Overview of The Physics of Running

Jim Reardon
UW Physics Department/Wisconsin Track Club Chaos and Complex Systems Seminar

May 3, 2005

Overview of The Physics of Running

1. Runners
2. Muscle characteristics
3. Fundamental parameters
4. Cross-species comparisons
5. Passive Dynamic Walking Robots
6. Conclusions

Runner \#1: Paula Radcliffe

Runner \#2: Haile Gebrselassie

Mechanical Work W

$\vec{F} \quad$ work $=$ force \times distance
(m) $\frac{d x}{1}$

$$
\begin{aligned}
& d W=\vec{F} \cdot d \bar{x} \\
& W=\int \vec{F} \cdot d \bar{x}
\end{aligned}
$$

Agrees with common-sense definition of "work"-lifting things takes work
Disagrees with common-sense definition of "work"-holding things in place doesn't take work

Vertebrate and Invertebrate Muscle

Clam Muscle: when tensed, "sets" in place. Tension can be maintained for hours. Slow.

From International Wildlife Encyclopedia, Vol 4, Marshall Cavendish, 1969
Vertebrate Muscle: Does not "set" when tensed. Fast.

Vertebrate Muscle

Cross-section of cat tibialis anterior muscle, showing muscle fibers belonging to the one motor unit (Roy et al,, Muscle And Nerve, I8, II87 (I995))

Normal activity: motor units fire independently at $5 \mathrm{~Hz}-\mathrm{-30Hz}$

Advantages: speed, redundancy, stiffness, stability
Disadvantages: fatigue, heat generation

Heat/Work Ratio in Runners is about 4

There does not exist a quantitative model relating muscle activity to use of chemical energy from food.

Heat/work estimated from measurements of gas exchange, temperature and cooling rate, force measurements...

How much heat is due to "friction" between motor unit fibers?

Chaos in support muscle?

Normal activity: motor units fire independently at $5 \mathrm{~Hz}--$ 30 Hz

Fatigued muscle: oscillations visible at $<5 \mathrm{~Hz}$ ("sewing machine leg'). Period doubling?

Elite Marathon Runners are Limited by Heat Dissipation

Figure 4.6 Predicted maximum running speeds that athletes of different masses can sustain in hot environmental conditions ($35^{\circ} \mathrm{C} ; 60 \%$ relative humidity [Rh]).

From Noakes, Lore of Running 4th ed., 2003

Heat Dissipation Depends on Scale

Size of runner ~L
Rate of heat generation \sim working muscle volume $\sim L^{3}$
Rate of heat loss (evaporation of sweat, wind) ~ surface area~L2

As body scale L increases, runners have more trouble staying cool.
Smaller runners do better in extreme heat than larger runners.

Athens 2004 Women's Olympic Marathon: 35 C

Galileo's Jumping Argument (1638)

- Size of Animal = L
- Cross-sectional area of muscle $\sim \mathbf{L}^{2}$

- Force ~ cross-section
- Maximum change in length of muscle $\sim \mathbf{L}$
- Work $=$ force x distance $\sim \mathbf{L}^{\mathbf{3}}$
- Weight \sim volume $\sim \mathbf{L}^{3}$
- Jump height= $\mathbf{c} \times($ Work $) /($ Weight $)$
--> Independent of Animal Size!

Human parameters from Physical Arguments
 (Barrow \& Tipler, c. 1985)

The fundamental constants of quantum electrodynamics, plus G :

$$
\begin{aligned}
& c=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \hbar=1.05 \times 10^{-34} \mathrm{Js} \quad \text { "h-bar" } \\
& G=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2} \\
& \alpha=\mathrm{e}^{2} / 4 \pi \mathrm{e}_{0} \hbar \mathrm{c}=\mathrm{I} / 137.04 \\
& \beta=\mathrm{m}_{\mathrm{e}} / \mathrm{m}_{\mathrm{p}}=1 / 1836.12 \\
& \mathrm{~m}_{\mathrm{e}}=9.109 \times 10^{-31} \mathrm{~kg}
\end{aligned}
$$

the quantum of angular momentum
" the gravtational constant"
" the fine - structure constant" ratio of electron to proton mass mass of electron

Size of Atoms

Size of atoms set by Uncertainty Principle and Virial Theorem:

$$
\Delta p \Delta x \geq \hbar \quad K . E=-\frac{1}{2} P \cdot E
$$

Using

$$
\begin{gathered}
\text { K.E. }=p^{2} / 2 m_{e}, P . E .=-Z e^{2} / 4 \pi \varepsilon_{0} r, r \sim \Delta x \\
r_{0} \sim \frac{\hbar}{c} \frac{1}{Z \alpha m_{e}}=5 \times 10^{-11} \mathrm{~m}
\end{gathered}
$$

Z is the nuclear charge on the atom.

Density of Matter

compare $\quad \frac{\rho_{U-238}}{\rho_{H-1}}=\frac{18.95 \mathrm{~g} / \mathrm{cm}^{3}}{0.076 \mathrm{~g} / \mathrm{cm}^{3}}=250$

Binding Energies of Atoms

Binding Energy=-(P.E.+K.E.)=-I/2 P.E.

Binding Energy $=\frac{1}{2} \frac{Z e^{2}}{4 \pi \varepsilon_{0} r_{0}}=\frac{1}{2} m_{e} Z^{2} \alpha^{2} c^{2}$

$$
=13.6 \mathrm{eV} \times \mathrm{Z}^{2} \equiv \mathrm{IRy}
$$

Liquid--Gas Transition Temperature

Constant T and V: Minimize Helmholz Free Energy U-TS U=energy, T=temperature, $\mathrm{S}=$ entropy

Can do this by making U large and negative (liquid) or by Making S large and positive (gas).

Expect liquid gas transition to happen at T where U ~ TS

$$
\begin{aligned}
& U / N \sim I R y, S / N=k_{b}\left(\log n_{q} / n+5 / 2\right) \sim 15 k_{b} \\
& I R y \sim 15 k_{b} T_{\mathrm{lg}} \rightarrow T_{\mathrm{lg}} \sim 10,000 K
\end{aligned}
$$

True (no liquids persist for $T>T_{1 g}$) but overestimates $T_{\text {life }} \ldots$

Vibrational Energies of Molecules

Imagine atoms and molecules are held together by springs.
Frequency of oscillation $\omega \sim \frac{1}{\sqrt{m}}$
Energy associated with atomic vibrations \sim I Ry
Energy associated with molecular vibrations $E_{m} \sim \sqrt{\frac{m_{e}}{m_{p}}} R y$

Ansatz: Life Exists Due To Interplay Between Molecular Binding Energies and Vibrations
 $$
k_{b} T_{\text {Iffe }} \sim \sqrt{\frac{m_{e}}{m_{p}}} R y \sim 250 \mathrm{~K}
$$

Note: this is very nearly an ad hoc argument

Gravity I

"Gravitational Fine Structure Constant":

$$
\alpha_{G} \equiv \frac{G m_{p}^{2}}{\hbar c}=\frac{G \beta^{2} m_{e}^{2}}{\hbar c} \sim 5.9 \times 10^{-39}
$$

Gravity is weaker than electromagnetism by a factor:

$$
\frac{\alpha_{G}}{\alpha}=8.1 \times 10^{-37}
$$

Gravity II: Planets

Take N atoms of atomic number A and stick them together. They will end up in a lump of size R.
The gravitational potential energy of the lump is:

$$
P \cdot E_{\cdot G}=-\frac{G M^{2}}{R} \sim-\frac{G\left(N A m_{p}\right)^{2}}{R}
$$

Assume lump has atomic density ρ_{0}, so that $M \sim \frac{4 \pi}{3} R^{3} \rho_{0}$.
Then escape velocity at surface is:

$$
v_{\text {esc }}=\sqrt{\frac{8 \pi}{3} G R^{2} \rho_{0}}
$$

Life Needs Atmosphere

Life requires an atmosphere composed of something other than Hydrogen. Equate $\mathrm{v}_{\text {esc }}$ and thermal velocity of Hydrogen at $\mathrm{T}_{\text {life }}$:

$$
v_{\text {esc }}=\sqrt{\frac{8 \pi}{3} G R^{2} \rho_{0}} \approx \sqrt{\frac{k_{b} T_{\text {life }}}{m_{p}}}
$$

Solving for the planetary radius R :

$$
R_{p} \sim \sqrt{\frac{3 k_{b} T_{\text {Ilfe }}}{8 \pi G \rho_{0} m_{p}}}=5 \times 10^{3} \mathrm{~km}
$$

Compare $\mathrm{R}_{\text {earth }}=6.4 \times 10^{3} \mathrm{~km}$.

Surface Gravity

The acceleration due to gravity at the surface of the planet can be calculated as:

$$
a_{g}=\frac{G M}{R^{2}}=\frac{4 \pi}{3} G R_{p} \rho_{0} \sim 2 \mathrm{~m} / \mathrm{s}
$$

This is smaller than the observed $\mathrm{a}_{\mathrm{g}} \sim 10 \mathrm{~m} / \mathrm{s}$. Using the observed average earth density $\rho_{\text {Earth }} \sim 5.5 \mathrm{~g} / \mathrm{cm}^{3}$ gives $\mathrm{a}_{\mathrm{g}} \sim 8 \mathrm{~m} / \mathrm{s}$

The Human Condition

Define human size L_{h} : we don't break if we fall down
Energy lost by falling down:

$$
E_{f d}=\frac{m_{h} a_{g} L_{h}}{2}=a_{g} \rho_{0} L_{H}^{4}
$$

Energy required to cause excessive molecular vibration along fracture site:

$$
E_{\text {frac }}=\frac{k_{b} T_{\text {life }}}{N_{m}}
$$

Where N_{m} is the number of molecules bordering the fracture:

$$
N_{m}=\left(\frac{m_{H}}{m_{p}}\right)^{2 / 3}=\left(\frac{\rho_{0} L_{H}^{3}}{m_{p}}\right)^{2 / 3}
$$

Deduce $L_{H} \sim 1.5 \mathrm{~cm}$. Life is rugged!

The end of physics...

This could represent the size limit for land-dwelling creatures without skeletons (ie parts that don't boil around 250 C).

However, other authors (Press, 1983) have deduced a scale size of a few cm using different arguments.

Conclusions: Suspect any land-dwelling life we encounter will have evolved under a gravity similar to ours. Perhaps such life will be our size (or smaller).

To go further, need detailed knowledge of living beings.

Energy Cost of Locomotion $\sim \mathrm{m}^{-1 / 3}$

Figure 5.20 The cost of transport for animals of various types. To move a given distance small animals, regardless
sizes and leg numbers, from elephants to centipedes. [Full and Tu 1991]
of type, consume more oxygen per unit mass than larger animals. This relationship holds over a wide range of body
(data from Full and Tu, graph scanned from Animal Physiology, K. Schmidt-Nielsen, 5th ed., 1997)

Universal Cross-species Energy Cost is $0.75 \mathrm{~J} / \mathrm{kg} / \mathrm{L}$

Define animal body length: $\quad L=\left(\frac{3 m}{4 \pi \rho}\right)^{1 / 3} \propto m^{1 / 3}$

Then the data of Full and Tu predict that the energy cost of moving one body length is a constant across species:

$$
E_{L} \approx 0.75 \mathrm{~J} / \mathrm{kg}
$$

Note also that different species move at different speeds...

Energy Cost of Running in Humans
 $E_{k m} \approx 1 \mathrm{kcal} / \mathrm{kg} / \mathrm{km}$

You burn the same number of calories per kilometer, no matter how fast you run (about $4 / 3$ the number predicted by the data of Full and Tu).

The Difference Between Running and Walking

Walking

Center of mass is highest when directly over support leg

Running

Center of mass moves in parabolic arcs

Center of mass is lowest when directly over support leg

Energy Cost of Running Ansatz

Change in height of center of gravity during one stride: $\boldsymbol{\delta}$
Gravitational potential energy associated with this:
$m g \delta$
Stride length: $\quad \gamma L$

$$
m g \delta
$$

Energy cost of running one body length:

Constraint on Stride Dimensions

It's as if $\quad E_{L} \approx 0.75 \mathrm{~J} / \mathrm{kg} \sim \frac{g \delta}{\gamma}$

$$
\underline{\delta} \sim 7.5 \mathrm{~cm}
$$

$$
\gamma
$$

You have to go 7.5 cm in the air if you want to cover your body length in one step (ie small animals appear to 'hop').

Summary of Cross-Species
 Comparison

It is possible to understand the cross-species comparison data of Full and Tu as well as the strictly human data from Margaria by the ansatz that land-dwelling animals move horizontally for free but expend energy to move their centers of mass up and down.

There may be other explanations, and this one doesn't explain why small animals ought to have to hop.

A Do-it-yourself Passive Dynamic Robot

http://ruina.tam.cornell.edu/research/topics/locomotion_and_robotics/papers/tinkertoy_walker/tinkertoy_walker.mpg

Passive-Dynamic Walking Robots

 T. McGeer, 1990"Passive Dynamic": no motors, no control system, no feedback loops

All motion a consequence of Newton's laws, including the effects of gravity and inertia (can be well-predicted by numerical integration of simple equations)

Dynamic Stability Need Not Require a Stable Equilibrium

Equilibrium: $\quad \frac{\mathbf{d}}{\mathbf{d t}}=\mathbf{0}$

Stability: small perturbations ε die away

$$
\varepsilon(t \rightarrow \infty)=0
$$

Dynamic Stability: $\quad F(t+\tau)=F(t)$ (for all F , for some τ)

Anthropoid Passive-Dynamic Walking Robots S. Collins et al., 2001

Energy source: gravitational potential energy (walking down slope)

Major energy loss: heel strike

Cornell Human Power Lab Autonomous Biped. Walks on level ground using 11 watts total. Powered by toe-off triggered by heel-strike. Steve Collins (\&Andy Ruina) JulyAug 2003.

Wisdom from Robots

Heel strike is energetically costly. Limb swinging is energetically cheap.

Models tend to show decreased cost of transport with decreased stride length and increased stride frequency (beyond the point of reason).

Practical Insights

I. Minimize up and down motion

Humans can do this by shorter stride/higher cadence than the average runner exhibits.
2. Minimize energy loss at heel strike. Run quietly!

Practical Questions

I. The mysterious factor of 4. There is no explanation for why humans (and perhaps vertebrates) exhibit a heat/work ratio of 4. Is this trainable? (Small change in this number 4 would cause large change in race times).
2. Does high mileage lead to faster race times by decreasing "bobble" (aka $\delta / \alpha L$ ratio)?
3. Successful runners without exception have cadences of 180 steps/minute or above during races. To what extent is optimal cadence trainable?

Impractical Questions

I. Why do no multicellular living creatures feature rotary locomotion? (eg birds that look like helicopters, fish with propellors, or land-dwelling creatures on wheels).
2. Does there exist a gradient for which the optimal bipedal descent strategy is a skip rather than a run?
3. Would we expect to be able to compete against alien life in a 100 m dash, or marathon?

