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Abstract — We present calculations of the hyperfine structure of alkali-dimer resonance potential curves in the
regime where the resonant dipole—dipole interaction is comparable to the hyperfine interaction. We discuss the
implications of these curves for the dynamics of excited-state collisions between optically trapped alkali atoms.

1. INTRODUCTION

Optical trapping and cooling techniques produce
atomic vapors with microkelvin and den-
sities of 10!° cm™3 or more. Under these conditions,
inelastic (superelastic) collisions between the atoms
can give the atoms sufficient kinetic energy to eject
them from the trap. Since these “trap-loss” collisions
limit the number of atoms that can be trapped, their
effects can be easily (though indirectly) observed.
Recent experiments [1 - 3] have shown the importance
of h interactions on the dynamics of these col-
lisions, In this , We t calculations of the adi-
abatic potential curves, including hyperfine structure,
that are relevant to understanding these effects. We aiso
make estimates of the adiabaticity of the motion and
predict new features in the trap-loss spectra.

Trap-loss collisions of alkali atoms can be roughly
grouped into those that involve both atoms being in the
ground electronic state during the collision or those that
involve excited electronic states. The excited-state colli-
sions are of fundamental interest because of the impor-
tance of radiation fields in determining the collision
dynamics. In particular, emission can inter-
rupt the collision process if the collision time is compa-

_rable to the spontaneous lifetime of the excited state.
This implies that the conventional concept of an excited-
state collision, where the collision partners are
in well-defined initial molecular states that evolve coher-
ently during the coilision, must be modified.

Current wisdom is that, at low temperatures, an
excited-state collision is better thought of as beginning
with excitation of an atom pair in the ground state by a
photon from a laser, followed by acceleration of the
atoms toward each other by the strongly attractive
excited-state potential {[V(R) = —C,R™3, where R is the
interatomic separation]. If the acceleration is strong
enough to bring the atoms close together before spon-
taneous emission occurs, an energy transfer process
can occur that gives the atoms sufficiently large kinetic
energy that they cannot be contained by the trap, On the
other hand, if spontaneous emission occurs before the
atoms reach the energy transfer region at small inter-

atomic distances, the collision continues on the much
weaker ground-state potential curve, and at the conclu-
sion of the collision, the atoms are still cooled and:
trapped by the lasers. This is the essence of the Gal-
lagher-Pntchard model [4] of these collisions.

The first observations of trap-loss collisions were
made for Na in a spontaneous-force optical trap [3, 6],
but it was not possible to determine whether the colli-
sions involved excited states or not. The first unambig-
uous observations of excited-state trap-loss collisions
were made in Cs {7, 8], where a linear dependence of
the trap-loss rate on the intensity of the trapping laser
was observed. The observed rates were larger than pre-

dicted, however. Motivated by the —Priscchard
model prediction of the of the trap-
loss rate, an additional “catalysis laser” was also applied

1o the trap. This submegahertz bandwidth laser could
be tuned over 2a—1 GHz < A < 0 frequency range, where
A is the detuning of the laser from the atomic resonance,
sufficient to test the predicted dependence. The trap-ioss
rate was observed to agree with the predicted A2 depen-
dence for large detunings. The experimental confirma-
tion of the A2 dependence, as well as a quantitative
agreement between the model and the experiment at
large detunings, suggested that the trap-loss collisions
could be described by the model for large detunings.

The Gallagher-Pritchard model received additional
support from the calculations of Julienne and Vigue [9},
who added the effects of fine structure to the calcula-
tions and modified the model to have the correct high-
temperature as well as low-temperature behavior. They
achieved quantitative agreement with the small-detun-
ing Cs measurement and, in addition, pointed out that
long-lived dipole-forbidden molecular states could be
important for Na, K, and Rb. Band and Julienne [10]
performed an optical Bloch equation analysis of the
large-detuning case for Cs and again obtained good
agreement with the experiment.

The present paper is motivated by a recent series of
experiments on Rb [1 - 3] that reveal serious disagree-
ments with the models and suggest that the hyperfine
structure introduces important features that have been
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Fig. 1. Measurements of trap-loss collision rates for —Rb,

$7Rb, and Cs as a function of the detuning of the laser from
the hi energy excited-state hyperfine level. The Cs data -
are from [8), the Rb data tha are khown with circles are
from 3], and the Rb data that are shown with rectangles are
from [2]. Additional murks alotg the detoning axes show
the positions of allowed atomic transitions from the upper
hyperfine level of the ground state.

left out of the models to date. The data are shown in
Fig. 1. The detuning dependences of the trap-loss rates

{or “trap-loss spectra™) for the two isotopes of Rb, *Rb -

and SRb are shown along with the corresponding
spectra for Cs. First, it is clear thatthe Rb trap-loss rates
are much smaller than those for Cs, in contrast to pre-
diction [9]. Second, and more intéresting, are the differ-
ing shapes of the spectra for the three species. The
width of the trap-loss spectrum for eacg isotope seems
to closely correlate with the amount of excited-state
hyperfine splitting. For reference, in Fig. 2 we show the
relevant atomic hyperfine structure, and in Fig. 1 we
have included arrows at the positions of the allowed
atomic hyperfine transitions for atoms that are in the
_F =1 + 112 ground-state hyperfine level, as is the case
for the traps used in these experiments. Another inter-
esting feature of these spectra is the strong isotopic dis-
tinction between ¥Rb and ¥Rb at small detunings,
whercas at large detunings the loss rates are equal,
within errors. In addition, the *'Rb spectrum shows evi-
dence of peaks near the positions of the atomic excited-
 state hyperfine structure. The data strongly suggest that
hyperfine effects, in particular excited-state hyperfine
structure, are very important for determining the trap-
loss collision dynamics and rates. Indeed, the smal per-

- l .

Fig. 2. The atomic hyperfine structures of the 5)7; (lower -
part).and Py (upper part) states of $7Rb, #Rb, and Cs. For
purposes of comparison of the im results among
the different atoms, we m% cnergy
scales so that each of the highest energy b staies are
at zero energy. '

centage difference in the mass of the Rb isotopes makes
any alternative explanation very difficult to conceive.

Given the importance of hyperfine structure for
trap-loss collisions, we have calculated the long-range
potential curves, including b interactions, for
the P, levels of alkali dimers, with the intent of identi- -
fying more precisely what the role of the hyperfine inter-
action is for the experiments that have beerrdone to date,

as well as making qualitative predictions for other possi-
ble exper . In Section 2, we present the caicula-

tions of the long-range potefitial curves. In Section 3, we
consider what features of the data of Fig. 1 can be
inderstood in terms of these curves and simple esti- -
mates based on these curves. In Section 4, we identify
new experiments that are suggested by these curves.

2. CALCULATIONS OF THE HYPERFINE
STRUCTURE MANIFOLD :
In this section, we present the calculations of the adi-
potential curves for alkali dimers that correlate to
one of the atoms being in the ground level and the other
being in the first excited {(Py, of Pyy) level, including
both fine and hyperfine stracture. The corresponding
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potentials neglecting hyperfine structure were calcu-
iated by Movre and Pichler [11).

Before proceeding with the calculations, it is useful
to consider the molecular hyperfine structure in the
limit of large interatomic separations. This is obtained
in a straightforward manner from the atomic hyperfine
structure shown in Fig. 2 and is displayed in Fig. 3 for
the case of ¥Rb. The hyperfine structure of the ground
electronic states consists of three levels whose ener-
gies differ by the atomic ground-state hyperfine split-
ting. In all the trap-loss experiments done to date, the
atoms begin in the uppermost of the three levels, If one
atom is excited to the Py state, eight different hyper-
fine levels are possible, as shown. The eight levels are
separated into two sets of four, depending on which
ground-state hyperfine level the unexcited atom is in.
The experiments done to date all involve excitation to
the upper four levels (i.e., 2 + 2 —= 2 + F, for ¥'Rb).
The effect of the dipole—dipole interaction at finite inter-
nuclear separations will be to mix these various levels, as
explained in the rest of this section. For the ground
states, the dipole-dipole interaction has no first-order
effect, and the resulting potentials are thus basically flat
at the interatomic separations considered here,

The Hamiltonian to be diagonalized is
H = Hy,(ry) + Hpry) + Vpp(ry, t2; R). 1

Here, r| and r; are the positions of the two electrons
measured with respect to their associated nuclei; H, is
the Hamiltonian of a free atom, including fine and hyper-
fine structure; Vpp(ry, ry; R) =—€%(22,2; — x,6, - y,30)/R?
is the electrostatic dipole-dipole interaction; and the
subscripts 1 and 2 refer to the two atoms. The Hamilto-
nian is invariant on rotations about the interatomic axis
and on interchange of the two atoms. Thus, the molec-
ular states can be described by ¢, the component of the
total angular momentum (excluding rotation) along the
axis, and on being even (g) or odd () upon interchange
of the two atoms (electrons and nuclei).

We choose to perform the calculations in a basis of
eigenstates of H,, + H,,. In this basis, only the matrix
elements of Vj,, have to be calculated, and the calcula-
tion is simplified by using angular momentum algebra.
We define the notation |a; b) to denote a product state of
atom 1 in atomic state a and atom 2 in atomic state b,
Furthermore, the atomic states are denoted by the quan-
tum numbers G and mg; for an atom in the 25, state in
hyperfine level G and Zeeman sublevel m; and J, F, and
mg for an atom in a Zeeman sublevel of the 2P, state.
Thus, a molecular state is given in terms of the atomic
states as

0;GIFm.) = (IGmg; JFmpy £ |JFmg,Gmg)) /2,
(2)

with mg = ¢ — my. Note that there are a number of such
states for a given ¢: for example, the 6u molecular
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Fig. 3. The molecular hyperfine structure of the 5,5 + 5.,
and Sy + Py, states of "Rbatinﬁniteinmmomicsepm—
tions. The experi discussed in the text involve excita- .
tion from the 2 + 2 ground state to the 2 + F excited states
of 57Rb and the analogous states for the other atoms.

" states of 3Rb (I = 3/2) are linear combinations of

|6u3%44), |6u3%43), |6u3%33), and |6u2§44).

This basis, in which all the angular momenta are
coupled, is more convenient for this problem than an

‘uncoupled basis for several reasons. The most impor-

tant reason is thé conceptual advantage that, since in
most optical traps the atoms are all in a well-defined
ground-state hyperfine level (usvally G = [ + 1/2), the
molecular states naturally correlate to the atomic states
at infinite interatomic separations. The second reason is
that the spin orbit and hyperfine interactions (both
magnetic dipole and electric quadrupole) are diagonal
in this basis; only the dipole—dipole interaction has off-
diagonal matrix elements. The spin—orbit and hyperfine
interactions only enter the problem through the unper-
tutbed energies of the various states. Finally, the
increased complexity of the dipole—dipole matrix ele-
ments in the coupled basis is considerably simplified
by standard angular momentum algebra.

We now give the matrix elements for the dipole—
dipole interaction. They are

(DG T Fmg|Vpp|¢iGIFm,)
= 2(Go-mpT Fmy|V,p|JFm G - mp)

=¢[%}(2(G‘¢ —mglro| JFme) (T Fmylry G —mp)

+{Go-mp|r |JFmp) (S Fm|r_|Go—m;)

+{Go—mg|r_|JFmg (T Fm|r,,|Go-mp) )
3)
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We will be considering the potentials only at dis-
tances where the spin—orbit interaction is much larger
than the dipole-dipole interaction, s¢ we will now spe-
cialize to J' = J. The Wigner-Eckhart theorem is used
10 express the matrix elements of the spherical vectors
ro_,,intcrmsofmerednoedman'ixelements(.ﬂlrlllm.
Defining ) '

_ £3/201/2)°

G 2R

@

the final result for the matrix elements of Vy is

($.GIFm|Vpr|9.GIFmy) -

= ig; (_1) 21+G+G+F+ro-,+n"(‘1 + -I_J
R 2

XxJ(2G+1DQRG +DNRF+ 1)2F +1)

Jric}{ r1c)
17217

17217

F ¢ 1 F G 1 5
x|2
-mp 4-mp O \ ~myp¢-m; 0
[r G 1][1?‘0' 1)
-m, ¢-mp 1 —m,,Q-'afu,', 1)

[F G l][F G 1)
—my @-myp =1 \ -mg @-m} -1

The adiabatic potentials are the eigeavalues found by
standard numerical diagonalization of the Hamiltonian
matrix for various values of R.

of the adiabatic potentials are shown.

in Figs. 4 - 7. For convenience, the potentials are plotted
as a function of C;/AR?, Note that there are two distance
scales where avoided crossings occur for the Py, poten-
tials. These distance scales correspond to the distances
where the dipole-dipole interaction is comparable to
the excited-state hyperfine splittings at large separations
and where the dipole-dipole interaction is comparable to
the ground-state splittings at smaller separations.

3. DYNAMICAL EFFECTS
OF THE HYPERFINE STRUCTURE

In this section, we will consider some consequences
of the adiabatic potentials for trap-loss collisions, We
will - a straightforward extension of the Gal-
lagher—Pritchard model to include hyperfine structure.

“can occur. The. probability of
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This will provide a framework for our discussion of
how the hyperfine structure can be expected to modify

the dynamics of trap-loss collisions.
allagher-Pritchard

transfer region is exp{—#(R)/1], where #(R) is the time
required to reach the energy transfer region and 1/t is
the spontancous emission rate. The total trap-loss rate
is found by integrating over all R, multiplied by the -

probability of energy transfer Pyg:
B = p“.[uxzdx"—%‘-’e""". ®

enne and Vigue [9] have shown that this js a poor
assumption for small laser dﬁm @i.c., detunings
comparable to.the natural linewidth), but we will
mostly be interested in large detunings where the accel-
eration by the excited-state potential is sufficiently
strong that the initial velocities should not matter mruch. -

Note that the trap-loss rate given by equation (6)
naturally separates into two factors. The first, Pyr,
gives the probability of energy transfer and should be
relatively insensitive to the dynamics of the collision at
IargeR.The‘mstofeqmtion(G)chmibesﬂie'dynanﬁcs
of the collision. Thus, the dynamics include the excita--
tion by the laser and the motion of the atom pairs on the -
excited-state potential curve, which is also strongly
affected by spontaneous emission.

We note that, as long as the laser is not too close to

L

the allowed afomig pesonance transitions, o(R) should

4

be strongly. peaked 4t interatomic separations obeying
the resonance condition hA = —C,/ Ry . Then, the slowly
myingfactorsk’andz(R)mberemovedﬁ'omthc

integral, so
4x°C, I ]

B= 35 R e g @
where 7, is the classical electron radius, c is the speed

of light, and f the oscillator strength. For the case
of motion- on a pure R potential, #(Ry =

0.746 JuR3/2C, =0.746./1172C}"/ (hA)** . Defin-

Y/

s . 5/6

ing A, = (0.746./072C, /1), we get
ax’C, 1, expl-(A/8)"]
=g fgale— - &
LASER PHYSICS Vol.4 No. 5 1994
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Fig. 4. The 3 potential curves of ®Rb, inciuding an
expanded view of these curves in the region of excited-state
hyperfine recoupling (bottom). In this and the following fig-
ures, mamerical values of F are denoted with a prime, while
sumerical values of G are given without the prime.

=) P

This predicts a maximum in the detuning depen-
dence at A =—0.35A.. For Cs, with Cy = 79 eV A3, and
Rb, with C; = 71'¢V A%, the maximum should be
around —40 MHz. From Fig. 1, we see that this is not
even close for Cs and *’Rb.

To try to improve on this by accounting for the
hyperfine structure, it is necessary to provide for the
excitation to the various potertial curves as well as the
subsequent motion on those curves. Thus, we write.

‘ o{RM
B = pﬂj'mx’de—‘;;a—Zs,,(m. - ®
i i
Besides generalizing the absorption rate to potential

curve i via G{R), with the factor S;(R) we have allowed
for the possibility that, due to the motion of the atoms,

nonadiabatic transitions may occur to other potential .

curves j. S,(R) must account for spontaneous emission
as well. For simplicity, we have ignored a possible

dependence of P,z on j. This is probably a reasonable -

assumption if the dominant trap-loss mechanism is radi-
ative redistribution, which can happen for any attractive
potential. Fine-structure changing collisions may have a
dependence on j because only a small number of states
can cause trap loss through this mechanism [9].

No. 5
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Fig. 5. Curves analogous to Fig. 4 for the 4g states of *’Rb.

If the motion is purely adiabatic, curve a will contribute to

:;aplossmtbwillnotﬁhceitbmmumpuhivessmﬂi
stances. o

We can now make some qualitative statements about |

_ how the hyperfine interactions affect the trap-loss rates,
“according to this extension of the Gallagher—Pritchard

model. First, if a particular potential curve V(R is-opti-

cally ailowed for absorption from the occupied ground

states of Fig. 3 (2 + 2 for ¥7Rb) and if it is fully attractive

to small interatomic separations; then the factor 5; will
be just the exponential factor in équation (6), so the-con-
tribution to the trap-loss rate from this curve will have
a detuning dependence of the form of equation (8).
An example of this would be curve 4'in Fig. 5. Curve b
is also aftractive at large distancé but becomes repul-
sive at small distance, so would not contribute to trap.
loss in the absence of nonadiabatic motion. Second,
consider a curve such as curve c in Fig. 6. At large sep-
arations, it is repulsive but has an avoided crossing with

‘an attractive curve ¢oming from above and becomes:

attractive. For this curve, the trap-loss s m will
have roughly the shape of equation (6), but shifted in

- frequency by an amount =—0.17 GHz (obtained by '

extrapolation to infinite separation), and‘(crudely) trun- -
cated for A < —0.23 GHz. Note that there is significant
contribution to the blue of the corresponding atomic
hyperfine resonance. Third, curve d in Fig. 7 is attrac-
tive at large distance but becomes repulsive due to the
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Excitation to curve ¢ will give trap loss at a detuning to the
red of the 2 + 2" atomic hyperfine state.

avoided crossing. This curve can conmbute to trap loss

onlyifthereisasigniﬁcantnomdihbaticityduetothe :

nonzero velocity of the atoms upon reaching the region
of the avoided crossing. If so, acceleration can contipue
along the attractive potential.

With these ideas in mind, we now consider what
features of the trap-loss spectra shown in Fig. 1 can be
explained. If we neglect ponadiabatic effects on the
dynamics, the only potential curves that can contribute
to trap loss are those that are attractive at small R. There
are no such.optically allowed potentials that correlate
to the uppermost hyperfine state (i.c., 2 + 3' for “Rb)
at R = oo. This is consistent with the low trap-loss rates
observed for *'Rb, **Rb, and Cs at small detunings but
does not explain why there is any trap loss at all.

As more negative detunings are considered, more
attractive potentials are available to be excited, and
therefore the trap-loss rate increases. Note that this

occurs to the red of the next lower hyperfine resonance
. Here, o is the rotational frequency, L is a matrix element

(i.e., 2 + 2 for ¥'Rb) due to the maxima of curves such as
shown in Fig. 6 being higher in energy than the corre-
sponding atomic state. The bulk of the attractive poten-
sunpﬁsingthat’tlwtrap-lossrammobservedtopeak
near the positions of these states in all three systems.
We now estimate, using standard two-state theory, the

adiabaticity of the motion along the potential curves. -

from the lowest hyperfine states, so it is not -

WALKER, PRITCHARD
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Possible nonadiabatic effects can arise from rotational
coupling, external fields, or radial coupling: We will
find that radial coupling is likely to be the most impor-
1ant effect for these collisions. While the assumptions
of the theory, namely, only two coupled states, constant
potential coupling, no acceleration, and linear poten-
tials, are not precisely met for ultracold collisions, esti-
mates based on the Landau—Zener theory should give a

good indication of when mostly adiabatic or diabatic

Nonadiabstic trapsitions caused by rotational cou-
pling have been considered by Ryssek {12]. The rotation

of the colliding atoms can cause transitions of AQ =11 at
“¢fossings of curves of different Q. Russek finds the

transition probability in the Landau—Zener approxima-
tion to be 1 — e 2, where
y= o’|Lf? _
hv e (d/dR) (€~ €)lpar,

(10)

of angular momentum raising.and lowering operators,
vy is the radial velocity, and | (d/dR) (e, ~&)|gsg, 18
the difference of the forces experienced on the two
curves. In order of magnitude, ® ~ viR, L ~ f, vg~ v
and €, - €, ~ C3/R?, where vis a typical thermal veloc-
ity. Thus, we estimate ¥ ~ vI6RR(VIh) ~ 0.007 using

LASER PHYSICS VoL 4 No.5 1994
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v =20 cm/s, R ~ 300 A, and V/h ~ 50 MHz. Note that
we have overestimated by choosing vz ~ v since the
atoms are accelerated toward each other before reach-
ing a crossing. Thus, rotational coupling should not be
important, except in cases where the siope difference

|(d/dR) (e, - €))|. z becomes small.

Nonadiabatic coupling could also result from the
external magnetic field of as high as a few Gauss that
exists in a typical optical trap. For this, we estimate

(15B8)*/ (hve){(d/dR) (8, - € )y 5, ~ 003 or less

for vz > v. Again, the magnetic coupling of the curves
should be negligible.

For radial coupling, which can produce nonadia-
batic transitions between states of the same symmetry,
the standard Landau—Zener formuia [13] for the transi-
tion probability is

= ex 20V (11)
P = P FV](d7dR) (&, €lg-x,)

The radial coupling V), is determined as one-half the
closest distance between the adiabatic potential curves,
and €, and €, are the diabatic potentials. It is evident from
the figures that a wide variety of avoided crossings exists
for various potential curves, and the motion can range
from being strongly diabatic to being strongly adiabatic.
For example, in Fig. 4, a number of curves that originate
from the 3 + 4, 3 + 3', and 3 + 2' states coalesce at a
detuning of —0.2 GHz and a distance corresponding to
C,/hR® = 0.35 GHz. Atoms excited at ~0.05 GHz, for
example, would be moving rapidly enough that the
motion would be diabatic, if the two-level formuia gives
a reasonable estimate. Obviously, a proper treatment
would need to include at least all of the six interacting
potentials to understand the dynarics.

Curve d in Fig. 7 is an example of the opposite
extreme. Here, the crossing is strongly avoided, and the
transition probability according to equation (11} is very
small. According to this model, trap loss would be
unlikely to arise from excitation to this curve.

We have explicitly assumed that the absorption
occurs when the laser and the potential curves are reso-
nant, ie., the classical Franck-Condon principle is
obeyed. In some cases, this may be a poor assumption.
In particular, it is known that, in the region of an avoided
crossing, the absorption spectrum is substantially
modified [14]. This problem is worthy of further study.

To summarize, it is probable that radial coupling
dominates the nonadiabatic dynamics and will have to
be considered in detail in order to quantitatively under-
stand the trap-loss spectra in certain regions, especially
for small detunings.

4, PREDICTED EFFECTS

The potentials suggest a variety of new effects as
well as providing some qualitative understanding of the
shapes of the trap-loss spectra. First, we note that, in the

No. 5 1994
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absence of nonadiabatic effects, trap loss is possible
only for the attractive potentials that arise from the low-
est energy excited hyperfine levels. This may well
account for the observed peaking of the experimental
trap-loss spectra near the lowest hyperfine levels in all
three systems studied to date, see Fig. 1. Thus, we also
expect that the trap-loss rate coefficients in general will
be larger for traps in which many atoms are in the low-
est ground-state hyperfine state. An example of such a
trap is the dark spot trap of Ketterle er al. [15]. In par-
ticular, the spectra arising from detunings just red of the
lowest ground-state hyperfine state should be virtually
free of nonadiabatic effects. We suggest that this may
the best type of experiment for making quantitative
comparisons of the experiment to fairly simple models
of the collision dynamics.

A second effect that should be observable is trap
loss arising for frequencies in regions for which
absorption is dipole forbidden at large distances. For
example, referring to Fig. 3, absorption from the 2 + 2
state to the 1 + F manifold of states is dipole forbidden
at large interatomic separations. However, at inter-
atomic separations where the dipole—dipole interaction
is comparable to the ground-state hyperfine splitting,
the 1 + F states are mixed with the 2 + F states, so
absorption will be allowed. On an absolute scale, the
rates will be reduced due to the small number of atom
pairs available to be excited at these short distances.
However, at these distances, the survival probability to
small R will be large, and so multiple traversals of the
energy transfer region will enhance the trap-loss rates.
Effects similar to these have been observed for associa-
tive ionization of sodium [17, 18].

Third, we note the existence of weakly bound long-
range molecular states that arise from hyperfine cou-
pling. These are analogous to the well-known long-
range states, referred to as pure long-range molecular
states, that arise from fine-structure decoupling {16].
Two classes of such states exist, corresponding to decou-
pling of either the excited-state or ground-state hyperfine
interactions. Examples are shown in Figs. 4 and 5.
Resolving the bound levels of these states will be diffi-
cult but may be possible for those minima arising from
the larger ground-state hyperfine separations.

5. CONCLUSION

We have presented the long-range interatomic
potentials for alkali dimers at distances where the
hyperfine interaction is important. The excited-state
hyperfine interaction canses structure in the curves on
the frequency variation observed in experiments on Cs
and Rb [1, 3, 7, 8, while the ground-state hyperfine
interaction should lead to structure in spectral regions
not yet probed in these experiments, especially when
ground-state atoms in the lower hyperfine state are
involved. We have argued that the presence of avoided
crossings of these potentials in the region that has been
probed by recent experiments suggests that nonadia-
batic dynamics are important for understanding these
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experiments. Other new collisional effects that arise
from hyperfine interactions have been identified as
well. It is clear that any realistic model of ultracold col-
lisions must include hyperfirie interactions.

The impo! of hyperfine interactions for under-
standing excitedrstate ultracold collisions demonstrates
the unique seasitivity of these collisions to extremely
weak interactions. In a sense, this is unfortunate since the
increased complexity that arises tends to obscure the role
played by the fundamentally more interesting spontane-
ous emission of light during the collisions. It may be pos-
sible to reduce this increased complexity by careful
design of experiments to probe regions of the potentials
where both distortions of the curves due to avoided
crossings and nonadiabatic effects are not important.
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