this document.

1 Introduction

IDL2 is the Interactive Data Language, a proprietary data processing and visual
analysis language published by Research Systems Incorporated. Its primary strengths
are easy and efficient manipulation of arrays, and convenient visualization tools. One
feature of IDL is the ability to save any number of IDL “variables” into a file. At
any later point those variables can be restored to memory. This is a convenient way
for a user to save all or part of their current work session, and the session can later
be resumed by restoring the file. The files produced by the SAVE command, and
reconstituted by the RESTORE command, are called “save” files by RSI. (See SAVE and
RESTORE commands in the IDL Reference Manual.)

The format if IDL save files is not officially documented by RSI. They presumably
do not document it because it is their “proprietary” information, but also because
the reserve the right to change the format at any time, and thus do not wish to be
constrained by an officially documented position. Indeed, as I detail below, I have
found that IDL save file formats have changed slightly over time. Still, for the most
part the file format has remained remarkably constant, and any extensions to the

1Copyright c© 2000,2001,2002,2003,2009 by Craig B. Markwardt. This work is licensed under the
Creative Commons Attribution-NonCommercial-ShareAlike License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-nc-sa/1.0/ or send a letter to Creative Commons, 559
Nathan Abbott Way, Stanford, California 94305, USA.

2IDL is a trademark of Research Systems Incorporated (RSI)

1

format that RSI has introduced in new versions of IDL, have mostly attempted to
remain compatible with previous versions of IDL.

I have developed a library of IDL routines which is able to interrogate, read and
write IDL save files. To be clear, this library is not sanctioned or supported by RSI
in any way. Also, there are no guarantees that RSI will keep the format of save files
the same over time, however my intent is to support any changes that come up.

This is my attempt to document the library functions in a rudimentary way, and
also to document the file format itself. Hopefully this will help other people trying to
understand the format of the files, especially programmers of other scripting languages
who are trying to construct read/write filters for IDL save files.

What follows is an overview of the IDL save format, followed by a brief discussion
of the various levels of library functions, and finally a reference section describing in
depth the format of each record found in a save file.

1.1 Scope

This set of documentation, and the accompanying library routines, are known to work
with IDL save files produced by IDL version 4.0, and versions 5.0–5.5. They work
with save files smaller than 2 gigabytes, that are uncompressed and do not contain
objects. Compressed save files will not be accessible at all, and cannot be generated
by the library. It will be possible to access and scan save files containing objects, but
not possible to restore objects.

1.2 Disclaimer

Please note again that RSI has not sanctioned this specification, and I have discov-
ered this information purely by examining IDL save files from known inputs on my
own time. I believe that this information is correct, but cannot guarantee it, espe-
cially because the file format is vulnerable to change by RSI in the future. Use this
information at your own risk.

2 File Format Overview

The IDL save file format is an extensible format. By this I mean that new record
types can in principle be added without disturbing the overall format of the file, which
enhances the probability that even an older version of IDL will be able to read the
file, even if some information is lost.3 This is possible because IDL files are stored in
a standard “tagged record” format.

3However, even RSI did not appear to follow their own prescription when they released IDL
version 5.4. In that version the record header (RECHEADER) format was changed incompatibly,
so that earlier versions of IDL could not read files produced by IDL 5.4. This situation is apparently
be corrected in the release of IDL version 5.5.

2

By “tagged record” format, I mean that the components of an IDL save file are
each stored as a separate record type. Each record type is “tagged” or marked with a
code which identifies the format of the record. Thus, the reader of the file can decide
whether it is able to read a record based on its format code.

At its core level, the format of an IDL save file is very simple. It starts with a
signature block which identifies the file as an IDL savefile, followed by a stream of
records:

Format: SAVEFMT (overall save file format)

Type Name Description
BYTE×2 SIGNATURE IDL SAVE file signature (=BYTE([’S’,’R’]))
BYTE×2 RECFMT IDL SAVE record format (=[’00’xb, ’04’xb])

Record 1
Record 2

...
Record n — END MARKER

The meaning of the above table is is that the first two bytes of the file are a
“signature,” followed by two bytes which identify the record format of the file, followed
by a series of standard records, the last of which is a standard END MARKER record
(described below).

These tables will appear throughout this document. The first column contains the
format or structure of the element being described. In this case “BYTE×2” means 2
consecutive bytes. As more complex data structure formats are described, these may
also appear in the first column. The second column contains the name of the element
as used in this document. The final column contains any descriptive comments.

It should now be clear how an IDL save file should be read. The first process is
to open the file and read the first four bytes. If the first four bytes do not match the
expected signature, then the file is not in a recognized format and must be rejected.
If the match succeeds, then the reader proceeds to read each record in turn, until the
END MARKER record is reached.

3 Overview of Library Routines

This CMSAVE library allows interactive users and programmers to read, write and
interrogate IDL SAVE files.

Interactive users will probably appreciate the ability of CMSAVEDIR to list the
contents of a SAVE file without restoring it. They will also probably use the /AP-
PEND keyword of CMSAVE to append additional data to any SAVE file.

3

Programmers will probably use the library to write their own data, and to read
user’s existing data. The library provides higher-, middle- and lower-level routines
for reading writing and querying a SAVE file.

For a complete documentation of the procedures, please see the individual files.
Only an overview is given here.

3.1 High Level Routines

The high-level routines are meant to provide completely contained procedures which
interact with save files. These routines are to be used either on the command line, or
within other programs.

CMSAVE and CMRESTORE are drop-in, but more featureful replacements to the
built-in IDL SAVE and RESTORE procedures. CMSAVEDIR allows you to print the
contents of an existing save file without actually restoring it, and also to interrogate
the contents of the file programmatically.

Unlike the built-in versions of RESTORE, CMRESTORE and CMSAVEDIR allow
a variety of ways to access auxiliary data from a save file without actually restoring
the variables from disk. The concept is that a program can scan the file and decide
which actions to take based on the contents of the file, without restoring it first. This
may be important for example, to prevent crucial variables from being overwritten,
or to compile a class before restoring an object of that class.

For example, before restoring a file, here is a way to determine whether it contains
system variables, which may be dangerous to restore:

; Extract variable names from save file

cmsavedir, ’myfile.sav’, n_var=nvar, var_names=vnames, /quiet

; Find any variable names with exclamation mark ’!’

sb = strpos(vnames, ’!’)

wh = where(sb GE 0, count)

if count GT 0 then $

message, ’WARNING: myfile.sav contains system variables’

It is also possible to pass data to CMSAVE and CMRESTORE using the DATA
keyword. Data can be passed as pointers, handles or structures. This allows for
maximum flexibility and convenience for the programmer.

3.2 Mid Level Routines

The mid-level routines provide two procedures to read from and write variables to
a save file. These routines are most useful to programmers who wish to provide the
ability to save and restore IDL variables in a format native to IDL, with a minimum
of fuss.

4

CMSVREAD and CMSVWRITE provide simple routines that read and write data
from a save file. These routines are as easy to use as READF and PRINTF.

For example, to write the three variables A B and C to a save file, the following
code is all that is necessary.

openw, 50, ’test.sav’ ;; Add /STREAM under VMS !

cmsvwrite, 50, a, name=’a’

cmsvwrite, 50, b, name=’b’

cmsvwrite, 50, c, name=’c’

close, 50

Similar code is used to read variables from a file. However, save files can in prin-
ciple contain pointers and objects, which CMSVREAD and CMSVWRITE cannot
handle. For those cases it is best to use either the high- or low-level routines. The
mid-level routines are best when it is known that a save file will have basic variables
only, usually in a predetermined order.

3.3 Low Level Routines

There are a number of low-level routines available to advanced programmers. CMSV OPEN
is used to open save files for reading and writing (the normal CLOSE is used to close
the file when finished). CMSV RREC and CMSV WREC read and write most record
types from a save file. CMSV RVTYPE and CMSV RDATA read a variables type
and data respectively; CMSV WVTYPE and CMSV WDATA perform the equivalent
writing function.

It is best to examine the upper level routines such as CMSVREAD or CM-
SAVEDIR to understand how these high level routines are to be used.

Programmers who wish to use the CMSAVE library should first include the fol-
lowing code in their initialization routine. This will guarantee that the CMSAVE
library is fully functional.

catch, catcherr

if catcherr EQ 0 then lib = cmsvlib(/query) else lib = 0

catch, /cancel

if lib EQ 0 then $

message, ’ERROR: The CMSVLIB library must be in your IDL path.’

In place of the MESSAGE call, any graceful failure action can be taken.

4 File Format

This section and the following sections contain a detailed description of the IDL save
file format. As described above, and IDL file consists of a stream of tagged records:

5

Format: SAVEFMT (overall save file format)

Type Name Description
BYTE×2 SIGNATURE IDL SAVE file signature (=BYTE([’S’,’R’]))
BYTE×2 RECFMT IDL SAVE record format (=[’00’xb, ’04’xb])

Record 1
Record 2

...
Record n — END MARKER

However, these records must appear in a certain order, which also depends on
which version of IDL is being used. These records might be described as the save file
“preamble,” which give important metadata about the information. For IDL 4 this
preamble consists of only one record:

Format: PREAMBLE4 (preamble records for IDL 4 save files)

Type Name Description
TIMESTAMP TIMESTAMP Save file history information

The first record must be of type TIMESTAMP (see below for record types). Be-
yond that, save files produced by IDL 4 do not contain heap data. For IDL version
5 and beyond, the preamble is extended to include several more records after the
TIMESTAMP record, which describes the file version information, such as which
version of IDL was used to create the file:

Format: PREAMBLE5 (preamble records for IDL 5 save files)

Type Name Description
TIMESTAMP TIMESTAMP Save file history information
VERSION VERSION Save session IDL information
HEAP HEADERHEAP HEADER (optional) Heap index information
— PROMOTE64 (optional IDL 5.4 only) if file has ULONG64 off-

sets
NOTICE NOTICE (optional) Disclaimer notice

The HEAP HEADER record only appears if the save file contains heap data (i.e.,
pointers). In IDL 5.4, the PROMOTE64 record indicates the presence of ULONG64
record offsets for storing files larger than 4 gigabytes (IDL 5.4 only).

6

5 Basic Record Structure

Each record has a variable length, but the beginning of the record has a standard
format up until IDL version 5.4:

Format: RHDR (format of every record header in save file)

Type Name Description
LONG RECTYPE Numerical record format code
ULONG NEXTREC0 Offset to next record, relative to start of file, low

order 32-bits
ULONG NEXTREC1 Offset to next record, relative to start of file, high

order 32-bits
LONG×1 — Unknown
— — Remainder of record

Thus, every record header contains at least four long words, but is often longer,
depending on the record type. The first word contains the format type code. The
type codes are described in more detail below, but there is only one format per code.
The second and third words contain the offset of the next record measured from the
beginning of the file. This is how a reader walks through an IDL save file: it must read
each record header to determine the record type, and the offset to the next record.
When the reader is finished with the current record, it must seek (or POINT LUN)
to the position of the next record.

IDL is inconsistent in how it handles file sizes of greater than 4 gigabytes. In
IDL version 5.3 and earlier, there is no support for large files (i.e. NEXTREC1 must be
0). IDL version 5.4 had a special way of handling such large files, with a different
record header format, as described in the next paragraph. After IDL version 5.4,
I believe that IDL added support for large files by allowing NEXTREC1 to be non-
zero. The position of the next record would be computed as: NEXTREC = NEXTREC0

+ NEXTREC1 * 232.
Version 5.4 of IDL changed the record format in an incompatible way for large files.

When dealing with a large file, IDL version 5.4 inserts a special record (PROMOTE64).
If the PROMOTE64 record is present in the file, then the record header format changes
to the following hybrid:

Format: RHDR64 (format of every record header in save files after

PROMOTE64 record appears)

Type Name Description
LONG RECTYPE Numerical record format code
ULONG64 NEXTREC Offset to next record, relative to start of file
LONG×2 — Unknown

7

Note the change of LONG to ULONG64. This change increases the length of
the record to 5 32-bit words instead of 4 32-bit words, and thus makes all records
produced by IDL 5.4 incompatible with previous versions of IDL. This situation is
dealt with using the PROMOTE64 keyword of the save library.

NOTE: where “RHDR” appears below as a data type, the actual data type
is either RHDR or RHDR64, depending on whether the PROMOTE64 record has
appeared in the record stream or not. Before PROMOTE64 appears, the normal
record header is used (RHDR) and after, the hybrid header is used (RHDR64).

Obviously, the PROMOTE64 method is pretty crazy and should not be written
by new software. However, software readers may need to be aware of such issues for
compatibility with older versions of IDL software.

5.1 Record Types

Here is a table containing the record type codes, the record name, and a short de-
scription of the record contents.

0 START MARKER Start of SAVE file
1 COMMON VARIABLE Block contains a common block definition
2 VARIABLE Block contains variable data
3 SYSTEM VARIABLE Block contains system variable data
6 END MARKER End of SAVE file

10 TIMESTAMP Block contains time stamp information
12 COMPILED Block contains compiled procedure or function
13 IDENTIFICATION Block contains author information
14 VERSION Block contains IDL version information
15 HEAP HEADER Block contains heap index information
16 HEAP DATA Block contains heap data
17 PROMOTE64 Flags start of 64-bit record file offsets
19 NOTICE Disclaimer notice

All of these record types, except for VARIABLE, SYSTEM VARIABLE and
HEAP DATA, are read using the CMSV RREC low-level procedure.

6 Primitives

Having defined the general properties of records in an IDL save file, we will now
proceed to a finer level of detail: the definition of primitive data types within the
records themselves.

The most important data types are long integers and strings, referred to through-
out this document as LONG and STRING. These quantities are naturally quite the
same as the LONG and STRING data types found within IDL, but because in this
document they represent names of data types as stored on disk, it is required to de-

8

fine their exact layout. The library procedures CMSV RRAW and CMSV WRAW
are used to read and write these types of data values.

Please NOTE: the formats of quantities stored in IDL variables can be somewhat
different than these raw quantities. This section only refers to how the fundamental
units of the file are formatted. See Sec. 9 for the format of IDL variable data.

The integer types are stored in IEEE format, and are automatically converted by
the CMSV RRAW and CMSV WRAW procedures. Note that every integer value
is encoded according the following table, including those within record headers, and
stored in string length values.

Format: INTEGER TYPES (list of integer data types)

Type Name Description
BYTE BYTE Single native byte
BYTE×4 LONG 32-bit signed word, IEEE format
BYTE×8 ULONG64 64-bit unsigned word, IEEE format

The string type is another fundamental type. A string contains any variable-
length stream of bytes. The first quantity is a LONG integer which describes the
length of the string in bytes, followed by the bytes themselves.

Format: STRING (format of string data type)

Type Name Description
LONG LENGTH Length of the string in bytes
BYTE×LENGTHCHARS Characters of string, expressed as bytes. If the

string is empty, i.e., if LENGTH is zero, then no
CHARS are present. There is no zero termination.

BYTE×N PAD Padding bytes, to align stream to next 32-bit
boundary. If the stream is already on a 32-bit
boundary, or if LENGTH is zero, then no PAD
bytes appear.

Thus, an empty (zero-length) string would simply be composed of a single LONG
integer with the value of zero.

7 Record Descriptions

The following sections describe the actual formats of the records which have been
outlined above. The “preamble” records (records which contain metadata) appear
first, followed by the “content” records (which contain user data), and finally the
end-of-file record is described.

9

7.1 Preamble Records

Preamble records must appear first in the file and typically describe the properties of
the file, rather than the data itself. This metadata includes when the file was saved
and by whom, and which version of IDL wrote it. By observation there appears to be
an established order for these records to appear in a file, but it is not known whether
this ordering is required or merely the default. The order appears to be:

1. TIMESTAMP — time and user information

2. VERSION — information about the version of IDL

3. PROMOTE64 — (optional) signals presence of large data

Format: TIMESTAMP (10) (timestamp and user information)

Type Name Description
RHDR HDR Block header record
LONG×256 — Unknown (= LONARR(256))
STRING DATE Date session was saved, as a string.
STRING USER User name of saved session.
STRING HOST Host name of saved session.

NOTES: The TIMESTAMP record always appears to come first. Depending on
the host operating system, the “user” and “host” fields may be empty or contain
unreliable data. The format of the DATE field appears to be “WWW MMM DD
hh:mm:ss YYYY” where the WWW is an abbreviation of the name of the day of
the week, MMM is an abbreviation of the month name, DD is the day of the month,
YYYY is the calendar year, and “hh:mm:ss” is the 24-hour time.

Format: VERSION (14) (version information)

Type Name Description
RHDR HDR Block header record
LONG FORMAT Save file format version number
STRING ARCH Architecture of saved session (= !VER-

SION.ARCH)
STRING OS OS of saved session (= !VERSION.OS)
STRING RELEASE IDL version of saved session (= !VER-

SION.RELEASE)

10

NOTES: The VERSION record type can be used to determine which version of
IDL, and which OS was used to write a particular save file. It does not appear in
files generated by IDL 4. The FORMAT entry is a file format version number, which
appears to be incremented when the file format is changed. The following table
describes the IDL software version where a given FORMAT value first appeared.

FORMAT value IDL Version
5 5.3(?)
6 5.4(?)
7 5.6
8 6.0
9 6.1

Format: PROMOTE64 (17) (signals start of RHDR64 record headers)

Type Name Description
RHDR HDR Block header record

NOTES: Any records which appear after this record will have RHDR64 record
headers in place of RHDR records. This record is not mandatory, and only appears
in files generated by IDL version 5.4 or later.

Format: IDENTIFICATION (13) (provides author information)

Type Name Description
STRING AUTHOR Author of save file
STRING TITLE Title of the save file
STRING IDCODE Other author information

NOTES: This record is optional, and appears to provide more definitive informa-
tion about who saved the IDL file. [This may be more useful for SAVE files which
contain compiled procedures and functions.] There appears to be no direct way for
users to specify this information from the built-in IDL SAVE command, but there
does seem to be some connection to the EMBEDDED keyword to SAVE, and the
creation of embedded-license save files.

Format: HEAP HEADER (15) (heap data table of contents)

Type Name Description
LONG NVALUES Number of heap values in SAVE file
LONG×
NVALUES

INDICES Indices of heap values

11

NOTES: This record appears only if the file contains heap data, which is data
pointed to by IDL pointers. Pointers are available only in IDL version 5.0 or later.
The HEAP HEADER record is merely a table of contents record which describes how
many heap values there are, and lists there numerical index values. The use of the
heap index values is described later in this document.

Format: NOTICE (19) (disclaimer notice)

Type Name Description
STRING TEXT ASCII text of disclaimer notice

NOTES: This record type is optional, and appears only in later versions of IDL.

7.2 Content Records

This section describes data which contain actual content, however, they contain sub-
types which will require further elaboration in later sections.

Format: COMMONBLOCK (1) (declaration of common block and

variables)

Type Name Description
RHDR HDR Block header record
LONG NVARS Number of common block variables
STRING NAME Name of common block
STRING
×NVARS

VARNAMES Names of common block variables

NOTES: This record describes the existence, but not the values of, any common
block variables. This is equivalent to the declarative COMMON statement in an IDL
procedure. The names of the common variables are established, but the values must
be defined by another separate record which appears later in the file.

Format: VARIABLE (definition of standard IDL variable)

Type Name Description
RHDR HDR Block header record
STRING VARNAME Name of IDL variable (upper case ASCII)
TYPEDESC TYPEDESC Variable type descriptor
LONG VARSTART Indicates start of data (= 7)
VARDATA VARDATA Variable data

12

Format: SYSTEM VARIABLE (definition of IDL system variable)

Type Name Description
RHDR HDR Block header record
STRING VARNAME Name of IDL system variable (upper case ASCII,

begins with ’ !’)
TYPEDESC TYPEDESC Variable type descriptor
LONG VARSTART Indicates start of data (= 7)
VARDATA VARDATA Variable data

NOTES: The formats of standard IDL variables and system variables are the same.
The only difference is the VARFLAGS flag byte within the TYPEDESC descriptor.
The definitions of TYPEDESC and VARDATA are presented in sections 8 and 9.
The TYPEDESC segment defines the type of the data, and is read and written by
CMSV RVTYPE and CMSV WVTYPE. The VARDATA segment actually contains
the data, and is read and written by CMSV RDATA and CMSV WDATA.

For scalars TYPEDESC is simply the IDL type number, but for arrays and struc-
tures the TYPEDESC descriptor can be much more complicated. Because the TYPE-
DESC descriptor can have a variable size, depending on the complexity of the type
being described, it is not possible to parse the data segment of the record without
first parsing the type descriptor.

Format: HEAP DATA (type and data for IDL heap variable)

Type Name Description
RHDR HDR Block header record
LONG HEAP INDEX The heap index of this particular variable. This

index refers to the table of contents found in the
HEAP HEADER record.

LONG — Unknown (’02’XL or ’12’XL)
TYPEDESC TYPEDESC Heap variable type descriptor
LONG VARSTART Indicates start of data (= 7)
VARDATA VARDATA Heap variable data

NOTES: A heap variable has the same format as an IDL standard or system
variable, except that, instead of a STRING variable which provides the name of the
variable, an integer number is used to identify which variable it is in the heap table
of contents.

7.3 Compiled Procedures and Functions

It is outside of the scope of this document to describe the records which contain
compiled procedures or functions. The beginning of the record has the following
format:

13

Format: COMPILED (compiled procedure or function)

Type Name Description
RHDR HDR Block header record
STRING PRONAME Name of procedure or function (upper case

ASCII)
LONG LENGTH Length of procedure (unknown units?)
LONG N VARS Number of variables used in procedure
LONG N ARGS Total number of parameters and keywords
LONG PROFLAGS Bit flags for procedure type, OR’d as follows:

’01’x Record is a function; else, procedure
’02’x Procedure accepts keywords
’08’x Uses EXTRA keyword parameter
’10’x Unknown? (defined for every procedure)
’20’x Record is a method
’40’x Is a lifecycle method

...
Undefined

...

NOTES: The default is for all flags (except ’10’x) to be zero, i.e., procedure
which does not accept keywords and is not a method. Method-type procedures and
functions apply to objects, are only meaningful in IDL 5.0 or greater. A “lifecycle
method” is one which is used to create or destroy an object.

7.4 Concluding Record

The final record in an IDL save file is the END MARKER record. It is empty, other
than the record header that every record contains. I currently believe that any data
following this record is ignored by IDL.

Format: END MARKER (6) (signals end of file)

Type Name Description
RHDR HDR Block header record

NOTES: Applications can use the presence of this record to terminate processing.

8 Data Type Descriptor Formats

This section describes the format of the TYPEDESC segment, which appears in
records of type VARIABLE, SYSTEM VARIABLE and HEAP DATA. All of these

14

record types come in three parts. First, the name or index number of the variable
appears, which describes its identity; second, the type of the variable is described,
such as array dimensions, data type, and whether it is a structure; finally, the data
itself appears. This section describes how the data types are stored on disk.

The data types can be divided into several possible cases:

1. Scalar numbers, strings or pointers.

2. Array numbers, strings or pointers.

3. Structures.

4. Objects.

By convention, structures are always arrays, so the data type descriptors for arrays
and structures naturally overlap. While objects can be stored in IDL save files, the
CMSV library does not support them.

8.1 Simple Scalar Quantities

The type descriptor for “simple” scalar quantities has the following format. Here
“simple” means integers, floating point values (real and complex), strings, and point-
ers.

Format: TYPEDESC SCALAR (type descriptor for simple scalars)

Type Name Description
LONG TYPECODE IDL variable type code
LONG VARFLAGS Bit flags for a type descriptor, OR’d as follows:

’02’x System variable
’04’x Array (UNSET for scalar)
’10’x Unknown?
’20’x Structure (UNSET for scalar)

NOTES: All of the type descriptor formats begin physically with a TYPECODE
and VARFLAGS field. In the case of scalars, those are the only two fields in the
descriptor. All scalars have a VARFLAGS value of zero or one, indicating either a
system variable or not, but not an array or structure.

The IDL TYPECODE is the data type that is used throughout IDL, and by the
SIZE function, to describe the basic type of a quantity. The values are contained in
the following table:

15

IDL data type codes
0 Undefined (not allowed)
1 Byte
2 16-bit Integer
3 32-bit Long Integer
4 32-bit Floating Point Number
5 64-bit Floating Point Number
6 Complex Floating Point Number (32-bits each)
7 String
8 Structure (never a scalar)
9 Complex Floating Point Number (64-bits each)

10 Heap Pointer
11 Object Reference (not supported by CMSVLIB)
12 16-bit Unsigned Integer
13 32-bit Unsigned Integer
14 64-bit Integer
15 64-bit Unsigned Integer

The next sections describe the enhancements that are in place for arrays and
structures.

8.2 Arrays

Arrays are an extension of simple data types. In addition to the type code and
VARFLAGS field, there is an additional segment called ARRAY DESC, which de-
scribes the structure of the array:

Format: TYPEDESC ARRAY (type descriptor for arrays)

Type Name Description
LONG TYPECODE IDL variable type code
LONG VARFLAGS Bit flags for a type descriptor, OR’d as follows:

’02’x System variable
’04’x Array
’10’x Unknown?
’20’x Structure (UNSET for simple array)

ARRAY DESC — Array descriptor segment

An array descriptor structure is a fixed-length segment describing the dimensions
of the array.

16

Format: ARRAY DESC (array descriptor)

Type Name Description
LONG ARRSTART Indicates start of array descriptor (= 8)
LONG — Unknown (= 2)
LONG NBYTES Number of bytes in array
LONG NELEMENTS Number of elements in array
LONG NDIMS Number of dimensions in array
LONG×2 — Unknown (= [0,0])
LONG NMAX Number of stored dimensions (always 8?)
LONG×NMAX DIMS Dimensions of array, padded with 1s to NMAX

NOTES: The ARRAY DESC descriptor indicates the size of the array in a number
of different manners. The total number of elements is given by the NELEMENTS
field. The number of dimensions in the array is given by NDIMS. Even if NDIMS
is less than 8, the array descriptor always appears to contain NMAX (=8) stored
dimensions. The “unused” dimensions are padded with values of 1.

8.3 Structures

Structures are the most complex form of data stored in an IDL save file, because they
can represent any combination of scalars, arrays, and structures. Thus, the format of
the structure descriptor must be general enough to store any kind of data.

Format: TYPEDESC STRUCT (type descriptor for arrays)

Type Name Description
LONG TYPECODE IDL variable type code
LONG VARFLAGS Bit flags for a type descriptor, OR’d as follows:

’02’x System variable
’04’x Array
’10’x Unknown?
’20’x Structure

ARRAY DESC — Array descriptor segment
STRUCT DESC— Structure descriptor segment

The array descriptor is described in the previous section. All structures are also
arrays, and hence every structure type description will have both an ARRAY DESC
and STRUCT DESC segment. Even “scalar” structures are considered to be an array
of length and dimension equal to 1.

IDL objects are special cases of structures. The values themselves are stored as
structures. The definition of the class uses the STRUCT DESC segments as well,
with special fields which give the name of the class and define the class’s superclasses.

17

If the INHERITS or IS SUPER bit fields are set, then STRUCT DESC segment can
be considered to define a class rather than a structure.

The structure (and class) descriptor is defined here:

18

Format: STRUCT DESC (variable structure descriptor)

Type Name Description
LONG STRUCTSTART Indicates start of struct descriptor (= 9)
STRING NAME Name of structure (empty string indicates anony-

mous structure).
LONG PREDEF Structure definition bit flags, OR’d as follows:

’01’x PREDEF - field is predefined struct
’02’x INHERITS - field is a class
’04’x IS SUPER - field is a superclass
’08’x Unknown?

.

If (PREDEF AND ’01’x) is set, then a fresh
definition of the structure will appear in the
fields starting with TAGTABLE. Otherwise the
structure ends with NBYTES.

LONG NTAGS Number of tags in structure.
LONG NBYTES Number of bytes in structure, using IDL notation.

Actual number of bytes may vary from architec-
ture to architecture. If PREDEF EQ 1 then this
is the last field that appears, and the previously
defined structure is used. If PREDEF EQ 0 then
the following fields appear.

TAG DESC
×NTAGS

TAGTABLE Table of tag descriptors, which describe the types
of each tag.

STRING
×NTAGS

TAGNAMES Table of names for tags.

ARRDESC
×NARRAYS

ARRTABLE If any tag is an array type, then its dimensions
are described by the following ARRDESC entries.
The entries appear in the order they are in the
structure; NARRAYS is determined from the val-
ues in TAGTABLE.

STRUCTDESC
×NSTRUCTS

STRUCTTABLE If any tag is a structure type, then its tags are de-
scribed by the following STRUCTDESC entries.
The entries appear in the order they are in the
structure; NSTRUCTS is determined from the
values in TAGTABLE.

STRING CLASSNAME This field is present if either of the INHERITS or
IS SUPER bits are set (see PREDEF field above).
If so, then the structure being defined is a class
with name CLASSNAME.

LONG NSUPCLASSES This field is present if either of the INHERITS or
IS SUPER bits are set (see PREDEF field above).
If so, then NSUPCLASSES is the number of su-
perclasses this class inherits from.

STRING
× NSUP-
CLASSES

SUPCLASSNAMES This field is present if NSUPCLASSES is present
and greater than zero. It is a list of this class’s
superclass names.

STRUCTDESC
× NSUP-
CLASSES

SUPCLASSTABLE This field is present if NSUPCLASSES is present
and greater than zero. It is a squential list of
descriptors for each of this class’s superclasses.

19

NOTES: The length of this segment depends on whether it is definitional or
referential. A definitional structure descriptor describes a structure the first time it
appears in the data stream, and in that case the full descriptor is used. After the first
time the structure has been defined, other appearances of the same structure may
refer to the first definition by setting PREDEF to a value of one.

The end of the structure descriptor can itself contain one or more array, structure
or superclass descriptors. Any array descriptors appear first, in the order that they
appear in the structure; followed by any structure descriptors, in the order they
appear in enclosing the structure. Finally, if particular STRUCT DESC segment is
a class definition, the class’s superclass definitions, if any, are appended.

The decision of whether a tag is a structure, array or scalar is described by the
TAG DESC segment.

Format: TAG DESC Descriptor of a structure tag

Type Name Description
LONG OFFSET Figurative “offset” of tag from start of struct.

This number is typically meaningless since the
true offset is architecture dependent.

LONG TYPECODE IDL variable type of tag value.
LONG TAGFLAGS Bit flags for variable type, OR’d together:

’20’x Tag is a structure
’10’x Tag may be an array (?)
’04’x Tag is an array

It is not clear what the ’10’x bit flag of TAGFLAGS means. As noted in the
table, the “offset” value is usually not meaningful because it depends on a platform-
dependent layout of structures.

9 Data Value Formats

For records of type VARIABLE, SYSTEM VARIABLE and HEAP DATA, the final
segment of data in the record is the data itself (VARDATA). For all of these record
types, the data format is the same.

For “simple” data types (as defined above), and arrays of simple data types, the
data usually appears in its native format. However, some data types are translated
into a slightly different form for the SAVE format. The following table specifies how
this transformation is performed.

20

IDL Type Storage Type & Format
BYTE BYTE DATA (see below)
Signed or Unsigned INT (16-bit) (U)LONG (32-bit) IEEE
Signed or Unsigned INT (32-bit) (U)LONG (32-bit) IEEE
Signed or Unsigned INT (64-bit) (U)LONG64 (64-bit) IEEE
FLOAT (32-bit) FLOAT (32-bit) IEEE
DOUBLE (64-bit) DOUBLE (64-bit) IEEE
COMPLEX (32-bit) 2×FLOAT (32-bit) IEEE
DCOMPLEX (64-bit) 2×DOUBLE (64-bit) IEEE
STRING STRING DATA (see below)
POINTER LONG (32-bit) IEEE (see below)

The alignment of the start of all types is on a 32-bit boundary. Array storage
formats are packed as closely as possible, with no padding between array elements.

Byte values stored in variables have the following special BYTE DATA format.
Unlike other formats, the byte format appears to have a single 32-bit LENGTH
header which indicates the number of bytes, followed by the byte data itself, and
finally followed by a number of pad bytes in order to pad the stream to the next
32-bit boundary. The LENGTH information is redundant since length information
can also be derived from the type descriptors.

Format: BYTE DATA (format of bytes within variable data)

Type Name Description
LONG LENGTH Number of bytes stored
BYTE×
LENGTH

BYTES Byte data values

BYTE×N PAD Padding bytes, to align stream to next 32-bit
boundary. If the stream is already on a 32-bit
boundary, then no PAD bytes appear.

String data stored in variables also have a special format, different than the raw
STRING format described in previous sections. The layout is given by STRING DATA
below.

21

Format: STRING DATA (format of strings within variable data)

Type Name Description
LONG×2 LENGTH Length of the string in bytes (length repeated)
BYTE×
LENGTH

CHARS Characters of string, expressed as bytes. If the
string is empty, i.e., if LENGTH is zero, then no
CHARS are present. There is no zero termination.

BYTE×N PAD Padding bytes, to align stream to next 32-bit
boundary. If the stream is already on a 32-bit
boundary, or if LENGTH is zero, then no PAD
bytes appear.

The difference between STRING and STRING DATA is that the LENGTH field
is repeated twice rather than appearing only once for the STRING data type. String
arrays are also packed together as tightly as possible.

Pointers are another special case. Pointers are stored as long integers. The integer
is the same heap index value that appears in the HEAP HEADER table of contents
record, and the HEAP DATA record. A pointer value of 3, for example, refers to the
heap variable whose index value is also 3. Note that it is possible for more than one
pointer to refer to the same heap variable.

Structures are obviously composed of more simple data types and (possibly) other
structures. The individual components of a structure are stored, in order, packed on
32-bit boundaries.

10 Pointers and Heap Values

Pointer data stored in IDL SAVE files are particularly difficult to manage, because
the actual heap variables are stored in separate records which precede the record of
interest. Thus, if your application requires the reading of pointer data, you must
perform special processing in your own code in order to support it. In essence, you
must maintain an inventory of heap variables as they are encountered in the file.

If these procedures are not followed then pointer data will not be read, and a
LONG integer value appears in the pointers’ places. Under IDL 4, pointer data can
never be read.

This is accomplished by placing some additional logic in your file processing loop.
There are four separate components to this: (1) loop initialization; (2) reading a
HEAP INDEX record; (3) parsing a HEAP DATA record; and (4) passing extra
arguments to CMSV RDATA. The additional state information is maintained in two
variables named PTR INDEX, which keeps track of the heap variable numbers, and
PTR OFFSETS, which stores the file location of each variable.

1. Loop initialization: is quite simple, use the following code:

22

ptr_index = [0L]

ptr_offsets = [0L]

ptr_data = [ptr_new()]

2. Reading HEAP INDEX, which is an array of values indicating the heap variable
numbers of each heap variables. These values are stored in PTR INDEX:

CMSV_RHEAP, block, pointer, index, unit=unit

ptr_index = [ptr_index, index]

ptr_offsets = [ptr_offsets, lonarr(n_elements(index))]

ptr_data = [ptr_data, ptrarr(n_elements(index))]

3. Parse the HEAP DATA record. Here were are interested in the heap variable
number, and the file offset.

opointer = pointer

CMSV_RVTYPE, block, pointer, vindex, /heap, unit=unit

vindex = floor(vindex(0))

wh = where(ptr_index EQ vindex)

ptr_offsets(wh(0)) = offset + opointer

Keep in mind that the file offset is OFFSET+POINTER.

4. Pass extra parameters to CMSV RDATA. The user simply passes these extra
variables to the CMSV RDATA procedure, which automatically recognizes heap
data and reads it from the appropriate location.

CMSV_RVTYPE, block, pointer, name, size, unit=unit, template=tp

CMSV_RDATA, block, pointer, size, data, template=tp, $

unit=unit, ptr_offsets=ptr_offsets, $

ptr_index=ptr_index, ptr_data=ptr_data

If this technique is used properly, only those heap variables which are needed are
read. Thus, there are never any lost or dangling pointers. Since each bit of heap data
is stored in a variable returned to the user, it is not necessary to PTR_FREE(ptr_data);
in fact, doing so would corrupt the input data.

23

11 Significant Changes

1. 2009-09-25 — Document the NOTICE (19) record type; document STRUCT-
DESC descriptors which contain classes (and superclasses).

2. 2009-11-22 — Document the special format of byte scalars and arrays when
stored in variables; reword the data-in-variables section.

3. 2010-01-11 — Document how large files are now supported by IDL, chang-
ing from NEXTREC to NEXTREC0 and NEXTREC1; better document how
PROMOTE64 worked with IDL version 5.4; attempt to document which IDL
software versions produced which file format versions.

24

