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ABSTRACT
Atomicmagnetometers (AMs) offer many advantages over superconducting quantum interference devices due to, among other things, having
comparable sensitivity while not requiring cryogenics. One of the major limitations of AMs is the challenge of configuring them as gradiome-
ters. We report the development of a spin-exchange relaxation free vector atomic magnetic gradiometer with a sensitivity of 3 fT cm−1 Hz−1/2
and common mode rejection ratio >150 in the band from DC to 100 Hz. We introduce a background suppression figure of merit for charac-
terizing the performance of gradiometers. It allows for optimally setting the measurement baseline and for quickly assessing the advantage, if
any, of performing ameasurement in a gradiometric mode. As an application, we consider the problem of fetal magnetocardiography (fMCG)
detection in the presence of a large background maternal MCG signal.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5091007., s

I. INTRODUCTION
Magnetic gradiometers can often achieve higher fidelity detec-

tion of localized magnetic field distributions than magnetometers.
This is true in environments where the primary noise sources are far
from the detectors such as in magnetocardiography (MCG), magne-
toencephalography (MEG),1,2 geomagnetism,3 ordnance detection,4
and low field nuclear magnetic resonance (NMR),5 with the benefit
arising with suppression of common mode noise. Sensitivity, band-
width, and dynamic range determine the optimal choice of sensor
for each application.

Consider a situation where a uniform magnetic field Bc com-
ponent (or magnitude for scalar sensors) is measured by two closely
separated sensors. The common mode rejection ratio, CMRR, is

ξ = M1B1c +M2B2c

2(M1B1c −M2B2c) =
M1 +M2

2(M1 −M2) , (1)

where Bic is the field measured by sensor i and Mi is the trans-
fer function for each sensor. For identical sensors in this situation

(M1 = M2, B1c = B2c), we expect a CMRR of infinity resulting in
vanishing sensitivity to the difference signal. In practice, however,
differences in sensors lead to a finite CMRR ξ.

Presently, the highest performing magnetic gradiometer imple-
mentations involve inductively coupling the magnetic field of
interest to low Tc superconducting quantum interference devices,
SQUIDs via counter-wound pickup coils.6,7 The SQUID gradiome-
ter CMRR is limited by the degree to which the areas and alignments
of these (often hand-wound) coils are matched. Typical values of
SQUID gradiometer balance are about one part in 100, setting the
upper bound of the common-mode suppression at that level.8,9

Unlike SQUIDs, atomic magnetometers (AMs) require no
cryogens. They are relatively inexpensive to operate and have signif-
icantly lower setup and operating costs due to their working temper-
atures and smaller shielding volume requirements. However, config-
uring AMs as gradiometers poses a number of challenges and is an
active area of work.10–18

Most AM gradiometer implementations, this work included,
involve subtracting magnetic field measurements from adjacent sen-
sors in post processing. In this paper, we consider the challenge
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of performing such a subtraction and recommend procedures for
calibrating and characterizing AM gradiometers. In Sec. II, we intro-
duce a figure of merit for evaluating gradiometer performance. It
is a function of the CMRR, the gradiometer baseline, as well as the
geometric scaling of the signal and the dominant background fields.
This metric will be useful for comparing different implementations
of gradiometers when applying the sensors to a particular measure-
ment problem. In Sec. III, we report the development of a Spin
Exchange Relaxation Free (SERF) gradiometer with performance
metrics comparable to SQUIDs. Finally, in Sec. IV, we consider the
problem of detecting fetal magneto-cardiography (fMCG) in the
presence of the large maternal MCG signal. Our goal is to efficiently
isolate the fMCG signal from the maternal background. Some rel-
evant questions to address are how best to configure the sensors,
what CMRR is sufficient, and how to compare different gradiometer
implementations.

II. GRADIOMETRY FIGURE OF MERIT
Often, measurements from an array of magnetic field sensors

are input into an analysis pipeline for further processing: e.g, for
source localization and independent component analysis. We con-
sider the following question: what are the conditions under which
using a gradiometer provides an advantage over simply using the
magnetometer outputs?

To address this question, consider a magnetic field signal
described by the power law B(r) ∝ (1/r)p in the presence of noise
with rms amplitude δB = (δB2

u + δB2
c)1�2, where δBu and δBc are

the rms magnitudes of uncorrelated and correlated (uniform) noise,
respectively. A gradiometricmeasurement of such a field is only ben-
eficial if the signal-to-noise ratio (SNR) in the gradiometric mode
is superior to that obtained from two separate magnetometers. We
therefore define a figure of merit F as the ratio

F = SNRG

SNRM
= gp − 1
gp + 1

�(δBu)2 + (δBc)2�
(δBu)2 + � δBc

ξ �2
, (2)

where g(= 1 + L�rs) is a dimensionless parameter which includes the
“baseline” distance L between the two detectors and source distance
rs. (Full derivation is given in Appendix A.) The contribution of the
correlated noise is suppressed by a factor of the CMRR.

Understanding the spatial characteristics of the dominant back-
ground is important when considering gradiometers for a measure-
ment. We identify a number of limiting cases of Eq. (2).

● Case (0): δBu� δBc, that is in situations for which the uncor-
related noise dominates, F < 1, and there is no advantage to
using gradiometers. Doing so will only reduce the SNR.● Case (1): δBu � δBc. Here, we then have that

F ≈ gp − 1
gp + 1

1�
� δBu
δBc
�2 + ξ−2

. (3)

In this regime, a combination of ξ and δBu � δBc governs
the figure of merit. F in this case will be a sensitive function
of the baseline. Investing in much higher CMRR might not

yield significant change. Other strategies might yield higher
payoff.● Case (2): δBu � δBc and (δBu�δBc)2 � ξ−2.
This describes a scenario where the ambient magnetic back-
ground is highly correlated

F = gp − 1
gp + 1

ξ. (4)

An example of this would be operating the gradiometer
in the earth’s field, away from strong local sources. This
is the ideal situation to operate a gradiometer. The figure
of merit in this case is primarily limited by the CMRR.
Design decisions which improve the CMRR will yield a high
payoff.

We note that the geometric factor (gp − 1)/(gp + 1) is a mono-
tonically increasing function of the baseline. Therefore in case (2),
larger baselines are desirable. However, in general, the optimal base-
line will depend on the length over which the background remains
uniform.

III. DEVELOPMENT OF SERF GRADIOMETER
We have developed a diffusion-mode, two-beam SERF magne-

tometer array configured as a gradiometer for use in fetal magne-
tocardiography, fMCG.19,20 SERF conditions require working in a
near-zero field environment.21 As a result, we work in a (two-layer
mu-metal, 1-layer aluminum) magnetically shielded room (MSR).
The MSR has a residual DC field on the order of 50 nT which we
compensate for using active cancellation via a large (D ≈ 3 m) set of
3-axis “common” coils wrapped on the perimeter of the MSR and
sets of small (D ≈ 4 cm) “local” coils wound around each individual
magnetometer.

One potential source of magnetic noise is the noise on the cur-
rents creating the compensation fields. A 50 nT DC field, for exam-
ple, requires a 150 dB

√
Hz signal to noise ratio to reach 1 fT/

√
Hz.

We compensate the majority of this DC field with large coils wound
near the walls of the room, such that noise associated with these
shimming currents is common-mode to a large degree. In practice,
we null the field of one of the channels using the large set of coils
and then minimize the residual fields in the other channel (≤5 nT)
with its set of local coils. This reduces the current noise requirement
by 20 dB. In our experiments, the common-mode noise produced by
these large sets of coils was measured to be approximately 5 fT�√Hz
at the location of the magnetometers.

Two channels (shown in Fig. 1) are spaced at a distance of
L = 4 cm apart. Each channel comprises a 1 cm3 Pyrex vapor cell
with Rubidium and approximately 200 Torr of nitrogen and neon
buffer gas. We heat the cells up to a temperature of 150 ○C, elevat-
ing the vapor pressure, such that the alkali equilibrium density is
n = 1014 cm−3. The basic idea behind the operation of the SERF
magnetometer is that an electron spin polarization P established by
optical pumping interacts with the ambient field and relaxes at a
rate governed primarily by background atom collisions. Rubidium
atoms are polarized along z with circular polarized light resonant
with the Rb D1 line at 795 nm. We subsequently detect the projec-
tion of P along the probe direction, Px, via off-resonance Faraday
rotation using light near the Rb D2 line at 780 nm.
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FIG. 1. Two SERF magnetometers comprising the gradiometer are placed at the center of a magnetically shielded room. Large (common) coils wrapped around the perimeter
of the innermost shield are used to null the total field at one of the magnetometers, as well as to apply calibration signals. Local coils compensate residual gradients. The
magnetometers are at a distance L = 4 cm apart. A circularly polarized pump beam polarizes a rubidium vapor along the ẑ axis. Magnetic fields along ŷ (or x̂ and ŷ in
Z-mode) cause rotation of the atomic electron spin polarization which is detected by Faraday rotation of an off-resonance linearly polarized probe beam using a balanced
polarimeter.

The spin dynamics of the polarization are described by the
Bloch equations and are discussed more fully in Appendix B.

A. Operating modes
We operate the instrument in either a so-called “DC mode” or

a parametrically modulated “Z-mode.” In the DC operating mode,
the component of the magnetic field perpendicular to the plane of
the pump and probe lasers (By) tilts the atomic polarization onto the
detection axis.21,22 This maps By(t) on to the Faraday rotation signal.
See panel (a) of Fig. 2.

FIG. 2. Modulation and detection scheme. Optical pumping along ẑ establishes an
electron spin polarization. Off resonance Faraday rotation of the probe light senses
the projection of the polarization along the x̂ axis. Panel (a) shows the DC mode
for which Px (t) ∝ By (t). In panel (b), we show the Z-mode, where a modulating
field is applied along z, and Px (t)∝ Bz cos(ωzt).

In the Z-mode, we apply a high frequencymodulatingmagnetic
field aligned along the pumping direction (B0 cosωzt, with ωz ∼ 2π× 1 kHz).23 A field along x̂ torques the polarization P into the y–z
plane at an angle proportional to Bx. The polarization is modulated
at ωz about the ẑ axis, as shown in panel (b) of Fig. 2. By demod-
ulating the detected Px signal at ωz , we gain sensitivity to Bx at the
fundamental frequency (and higher odd harmonics). In addition, we
retain sensitivity to By at DC (and even harmonics of the modu-
lation).23 This lock-in technique has the advantage of moving the
signal away from DC to a higher frequency which is free of low fre-
quency laser intensity and polarization noise. Therefore, in Z-mode,
we can, in principle, simultaneously detect two components of the
magnetic field gradient tensor: @By/@z and @Bx/@z per the coordi-
nate system shown in Fig. 1. For this work, we report measurements
where only one component of the tensor was considered at a time.

The DC and Z-mode sensors can be run in open-loop,
described above, or in closed-loop, where we use a PID circuit to
drive the measured field to zero in the sensitive direction at each
sensor position. The compensating signal applied by the servo is
then equal to the time varying magnetic field. One of the advan-
tages of running in the closed-loop mode is an increased dynamic
range. This arises from keeping the average field at the sensor loca-
tion near zero—thus avoiding saturating the detectors and/or ampli-
fiers. We observe that the closed loop dynamic range is ∼100 nT
compared to ∼10 nT in the open loop mode. Second, maintaining
the field near zero keeps the polarimeter signal balanced. Residual
laser intensity fluctuations on the probe can then be suppressed to
a higher degree.24 Third, the feedback mode flattens the response
of the device through design of the feedback circuit. Operating in
the closed-loop, we are able to broaden the 3 dB bandwidth of the
magnetometers from ∼50 Hz to ∼120 Hz.
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B. Calibration/characterization
Due to differences in vapor cell gas composition, temperature,

pump and probe laser characteristics, etc., the two magnetometers
may have different amplitude and phase responses. Their signals
cannot be simply subtracted. The full complex response of the two
sensors must be properly accounted for. Failure to do so will result
in poor common mode rejection due to dephasing errors. Because
of this, we calibrate the magnetometers against some common cal-
ibration signal which we design to ensure adequate coverage of the
whole band of interest as inadequate SNR in the calibration step can
limit the achievable CMRR.

We apply a signal Bcal(t) to the large coil and obtain calibra-
tion responses from the two channels Scal1 (t) and Scal2 (t). We choose
calibration fields to be of the form

Bcal(t) = (α0 + α1t) sin(ω(t) t), (5)

where ω(t) = α2 exp α3t, with αi positive constants which govern the
“speed” of the frequency chirp. This function has an exponentially
increasing frequency and a linearly increasing amplitude, which
ensures that the SNR for the calibration signal and response does
not limit ξ in the DC to 200 Hz frequency range. The applied cali-
bration signal along with the magnetometer responses is shown in
Fig. 3.

By taking the Fourier transforms of Bcal(t) and Scal(t), we obtain
the transfer function of each sensor: M̃i( f ) = S̃cali ( f )�B̃cal( f ). We
interpolate the measured transfer function—obtaining a functional
representation of the complex gain which we use to transform sub-
sequent measurements. On acquiring the time series S1(t) and S2(t),
we compute a gradiometric signal (in fT/cm) by calculating

FIG. 3. Two magnetometer channels comprising a gradiometer were calibrated
simultaneously by applying a time dependent field of the form of Eq. (5) to a com-
mon coil shown in (a). Panel (b) shows Z-mode open loop response to the applied
fields. (c) shows the closed loop response where the increased bandwidth is clearly
evident.

G(t) = (B1(t) − B2(t))�L
= F−1�B̃cal( f )� S̃1( f )

S̃cal1 ( f ) −
S̃2( f )
S̃cal2 ( f )�� ×

1
L

= F−1� S̃1( f )
M̃1( f ) −

S̃2( f )
M̃2( f )� ×

1
L
, (6)

where F−1 represents an inverse Fourier transform and L is the gra-
diometer baseline. We have assumed here that the transfer functions
Mi(f ) are stable on the calibration and measurement time scales.
Furthermore, we use the results of the fit to Mi(f ) to design control
servos25 for closed loop operation.

In Fig. 4, we plot the complex response of a single magne-
tometer. The magnetometers’ (DC normalized) relative gain M( f )= �M̃( f )���M̃(0)� and phase dependence are shown on the two right
panels. We also plot the noise spectral density scaled into magnetic
field units. The black trace represents the total effective magnetic
ambient noise in the room. The probe noise is the noise associated
with the intensity and laser polarization fluctuations of the probe
laser and has a lower bound given by the photon shot noise. We
measure the probe noise by observing the signal fluctuations with
the pump light blocked. Similarly, we measure the electronic noise—
the noise due to digitization and EM pickup on the data acquisition
system (DAQ) input lines by blocking both the pump and probe
light. In the situation shown in the figure, the magnetic noise domi-
nates all other noise sources. This establishes a margin within which
a gradiometer can suppress the uniform component of the magnetic
noise. This margin can be amplified by increasing the overall gain of
the magnetometer—e.g., by using larger volume cells or multipass
cells.15,23 If the individual magnetometers are limited by technical
noise, i.e., probe or electronic noise, then there is no advantage of
operating in the gradiometric mode as that would correspond to case
(0) described in Sec. II.

In Fig. 5, we show the relative gains of pairs of magnetome-
ters comprising a gradiometer. Panels (a)–(c) show DC—open loop

FIG. 4. Calibrated response of a single channel of the open-loop magnetometers
used in constructing the gradiometer. The total noise is dominated by the magnetic
noise in the MSR. The amplitude and phase response is shown on the right.
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FIG. 5. Complex response function of the different operating modes. The lower
plots in each of panels (a)–(c) show the gain and phase difference �M and �ϕ
of two magnetometer channels. These differences are minimized for an optimized
configuration.

implementation, DC—closed loop, and Z-Mode open loop imple-
mentations, respectively. We plot the difference in response between
the two sensor �M and �ϕ as the lower plots of each panel. The
phase and amplitude response of the two sensors is particularly strik-
ing in the open loop operation mode. If not properly accounted for,
dephasing errors proportional to 1 − cos δϕ, where δϕ is the error
on �ϕ, would show up in the difference channel and subsequently
in the CMRR. The idea here is that the two channels are vectors in
the complex plane, and the dephasing error is the magnitude of the
difference vector not accounted for by the calibration.

Panel (b) shows the measured response of the two gradiome-
ters in the DC-mode, closed-loop. Notice the expanded bandwidth,
as well as the diminished phase difference. This portends well for
achieving high CMRR. Indeed we find that to be the case. The
responses are very similar because in the closed loop, the shape of
the response is dominated by the servo electronics.

Panel (c) shows the Z-mode open-loop response. One promi-
nent feature of this mode is that the phase response of the two sen-
sors is dominated by the low pass filter associated with the demodu-
lation. Because of the steep phase response, we could not, using the
same PID loop, apply stable negative feedback over the 0–200 Hz
band to a Z-mode closed-loop sensor as we did in the DC-mode
closed loop case. We therefore do not include the Z-mode closed-
loop case in our comparisons. Implementing this is in the agenda
for future work. We believe, however, that the major conclusions of
this work stand without it.

We determined the common-mode rejection ratio ξ of the gra-
diometer described above by measuring the suppression factor of
digitally synthesized white magnetic noise applied to the large coils.
It is critical in this step that the amplitude of the applied noise be
greater than ξ times the noise floor of the sensors. Otherwise ξ will
be underestimated.

In Fig. 6, we show CMRR measurement of the DC—closed
loop gradiometer. We observe noise in the difference channel of< 12fT�√Hz over a baseline of 4 cm. This corresponds to amagnetic
field gradient noise of < 3fT�cm√Hz In Fig. 7, we show a compi-
lation of the measured CMRR for the three operating modes. We
found that the DC closed-loop gradiometer had the highest CMRR,
with the two open loop cases being comparable. This is summarized
in Fig. 7.

FIG. 6. Determination of CMRR, ξ. White noise is added to the magnetically
shielded room via the large coils mounted on the inside surface of the MSR. Pan-
els (a) and (c) show the time domain measurements of the individual sensors, as
well as their sum and difference. Panels (b) and (d) show the power spectral den-
sity of the individual as well as of the combined channels. We estimate ξ from the
measurements in panel (d). The dotted line is at 2.5 fT/

√
Hzcm as a guide for the

eye.
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FIG. 7. Comparison of the CMRR (ξ) for various operating modes. ξ was
determined by using Eq. (1) for measurements made with applied noise as in
Fig. 6.

IV. GRADIOMETERS FOR fMCG
As noted by Hornberger and Collins,26 “Fetal magnetocardio-

graphy (fMCG), the magnetic analog of fetal electrocardiography
(ECG), is at this time the most effective means of assessing fetal
rhythms.” It enables the in-utero diagnoses and monitoring of con-
genital heart abnormalities.27 The primary technical challenge of
fMCG arises from the relative weakness of the fMCG signal in
comparison with background fields—especially the maternal MCG.

Presently, the FDA approved instruments for clinical fMCG
applications are SQUID arrays comprising on the order of ∼20 gra-
diometers.9,28 This multiplicity of channels offers an advantage of
higher order spatial filtering, or equivalently, the implementation
of higher order gradiometers. SQUID based fMCG measurements
require magnetically shielded rooms of sufficient size to accommo-
date the large liquid helium dewars needed for cooling the devices.
The required size of the shielded rooms, and the necessary cryogen-
ics, make SQUID gradiometers expensive to set up and operate.

A. MCG signal properties
The magnetic field from a heart is often modeled as that arising

from a current dipole,29 B(rs) ∝ (1/r)p, with p ∼ 1.8–2.2. Conse-
quently, with g = 1 + L/rs, we calculate the figure of merit for detect-
ing fMCG using Eq. (3). Given the baseline L and distance from the
source rs, we choose an optimal sensor for fMCG to be that which
maximizes the figure of merit.

In assessing the interference from the maternal background on
the fMCG, we simulated MCG wave forms using the ECGSYN30

program—scaling the field strengths to the magnitudes typically
observed. As shown in Fig. 8, the maternal signal is roughly ten
times that of the fetus.22 This corresponds to an arrangement where
the maternal heart signal originates ∼60 cm from the device (com-
pared to the ∼5 cm distance to the fetal heart). We compute and
plot in Fig. 8 the power spectral densities of the two signals and
compare them with the spectral density from a real fMCGmeasure-
ment obtained using our SERF magnetometers. From this, we posit
that for fMCG detection, magnetometers with sensitivity of a few
fT�√Hz and bandwidth ∼100 Hz are necessary.

Typically also, fMCG measurements acquired over a 1–3 min
window can be averaged in order to determine relevant MCG
parameters such as the time intervals between phases of the MCG

FIG. 8. Simulated fMCG and MCG wave forms using the ECGSYN program. The
power spectral density from the simulation with from actual data collected from
a recent fMCG data collection run is also shown. Sensors with a bandwidth of∼100 Hz and sensitivity of a few ∼ 10fT�√Hz will detect the majority of the
signal.

waveform. We therefore desire sensors whose calibrations are stable
over the course of a measurement interval that is averaged. Finally,
the CMRR of the gradiometer will serve to suppress ambient mag-
netic noise that is uniform. The degree to which it helps suppress the
maternal MCG will be described below.

The AM gradiometer we have described above meets the stated
sensitivity and bandwidth requirement, along with having ξ > 100
over the relevant band. It is also stable over the averaging time. We
tested this by performing a calibration after which we measured the
CMRR over a period of ∼5 min, as shown in Fig. 9. The average
value of ξ over the band of 1–100 Hz was recorded at various times

FIG. 9. The stability of ξ over time was measured in DC-mode with and without
active feedback. In the former case, the device was able to maintain an acceptably
high level of common-mode noise suppression over a time period comparable to a
fMCG measurement. When operating without the feedback, however, the device
suffers both in the absolute value of ξ as well as its stability.
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after calibration in both “open-loop” and “closed-loop” modes. The
stability of the CMRR over this interval suggests that the calibra-
tion is sufficiently stable for the signals to be averaged. As in pre-
vious experiments, we find that ξ was superior when operating in
the closed-loop mode. We did however observe a measurable reduc-
tion of ξ with time and hypothesize that the observed degradation is
dominated by residual sensitivity to transverse fields. In our setup,
the feedback was only applied along one direction. We suspect that
drifts of the field in the other two directions could change the com-
plex response of the two channels. Implementing a scheme where
the fields are sensed and compensated in all three directions is one
of our priorities for future studies. Operating in the closed loop, we
find that we can comfortably operate with ξ > 100.
B. On isolating fetal signal from maternal background

We now consider the question of how effective a gradiome-
ter is in suppressing the maternal background. Modeling the fetal
and maternal MCG sources as current dipoles with B ∼ B0/rp, with
p ∼ 2, we plot in Fig. 10 the variation of the fields, their gradients,
and their second order gradients with distance from the fetus. We
have assumed that the maternal heart is rm = 60 cm away from the
sensor, which is rf = 5 cm from the fetal heart.

The advantage of using a gradiometer to suppress the mater-
nal contribution to the signal is clear from Fig. 10. We see that at∼5 cm from the fetus, the maternal field is ∼10× larger than the
fetal field. The gradients of the field are however comparable in
magnitude. A gradient measurement will therefore have less mater-
nal MCG interference. We also see in Fig. 10 that we can gain an
even greater advantage by detecting the second order gradient. This
gain can be obtained if the gradiometers have sufficient sensitivity.

FIG. 10. Spatial dependence of the fetal and maternal fields with distance. We
assume a B∝ 1/rp (p = 2) scaling and plot the magnitude of the field along with
its first and second order derivatives. This illustrates the advantage of higher order
gradiometry in suppressing the maternal signal.

FIG. 11. Figure of merit for detecting a fetal field valuated for the case in which
the dominant background is the maternal field, as shown in Fig. 8. This calculation
illustrates that for our operating condition, F is limited by the magnitude of the
gradient of the maternal field for ξ > 100.

For example, in order to detect the fetal gradient at 10 cm with
SNR = 1 in 1 s, we surmise (from Fig. 10) that we need a sensor
with gradient sensitivity ∼10 fT cm−1 Hz−1/2 or better. Likewise, for
a second order gradiometer, we need a sensitivity of ∼10 fT cm−2
Hz−1/2.

Another way to quantify the advantage of the gradiometer is
to consider Eq. (2). The idea here is that the background to be sup-
pressed is the maternal field Bm ∼ B0/rp. Assuming that the mag-
netometer has baseline L, we then have that δBu = Bf Lp�rp+1f , the
gradient of the fetal field × the baseline, and that δBc = Bm�rpm, the
average value of the maternal field at the gradiometer. We substi-
tute those values into Eq. (2) and plot F for different baselines and
CMRRs.

The point to note from Fig. 11 is that using a gradiometer with
ξ > 100, the figure of merit is limited by the maternal field gradient
and not the CMRR. With regard to suppressing the maternal signal
therefore, there is no advantage to working to increase the CMRR;
time is better spent developing a higher order gradiometer. Further-
more, baselines on the order of 1 cm are best suited for maternal
MCG suppression.

V. COMPARISON TO PREVIOUS WORK
A number of different AM gradiometer implementations have

been reported in the literature.10–18 Baselines ranging from 0.3 to
10 cm have been attained by either (a) imaging a probe laser going
through a single cell onto a segmented photodetector such as by
Kominis et al.,12 (b) using spatially separated sensors which requires
having multiple probe beams, as in this work, or (c) having a single
beam going through multiple cells sequentially as done by Kamada
et al.14 Some features of the design choices are that in case (a), the
baseline is limited to the size of the cell ∼1 cm. One advantage it
offers is that atomic responses from the two spatial regions compris-
ing the gradiometer may be very similar as the atoms occupy nearly
the same volume. This will enable high CMRR. The designs in cases
(b) and (c) allow for larger baselines. For case (c), the subtraction of
the signal is effectively performed by Faraday rotation of the probe
and not by an electronic circuit or in software. As a result, photon
shot noise factors in the total noise budget only once, unlike in case
(b), where it factors in twice.
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We compare the different AM gradiometer implementations
in Table I, listing their baselines and the magnetometric sensitivi-
ties. We also list CMRRs in situations where it is carefully measured
by applying large amplitude noise signal and measuring its suppres-
sion. In cases where the CMRR is not well measured, we report the
lower limit. Given that the sensitivities and CMRR are functions
of frequency, we report their average values over a frequency band
of interest. For fMCG, that band is roughly 1–100 Hz. Addressing
the question of which implementation is best suited for fMCG, we
evaluate the figure of merit F for a source distance characteristic of
fMCG in this frequency band.

The evaluated figure of merit F in Table I can be used to assess
the suitability of the gradiometer for fMCG in a noisy environ-
ment. It does not quantify the degree to which the maternal MCG
signal can be suppressed in the fMCG measurement. As discussed
in Sec. IV B, that limitation is due to the nonnegligible gradient
of the maternal MCG field that is not suppressed by a first order
gradiometer.

We note from Table I that SERF sensors can achieve com-
parable and even superior sensitivity and CMRR to SQUIDs. The
achieved SERF sensitivity is well established. We have shown here
that the CMRR can reliably operate at a few ×102 over a large
frequency range while maintaining this sensitivity.

The chip scale SERF gradiometers described by Sheng et al.16
have the largest figure of merit for an fMCG application of all
the sensors we have considered. In fact, they report that for the
cost of a reduced bandwidth, their closed loop gradiometer can

TABLE I. Summary of published results of atomic gradiometers. The figure of merit F
is calculated for rs = 5 cm and p = 2–typical values for fMCG.29 F is calculated for an
ambient environment sufficiently noisy such that (δBu�δBc)2 � ξ−2 and is reported
for sensors with well measured ξ and favorable bandwidth for fMCG measurements.
The values of ξ for previously published work should be considered lower bounds.

Baseline, Mag. sens bw
Type L (cm) (fT�√Hz) ξ F (Hz) Reference

SQUID 5 5 100 60 1–150 a
SERF 4 10 350 184 1–150 b
SERF 2 10 750c 243 1–150 16
SERF 0.8 14 40 40–400 5
NMOR 2.5 80 >20 18
SERF 3 9.3 >6 14
SERF 0.5 0.16 <5c 11
SERF 0.3–0.9d 0.54 >13c 12
SERF 0.75–12d 4 >17c 13
SERF 0.5 5 >3c 17
SERF >2.5 5 >6c 31
CPT 1.5 2600 >800 10
CsOPM 10 54 >5c 32
Mx 5 300 1000 33

aSpecifications for Tristan 624 Bio-magnetometer from Tristan Technologies, San
Diego. Operational bandwidth can exceed a kHz. Only 1–150 Hz is considered in this
work to make comparisons with AM gradiometers.
bThis work.
cEstimated from published data.
dVariable baseline: array of sensors.

achieve a CMRR of up to 1000 at 10 Hz. This is very promising for
biomagnetism and low field NMR studies.5

Compared to the chip scale sensors, magnetometers like ours
with volumes ∼cm3 have an advantage of a fundamentally lower spin
projection noise level. That sensitivity can be exploited once other
sources of technical and uncorrelated magnetic noise are reduced.

As a final point, we recommend that subsequent studies in the
development of atomic magnetic gradiometers should report the
frequency dependence of their CMRR—measured by adding noise
in the frequency range of interest. This specification will enable
a more meaningful comparison of techniques and suitability for
applications.

VI. CONCLUSION
One key result from this work is that due to differences in tem-

perature, laser intensity distributions, cell wall conditions, etc., the
individual AM dynamic responses can be different to a degree in
which the CMRR can be compromised. As such, we expect that
superior gradiometric performance will be obtained if, as described
above, a calibration procedure which allows for individual chan-
nel differences—factoring their full complex responses—is applied
to the sensors comprising the gradiometers. We suspect that even
implementations with short baselines where atoms occupy nearly
the same volume stand to benefit from this.

We introduced a figure of merit F derived from the gradiome-
ter CMRR, its baseline, and the geometric scaling of the signal and
noise background. Knowing this figure of merit will help users judge
the optimality of a sensor for a particular application. If the noise
background is from a well-known sources (e.g., a current dipole),
the noise background scaling can be described analytically. Oth-
erwise, it can be estimated by measuring the gradient noise for a
number of baseline values. The optimal baseline is the one that
maximizes F.

We have demonstrated a gradiometer constructed from two
atomic magnetometers with baseline L = 4 and common-mode
rejection ratio ∼150 in the DC to 100 Hz band operating in the
closed loop. Its performance is comparable with current commer-
cially available SQUIDs. Future work will include efforts to combine
the benefits of parametric-modulation with active feedback to create
a superior gradiometer device.

Finally, we note that for the fMCG detection problem, higher
order gradiometry is needed. The gradient in the field arising from
the maternal MCG which is not suppressed by a first order gra-
diometer can be comparable to the fMCG. The development of
larger count AMgradiometer arrays should therefore be prioritized.
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APPENDIX A: GRADIOMETER FIGURE OF MERIT
Consider a configuration as shown in Fig. 12. A magnetic field

source is located at a distance rs from amagnetometer, with a second
magnetometer positioned at an additional distance of L along the
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FIG. 12. Configuration of source and magnetometers. The source, a fetal heart,
is modeled to be a current dipole Id�l. In the cartoon, the dipole is oriented per-
pendicular to the axis of the magnetometers, but it should be noted the intraheart
currents that generate the detected fields flow along all three axes.

same axis. The source is assumed to generate a magnetic field with
a power law B(rs) ∝ (1/r)p. For example, a point source magnetic
dipole in a uniform medium would have a profile with p = 3. On
the other hand, the field from a heart—relevant for MCG—is often
modeled as a current dipole,29 with p ∼ 1.8–2.2.

We express the output signal Si of each magnetometer as
Si = MiB(ri), where M is a response function and B(ri) is the field
magnitude at a distance ri from the source. The difference signal SG
is then given by

SG = S1 − S2 =M1B1 −M2B2. (A1)

The signal from a well-balanced (i.e.,M1 ≈M2 =M) gradiometer in
a magnetic field Bi = B0�rpi is

SG ≈M(B1 − B2) =M�B0

rps
− B0(rs + L)p �

= −rps + (rs + L)p
(rs + L)p MB1

= gp − 1
gp

MB1 (A2)

where g = 1 + L/rs and B1 is the magnetic field strength at the
magnetometer closest to the source.

In practice, the magnetometers can have different amplitude
and phase responses to identical magnetic field inputs. The resulting
gradiometer consequently will acquire a residual sensitivity to corre-
lated magnetic fields. The undesired residual sensitivity is inversely
proportional to the common-mode rejection ratio ξ, where

ξ = 1
2(S1corr + S2corr)
S1corr − S2corr

= 1
2(M1 +M2)
M1 −M2

. (A3)

Sicorr is the measured signal from magnetometer i due to an applied
correlated field. In SQUID gradiometry,34 ξ is limited by the match-
ing pickup coil areas or angular alignment of the two coils. In
the case of atomic magnetometers, ξ is limited by a combina-
tion of the noise floor of the magnetometers and the calibration
procedure.

In general, a measurement is made in a magnetically noisy
environment with total noise δB = �(δBu)2 + (δBc)2. δBu and
δBc are the uncorrelated and correlated sources of magnetic noise,
respectively. The SNR for the two-channel gradiometer is then

SNRG =
gp−1
gp MB1�(MδBu1)2 + (MδBu2)2 + 2(MδBc�ξ)2

= gp − 1
gp

B1�
2(δBu)2 + 2(δBc�ξ)2 , (A4)

where we have made the assumption that δBu1 ≈ δBu2 for the two
magnetometers.

If, instead, the two magnetometers (again, withM1 ≈M2 =M)
were not operated as a gradiometer, then the total signal is

SM = S1 + S2 =M(B1 + B2)
=M�B0

rps
+

B0(rs + L)p �
= gp + 1

gp
MB1. (A5)

Thus, the signal-to-noise ratio for this two-channel magnetometer is

SNRM = gp + 1
gp

B1�
2(δBu)2 + 2(δBc)2 . (A6)

Comparing Eqs. (A4) and (A6) illustrates the potential advan-
tage of using a gradiometer, which we define as the gradiometer
figure of merit F,

F = SNRG

SNRM
= gp − 1
gp + 1

�
2(δBu)2 + 2(δBc)2�
2(δBu)2 + 2(δBc�ξ)2

= gp − 1
gp + 1

�
� δBu
δBc
�2 + 1�

� δBu
δBc
�2 + ξ−2

. (A7)

Gradiometers are only useful if the total noise is dominated by
correlated noise between the two channels. Under the assumption
that δBu/δBc � 1,

F ≈ gp − 1
gp + 1

1�
� δBu
δBc
�2 + ξ−2

. (A8)

This clearly demonstrates that the figure of merit depends not
only on the noise ratio of δBu/δBc but also on how that ratio com-
pares to ξ. If (δBu�δBc)2 � ξ−2, immediate and potentially sub-
stantial benefits to the figure of merit (and therefore gradiometer
performance) will be gained through an increase in ξ. If, instead,(δBu�δBc)2 � ξ−2, further experimental efforts would be best
focused elsewhere.

Taking p = 2 and L = rs, for example, we obtain

F ≈ 3
5

1�
� δBu
δBc
�2 + ξ−2

. (A9)

APPENDIX B: SERF MAGNETOMETRY
For an ensemble of alkali atoms with total angular momentum

F, electronic angular momentum S, and electron spin polarization
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P = 2S, the SERF regime is where the alkali-alkali spin exchange
rate is sufficiently high such that the atoms are described by a spin
temperature distribution. We can describe the evolution of angular
momentum with the Bloch equation

2
@�F�
@t
= R(s − �P�) +Ω × �P� − Γ�P�, (B1)

where R is the optical pumping rate and s is the photon angular
momentum vector. Themagnetic field,B =Ω/γ, is the given in terms
of the Larmor frequency and the gyromagnetic ratio γ. Γ is the total
effective spin relaxation rate. In steady state, Eq. (B1) has solution

�P� = R
Γ′(Γ′2 +Ω2)

�����
Γ′Ωy +ΩzΩx

−Γ′Ωx +ΩyΩz

−Γ′2 +Ω2
z

�����
, (B2)

where Γ′ = Γ + R. In our design, we probe the x-component of P is
probed via off-resonance Faraday rotation.

In near zero field, we haveΩ ∼ 0, and
Px ∼ R

Γ′ +Ω2Ωy. (B3)

In the Z mode case, we apply a modulating field along the
pumping direction, such that the total field in Eq. (B1) is now

Ω = Ωxx̂ +Ωyŷ + (Ωz +Ω0 cos(ωzt))ẑ,
yielding the results

Px(DC) ≈ − Pz
Γ′ΩyJ0(u)2,

Px(nωz) ≈ − Pz
Γ′ 2J0(u)Jn(u)�−Ωx sin(nωzt), n odd,

−Ωy cos(nωzt), n even.

(B4)

Consequently, we see that the Px signals demodulated at even (odd)
harmonics of ωz lead to sensitivity to By (Bz). See Refs. 22, 23, and 25
for more detailed description.
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