Electronic Properties of Atomic Wires:
from Semiconductor Surfaces to Organic Chains and DNA




One-dimensional phenomena
Ultimate limit of nanowires, electronics
Single chain of overlapping orbitals (channel)

Fabrication of atomic/molecular wires

Combine spectroscopic methods

- Angle-resolved photoemission
- Two-photon photoemission
- Scanning tunneling spectroscopy

(Filled vs. empty states, real space vs. momentum space)



Physics in one dimension

Elegant and simple

Lowest dimension containing translational motion

Electrons cannot avoid each other

No such thing as an individual electron or hole

Spinons and holons instead



Electrons cannot avoid
each other in 1D

b) £
Delocalized electrons: ﬁ
= Momentum space .
Tomonaga-Luttinger model Spinon

Localized electrons: |
= Real space NS WS
Hubbard model AN




Collective excitations in 1D

Strictly-speaking, one should consider only collective excitations
in 1D, not single-electron energy bands. (I used to ask theorists
how many electrons/atoms are involved but they tended to hedge.)

Spinons and holons are groups of electrons and holes which act
like a spin without charge or a charge without spin.

Can this concept be tested? What identifies spinons vs. holons?
Photons interact mainly with charge. Neutrons probe the bulk.

To get started, study known collective excitations = plasmons!

Lichtenstein,...,Pfntr, PRB 97, 165421 (2018).
Sanna,...,Pfnur, JPCC 122, 25580 (2018).




Limits of electronics from information theory

Conductance/Channel: G=2e4/h-T T1

Energy to switch a bit: E=kgT:In2

Time to switch one bit: t=h/E

Energy to transport a bit: E =kgT-v/c -d



Data storage Magnetic is densest, but still needs 10° Spins/Bit
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Reading and writing single-atom magnetic bits

Ti . . . .
w v == Reading via tunneling magnetoresistance

. Writing via current pulse at the Ho atom
L4

Ho
Fe —
Magnetic state of the Ho from ESR at the Fe
MgO/Ag(100)

ESR signal

Fe (sensor)
1 nm 20.0 205 21.0

Nature 543, 226 (2017). Frequency (GHz)

Natterer et al.,



Futuristic transistor, made of graphene ribbons

Figure 4. Molecular switches
can be corved out of a single
E;{:!phmcu sheat. Here, a four

nzene quantum det {center,
white) is connected to
T'c:lphﬂr‘la electrodes [blue)
through narrew constrictions.
A coplanar graphene side
gote [red) controls charge flow
through the eircuit.

Geim and MacDonald, Physics Today, August 2007

Silicon ribbons instead ?



Self-assembled atom chains on silicon

\

graphitic Si ribbon
Si(111)5x2-Al

m-bonded Si chain
Si(111)2x1
(cleaved)

Si dimers

Si

Conventional wisdom says that t-bonds form only in carbon.

Silicon surfaces break this rule to avoid broken bonds.



S1(111)5x2-Au, found in 1969

BRIT. J. APPL. PHYS. (J. PHYS. D), 1969, SER. 2, VOL. 2. PRINTED IN GREAT BRITAIN

Segregation of gold to the silicon (111) surface
observed by Auger emission spectroscopy
and by LEED

H. E. BISHOP and J. C. RIVIERE

Solid State Division, U.K.A.E.A. Research Group, Atomic Energy Research
Establishment, Harwell

MS. received 21st July 1969

Abstract. A silicon crystal implanted with gold was heated to successively higher
temperatures, reaching a maximum of 1250°c, and its surface examined by Auger
emission spectroscopy (AES) and LEeD at each stage. No recrystallization was
observed until the crystal had been heated to 740 °c, at which point the AES analysis
could be interpreted in terms of the appearance of gold atoms at the surface. At
810°c the Auger peaks from gold were considerably larger than those from silicon,
but decreased progressively thereafter as the temperature was raised until, at over
1000 °c, the differential distribution was indistinguishable from that of clean silicon.
The first LEED pattern observed, at 740 °c, was not the Si(111)-7 pattern, but another
familiar one, the Si(111)-(4/3 x 4/3)-R30° pattern. With increasing temperature, the
ird-order pattern spread over the whole surface and, above 900 °c, was joined by
another, a $th-order pattern, probably based on a domain structure. At the highest

a 1/5™-order pattern



Si(111)5x2-Au, refined structure

The basic structure is 5x1:

3 Au atom chains
Graphitic Si ribbon
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Kwon, Kang, PRL 113, 086101 (2014).

Erwin et al., PRB 80, 155409




A simpler structure:

.\‘\ .‘\‘}.\‘.ﬂ’ Si(557)-Au
\\\\c/ \ PP

M/@\\ .‘\ 7 .‘\‘}.ﬁ‘ﬂ"// Discovered by RHEED:
SSEX . L o) S
M/‘\\\ .\m./ﬂ urf. Sci. 375, 203 (1997)
M\'fﬁ \ ‘!’lf‘\‘\ Calculated structure:

Sanchez-Portal et al.,
PRB 65, 081401 (2002)

Crain, Erwin, et al.,
PRB 69, 125401 (2004)
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X-Ray diffraction:
Robinson et al.,
PRL 88, 096104 (2002)

*Collazo-Davila, Grozea, Marks, PRL 80, 1678 (1998).
Erwin, Weitering, PRL 81, 2296 (1998).



What drives the
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Mapping electrons at surfaces

Angle-resolved photoemission

measures all quantum numbers: E, k,, k,

Fermi surface: 1(ky, Ky)
Band dispersion: I(E, k,)

Phil Anderson: Photoemission data will provide the “smoking gun”
for solving HiTc superconductivity.



Fermi surfaces between 2D and 1D
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Band dispersions of atom chains

Single Chain Double Chain Three Chains
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What about the splitting ?
Prediction: It is magnetic!
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Evidence for a magnetic splitting
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Spin-polarized, angle-resolved photoemission

Okuda et al. PRB 82, 161410(R) (2010).



Various spin splittings

E E
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Non-maghnetic Exchange Splitting  Rashba Splitting
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Rashba (spin-orbit) Hamiltonian: H oc (k x VV) - s



Evidence for Rashba splitting (Ak)

Electron-like Rashba bands (“W?”)

E [eV] | 1‘ | ‘1' Two sets of bands:
T 1x2 back-folded
0.0§ oL direct
02
0.4
L |
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A PN
Hole-like Rashba bands (“M\”)

Barke et al., PRL 97, 226405 (2006).



3D:

2D:

1D:
0oD:

Spin-polarization of broken bonds?

NO

NO

?7?

Yes

Spin-paired electrons in o-bonds

Spin-paired electrons in n-bonds

Isolated broken bond electrons:
P,-center at the Si/SiO, interface,
observed by ESR



Look for isolated
broken bonds
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Focus on the step edge




Si edge atoms with an unpaired electron may
become spin-polarized

Erwin, Himpsel, Nature sl e Aulbach et al., Nano
Comm. 1:58 (2010). N A, N Letters 16, 2698 (2016).




Energy (eV)

Magnetic band structure

Empty minority spin state characterizes polarized edge atoms
(absent for unpolarized edge atoms)
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Two-photon photoemission results J

Biedermann et al., PRB 85, 245413 (2012).



Scanning tunneling spectroscopy of edge states

_d:xj/V A Dright Si step-edge atoms
i v dark Si step-edge atoms
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The high density of states (arrow) is consistent with an
empty minority spin state of polarized edge atoms.
Needs to be tested by local ESR or spin-polarized STM.



1D superlattice at steps below 50K

Atoms? Reconstruction Braun ... PRB 98, 121402(R) (2018).

Charges? Charge density wave Shin ... PRB 85, 073401 (2012).

Spins? Spin density wave Aulbach ... PRL 111, 137203 (2013).
All of the above ? Compare complex oxides.

Ahn, Kang, Ryang, & Yeom, PRL 2005

45 K




Molecular wires from doped polymers
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Electrical measurements of individual molecular wires

SH Attachment to Au electrodes via thiol (SH)
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DNA as (super)-conducting wire ??

« Superconductivity induced by proximity to metallic contacts.

 The hydration shell and the counter-ions conduct.
Without them DNA would degrade.

 Pump-probe measurements find tunneling up to 2 base pairs

and hopping of holes between adenine bases for longer DNA.

20k \ tunneling
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Endres, Cox, Singh, Rev. Mod. Phys. 76, 195 (2004).



Propagation of carriers along a molecular wire

pump - Donor-Bridge-Acceptor
Energy transfer rates
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Duvanel, Grilj, Vauthey, J. Phys. Chem. A 117, 918 (2013).



Spectroscopy of m-chains
A chain of overlapping m-orbitals forms a molecular wire

CHa CHa CHs CHa
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HeG N CHs

S S
CHj3 CHs CHs CHs  (makes tomatoes red)

Lycopene

Beta Carotene
A e N e V2 T g gl N
(makes carrots orange)

Garcia-Lastra et al., J. Phys. Chem. C 120, 12362 (2016)



Energy levels from absorption spectroscopy

ambiguous unique, element-specific
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C 1s Absorption

Transitions from the C1s level into the lowest 7T* (=LUMO)

Experiment
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Wave functions of molecular wires: vibrating strings
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Garcia-Lastra et al., J. Phys. Chem. C 120, 12362 (2016)



« Atomic/molecular wires by self-assembly
« Single chain of overlapping orbitals (=channel)

« Alternating spins or charges at step edges
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