Supersymmetric Partner to Symmetric Well Problem

Mohandas Pillai

June 24, 2012

We consider a potential $V(x)=\left\{\begin{array}{ll}\frac{-m c^{2}}{2}, & \text { if } x \in\left(-\frac{\pi}{2} \frac{\hbar}{m c}, \frac{\pi}{2} \frac{\hbar}{m c}\right) \\ \infty, & \text { otherwise }\end{array}\right.$ If we let $W(s)=\tan (s)$ and $A(s)=$ $\left(\frac{\partial}{\partial s}+W(s)\right)$, be a representation of an operator A in the position basis. Then, we have that $H_{0}=\frac{1}{2} A^{\dagger} A$, where H_{0} is the Hamiltonian for the particle in a symmetric well, as can be verified by expressing the operators in the position basis, with the substitution $s=\frac{x m c}{\hbar}$

The partner Hamiltonian is then $H_{1}=\frac{1}{2} A A^{\dagger}=\frac{-1}{2} \frac{\partial^{2}}{\partial s^{2}}+\sec (s)^{2}-\frac{1}{2}$, in the position basis.
If we note that $\left.A A^{\dagger}(A|n\rangle)=A\left(A^{\dagger} A\right)|n\rangle\right)=2 E_{n} A|n\rangle$, with $|n\rangle$ being the eigenvectors of H_{0} and that the eigenvectors of H_{0} are precisely (in the position basis) $\psi_{n}(s)=\left\{\begin{array}{ll}\sqrt{\frac{2}{\pi}} \cos (n s), & \text { if } \mathrm{n} \text { is odd } \\ \sqrt{\frac{2}{\pi}} \sin (n s), & \text { if } \mathrm{n} \text { is even }\end{array}\right.$, which follows from the fact that $k=\sqrt{2 E+1}$ but that boundary conditions dictate that $k=n$, we can immediately write down all eigenvectors (up to normalization) of H_{1} as $A|n\rangle=\left(\frac{\partial}{\partial s}+\operatorname{Tan}(s)\right)\left(\psi_{n}(s)\right)$.

We can explicitly determine this normalization, since, the partner eigenfunctions satisfy $A|n\rangle=c|n-1\rangle$, with c a complex number, so that $\| A|n\rangle \|^{2}=\langle n| A^{\dagger} A|n\rangle=2 E_{n}=|c|^{2}$. Hence, we have that $\left|n_{\text {partner }}\right\rangle=\frac{1}{\sqrt{2 E_{n-1}}} A|n-1\rangle$.

