Cosine Potential

August 9, 2012

We wish to solve the equation

$$
\begin{equation*}
-\frac{1}{2} y^{\prime \prime}(x)+V_{0} \operatorname{Cos}(x) y(x)=E y(x) \tag{1}
\end{equation*}
$$

subject to the boundary condition

$$
\begin{equation*}
y(0)=y(2 \pi) \tag{2}
\end{equation*}
$$

We then have $-y^{\prime \prime}(x)=2\left(E-V_{0} \operatorname{Cos}(x)\right) y(x)$ Let $x=2 q$. Then, $y^{\prime \prime}(q)+\left(-8 V_{0} \operatorname{Cos}(2 q)+8 E\right) y(q)=0 \Longrightarrow$ $y(x)=a_{0} C\left(8 E, 4 V_{0}, \frac{x}{2}\right)+a_{1} S\left(8 E, 4 V_{0}, \frac{x}{2}\right)$, where $\mathrm{C}(\mathrm{a}, \mathrm{q}, \mathrm{v})$ is the Mathieu cosine function, $\mathrm{S}(\mathrm{a}, \mathrm{q}, \mathrm{v})$ is the Mathieu sine function.

For symmetric eigenfunctions, we can take $a_{1}=0$, and normalize ψ based on $\int_{0}^{2 \pi} p s i(x)^{2} d x$. $=1$. For asymmeric eigenfunctions, we can take $a_{0}=0$, and normalize in the same manner.
The energies are found by noticing that $\frac{a_{r}}{8}=E$, where a_{r} is the Mathieu characteristic for the Mathieu cosine function (i.e. the value of $8 E$ needed for the Mathieu cosine function to be periodic), for even functions, and $\frac{b_{r}}{8}$ for odd functions, with b_{r} the characteristic for Mathieu sine functions.

