Supersymmetric Partner to Symmetric Well Problem

Mohandas Pillai

June 24, 2012

We consider a potential $V(x) = \begin{cases} \frac{-mc^2}{2}, & \text{if } x \in \left(-\frac{\pi}{2}\frac{\hbar}{mc}, \frac{\pi}{2}\frac{\hbar}{mc}\right) \\ \infty, & \text{otherwise} \end{cases}$ If we let W(s) = tan(s) and $A(s) = \frac{W(s)}{2} = \frac{1}{2} \frac{W(s)}{2} = \frac{1}{2} \frac{W(s)}{2} \frac{W(s)}{2} \frac{W(s)}{2} = \frac{1}{2} \frac{W(s)}{2} \frac$

 $(\frac{\partial}{\partial s} + W(s))$, be a representation of an operator A in the position basis. Then, we have that $H_0 = \frac{1}{2}A^{\dagger}A$, where H_0 is the Hamiltonian for the particle in a symmetric well, as can be verified by expressing the operators in the position basis, with the substitution $s = \frac{xmc}{\hbar}$ The partner Hamiltonian is then $H_1 = \frac{1}{2}AA^{\dagger} = \frac{-1}{2}\frac{\partial^2}{\partial s^2} + sec(s)^2 - \frac{1}{2}$, in the position basis. If we note that $AA^{\dagger}(A \mid n) = A(A^{\dagger}A) \mid n) = 2E_nA \mid n\rangle$, with $\mid n\rangle$ being the eigenvectors of H_0 and

that the eigenvectors of H_0 are precisely (in the position basis) $\psi_n(s) = \begin{cases} \sqrt{\frac{2}{\pi}} \cos(ns), & \text{if n is odd} \\ \sqrt{\frac{2}{\pi}} \sin(ns), & \text{if n is even} \end{cases}$, which

follows from the fact that $k = \sqrt{2E+1}$ but that boundary conditions dictate that k = n, we can immediately write down all eigenvectors (up to normalization) of H_1 as $A \mid n \rangle = (\frac{\partial}{\partial s} + Tan(s))(\psi_n(s))$.

We can explicitly determine this normalization, since, the partner eigenfunctions satisfy $A \mid n \rangle = c \mid n-1 \rangle$, with c a complex number, so that $||A| \mid n \rangle ||^2 = \langle n \mid A^{\dagger}A \mid n \rangle = 2E_n = |c|^2$. Hence, we have that $||n_{partner}\rangle = \frac{1}{\sqrt{2E_{n-1}}}A \mid n-1 \rangle$.