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Consider two conducting spheres, which differ in at least one of (radius,
potential). The first sphere is centered at A with radius AF , and is at potential
4πε0V1; the second sphere is centered at D with radius DE, and is at potential
4πε0V2. The task is to find the force between the two spheres. This problem
is at least 130 years old; Maxwell knew that if two like-charged spheres are
brought close enough together, the force between them is attractive, unless they
are identical in both radius and potential. [1]

The problem will be solved using the method of images. Assume V2 = 0;
this results in no loss of generality (as will be seen). V1 may be thought of as
due to a charge q0 = AF V1, located at A. V2 = 0 is maintained by a charge

p0 = −q0CEAE located at C, such that CD/DE = DE/AD. This charge in turn

induces an image q1 = −p0BFCF , placed at B, where AB/AF = AF/AC, and so
on for an infinite series of image charges, all of those within sphere 1 being of
one sign, and all within sphere 2 of another. A variety of algebraic relations
may be worked out by noting similar triangles.
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1 Positions of Image Charges

The positions of the image charges qn which lie within sphere 1 satisfy

xn+1 =
(s2 −R2

1)xn −R2
2

s2xn −R2
2

, (1)

where R1, R2 are the spheres’ radii, s is the center-to-center distance, and sxn
is the distance between the nth image and the center of sphere 2. Thus x0 = 1.

Equation 1 is a bilinear transformation (also known as Möbius transforma-
tion). Solve for xn by writing

xn+1 =
axn + b

cxn + d
, (2)

where a = s2 −R2
1, b = d = −R2

2, and c = s2, and then consider the matrix

T =

∣∣∣∣ a b
c d

∣∣∣∣ ,
a matrix with eigenvalues and eigenvectors

λ+ ↔
∣∣∣∣ b
d− λ−

∣∣∣∣ , λ− ↔ ∣∣∣∣ b
d− λ+

∣∣∣∣ , λ± =
1

2

(
(a+ d)±

√
(a+ d)2 − 4(bc− ad)

)
.

Then it may be seen that

xn =
Tn11x0 + Tn12
Tn21x0 + Tn22

=
Tn11 + Tn12
Tn21 + Tn22

,

where Tnij is element i, j of the matrix T raised to the nth power. A shortcut to
evaluating this is as follows: construct the matrices

U =

∣∣∣∣ b b
b− λ+ b− λ−

∣∣∣∣ , U−1 =

∣∣∣∣∣ b−λ−
detU

−b
detU

−(b−λ+)
detU

b
detU

∣∣∣∣∣ , Λ =

∣∣∣∣ λ− 0
0 λ+

∣∣∣∣ ,
which satisfy T = UΛU−1. Then Tn = UΛnU−1 since UU−1 = I. This may
then be evaluated without too much trouble, so that after some algebra

xn = 1−
λ+λ

n+1
− − λ−λn+1

+

b(λn+1
+ − λn+1

− ) + λ+λ
n+1
− − λ−λn+1

+

= 1− R2
1

λn+1
+ −λn+1

−
λn
+−λn

−
+R2

1

.

Here it is convenient to make the substitution

coshα =
s2 −R2

1 −R2
2

2R1R2
,

so that λ± = R1R2(coshα± sinhα). Then the helpful identity

(coshα± sinhα)n = coshnα± sinhnα

can be used to write

xn =
R2 sinh (n+ 1)α

R2 sinh (n+ 1)α+R1 sinhnα
.

This has the limit x∞ = R2
2/(R

2
2 + λ−).
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2 Magnitudes of Image Charges

The recursive relation between the successive image charges in sphere 1 may be
written in two different ways:

qn+1 =
s2(1− xn+1)−R2

1

R1R2
qn ; qn+1 =

R1R2

s2xn −R2
2

qn,

which allows a second-order difference equation to be written,

1

qn+1
+

1

qn−1
=
s2 −R2

1 −R2
2

R1R2

1

qn
= 2 coshα

1

qn
. (3)

Observe that if zn ≡ Kenκ, then the difference equation zn+1 − kzn + zn−1 = 0
is satisfied if eκ = (k ±

√
k2 − 4)/2. Comparing this with Eq.(3), we are led to

the following assignments:

un ≡
1

qn
, eκ+ = coshα+ sinhα , eκ− = coshα− sinhα ,

and to the general solution for un,

un = Aenκ+ +Benκ− = (A+B) coshnα+ (A−B) sinhnα ,

where A and B are determined from the initial conditions, ie the values of q0
and q1. Solving for A and B via

u0 = A+B =
1

q0
, u1 =

s2 −R2
2

R1R2
u0 = (A+B) coshα+ (A−B) sinhα

leads to
un =

u0
R2 sinhα

[R2 sinh (n+ 1)α+R1 sinhnα] ,

where use has been made of sinh (n+ 1)α = sinhnα coshα + coshnα sinhα.
The total charge on sphere 1 is therefore

Q1 =

∞∑
n=0

qn = q0 R2 sinhα

∞∑
n=1

1

R2 sinhnα+R1 sinh (n− 1)α
.

In order for sphere 2 to have zero potential, as was assumed at the beginning,
it must have a non-zero charge, which is found by summing the values of the
image charges pn = −qnR2/sxn. Eliminating sxn leads to a difference equation
for pn:

qn+1 =
R1R2qn
s2xn −R2

2

→ − 1

pn
=

R1

sqn+1
+
R2

sqn
.

After some algebra this simplifies to

− 1

pn
=

1

q0

s sinh(n+ 1)α

R2 sinhα
,
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which in turn leads to an expression for the total charge on sphere 2,

Q2 =

∞∑
n=0

pn = −q0R2 sinhα

s

∞∑
n=1

1

sinhnα
.

Similar expressions for the charges that develop when the potential of sphere 1 is
held to zero while the potential of sphere 2 is changed from zero are constructed
by exchanging R1 and R2.

3 Electrostatic energy

Capacitance is defined by the equation Q = CV . In a system with multiple
conductors, this becomes a matrix equation:∣∣∣∣ Q1

Q2

∣∣∣∣ =

∣∣∣∣ c11 c12
c21 c22

∣∣∣∣ ∣∣∣∣ V1V2
∣∣∣∣ .

The elements of the capacitance matrix are just the charges that develop on
the spheres when one of them is held to zero potential and the other is held to
a potential of 1, which have been found already. Explicity:

c11 = 4πε0R1R2 sinhα

∞∑
n=1

1

R2 sinhnα+R1 sinh (n− 1)α
,

c12 = c21 = −4πε0R1R2 sinhα

s

∞∑
n=1

1

sinhnα

c22 = 4πε0R1R2 sinhα

∞∑
n=1

1

R1 sinhnα+R2 sinh (n− 1)α
.

Thus far is in Ref. [2]. The capacitance matrix may be inverted, giving the
elastance matrix, which is used to find the potentials, if the charges are known:∣∣∣∣ V1V2

∣∣∣∣ =

∣∣∣∣ e11 e12
e21 e22

∣∣∣∣ ∣∣∣∣ Q1

Q2

∣∣∣∣ ,
where the elastance matrix is the inverse of the capacitance matrix,

e =

∣∣∣∣ c22
detC

−c12
detC−c21

detC
c11

detC

∣∣∣∣ .
The energy of this two-sphere system of conductors (for which e12 = e21) is

E =
1

2

∑
i

QiVi =
1

2

(
e11Q

2
1 + 2e12Q1Q2 + e22Q

2
2

)
.

If the charges on the spheres have opposite sign, the energy is a monotonically
increasing function of the distance between the centers of the spheres, indicating
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an attractive force at all sphere separations, as expected. However, if the charges
on the spheres have the same sign, the energy increases as the spheres are
brought together until a maximum is reached, and decreases as the spheres are
brought still closer. This indicates that, at some critical separation sc, the two
spheres are in a position of unstable equilibrium, and that if they approach
closer than this, the force between them will be attractive.

4 Case R1 = R2

If R1 = R2 ≡ R the elements of the capacitance matrix can be expressed using
Lambert series, L(x) =

∑∞
n=1 x

n/(1− xn):

c11 = c22 = 4πε0R sinhα
2R

s

(
L(e−α/2)− 2L(e−α) + L(e−2α)

)
, (4)

c12 = c21 = −4πε0R sinhα
2R

s

(
L(e−α)− L(e−2α)

)
(5)

where use has been made of the identities [3]

∞∑
n=1

1

sinhnα
= 2

(
L(e−α)− L(e−2α)

)
, (6)

∞∑
n=1

1

sinh(n− 1
2 )α

= 2
(
L(e−α/2)− 2L(e−α) + L(e−2α)

)
. (7)

The location of the critical distance sc for R1 = R2 is a function of the
charge ratio Q2/Q1, as shown in Fig. 1. If the charges on the two spheres are
equal, the critical separation sc = 2R, indicating that an attractive force will
never be observed. As the charge ratio increases from 1, the critical distance
monotonically increases (note: the critical distance for Q2/Q1 < 1 is not shown
in Fig. 1).

This may be qualitatively understood by the following argument. If the
charges on the two equal-sized spheres are not equal, then as the spheres are
brought closer together, the charge distribution on each sphere will distort. The
sphere with larger charge will cause an oppositely-charged area to appear on the
nearest point of the sphere with lesser charge, but will not itself develop such
an area. As the spheres are brought still closer, the attractive force due to
this oppositely-charged portion grows faster than the repulsive force due to the
remaining portion of the sphere, because the oppositely-charged portion is closer
to the other sphere. If the two spheres have equal charges, then by symmetry
the charge densities on the nearest points of the spheres will have the same sign,
the above argument fails, and the force remains repulsive.

After the spheres touch, the charges on the two spheres equalize, and the
force is therefore repulsive. This sudden change from attractive to repulsive
force may be observed using pith balls hanging from strings.
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Figure 1: Plot of critical distance for equal-sized spheres, in units of sphere
radius, as a function of Q2/Q1, for 1 ≤ Q2/Q1 ≤ 100.

References

[1] J.C. Maxwell, An Elementary Treatise on Electricity (Clarendon
Press, Oxford, 1888), 2nd. ed., p. 84-86 (§103-104), available online at
<http://books.google.com/books?id=C0dWAAAAMAAS&Source=gbs ViewAPI>

[2] W.R. Smythe, Static and Dynamic Electricity (McGraw-Hill, New York,
NY, 1950), 2nd ed., pp. 118-121.

[3] J.M. Borwein and P.B. Borwein, Pi and the AGM(Wiley-Interscience, New
York, 1987), 1st ed., pp 91-92.

6


