
 
 

The Symmetric Linear Potential 
 

 The goal is to find analytical solutions to the TISE eigensystem for a potential of 
the form 
 

 ( )V x b x            ,x    (1) 
 
where b is a constant specific to the potential in question. The first thing to notice is that 
the potential is symmetric, which in this case means we can classify solutions in terms of 
parity. For 0x  , the TISE is 
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We change variables with the definitions1  
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and obtain a differential equation whose solutions are, in general, a linear combination of 
the Airy functions Ai 3( 2 ) and Bi 3( 2 ) . 
  

 ''( ) 2 ( )  ψ ψ        3 3
1 2( ) ( 2 ) ( 2 )C Ai C Bi   ψ  (4) 

 
 
However, Bi(ξ) diverges as   . This violates the requirement that 0ψ  as  
  , which does not make physical sense. We therefore restrict the solutions to the 
form 
 

 3( ) ( 2 )n n nC Ai ψ  (5) 
 
where Cn are normalization factors. Again, this is for 0s  . 
  
 At this point we consider the parity of our solutions. Even and odd eigenstates for 

0s   can be extended to give the solutions for 0s   by 
 

 ( ) ( )even evens s ψ ψ                     ( ) ( )odd odds s ψ ψ  (6) 
 
                                                
1 Another option is to take  2 1/3

2mba   and  2 22maW   .  This leads to a more common form of 
the Airy equation, but includes a factor of 2-1/3 in the energy (9).  



With these properties, it then stands to reason that we need the boundary conditions 
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for our (non-normalized) solutions. Normalization is done numerically as 
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The two equations in (7) then give the eigenvalues for odd and even parity states, 
respectively. Finally, we come to the conclusion that the bound state energies are given 
by 
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Fig 1: An example of the symmetric linear potential theoretical eigenfunctions (n = 20). Note that since 

20ψ  is an odd state, 20 (0) 0ψ . Observe also the decaying behavior of the wavefunction around the 

classical turning points 20s 

  . 

 
 


