Research Article

Probing the Organic–Mineral Interface at the Molecular Level in Model Biominerals
Rebecca A. Metzler, Il Won Kim, Katya Delak, John Spencer Evans, Dong Zhou, Elia Beniash, Fred Wilt, Mike Abrecht, Jau-Wern Chiou, Jinghua Guo, Susan N. Coppersmith, and P. U. P. A. Gilbert

Langmuir, 2008, 24 (6), 2680-2687 • DOI: 10.1021/la7031237
Downloaded from http://pubs.acs.org on January 7, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 3 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML
Probing the Organic−Mineral Interface at the Molecular Level in Model Biominerals

Rebecca A. Metzler, Il Won Kim, Katya Delak, John Spencer Evans, Dong Zhou, Elia Beniash, Fred Wilt, Mike Abrecht, Jau-Wern Chiou, Jinghua Guo, Susan N. Coppersmith, and P. U. P. A. Gilbert*

Department of Physics, University of Wisconsin—Madison, 1150 University Avenue, Madison, Wisconsin 53706, Center for Biomolecular Materials Spectroscopy, Laboratory for Chemical Physics, New York University, 345 E. 24th Street, New York, New York 10010. Department of Biomineralization, The ForSyde Institute, 140 The Fenway, Boston, Massachusetts 02115-3799. Department of Molecular and Cell Biology, University of California—Berkeley, Berkeley, California 94720-3200. Synchrotron Radiation Center, 3731 Schneider Drive, Stoughton, Wisconsin 53589. Department of Applied Physics, National University of Kaohsiung, Kaohsiung 81148, Taiwan, and Advanced Light Source, Lawrence Berkeley National Lab, Berkeley, California 94720

Received July 23, 2007

It is widely known that macromolecules, such as proteins, can control the nucleation and growth of inorganic solids in biomineralizing organisms. However, what is not known are the complementary molecular interactions, organization, and rearrangements that occur when proteins interact with inorganic solids during the formation of biominerals. The organic−mineral interface (OMI) is expected to be the site for these phenomena, and is therefore extraordinarily interesting to investigate. In this report, we employ X-ray absorption near edge (XANES) spectromicroscopy to investigate the electronic structure of both calcium carbonate mineral crystals and polypeptides, and detect changing bonds at the OMI during crystal growth in the presence of polypeptides. We acquired XANES spectra from calcium carbonate crystals grown in the presence of three mollusk nacre-associated polypeptides (AP7N, AP24N, n16N) and in the presence of a sea urchin spicule matrix protein, LSM34. All these model biominerals gave similar results, including the disruption of CO bonds in calcite and enhancement of the peaks associated with C=H bonds and C=O bonds in peptides, indicating ordering of the amino acid side chains in the mineral-associated polypeptides and carboxylate binding. This is the first evidence of the mutual effect of calcite on peptide chain and peptide chain on calcite during biomineralization. We also show that these changes do not occur when Asp and Glu are replaced in the n16N sequence with Asn and Gln, respectively, demonstrating that carboxyl groups in Asp and Glu do participate in polypeptide−mineral molecular associations.

Introduction

Biomineralization, or the formation of inorganic phases by living organisms, is a widespread and important phenomenon in Nature.1−3 Biominerals serve a number of useful purposes in organisms, such as mechanical support and protection, gravity and magnetic perception, light amplification and transmission, and/or metabolic energy generation. The diversity in function is also matched by the diversity in form: over 60 different forms and/or metabolic energy generation. The diversity in function is coexists.8 Perhaps the ultimate and most realistic approach would be to analyze the interplay between organic and inorganic processes lead to the formation of composite structures that incorporate macromolecules on or within the mineral phases themselves. Materials scientists are striving to understand how to synthesize composite materials that outperform their individual constituents, while in Nature such remarkable materials have evolved since the Cambrian period, for more than 500 million years.4 A striking example is nacre, or mother-of-pearl: this is a layered composite of proteins and aragonite, 3000 times more resistant to fracture than aragonite alone.5 Sea urchin skeletal elements, comprising single calcite crystals of intricate morphology, are another example of materials design strategies by Nature.6,7 Although progress is being made in understanding how macromolecules control biomineral formation, the underlying mechanisms responsible for the formation of most bio-mineralized structures remain elusive. The key to exploiting the materials construction strategies employed by biomineralizing organisms is to understand what occurs at the interface where biopolymers and inorganic solids coexist.8 Perhaps the ultimate and most realistic approach would be to analyze the interplay between organic and inorganic components in situ within viable biomineralized structures.

However, given the complexity within biomineralizing tissues or organisms, the ability to distinguish and map individual events or participants is understandably difficult at the present time. An alternative approach is to utilize defined model biomineralizing systems containing a limited number of molecular participants under controlled conditions. This approach has been used to examine the participation of a number of polypeptides within biomineral nucleation and crystal growth assay systems. Although limited in their scope, such in vitro systems provide much needed information on the role of proteins within mineralizing systems, and can serve as a stepping stone toward more complex model systems that possess larger numbers of molecular participants.

Our premise is that the involvement of organic macromolecules at mineral interfaces is actually a two-way street: there is interplay between the macromolecular organic components and the mineral, and both are perturbed during the mineralization process. To verify or refute this premise, one needs to analyze molecular features at the organic-mineral interface (OMI). Simple biomimetic model systems, composites of only one kind of organic molecule and one mineral phase, can be quantitatively analyzed, and most importantly the organic and the mineral components of the OMI can be analyzed simultaneously. Here, we present a study of the OMI in model biomineralizing systems, wherein we describe the early stages of in vitro calcite mineralization under the influence of three mollusk nacre protein-derived sequences (AP7N, AP24N, n16N, each 30 AA; Figure 1) and one protein isolated from sea urchin spicule elements (LSM34, 334 AA; Figure 2).

The rationale for selecting the three 30 AA peptides is that these are the binding parts of the corresponding proteins AP7, AP24, and n16; they affect the morphology of calcite in vitro, and do so similarly to the parent proteins, as documented by extensive atomic force microscopy (AFM) and solid-state nuclear magnetic resonance (NMR) studies.

To examine the molecular features present at the OMI in the organic-mineral systems, we used X-ray absorption near-edge structure (XANES) spectroscopy, a tool sensitive to the electronic and molecular structure. Although XANES cannot provide the complete molecular or mineral three-dimensional structure that diffraction yields, it is exquisitely sensitive to the formation or disruption of chemical bonds, does not require the sample to be crystalline, and can analyze both sides of the OMI in these model systems.

We adopted a building-block approach, in which we first analyzed with XANES spectroscopy each of the polypeptides individually, then pure calcite crystals, and finally calcite crystals grown in vitro from solution in the presence of these polypeptides. We find that, in AP7N, AP24N, n16N, and LSM34 polypeptide systems, new spectral features appear in the combined systems, which differ from the two separate components and from their linear combination. We observe one new peak in XANES spectra, while two other peaks associated with calcite are disrupted by peptide or protein binding. We conclude that, at the OMI, calcite CO bonds are affected by polypeptides, while rearrangements of the peptide or protein conformation lead to more ordered side chains, in better alignment with the polarization of the illuminating soft-X-rays. These effects are less prominent for Asn, Gln-substituted n16N polypeptide. Collectively, our data suggest that the organic and mineral components do influence one another.

The tools and concepts generated by these experiments may ultimately be useful for elucidating authentic biomineralization processes.

Materials and Methods

Peptide Synthesis and Purification. Free amino termini, C-amide-capped peptides were synthesized and purified to mimic their attachment to the mineral. The synthesis, purification, and charac-
Figure 2. Primary sequence of LSM34. This protein also contains Asp and Glu (17 residues, highlighted in yellow), as well as Arg (18 residues, highlighted in magenta).
Results

Calcium carbonates are major components of the biomineralized crustacean and mollusk shells, avian eggshells, otoliths, statoliths, coccoliths, as well as the endoskeleton of echinoderms. Their simple lattice structures and controllable mineralization processes in vitro make them interesting model system for examining what occurs at the OMI when polypeptides and proteins are present. Hence, they represent an excellent starting point for examining the interplay between inorganic minerals and polypeptides, such as AP7N, AP24N, and n16N, which modulate the growth and morphology of calcite crystals in vitro (Figure 3). 11,14–16

In Supporting Information Figures S1–S4, we report lower-magnification scanning electron microscopy (SEM) images of these samples, to show that the majority of crystals have similar morphologies; thus, the ones analyzed by XANES spectroscopy were all 100 μm. Lower-magnification SEM images of the same samples are presented in supporting figures S1–S4.

minimum of five different crystals. The results presented are therefore representative of a larger body of data.

carbonates”. The only peak dissimilar in surface and bulk calcite is at 288 eV, and this peak is likely due to surface reconstruction or termination.

Results

Calcium carbonates are major components of the biomineralized crustacean and mollusk shells, avian eggshells, otoliths, statoliths, coccoliths, as well as the endoskeleton of echinoderms. Their simple lattice structures and controllable mineralization processes in vitro make them interesting model system for examining what occurs at the OMI when polypeptides and proteins are present. Hence, they represent an excellent starting point for examining the interplay between inorganic minerals and polypeptides, such as AP7N, AP24N, and n16N, which modulate the growth and morphology of calcite crystals in vitro (Figure 3). 11,14–16

In Supporting Information Figures S1–S4, we report lower-magnification scanning electron microscopy (SEM) images of these samples, to show that the majority of crystals have similar morphologies; thus, the ones analyzed by XANES spectroscopy are representative.

Interestingly, AP7N and AP24N, which exhibit unfolded, conformationally labile structures in solution, generate very similar blocking effects on calcite crystal growth, but are kinetically different, with AP24N exhibiting enhanced activity over AP7N. 9,11 On the other hand, n16N affects calcium carbonate growth and morphology in a manner that is strikingly different from either AP7N or AP24N, 11,15,17 and assembles into β-strand dimers under in vitro mineralization conditions. 15 Hence, these sequences can provide us with comparative data regarding polypeptide–mineral associations and structure.

In Figure 4, we present total electron yield (TEY) and fluorescence yield (FY) spectra of geologic calcite, and TEY of synthetic calcite. Fluorescence yield is bulk-sensitive, while TEY is only sensitive to the surface (3 nm at the carbon edge). The two TEY spectra from geologic and synthetic calcite are very similar, ruling out the possibility that the spectral variations reported below are due to synthetic calcite growth conditions or contamination. FY was done to confirm that all peaks observed in the TEY spectrum of geologic and synthetic calcite are indeed due to the calcite structure and not to its surface states or contamination. The results are further validated by peak fitting, as reported in Supporting Information Figure S5 and Table S1. The main peaks present in calcite XANES spectra are those due to the C1s → π* and C1s → α* of the CO bonds. These two peaks, at 290.3 and 301.5 eV, respectively, are expected from the crystal structure and the chemical bonds present in bulk calcite, and are present in calcite, aragonite, and dolomite. Other less intense peaks at 295 and 289 eV are present both in aragonite and in calcite. These are also associated with the CO bonds and are part of a rich C1s → π* manifold. Their polarization dependence coincides with that of the main α* peak at 301.5 eV. 28 The other calcite peak at 288 eV is not polarization-dependent, and its origin is unknown. We note that this peak is absent from the FY bulk spectrum, suggesting that this is a surface state. Although peaks at this energy in proteins and peptides are assigned to C=O in the peptide bond, in pure, clean calcite such a peak was not expected. This peak cannot be due to surface contamination, as in the synthetic calcite there were no proteins or peptides in solution, and in geologic calcite all traces of protein were removed by thorough cleaning, as shown by the disappearance of the peak at 285 eV. The peak at 288 eV is therefore likely due to calcite surface reconstruction or termination. Furthermore, the similarity of geologic calcite and negative control synthetic calcite rules out the possibility that the peak intensity

Figure 3. SEM images of calcium carbonate crystal grown on Kevlar threads in the presence of (A) negative control (no peptide added); (B) AP24N; (C) AP7N; (D) n16N. Assay peptide concentrations were all 100 μM. Notice the dramatic morphological changes introduced by the peptides in the growth solution. Scale bar = 10 μm. Lower-magnification SEM images of the same samples are presented in supporting figures S1–S4.

Figure 4. Comparison of XANES spectra acquired in total electron yield (TEY) and fluorescence yield (FY) on geologic calcite, and negative control synthetic calcite as in Figure 3A. TEY is surface-sensitive while FY is bulk-sensitive. All peaks present in both spectra are associated with the bulk crystal structure of calcite. Notice the similarity of all relevant peaks labeled “π* CO carbonates” and “α* CO carbonates”. The only peak dissimilar in surface and bulk calcite is 288 eV, and this peak is likely due to surface reconstruction or termination.

variations observed below are due to adsorption of contaminants during synthetic crystal growth, and can only be due to OMI effects.

In comparison to calcite alone, the XANES spectrum for calcite crystals grown \textit{in vitro} on Kevlar threads in the presence of AP7N, AP24N, and n16N is dramatically affected (Figures 5, 6, and 7). The peptide spectra exhibit the well-known π^* peak at 285 eV, due to the C=O double bonds present in the His, Phe, Trp, and Tyr residues (H, F, W, Y, highlighted in cyan in the sequences shown in Figure 1). They also all exhibit the π^* peak at 288 eV, due to the C=O double bond present in all peptide bonds,29 as well as the carboxyl groups of Asp and Glu side chains. The peak at 289 eV, present with varying intensities in all spectra, is assigned to the C=O π^* resonance, present only in Arg (R).30

XANES spectra obtained for the peptide–calcite crystals exhibit distinct differences, compared with the two spectra of the separate components. Notice in particular that two peaks at 295 and 298 eV are prominent in calcite but are disrupted in AP24N-modulated calcite. Another peak at 287 eV, not originally present in either AP24N or in calcite, appears in AP24N-modulated calcite. All three peaks arise from C1s $\rightarrow \sigma^*$ transitions and are less studied in the field of carbon XANES spectroscopy. The peak at 287 eV is well-known to correspond to the C–H single bond,30–32 while the other two σ^* peaks in calcite are due to CO bonds.

\begin{figure}[h]
\centering
\includegraphics[width=0.45\textwidth]{figure5.png}
\caption{Comparison of XANES spectra acquired with SPHINX on geologic calcite, AP24N polypeptide, and calcite crystals grown on Kevlar threads in the presence of 100 μM AP24N in solution, then separated from it. These crystals represent a composite of calcite + AP24N, and this is spectroscopically distinct from calcite and AP24N alone. Peaks of interest are indicated by cyan vertical lines. The presence and intensity of the 301.5 eV σ^* peak indicates that the suppression of the 295 and 298 eV peaks is not a polarization dependent effect, since the polarization dependence of all three peaks are correlated. This observation is true for all systems examined.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.45\textwidth]{figure6.png}
\caption{Comparison of XANES spectra acquired with SPHINX on geologic calcite, AP7N polypeptide, and a calcite crystal separated from a Kevlar thread on which it was grown, in the presence of 100 μM AP7N in solution. The latter exhibits the same differences seen in Figure 5, with the differing peaks indicated by cyan lines.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.45\textwidth]{figure7.png}
\caption{Comparison of XANES spectra acquired with SPHINX on geologic calcite, n16N and n16NN polypeptides, and a calcite crystal grown on a Kevlar thread in the presence of 100 μM n16N or n16NN in solution.}
\end{figure}

The peptides AP7N and n16N produce effects very similar to AP24N (Figures 5 and 6). Specifically, the peaks at 295 and 298 eV are decreased in intensity, while the peak at 287 eV is much enhanced. The negatively charged Asp and Glu amino acids are expected to form bonds with hydrated Ca ions in solution and at calcite step edges.33,34 Interestingly, these effects are greatly reduced for crystals grown in the presence of Asn, Gln-substituted n16NN (Figure 7). Specifically, n16N dramatically suppresses the peaks at 295 and 298 eV and enhances the one at 287 eV.

\begin{footnotesize}
\begin{enumerate}
\end{enumerate}
\end{footnotesize}
while n16NN has a much smaller effect. Note that the AP7N—calcite sample exhibits a greater degree of spectral noise relative to the AP24N—calcite sample; this is the result of the higher binding affinity that AP24N exhibits for calcium carbonates compared to AP7N. 9

To compare our nacre polypeptides with another polypeptide, derived from a calcite-based tissue that is not molluscan in origin, we extended the XANES spectroscopy study to include a native protein isolated from the sea urchin spicule matrix, LSM34. As shown in Figure 8, the results obtained from calcium carbonate crystals grown in the presence of LSM34 are consistent with the findings of the nacre systems. Specifically, the LSM34 protein decreased the intensity of the calcite peaks at 295 and 298 eV, but significantly broadened the peak centered at 288 eV, thus including the peak at 287 eV. Surprisingly, the effects that LSM34 and the nacre polypeptides have on specific bonds in in vitro synthesized calcite are similar, demonstrating that there are general phenomena occurring at the OMI in these different systems. It remains to be seen whether these phenomena can also be observed in situ at OMI regions within molluscan nacre and sea urchin calcitic spicules.

To quantify spectral peak variations, we fit all spectra with 11 gaussians and 1 arctangent. The complete results of peak fitting for all spectra presented here are reported graphically in Supporting Information Figure S6 and numerically in Supporting Information Table S2. In summary, the most significant changes introduced by the organic—mineral interaction concern the intensities of three peaks labeled peaks 2, 7, and 9, at energies 287, 295, and 298 eV, respectively, corresponding to C—H bonds in peptides and CO bonds in calcite. These peak variations were already visible in the raw spectra. Furthermore, peak fitting revealed another significant change that was more difficult to appreciate in the raw data: the broad peak at ~294 eV increases upon mineral binding of AP24N, AP7N, and n16N. The assignment of this peak is unclear at present. As this peak is not present either in calcite or in peptides alone, it must originate from the peptide—mineral interface. We tentatively assign it the C—O σ* in carboxylate groups, which we previously observed at a similar energy in a different organic—biomineral system (acidic polysaccharide-FeOOH), which was enhanced only upon mineral binding of the carboxyl groups. Figure 9 shows these results synthetically in a histogram, while Supporting Information Table S2 shows the complete set of fit parameters for all samples.

Furthermore, peak fitting of the TEY and FY spectra of geologic calcite, presented in Supporting Information Figure S5 and Table S1, demonstrate that all peaks observed in the surface-sensitive TEY spectrum are also present in the bulk sensitive FY spectrum and are therefore associated with the bulk calcite crystal structure, not with its surface.

Discussion

The importance of σ* peaks is rarely discussed in carbon XANES spectroscopy. This is due in part to the inconspicuous appearance of these peaks, often too broad or not sufficiently intense to be spectroscopically distinct. The CO and C—H single bonds that give rise to these spectral features, however, are the most abundant in organic polymers, and therefore extraordinarily relevant. This work demonstrates that upon mineral binding the C—H peak is enhanced by three peptides and one protein, AP24N, AP7N, n16NN and LSM34. Since the C—H species is located at conformationally sensitive regions of polypeptides (i.e., side chain C—H), we propose that the prominence of this peak is due to ordering of the amino acid side chains as a consequence of polypeptide association with the mineral phase. This is an interesting finding, given that the solution structures of AP7N, AP24N, and n16N are largely unfolded and exhibit conformational lability. 9,13–17 and it suggests that conformational reordering is occurring in these sequences once they become affiliated with calcium carbonates. A similar enhancement of the C—H single bond peak was obtained by the Ade group in an abiotic system: ethylene-1-alkene copolymers, differing only in length and frequency of polymer branches. Because of the chemical simplicity of that system, C—H peak enhancement must be due to either or both the degree of conformational ordering or the intermolecular interactions between polymer branches. 31 The presence of polypeptide reordering is very similar to that obtained by our group on amyloid forming peptides. In that case as well, upon amyloid fibril formation, the C—H bond is enhanced, due to ordering of the amino acid side chains. 32 Thus, some degree of polypeptide ordering also occurs when polypeptide—mineral composites are formed, as presented here. Increased ordering in polypeptide chains upon mineral binding has been previously observed 33–37.
observed for statherin, another biomineral protein, which is present in the saliva solution as a random coil, and becomes α-helical after binding to the hydroxyapatite teeth mineral.35–37

Interestingly, the other main result we obtained, the disruption of peaks at 295 and 298 eV, also highlights the importance of σ^* peaks in biominerals. These two σ^* peaks, due to CO bonds in calcite, are reminiscent of the peak observed in a natural biomineral system, composed of FeOOH nanoparticles and bacterially produced polysaccharides bound to each other,38 where we hypothesized a templating mechanism, with binding of carboxyl groups in polysaccharides to Fe atoms in FeOOH nanoparticles. The σ^* peak observed upon biominal formation in that case was a C–O single bond at 292.4 eV.38 The σ^* peaks, originating from C–H, C–O, C=O, or other bonds, are observed at 287 eV or above 291 eV. This spectral region is often featureless in carbon XANES spectra of biopolymers. The heterogeneity of bond angles combined with the rotational freedom around single bonds makes these σ^* peaks either too broad or not sufficiently intense to be resolved. Upon mineral binding, however, the degrees of freedom that polymers had in solution are greatly decreased, and correspondingly, the molecular configurations become more rigid, homogeneous, and aligned with each other: in one word, more ordered. Under the linearly polarized X-ray illumination (note: synchrotron radiation is always linearly polarized in the orbit plane, that is, horizontally), increased molecular order generates more intense, narrower, and therefore spectroscopically distinct σ^* peaks. This interpretation of the results observed here on C–H and previously on C–O38 is tentative. If and when other techniques yield the structure of these peptides, and previously on C–O, or other bonds, are observed at 291 eV, it seems likely that CO bond disruption arises in response to interactions of the mineral phase with anionic side chains. Similarly, the enhancement of the C–H peak probably occurs as a result of Asp and Glu interactions at the mineral interface. Thus, the involvement of anionic amino acids in polypeptide–mineral binding is an important part of the OMI region and a likely contributor to conformational ordering of these polypeptides on mineral interfaces. Ordering of homopolypeptides upon mineral binding was previously reported by the Dove-De Yoreo group. In that study, aspartic acid formed an ordered adsorption layer on calcite surfaces.39 Other groups have quasi-epitaxially grown ordered, even crystalline organic films.40 Additional investigations are currently underway to assess the importance of Asp and Glu residues in n16N, AP7N, and AP24N.

One point still unresolved is the localization of polypeptide species on or within (i.e., occluded) \textit{in vitro} synthesized calcium carbonates. It is not known at present whether or not the nacre

polypeptides AP7N, AP24N, and n16N are localized exclusively at exposed interfaces of crystals, or if they also become occluded within the crystals during the mineral formation process in vitro. Interestingly, AFM imaging studies of calcite hillock growth in the presence of AP7N and AP24N demonstrate the formation of amorphous-appearing deposits on exposed terrace surfaces, which eventually become incorporated as part of the growth front. If we presume that these peptides exist as polypeptide—mineral complexes within these deposits, then it is likely that the peptides may eventually become subsurface species as the crystal grows and incorporates these deposits. In the case of the spicule matrix protein, LSM34, it is known that this protein becomes occluded within spicule calcite crystals, and we speculate that this process also occurs in vitro. However, since XANES spectromicroscopy is a surface-sensitive technique (probing a maximum depth of 3 nm from the surface), the CO bond disruption observed in the peptide—mineral systems might only be at the surface of the crystals. Therefore, we could not determine if the protein and peptides are only surface bound or also occluded, bonded, or trapped inside composite crystals. Thus, verification of occluded polypeptide species requires additional study, and this is currently in progress.

As evidenced by enhancement of the polypeptide-associated C=H peak, there appears to be ordering or rearrangement of polypeptide structure in our in vitro model polypeptide—mineral systems. Cölfen and Mann proposed a cooperative relationship between assembling organic molecules and forming crystals, in which these two components dynamically influence each other. Beniash et al. also proposed this mechanism for dental enamel. The present results from XANES spectromicroscopy of simple biomineral model systems appear to confirm the hypothesis that there is interplay between polypeptides and the mineral phase.

These results are the first of a systematic study we have initiated and that we plan to pursue extensively. The ultimate goal is the understanding of the OMI in natural biominerals, such as sea urchin spicules, spines, and nacre, and how templating and self-assembly of crystals are directed and controlled by the organic molecules in these complex biominerals. Spectromicroscopy of nacre is possible today, as shown in Figure 10, but the interpretation of the spectroscopic results is at present impossible, due to the many components involved. We intend to build, block by block, a system of organic—mineral interactions that are spectroscopically distinguishable, and that have the potential to elucidate the fundamental mechanisms associated with biomineral formation. The present work is a modest first step.

Acknowledgment. We are grateful to Ben Gilbert for writing the Igor Procedures for C spectra normalization. This work was supported by NSF awards PHY-0646018 and CHE-0613972, DoE Award DE-FG02-07ER15899, UW-Graduate School Romnes and Vilas Awards to P.U.P.A.G. The experiments were performed at the UW-SRC, supported by NSF award DMR-0537588 and the ALS supported by DoE under contract DE-AC02-05CH11231. Portions of this work were supported by funding from the DoE (DE-FG02-03ER46099, to J.S.E.) and represent Contribution 36 from the Laboratory for Chemical Physics, New York University.

Supporting Information Available: 6 figures (4 SEM micrographs and 2 peak-fitted sets of spectra) and 2 tables presenting the results of peak fitting for all spectra presented here. This material is available free of charge via the Internet at http://pubs.acs.org.

LA7031237