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Abstract
This work has three main themes: (1) fabricate atomically precise nanostructures at surfaces, particularly nanowires consisting of atom chains;

(2) explore the behavior of one-dimensional electrons in atomic chains; (3) find the fundamental limits of data storage using an atomic scale

memory. Semiconductor surfaces lend themselves towards self-assembly, because the broken covalent bonds create elaborate reconstruction

patterns to minimize the surface energy. An example is the large 7 � 7 unit cell on Si(1 1 1), which can be used as building block. On

semiconductors, the surface electrons completely de-couple from the substrate, as long as their energy lies in the band gap. Angle-resolved

photoemission reveals surprising features, such as a fractional band filling and a spin-splitting at a non-magnetic surface. An interesting by-product

is a memory structure with self-assembled tracks that are five atom rows wide and store a bit by the presence or absence of a single silicon atom.

This toy memory is used to test the fundamental limits of data storage and to see how storage on silicon compares to storage in DNA.
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1. Introduction

Nanostructures can be produced by two generic methods,

lithography and self-assembly. Lithography becomes more

difficult for smaller structures, while self-assembly becomes

easier. Below a certain size, it is possible to produce atomically

precise structures. This regime will be explored in the

following. A particularly interesting aspect is the assembly

of atomic chains at surfaces [1]. These come close to the ideal

nanowire, an infinite chain of atoms freely suspended in space.

Such a wire is nearly impossible to produce experimentally.

Free-standing chains of metal atoms can be sustained up to

about four atoms in length [2–4], but they are rather unstable.

As we will show in the following, it is possible to form rigid

atom chains at vicinal Si(1 1 1) surfaces, which combine the

best of two worlds: the atoms are firmly locked to the surface

(usually in substitutional silicon atom sites). The metallic
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electrons, on the other hand, are de-coupled from the silicon

substrate. There are no bulk states in the band gap that could

hybridize with the surface states. A large variety of such atomic

chain structures has been discovered in recent years, which

provide a new playground for exploring the physics of electrons

as they approach the one-dimensional limit.

One-dimensional physics is particularly simple and elegant.

Many problems can be solved analytically. Some problems

involving highly correlated electrons can only be solved at all in

one dimension. Whole books have been written about this topic

[5,6]. One of the peculiar features of electrons in one dimension

is the breakdown of the single-electron picture. Theory predicts

that the single-electron picture breaks down in a one-

dimensional solid. This statement can be rationalized rather

simply: electrons cannot avoid each other when moving along

the same one-dimensional line. A single excited electron

creates a domino effect by colliding with a nearby electron,

which collides with the next electron, and so on. This strong

interaction has startling consequences on the physics of one-

dimensional systems leading to a variety of unusual phases at

low temperatures. The most striking prediction is the breakup
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Fig. 1. Step structure created on Si(5 5 7), a vicinal Si(1 1 1) surface. Atomic

perfection is achieved by using the large Si(1 1 1)7 � 7 unit cell as building

block (bright stripes) and having the steps close enough to strongly interact with

each other. This, and all following STM images show the derivative of the

topography in the x-direction, which gives the impression of illumination from

the left. From [12].
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of electrons into separate spin and charge excitations, the

spinons and holons [5]. A variety of other interesting phases

exist for one-dimensional systems, such as Peierls-insulators,

charge density waves, spin density waves, singlet and triplet

superconductivity, and so on [6].

2. Self-assembly of one-dimensional structures

The ever-increasing sophistication in the preparation of

single crystal surfaces has made it feasible to tailor surfaces in

many ways. The arrival of scanning tunneling microscopy has

provided a much more critical look at the perfection of surfaces

than diffraction methods, which emphasize the ordered part of

the surface. That has helped controlling surfaces more precisely

and producing large areas of defect-free surfaces. One-

dimensional structures can be prepared by using stepped

surfaces as templates. Particularly well suited are surfaces with

large unit cells, such as Si(1 1 1)7 � 7 and Au(1 1 1). The steps

become very straight in this case, because the formation of a

kink requires adding many extra atom rows, for example

2 � 7 = 14 rows for Si(1 1 1)7 � 7. As a result, atomically

straight step edges with a length of 20,000 edge atoms have

been achieved on Si(1 1 1)7 � 7 by a simple sequence of

anneals [7,8]. This requires of course an accurate azimuthal cut

of the Si wafer. The length of kink-free terraces can be extended

by heating the wafer with DC current parallel to the steps and

keeping it strain-free during heating. A current parallel to the

steps causes bunching of the kinks into large facets due to

electromigration [9,10].

The step spacing can be controlled by taking advantage of

the step–step interaction via their strain field [11]. A repulsive

step–step interaction favors equi-spaced steps. The steps need

to spaced together closely to provide an interaction large

enough for an atomically perfect step spacing. This happens for

vicinal Si(1 1 1) at a step spacing of about 6 nm, as shown in

Fig. 1 (from [12]). This Si(5 5 7)3 � 1 surface structure

consists of a triple step and a terrace containing a single 7 � 7

unit cell. The period of this atomic scale grating is known very

accurately since the lattice constant of Si is a secondary length

standard (compare the number of significant digits given in

Fig. 1). Such structures are being studied as possible length

standards in the nanoscale regime, which are important for

getting an accurate overlay in lithography of microelectronic

devices. While lithography becomes more difficult when

pushing towards smaller dimensions, self-assembly becomes

easier. Bridging the gap between self-assembly and lithography

and combining the best of both methods has become an

important goal for nanotechnology. Here we are concerned with

pushing atomically precise self-assembly to larger dimensions.

The 6 nm period in Fig. 1 is typical of the largest structures that

can be obtained at surfaces with atomic perfection of wide

areas. The building blocks for such structures are typically 50

atoms in size, for example the 7 � 7 unit cell, the C60 fullerene,

and the ‘‘magic’’ Au55 cluster. It will be interesting to see

whether the size of perfectly self-assembled structures can be

increased. Another alternative would be a directed assembly

process, where a coarse grid is defined by lithography (either
conventional optical lithography or EUV interference litho-

graphy [13]) and then filled in by self-assembly.

Stepped surfaces can be converted into atomic chain

structures by depositing a sub-monolayer of metal atoms,

most notably gold [1]. Typical growth parameters are a

substrate temperature of 600–700 8C during Au deposition and

a subsequent post-anneal to 800–900 8C for a few seconds with

slow cool-down over several minutes. An example is given in

Fig. 2a, where the Si(5 5 7) surface from Fig. 1 is converted to a

chain structure by 0.2 of a monolayer of Au. This method works

for a large group of metal atoms (alkalis, alkaline earths, In, Ag,

Au, Pt, and rare earths). These comprise valence states from 1 to

3, s-, p-, d-, and f-electrons, and magnetic atoms. Even the flat

Si(1 1 1) surface forms one-dimensional chain structures with

three domains. A single domain can be selected by choosing a

small miscut of about 1–28. Apart from the Si(1 1 1) surface,

which has the advantage of a large unit cell, there are several



Fig. 2. STM images of Au chain structures on Si(5 5 7) vs. coverage (image

width 66 nm): (a) at an under-coverage of 0.02 monolayer below the optimum

0.2 monolayer, most of the surface is converted to a double-chain structure with

Si dopant atoms on top of the chains. The remaining part of the surface still

exhibits single 7 � 7 facets of the clean Si(5 5 7) surface (compare Fig. 1). (b)

At an over-coverage of 0.2 monolayer, the surface disproportionates into

shallower and steeper facets consisting of Si(1 1 1)5 � 2-Au (bright) and

Si(3 3 5)-Au (dark).

I. Barke et al. / Applied Surface Science 254 (2007) 4–116
other semiconductor surfaces supporting atomic chains, for

example Si(1 0 0), SiC(1 0 0), Ge(1 0 0), and GaAs(1 1 0).

Metallic chains are of particular interest. The electrons at the

Fermi level are responsible for most of the instabilities towards

exotic phases. Such structures may also be considered as the
ultimate nanowires, while an insulating wire or a metallic wire

on a metallic substrate would not qualify. Not all chain

structures are metallic, but we have found that Au chains are

metallic for all vicinal Si(1 1 1) surfaces studied so far [1,14].

That includes surfaces tilted towards ½1̄ 1̄ 2� with nominally two

broken bonds at the step edge, such as (3 3 5), (3 3 7), (5 5 7), as

well as surfaces tilted towards ½1 1 2̄� with one broken bond at

the edge, such as (1 1 0), (5 5 3), (7 7 5), (9 9 5), (13 13 7).

Even the flat Si(1 1 1) surface breaks its three-fold symmetry

and forms the Si(1 1 1)5 � 2-Au chain structure. It appears that

all vicinal Si(1 1 1) surfaces with odd Miller indices form chain

structures. By going to shallower tilt angles it is possible to

increase the chain spacing and to decrease two-dimensional

coupling in a systematic way. Another notable metallic

structure is Si(1 1 1)4 � 1-In [15]. It has a higher coverage

than the other chain structures and contains four In chains per

unit cell, in contrast to one or two for Au.

Already the growth behavior of the Au chain structures is

highly one-dimensional, as shown in Fig. 2a. Here the Au

coverage is slightly less than the ideal coverage of 1 chain per

unit cell (0.2 monolayer for Si(5 5 7)). As a result, one finds

residual patches of clean Si(1 1 1)7 � 7 that have not been

converted yet. These consist of long strips of single 7 � 7 unit

cells, which are in the process of being consumed by Au chains.

In fact, an accurate Au coverage is the single most important

criterion for preparing high quality chain structures. To

pinpoint the coverage dependence of these structures, we have

turned to growing ‘‘wedges’’ with a mobile shutter, where the

Au coverage varies from 0 to 1 monolayer along the length of

the sample (�10 mm). A large variety of mixed phases can be

seen between the stoichiometric structures by STM. Fig. 2b

shows one of these phases, where the Si(5 5 7)-Au phase

disproportionates into shallower and steeper facets consisting

of Si(1 1 1)5 � 2-Au (bright) and Si(3 3 5)-Au (dark). This

occurs at a Au coverage of 0.4 monolayer, well beyond the

optimum 0.2 monolayer. Facet formation has been encountered

on many other vicinal Si(1 1 1)-Au structures [16]. At even

higher coverage (approaching 1 monolayer), the two-dimen-

sional Si(1 1 1)H3 � H3 structures tend to take over, which

consist of metal trimers. Wedges can be scanned by LEED and

photoemission to reveal the changes in the atomic and

electronic structure.

With so many chain structures forming on vicinal Si(1 1 1)

surfaces, and even on flat Si(1 1 1), it is natural to ask whether

there is a common structural feature that stabilizes the chains.

In fact, total energy calculations for chain structures induced by

alkalis, alkaline earths, and noble metals suggest a common

feature, the honeycomb chain [17,18]. A graphitic strip of Si

atoms covers a bulk-like Si(1 1 1) surface and forms one of the

most stable configurations for the Si(1 1 1) surface. The various

metal atoms seem to act as catalysts for forming the honeycomb

chain, possibly by bridging the gap between the graphitic part

and the rest of the Si(1 1 1) surface. Many different metals can

play the same role. The graphitic stripes can be extremely long

(hundreds of nanometers), but they are less than two hexagons

wide. That suggests nearly perfect lattice match along the stripe

(in the ½1 1̄ 0� direction), but a very poor match perpendicular to



Fig. 3. The structural elements of Au-induced chain structures on vicinal

Si(1 1 1) surfaces, demonstrated by a model of the Si(5 5 7)-Au surface

obtained from X-ray diffraction [19] and total energy calculations [14,20].

The key element driving these chain structures one-dimensional is the honey-

comb chain, a strip of graphitic Si surface atoms (red). The Au chain (yellow) is

located at the center of the terrace in substitutional sites, contrary to expecta-

tions from step flow growth. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of the article.)

Fig. 4. Fermi surface (top) and band dispersion (bottom) of the Si(5 5 3)-Au

chain structure [25]. Two nearly degenerate, half-filled bands are a character-

istic of all Au chain structures on vicinal Si(1 1 1) [14]. The splitting has been

identified as a spin-splitting induced by the spin–orbit interaction [21,28], quite

unexpected for a surface consisting of non-magnetic elements.
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it (in the ½1̄ 1̄ 2� direction). Although absent in bulk silicon, p-

bonding is quite common at silicon surfaces. It occurs in the p-

bonded chain of the Si(1 1 1)2 � 1 cleavage surface and in the

p-bonded dimers of Si(1 0 0)2 � 1. Fig. 3 demonstrates the key

structural elements of the chain structures, using the Si(5 5 7)-

Au structure as example. This model is obtained from a

combination of surface X-ray diffraction [19] and total energy

calculations [14,20,21].

The Au atom chains are located at the middle of the terrace.

They substitute for Si atoms in the outermost layer and become

rigidly anchored to three Si atoms underneath. As a result, the

position of the Au atoms is barely influenced by the

reconstruction at the step edge or by the Si adatoms that

double the unit cell along the chains. Naively one would expect

the Au atoms to attach themselves to the step edge, where they

find high coordination sites. However, these surfaces are full of

surprises in their growth behavior and their electronic structure.

Apparently, standard principles of epitaxy, such as step flow

growth, are not applicable to one-dimensional structures. The

finer details of these chain structures have yet to be explored

systematically. Despite their fairly small unit cell, there are

many possibilities for attaching Si atoms to the step edge. These

atoms play an important role in doping the chains to their

optimum band filling. This area remains largely unexplored.

A second counter-intuitive feature of chain structures on

vicinal Si(1 1 1) is the identity of the atom chains observed by

STM. They originate from Si atoms with broken bonds, not

from the Au atoms deposited on the surface. The Au atoms pair
their s,p-electron with a neighboring Si bond and create a bound

state well below EF, according to first principles calculations.

That is in line with the high electronegativity of Au (higher than

Si). The half-filled metallic bands observed by photoemission

at these surfaces have mainly Si dangling bond character. Thus,

one may view the role of Au more as bystander and catalyst,

while the Si bond orbitals form the electronically active wires.

3. The electronic states

The most complete technique for mapping the electronic

states at surfaces is angle-resolved photoemission [22,23]. This

technique is able to measure the complete set of quantum

numbers of surface electrons, most notably their energy E and

momentum p = 9k, which consists of the two in-plane

components kx (along the chains) and ky (perpendicular to the

chains). When plotting the photoemission intensity I, the three

parameters E, kx, ky are typically grouped in two ways, either as

band dispersion I(E, kx) or as Fermi surface I(kx, ky). The band

dispersion along the chain direction kx is the most interesting

since the perpendicular band dispersion vanishes in the one-

dimensional limit. The difference between one- and two-

dimensional Fermi surfaces is striking, as shown in Figs. 4 and 5.

Two-dimensional Fermi surfaces are characterized by closed

curves, such as the Fermi circles observed for the

Si(1 1 1)H3 � H3-Ag structures doped by additional Ag atoms

[24]. A truly one-dimensional Fermi surface consists of two

points at �kF, but these become straight lines along ky when

plotted in two dimensions. The energy is independent of the mo-

mentum ky perpendicular to the chains (vertical in Figs. 4 and 5).

Chain structures with closely spaced chains, such as

Si(5 5 3)3 � 1-Au, display undulating lines. The amplitude of

the undulations is a measure of the residual two-dimensional

coupling. The complete set of data can be reproduced by a tight

binding calculation which uses two couplings along the chains (t1
and t3 for first and second neighbor) and one between the chains

(t2). The dimensionality ratio is given by t1/t2. For this particular

structure one observes a doublet of Fermi lines with t1/t2 = 39, 46

and a single line with t1/t2 = 12. For structures with larger chain

spacing, such as Si(5 5 7)-Au, the two-dimensional coupling t2



Fig. 5. Fermi surface (top) and band dispersion (bottom) of the two-dimen-

sional Si(1 1 1)H3 � H3-Ag structure at various levels of doping with extra Ag

atoms (beyond a monolayer). Fermi circles are observed, in contrast to the

Fermi lines of one-dimensional structures. The area of the circles increases

proportional to the amount of doping. From [24].
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becomes too small to be detectable. The angular resolution of the

photoemission experiment gives a lower limit of t1/t2 > 70. This

rapid decay of the inter-chain coupling with increasing chain

spacing is due to the exponential decay of the wave functions of

the dangling bond states that form the half-filled bands. The

decay constant is of the order of an atom diameter, while the

chain spacing increases from 1.48 to 1.92 nm from Si(5 5 3)-Au

to Si(5 5 7)-Au, which is almost two silicon atom diameters.

The observation of two half-filled bands in Fig. 4 [14,25]

brings up an intriguing question: why does the surface choose

two half-filled bands (corresponding to two broken bonds)

instead of one completely filled band (corresponding to a

covalent bond). An early explanation in terms of spin-charge

separation was put forward in [26]. However, the fact that the

splitting does not vanish at EF [27] rules out such an option (see

Fig. 4). Another suggestion for the band splitting invokes the

bonding/antibonding interaction between two equivalent broken

bonds [27]. Each Au atom is coordinated with three Si atoms

underneath, but is only able to form a single bond (for example to

the Si atom on the left in Fig. 3). That leaves the two remaining Si

atoms with broken bonds (to the right in Fig. 3), which have

px + py, px � py character and thus form a doubly degenerate

state. A relativistic local density calculation has been performed

for this surface, which describes the observed doublet of half-

filled bands quite well [21]. This calculation assigns the bonding/

antibonding interaction to a band gap above EF. The observed

band splitting below EF is assigned to a spin-splitting, which is

caused by the spin–orbit interaction in the reduced symmetry at

the surface (also known as Rashba effect). Spin–orbit interaction

with heavy elements, such as Au, is able to produce spin

polarization at the surface of a non-magnetic material. While the

net spin polarization integrated over the Brillouin zone remains

zero, individual parts of the Brillouin zone become 100% spin-

polarized. The resulting one-dimensional spin pattern for the

spin-split Fermi surface consists of spins running up and down

adjacent Fermi lines. The local density calculation [21]

reproduces the two bands seen in photoemission remarkably

well. A recent photoemission experiment [28] supports this

prediction by resolving the pattern of avoided crossings between

the two bands and their back-folded counterparts at the Brillouin
zone boundary (too weak to be seen in Fig. 4). Bands with

opposite spin are able to cross each other, while bands with equal

spin form an avoided crossing. Other types of splittings in spin-

paired, ferromagnetic, and antiferromagnetic bands would give a

different pattern, where the two avoided crossings are shifted in

E, not in k.

Apart form the intra- and inter-chain coupling there are other

important parameters that one would like to vary for getting

access to new electronic phases in the one-dimensional phase

diagram [5,6]. One of them is the band filling. In two

dimensions, the band filling can be varied continuously by

adding additional noble metal atoms to the semiconducting

H3 � H3 monolayer structure of Ag and Au on Si(1 1 1)

[24,29]. The photoemission data in Fig. 5 clearly show the

expansion of the Fermi circles with an increasing number of

electrons provided by additional Ag atoms beyond the one

monolayer required for the semiconducting H3 � H3 struc-

ture. The number of doping-induced electrons per unit cell can

be obtained from the area inside the Fermi circle, normalized to

the surface Brillouin zone and multiplied by two (for spin up

and down). The maximum amount of doping is reached for a

H21 � H21 superlattice of doping atoms, where the Fermi

surface contains about three electrons per H21 � H21 unit cell

[30]. Compared to bulk doping concentrations, these doping

densities are huge. Already the first data point lies beyond the

semiconductor-metal transition, as evidenced by the observa-

tion of a tiny Fermi circle. This transition is observed in bulk Si

at a doping level of 3 � 1021 cm�3 [31]. Two-dimensional

electrons at surfaces, such as Si(1 1 1)H3 � H3-Ag, Au,

Si(1 1 1)H7 � H3-In [32], or InAs(1 0 0)-Cs [33] could

become models for exploring the high density limit of a

two-dimensional electron gas.

Doping of one-dimensional chain structures proceeds quite

different from the two-dimensional case. Each chain structure

automatically selects the optimum density of dopant atoms

required for the lowest surface energy [18]. This leads to a well-

defined density of Si dopants adsorbed on top of the chains or at

the step edge. Typical densities range of 1/40 of a monolayer for

Si(1 1 1)5 � 2-Au down to <1/100 of a monolayer for the

vicinal surfaces. There is little flexibility in altering the doping

by changing the concentration of metal atoms. Nevertheless,

different chain structures exhibit different band filling, which

allows for discrete variations in the band filling An interesting

fractional band filling [25] occurs for the Si(5 5 3)-Au structure

shown in Fig. 4 (bottom). The two closely spaced bands are a bit

more than half-filled, and the filling of the single band is

between one-quarter and one-third. That brings the total filling

very close to 8/3 (assuming spin-paired bands) or 5/3 (assuming

a spin-split band). Recent calculations [21] and experiments

[28] support the spin-polarized scenario. The fractional filling

raises questions about a possible analog to the fractional

quantum Hall effect in one-dimensional. It is not obvious,

though, whether two-dimensional Landau orbits exist in an

array of loosely coupled one-dimensional chains. The spectro-

scopy of one-dimensional chains in a high magnetic field is

uncharted territory with great potential, judging from the

success achieved with two-dimensional systems.



Fig. 6. The Si(1 1 1)5 � 2-Au chain structure, which exhibits extra Si atoms on

top of the chains in a half-filled 5 � 4 lattice. This surface has been used to

construct an atomic-scale memory, where a bit is stored by the presence or

absence of an extra Si atom [45].
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One-dimensional chain structures exhibit several other

interesting features that go beyond the scope of this brief

overview, such as nanometer-scale phase separation of a chain

into metallic and semiconducting sections [34] (which is related

to a conflict between the optimum doping and the periodicity

dictated by the Fermi surface [18,35]), Peierls transitions that

vary from one band to the other [36,37], and the appearance of a

zero-dimensional surface state at the end of a finite chain [38], the

existence of a fractional charge at such an end point [39,40], one-

dimensional plasmons [41], anisotropic conductivity [42], and a

variety of charge density waves [15,36,43] with large fluctuations

[44] spreading out the phase transitions.

4. Fundamental limits of data storage

Being able to assemble surface structures with atomic

precision makes it possible to fabricate electronic devices with

atomic dimensions [45]. These can be used to leapfrog Moore’s

law of silicon technology by decades and thereby explore the

fundamental device limits. Information theory imposes limits

on the performance of electronic devices, as shown in Table 1

[46–49]. The quantum conductance determines the maximum

conductance through a single string of orbitals in an atomic

chain, which corresponds to a single band crossing the Fermi

level. The Landauer formula determines the minimum energy

to switch one bit at a given temperature. The fastest possible

switching time is determined by the energy per bit via the

uncertainty relation. And Feynman gave a limit for the

propagation of a bit through a wire.

The Si(1 1 1)5 � 2-Au structure lends itself to be used as

model for an atomic scale memory [45]. It consists of atomically

precise tracks that are 5 Si rows wide (1.67 nm) with extra Si

atoms residing on top of the tracks in well-defined 5 � 4 lattice

sites (see Fig. 6). Only half of the 5 � 4 sites are occupied,

because this corresponds to the optimum density of Si dopants

[18]. That suggests using the presence or absence of a Si atom at a

5 � 4 lattice site to store a 1 or a 0. This memory can bewritten by

pre-formatting all 5 � 4 sites with ones and then removing Si

atoms with a STM tip where zeros are desired [18,50]. However,

mechanical atom manipulation with a STM would take millions

of years for writing 1 cm2, which makes the writing process

unsuitable for exploring the limits of electronics.

The interesting part is the readout, which can be done

electronically by scanning along a self-assembled track, as

shown in Fig. 7. The bits are located at well-defined lattice

positions, and each bit has exactly the same signal shape. These

features enable sophisticated noise filtering schemes, such as

those used in hard disk technology, the densest storage

technology on the market. By filtering out all signals different
Table 1

Limits of electronics from information theory [46–49]

Conductance per channel [46] G � 2e2/h

Energy to switch one bit [47] E � kBT ln 2

Time to switch one bit t � h/E (E is the energy per bit)

Energy to transport a bit [48] E � kBT(n/c)d (d is the distance

and n is the bit rate)
from the expected shape, one can eliminate an overwhelming

fraction of random noise. In hard disk technology, there is a

figure of merit defined for this purpose:

S

N
¼ 2

p

width� spacing

Jitter2
(1)

A typical figure of merit is 200/1, which yields a raw error

rate of 10�8 after noise filtering. In commercial hard disks, the

error rate is reduced further by many orders of magnitude using

error correction, such as parity check. The same figure of merit

can be determined for the signal from the atomic scale Si

memory in Fig. 7, where a rms noise level of dz = 5 pm is

achieved with a dwell time of 500 ms. The figure of merit comes

out to be about 2000/1, 10 times better than for a hard disk. One

should hasten to qualify this result by the observation that the

encoding process is very different between the two situations.

Hard disks operate with a non-return-to-zero signal, where the
Fig. 7. Readout of the atomic scale memory by a line scan along the chains

(500 ms/point). The lower curve demonstrates the reproducibility of the signal

by subtracting identical Gaussians located at 5 � 4 lattice sites. That is

important for efficient noise filtering. From [45].
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magnetization is either up or down (plus or minus), but zero

only during switching. CDs and DVDs use the same kind of

signal. The atomic silicon memory, however, has zero as

baseline, with a positive pulse for each bit. That resembles the

signals propagating in an optical fiber. Nevertheless, a

quantitative study of the noise limit is able to extract hard

numbers for the limits of the data rate in an atomic scale silicon

memory. These can be compared to the actual noise in Fig. 7

and the data rate achieved there. The two main contributions to

the noise limit are calculated in Ref. [45], i.e., statistical noise

and thermal noise. Their respective spectral densities are

Ss(v) = 2eI and St(v) = 4kBT/R (I is the tunnel current and R is

the tunnel junction resistance). The resulting fluctuations in the

tunneling current are 8 and 1.3 fA Hz�(1/2) for the conditions of

Fig. 7, i.e., I = 0.2 nA, V = 2 V, R = 1010 V, T = 300 K. (The

thermal noise is small, because the tunneling electrons have a

kinetic energy of 2 eV, which is large compared to

kBT = 25 meV.) The actual data in Fig. 7 are 50 times noisier

than the limit due to imperfect electronics (mainly a slow

feedback circuit).

Putting all these results together in Fig. 8 provides insight

into the future of data storage. Density and data rate, the two

key parameters, are plotted on a double-logarithmic scale. Hard

disks have been improving on both fronts. The split into two

branches is due to the different requirements of desktops

(optimized for speed) and mobile devices (optimized for

density). The data point for the atomic silicon memory is

several orders of magnitude higher in density, but even farther

down in data rate. It is interesting to observe that Nature’s way

of storing data in DNA (the green data point) comes out very

close to the atomic memory. Connecting the data points from

hard disks with the atomic memory and DNA, one arrives at the

prediction that the data rate will eventually have to slow down
Fig. 8. Data rate vs. density for hard disks, compared to the atomic Si memory

in Figs. 6 and 7 and to DNA. For densities near the atomic (or molecular) limit,

the data rate is reduced dramatically, due to the small readout signal. The

density limit is determined by a repulsive interaction between adjacent Si atoms,

which limits the unit cell to 5 � 4 = 20 atoms. DNA requires 32 atoms per bit. A

new data point for hard disks has been added to the original figure in Ref. [45]

(yellow), which seems to provide the first sign of a slow-down in the data rate at

high densities. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of the article.)
when the density approaches atomic (or molecular) dimensions

(gray area in Fig. 8). Hard disk technology has evolved further

since Fig. 8 was first published in Ref. [18], as indicated by the

yellow data point. This could be viewed as the first indication of

a slowing data rate. The reason for the slowdown is quite

simple: As the size of a bit shrinks, the readout signal decreases

and a longer integration time is required to detect the bit with

the same signal-to-noise ratio.

The ultimate limits for density and data rate can be

quantified for the atomic silicon memory. The density limit is

determined by the coupling between adjacent bits. For the

Si(1 1 1)5 � 2-Au surface, a unit cell consisting of 5 � 4 = 20

atoms is required to separate adjacent bits. The 5 � 4 lattice, in

turn, is due to a one-dimensional instability of the Fermi surface

at 1/4 filling [35]. Trying to add extra Si atoms onto lattice sites

of the underlying 5 � 2 chain structure is only successful 4% of

the time due to Si–Si repulsion [51]. For comparison, DNA

needs 64 (or 63) atoms to store 2 bits in a base pair, i.e. 32 atoms

per bit. The speed limit is given by the statistical noise, which is

quantified above. With ideal electronics, and choosing only one

data point per bit instead of 10, one could reach the upper end of

the gray area in Fig. 8. This is still much lower than the speed of

hard disks today, which reiterates the prediction of a slowdown

at extreme storage densities. A highly parallel readout will be

required to counter this effect.
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