
 

Light-induced collisions of 
ultracold rubidium atoms

 

by

Dominikus Hoffmann

 

A dissertation submitted in partial fulfillment of the require-
ments for the degree of

Doctor of Philosophy

(Physics)

at the

 

University of Wisconsin - Madison

 

1996



 

ii

 

Abstract

 

In this dissertation I present a variety of experiments on collisions between ultra-cold rubid-

ium atoms. These collisions take place in light-force atom traps, where temperatures below

1 mK are reached. At these low temperatures weak, long-range interactions between the atoms

are important, and collision times are long. Consequently, the absorption and spontaneous

emission of photons plays an important role in determining the collision dynamics.

The collisions studied in this dissertation involve excitation of the atoms to a state where the

relatively strong dipole-dipole interaction with another atom results in attraction (or repul-

sion) after which spontaneous emission may take place. The resulting energy transfer in such a

collision can eject the atoms from the trap.

We have observed such collisions in both stable isotopes of rubidium. If the  excited-

state is involved, the two isotopes behave quite di

 

ff

 

erently. This makes clear the importance of

hyperfine interactions in the collision dynamics. In contrast, for the  excited-state such

di

 

ff

 

erences disappeare, because the hyperfine interaction is strong enough to eliminate hyper-

fine mixing of the potentials.

Another collision process involved collisions with a repulsive dipole-dipole interaction. This

experiment gives strong support for a Landau-Zener treatment of the excitation process. These

collisions enabled the measurement of the trap depth.

Finally, collisions between rubidium atoms that have undergone a two-step excitation by two

near-infrared photons produce violet fluorescence as a signature of the collision. We have

observed this e

 

ff

 

ect. The data shows unexpected features, which warrant further investigation.
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1 Introduction
Atom traps produce samples of atoms at temperatures below a few hundred microkelvin

with densities in excess of . These samples are of great interest for a variety of exper-

iments. Under these conditions, collisions between trapped atoms often have cross sections on

the order of , as compared to  or less for room temperature atoms. This is

a consequence of the atoms’ small kinetic energy, such that even weak, long-range interactions,

such as the dipole-dipole interaction between the atoms, are important. Excited-state colli-

sions provide a loss mechanism in atom traps, which limits the number of atoms an atom trap

can hold.1,2 There is also considerable interest in ground-state collisions, since they play an

important role in cooling a sample of atoms to the phase-space densities where Bose-Einstein

condensation occurs.3 In atomic fountain clocks collisions between the ultra-cold atoms pro-

duce phase shifts of the atomic coherence, which limit the clock’s accuracy.4

In addition to their practical importance, ultra-cold collisions are of interest in their own

right. Collision times and distances are in a completely new regime as compared to collisions

at high temperatures and pressures. Under certain circumstances, because the colliding atoms

are so slow, the nature of the collisions may be quantum mechanical where only small relative

angular momenta are important. The weak, long-range interaction of the atoms leads to long

collision times in the range of microseconds. Thus the collision dynamics can be strongly

modified by the presence of light fields. Excited-state collisions can be terminated by sponta-

neous emission, since the lifetime of the excited state is short compared to the duration of the

collision.

In this dissertation I describe experiments on ultra-cold collisions between rubidium atoms

in optical traps, in the presence of a laser that excites the colliding atom pairs. The collisions

studied are inelastic, and the energy transfer permits the atoms to overcome the confinement

of the trap. These collisions are studied by observing the loss of atoms from the trap.

As this field and sophistication has progressed, theories of increasing complexity have been

proposed. It has been the purpose of this research to devise and carry out experiments that

lend themselves to comparison with these theories.

1010 cm3⁄
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In this dissertation I describe a series of ultra-cold collisions experiments. Much has been

learned through studying both stable rubidium isotopes, 85Rb and 87Rb. Studying collisions

using light tuned near the Rb  excited-state, the isotopic comparison revealed substan-

tial differences. This pointed toward the excited-state hyperfine interaction playing an impor-

tant role in the dynamics of these collisions (see Sec. 4.1).5,6 Because of the larger hyperfine

interaction, collisions involving the  excited-state proved to show no isotopic depen-

dence (Sec. 4.2).7 In that case the dipole-dipole interaction is weaker than the hyperfine-inter-

action and does not produce a noticeable difference in the two isotopes. This experiment

illustrated how a collision experiment may be devised that avoids the problems associated with

a dipole-dipole interaction strongly modified by hyperfine interaction. This far all collisions

had involved excitation to attractive potentials. An experiment with repulsive collisions gave

evidence for a Landau-Zener description of the excitation process (Ch. 5).8 These types of col-

lisions also provided us with the first direct measurement of the depth of a trap (Sec. 5.5).9

Finally, collisions modified by the absorption of two sequential photons10 to a double-excited

state restrict the collisional dynamics between the two excitations to a regime, where a reliable

theoretical treatment should be possible with simple means (Ch. 6). As an additional benefit,

this experiment provided the first direct detection of photons emitted during ultra-cold colli-

sions.

1.1 The Gallagher-Pritchard model

Ultra-cold collisions can be described using molecular states that consist of appropriately

symmetrized atomic states of two individual atoms with a ground and an excited state.

Excited-state collisions take place in the presence of light in resonance with a transition from

the ground state to the excited molecular state. The atom pair is prepared in the excited-state

through the absorption of a photon. During the process of the collision the atoms may change

states to a lower energy level or make a transition to the ground state through spontaneous

emission. If in either case the kinetic energy that the atoms gained due to their mutual attrac-

tion in the excited state is larger than allowed by the finite trap depth (typically 1 K), they are

ejected from the trap. Thus the collisions induce a loss rate that counteracts the loading of the

trap, which takes place at a constant rate in the case of a background-vapor-loaded  (see

5 P
2

3 2⁄

5 P
2

1 2⁄
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Sec. 2.1). Thus higher loss rates shift the equilibrium between loading and losses resulting in

smaller numbers of trapped atoms.

The first and simplest model of ultra-cold collisions is the Gallagher-Pritchard model.11 It is

an attempt to break down the collision process into a sequence of steps, that can each be

treated with relative ease. It consists of excitation at large interatomic separation, followed by

motion on the excited state, characterized by survival if no spontaneous emission occurs, and

energy transfer at small separations.

 In detail, this sequence is as follows (see Fig. 1.1): Thermal motion on the ground-state

potential (  for rubidium) at trap temperatures (~100 – 200 µK) brings an atom

pair to within the distance of each other (step ), where their dipole-dipole interaction makes

them resonant with the excitation of light from a “catalysis laser.” Excitation may then take

place (step ). After excitation the excited-state potential ( ) accelerates the

atoms toward each other (step ). While the atoms are moving on the excited-state potential

curve spontaneous emission may occur (step ). If they have gained more kinetic energy than

confinement allows, they leave the trap on the ground-state potential (step ). If spontaneous

emission occurs earlier, they remain in the trap, and the collision remains undetected, because

they do not contribute to trap-loss, which is the signature of these collisions.

In its simplest form, the Gallagher-Pritchard model makes a few assumptions and approxi-

mations. It neglects the thermal motion of the atoms in step . Excitation in step  is treated

quasi-statically, that is, as though the atoms were at rest both before and after the excitation.

The model for excitation is that of an isolated atom whose excited-state energy level has been

shifted by the perturbation of the dipole-dipole interaction of the two atoms. The acceleration

and motion in the excited-state in step  is treated classically. In the model, the survival proba-

bility simply depends on the duration of the collision and on the excited-state lifetime, which

is assumed to be unaffected by the dipole-dipole interaction.

In the following derivation of the model several convenient and meaningful definitions are

made. Fig. 1.2 illustrates them.

5 S
2
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2
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The resonance dipole-dipole interaction between two identical atoms has the form

, (1.1.1)

if one of the atoms is in the excited state. This simple form neglects fine- and hyperfine struc-

ture, but is still used in many models. The plus sign represents repulsive interaction, the minus

Figure 1.1: Anatomy of an attractive ultra-cold collision. Two atoms approach each other with thermal

velocities (step ). Excitation to an excited-state potential curve may occur in the presence of resonant

light (step ). Acceleration toward each other follows (step ). Spontaneous emission (step ) after pick-

ing up sufficient kinetic energy may lead to escape from the trap (step ).
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sign attractive ones.  is a coefficient specific to the species of atoms and excited state

involved. In the ground state the dependence of the atom-atom interaction on the interatomic

separation is much weaker ( ). Thus, at large separations, where the collision process

involves the ground-state potential, it is a good approximation to neglect the ground-state

potential.

Figure 1.2: Important quantities in the Gallagher-Pritchard model. The atom is resonant with a transi-

tion from the ground-state potential curve to the excited-state at  if the laser has a detuning . The

atom travels from  to  within one natural lifetime. If spontaneous emission occurs at a posi-

tion , after the atoms have passed , they have more kinetic energy than the trap depth  and

escape the trap. The energy picked up in radiative escape is .

R�
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If a pair of atoms a distance  apart is excited out of the  into the

 state, it has a total energy of , assuming it was at rest before being

excited. When the two atoms have accelerated toward each other and have reached a separa-

tion , energy conservation gives the relation

, (1.1.2)

where  is the reduced mass of the atom pair and  is the relative velocity of the

atoms. This differential equation can be solved for the time it takes the atom pair to reach a

separation  after being excited. It is

. (1.1.3)

With the substitution  and using the Beta-function,

, (1.1.4)

this can be solved to yield

. (1.1.5)

Rewriting this in terms of  and , where  is defined through

, (1.1.6)

and  is the lifetime of the associative excited state of the two atoms, gives

. (1.1.7)

The number of atoms remaining in the excited state after having been excited at an interatomic

separation  decreases exponentially due to spontaneous emission. The number of
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atoms reaching small interatomic separation where energy transfer can occur is decreased by

.

The rate at which collisions lead to trap loss is the integral over all initial interatomic separa-

tions  of the trap loss probability per unit time. The integrand is proportional to the density

of trapped atoms , as well as, given one atom, to the number of atoms , which

might serve as potential collision partners because they are within a spherical shell of radius

 and thickness . Furthermore, the rate , at which atoms are produced in the

excited state, enters, as well as the fraction  of atoms remaining in the excited

state and the probability of an energy transfer .  is measured from the atomic resonance

(   transition). Also, in every such event two atoms are lost from the trap. Thus

the collision rate is

, (1.1.8)

where the proportionality to the density is made explicit by defining a trap-loss coefficient .

The excitation rate is assumed to be a Lorentzian involving the molecular linewidth

, the shift of the molecular level due to the atom-atom interaction

, the intensity of the light  and the wavelength of the transition ,

, (1.1.9)

where a separate detuning for the laser  indicates that  is not necessarily the separation at

which the atom pair is resonant with the laser.  is the total probability of energy transfer

that leads to trap loss. The contributing factors to  include radiative escape, where a pho-

ton is spontaneously emitted that has sufficiently less energy than the photon absorbed from

the laser, and, less importantly, fine-structure changes, where a transition to a lower-lying fine-

structure potential takes place, if there is one. If a fine-structure change occurs when the atoms

are close to each other,  has to be modified to include this effect. It is difficult to predict

 as pointed out by Dulieu et al.12
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Over most of the range of laser detunings,  is large compared to the molecular line width

, such that the excitation rate of (1.1.9) can be approximated according to

(1.1.10)

This allows us to easily evaluate the integral of equation (1.1.8). With the substitutions

 and , and assuming that  throughout the trap this

becomes13

(1.1.11)

Fig. 1.3 is a plot of  as a function of  for rubidium. In that case, , from

a calculation that neglects fine- and hyperfine structure.13 

Eq. (1.1.11) also nicely separates the two regimes of trap loss rates evident from the plot. At

laser detunings  the exponential term dominates and provides the onset near zero.

At detunings where  the exponential approaches one, and the  dependence takes

over, which arises from the distribution of atoms pairs available for excitation at the separation

determined by .

The model also predicts linearity in the dependence of collision rates upon the laser inten-

sity. See Sec. 4.1.3 for our measurement of this property.

1.2 Modifications to the model

Since publication of the Gallagher-Pritchard model11 several modifications have been

offered. They all retain the separation of the collision process into initial excitation, dynamics

and, finally, energy transfer, which leads to trap loss. The goal of these modifications has been

to improve quantitative agreement of the models with data described in this dissertation and

elsewhere. Some of the newer models include attempts to take into account the temperatures

that the atoms have when they are excited. In contrast, the original Gallagher-Pritchard model

assumes  and approaches the excitation process as quasistatic.

∆L

∆M

I
hc λ⁄
------------ λ2 2π⁄

1 4 ∆ ∆L–( )2 ∆M
2⁄+

-----------------------------------------------
∆L ∆M⁄ ∞→

lim
I

hc λ⁄
------------ λ2

2π
------

∆M

2
-------πδ ∆ ∆L–( )=

h∆ C– 3 R0
3⁄= ∆L ∆→ n const.=

β
Iλ3P∆EC3∆M

12π�2c∆2
------------------------------ ∆τ ∆⁄( )5 6⁄–[ ]exp=

β ∆ C3 71.3 eV Å3=

0 ∆ ∆τ< <

∆ ∆τ» ∆ 2–

∆

T 0=



9

Julienne and Vigué14 included the conventional quantum mechanical analysis of the phase of

the collision at close range, to properly account for fine-structure changes. Effects of retarda-

tion in the excited-state potential were also considered for states for which absorption and

emission are dipole-forbidden. In the case of rubidium the dipole-dipole interaction of the

excited state is so strong that our relatively large catalysis laser detunings excite atoms at small

enough separations so that retardation plays no role. The purpose of these improvements was

intended to bring the theory into quantitative agreement with measurements of the trap loss

Figure 1.3: Spectrum of the trap loss coefficient  as predicted by the standard Gallagher-Pritchard

model The onset at small detunings  results from spontaneous emission interrupting collision when

excitation occurs at very large separations. At larger detunings, beyond the maximum, the trap loss

rate decreases like , because the number of atoms available for excitation at a given detuning

decreases as .
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rate resulting from a laser with detunings of only a few megahertz such as the trap laser in a

 (see Sec. 2.1 for the description of the atom trap of the  type). Julienne and Vigué’s

calculations quantitatively agree with the measurements made in cesium.15 However, mea-

surements for rubidium in this dissertation showed that the Julienne-Vigué theory does not

work for rubidium (Ch. 4.1).

Another approach, by Band and Julienne, uses an optical-Bloch-equation method.16 It

improves on the Gallagher-Pritchard model and Julienne and Vigué’s theory in a couple of

ways, but the optical-Bloch-equation method naturally takes into account the slow thermal

motion of the atoms in the ground state as they are excited. It does not make a quasi-static

approximation. This is especially important at smaller detunings, where the acceleration by

the excited-state potential is small, such that any initial velocity is non-negligible. It also prop-

erly treats saturation at high intensities of the laser exciting the atom pair. The method incor-

porates the dynamics into the optical-Bloch-equation formalism, which emphasizes the

collision being a continuous process, without, however, introducing new physics. Its results

compare well with the cesium data mentioned above15 that were measured at a detuning cor-

responding to one natural linewidth. With this theory, agreement with our rubidium data still

was not achieved.

A simple Landau-Zener formulation of the excitation mechanism in contrast to the quasi-

static approach of the Gallagher-Pritchard model, was shown to give analogous results to those

of a fully quantum mechanical model treatment of the motion of the atoms.17,18 If accurate,

the Landau-Zener model would naturally allow the effects of high intensity to be taken into

account, and predicts that the excitation probability depends on the relative velocities of the

atoms. We have conducted an experiment that gives evidence for the validity of the Landau-

Zener formulation (see Ch. 5).8 However, to this date no theory has given a general quantita-

tive description of ultra-cold collisions.

As a result of the interaction between theory and experiment, ultra-cold collisions can now

be understood as sequence consisting of excitation at large interatomic separation, described

by the Landau-Zener model, semiclassical dynamics in the excited-state, and subsequent spon-

taneous emission that may lead to escape from the trap. Previous attempts at improving the
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ability to predict the absolute values of collision rates have shown this to be a very difficult

task. The ability to do so depends on a good understanding of the processes at small inter-

atomic separations, a regime that is not unique to ultra-cold collisions. Therefore, our interest

is directed at understanding the shape of detuning dependences of trap loss rates, which result

from the dynamics and excitation at large to intermediate separations. Because initial motion

is slow, it is in those regimes where spontaneous emission can modify the collision in a detun-

ing-dependent way.

Consequently, considering the excited-state hyperfine interaction and its coupling with the

atoms’ dipole-dipole interaction is very important. To date no calculation has fully taken the

hyperfine interaction into account, even though the potential curves of dipole-dipole interac-

tion in rubidium have been calculated.19

The remainder of this thesis is devoted to describing experiments that on the one hand give

new insights into details of excited-state collisions and on the other are tailored to a simple

theoretical approach.
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2 The apparatus
The previous chapter layed down the theoretical foundation for this dissertation. In this

chapter I describe the apparatus used to cool and trap the atoms, whose collisions we study.

This involves the magneto-optical trap (), the lasers that we use in the , as well as for

manipulating the atoms’ collisions, and the detectors with which we observe the trapped

atoms. The following chapter then describes the details of the method which we employ to

study ultra-cold collisions.

The apparatus used in these experiments has a 
20

 at its heart. Figure 2.1 is a schematic

diagram of the apparatus. A  traps neutral atoms and cools them to temperatures where

Doppler broadening is smaller than the natural line width of the atomic levels. A  manip-

ulates the trapped atoms’ external degrees of freedom, specifically, position and velocity. It

does so by having resonant light scatter off the atoms to exert a slowing, as well as confining

force on the atoms (Sec. 2.1).

We use diode lasers to provide the light that trap the atoms. With grating feedback the lasers

possess linewidths smaller than the atomic linewidth (Sec. 2.3).Trapping takes place in an

ultra-high vacuum chamber. Pressures below  torr are needed so that there is little inter-

ference of background-vapor atoms with those in the trap (Sec. 2.2). 

Besides for collisions s can be and have been used for a variety of experiments. These

include atom interferometry,
21

 quantum optics,
22

 and the recent observations of Bose-Einstein

condensation.
23

 An application to more traditional atomic physics is the recent use of a laser

trap for making reliable absolute measurements of electron-atom cross sections.
24

2.1 The operation of the magneto-optical trap

When atoms scatter light, the photons transfer momentum to the atoms, exerting a force on

them. In the simplified picture of an atom interacting with a single laser beam, this scattering

process consists of multiple cycles involving absorption, stimulated and spontaneous emis-

sion. A sequence of absorption and stimulated emission does not change the atom’s momen-

tum, because the emitted photon has the same momentum and direction as the one absorbed.

If, however, the absorption of a photon is followed by spontaneous emission, which can occur

10 9–
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in a random direction, the atom is imparted the momentum difference between that of the

absorbed and that of the emitted photon. When averaged over many cycles spontaneous emis-

sion does not contribute to the momentum transfer, because it occurs isotropically. The result-

ant force ( ) acts along the propagation direction of the laser beam and is proportional to the

absorption rate  and the photon momentum . For the model of a two-level atom starting

at rest, it takes the form

, (2.1.1)

where  is the photon momentum,  the natural line width of the transition in ,  the

laser beam intensity,  the saturation intensity, which for rubidium is 3.1 , averaged

over Zeeman levels, and  the detuning of a laser with angular frequency  from

line center at .

In a  the arrangement of laser beams is designed such that these forces cool, as well as

confine the atoms. In our system the beams are arranged in the standard configuration
1
 con-

Figure 2.1: Magneto-optical trap. The illustration shows the six-way cross with viewports for access by

the trapping laser beams, the polarization of the beams for MOT operation, and the ion pump that

maintains the vacuum.
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sisting of three pairs of counterpropagating beams whose axes are along the Cartesian axes of

space and intersect at the center of our vacuum chamber.

To provide cooling the beams have to be tuned slightly (1 – 3 line widths) below center of the

resonance of the transition used with the atoms (Fig. 2.2). In the atom’s frame of reference the

beams whose propagation direction are opposite to the atom’s velocity components along the

beam axes are always Doppler-shifted toward the blue—closer to resonance. Conversely, the

atom recedes from the corresponding counterpropagating beams, which in the atom’s frame of

reference are red-detuned—farther from resonance. Thus it scatters photons with greater

probability from the blue-detuned beams than from the red-detuned ones. The frequency of

each beam from the perspective of the atom is Doppler-shifted by , where  is the wave

vector of the ith beam and  the atom’s momentary velocity vector. Thus, the detuning in

Eq. (2.1.1) has to be replaced with . Combining the effects of all three pairs of beams,

in the limit of , which is the case in atom traps, this results in a net force 

proportional and opposite to :

. (2.1.2)

In order to spatially confine the atoms, a position-dependent force is needed. A pair of anti-

Helmholtz coils coaxial with one of the pairs of laser beams, in our case the vertical, -axis,

produces a magnetic quadrupole field with  at the intersection point of the laser beams

and a gradient of . Thus the magnetic field

in the vicinity of the center of the trap ( ) has a magnitude

. (2.1.3)

 In the presence of such a magnetic field gradient due to the Zeeman-effect the atoms prefer

to absorb photons whose spin is opposite to the magnetic field vector (see example for an atom

with an  trapping transition in Fig. 2.3). The Zeeman effect shifts the ground- as

well as the excited-state magnetic hyperfine sublevels. This makes it more difficult to calculate

the  force. However, in the case of low intensity, for an atom in a standing wave made up of

k– i v⋅ ki

v

∆ ki v⋅–

ki v⋅ Γ ∆,« Fcool

v

Fcool
8�k2∆

Γ
---------------

I Is⁄
1 4∆2 Γ2⁄ I Is⁄+ +( )2

---------------------------------------------------v=

ẑ
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Figure 2.2: Trapping and hyperfine pumping transitions in 
85

Rb and 
87

Rb. The trap laser makes the

atoms cycle between  and . The hyperfine pumping laser pumps

the atoms out of the  state, if an off-resonant excitation to the 

state resulting in spontaneous emission to the  ground state has taken place.
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two counterpropagating beams with equal intensity and opposite circular polarization the

result can be expressed in simple terms. If the pair of beams is along the z-axis, the force is

, (2.1.4)

where  is the Bohr magneton,  is the gyromagnetic ratio of the excited state,

and

(2.1.5)

can be interpreted as a photon scattering cross-section per unit Larmor frequency.
19

 To obtain

the fully three-dimensional force, we have to take into account the magnetic field dependence

of Eq. (2.1.3), as well as that .

Figure 2.3: Zeeman force for an atom with  in a standing wave detuned to the red from

resonance. An atom in an inhomogeneous magnetic field, such as is generated by a pair of anti-Helm-

holtz coils, will preferentially absorb a photon from that red-detuned beam whose photons possess a

spin  opposite to the local magnetic field . The result is a net scattering force toward .
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The trap loads from the background rubidium vapor in the vacuum chamber.
1
 As room

temperature atoms from the low-velocity tail of the Maxwell-Boltzmann distribution drift

through the intersection region of the laser beams, they mainly experience the cooling force. It

slows them enough for them to be captured and be driven toward . We have measured

the capture velocity of the atoms to be on the order of 10 .
9
 This means that for a room-

temperature vapor of rubidium atoms a fraction of about  of the atoms are resonant

with the trap laser and can therefore be trapped.

Loading occurs at a rate . However, a steady state number of atoms  is reached in an

equilibrium between the loading and loss rates. Loss processes are the collision of a room-tem-

perature atom from the background vapor colliding with a trapped atom at a rate , or the

type of inelastic collisions between trapped atoms that are the subject of this work, which

occur at a rate , where  is the local density of the atoms and the brackets denote the

average over the trap volume. The number of atoms  then reaches equilibrium at

 . (2.1.6)

The loading rate can be affected by a number of parameters. Greater trap laser detunings

result in higher capture velocities. The loading rate depends linearly on the detuning up to

about three natural linewidths,
10

 beyond which the detuning becomes too large for the slow

atoms in the trap to be affected by the light. The intensity of the trapping light affects the load-

ing rate linearly, as well.

The capture volume of the trap is given by the trap laser beam diameter. The loading rate

goes up linearly with the trap diameter, even when the total power in the cross section of the

beams is kept constant.
10

 The practical limit in our case is given by the one-inch dielectric mir-

rors used to steer the trap laser beam.

An increase in the partial pressure of the rubidium background vapor also leads to a higher

loading rate. However, it at the same time increases the loss rate . By increasing the vapor

pressure, one can therefore maximize the number of trapped atoms at the expense of a large .

The trade-off is that this makes small collisional loss rates  difficult to observe. We
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choose vapor pressures low enough for a discernible , yet large neough to provide us

with enough atoms to be able to observe the effect of collisions.

2.2 Vacuum chamber

Trapping occurs in a vacuum chamber that was constructed from standard 1.5 inch stainless

steel  vacuum components, with the  being constructed at the center of a six-way

cross. Viewports allow for optical access. All of the windows for the trapping beams were anti-

reflection coated for 780 nm. Later, for the experiment described in Sec. 4.2, the six-way cross

was replaced with the custom-made chamber shown in Fig. 2.4. This allowed us to observe the

fluorescence from the trapped atoms off-axis from the trapping beams, greatly reducing the

contribution of scattered light to the signal. Of the four additional windows two remained

uncoated, a necessity for observing the blue photons detected in the experiment described in

Ch. 6.

 An 8  ion pump provided a base pressure of  Torr. This value is derived from the

ion pump current.

Figure 2.4: Second generation vacuum chamber. The vacuum chamber has viewports that allow access

along the cartesian axes of space, as well as from four off-axis sides.

βn〈 〉

l s⁄ 10 10–
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A reservoir containing rubidium metal was connected through a valve to the vacuum cham-

ber. A base rubidium vapor pressure of ~  Torr was obtained in the chamber by opening

the valve, heating the reservoir until the vapor pressure in the chamber reached the desired

value, and then closing the valve. With the valve closed the Rb vapor pressure would slowly

decrease over a time-scale of several months. The reason for that is that the rubidium gets

adsorbed by the stainless-steel walls of the vacuum chamber and because some of it gets

pumped into the ion pump. The rubidium vapor pressure was measured by sending on-reso-

nant light from the trap laser through the chamber and measuring the column density in an

absorption experiment. The magnetic-field coils are wound in opposite directions directly on

the vertical tubing of the vacuum chamber.

2.3 Lasers

The lasers used for the experiment are diode lasers (Sharp  or Spectra Physics Labs

-- for higher power) that are stabilized with optical feedback from a grating.
26

 The

grating narrows the linewidth of the laser to below 1 MHz and allows the laser to be tuned by

adjusting the grating’s alignment (Fig. 2.5). A piezo-electric crystal between the grating and its

mount lets us electronically tune the laser continuously over a range of typically a few giga-

hertz. With the help of an saturated absorption spectrometer and an electronic circuit provid-

ing negative feedback to the piezo, we lock the laser to the spectral features of rubidium

contained in a small glass cell that is part of the spectrometer. Since laser diodes put out light

beams with an elliptical cross section, each laser beam passes through an anamorphic prism

pair that stretches the beam profile along the minor axis, such that the output is circular.

2.3.1 Trapping and hyperfine pumping lasers

The “trap laser” is locked 5 – 10 MHz to the red of the 

 resonance line of rubidium (  for 
85

Rb and  for 
87

Rb), whose

natural linewidth is 5.9 MHz (Fig. 2.2). The detuning of the trap laser is determined to

±1 MHz by linear interpolation referenced to the line centers of the above resonances and the

nearest crossover resonances in the saturated absorption spectrum. The output beam is sent

through an optical isolator and a spatial filter/telescope to produce a 1.5 cm diameter beam,

which is then passed through a  plate, a polarizing beamsplitter, and a non-polarizing
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beamsplitter, producing three beams that are used for trapping along the  and  direc-

tions. The  plate is adjusted to make the intensity of the  beam ½ that of the others,

thus compensating for the stronger magnetic field gradient along the  direction and giving a

roughly isotropic confining force for the atoms. The three beams are aligned to intersect at the

center of the vacuum chamber, and are passed through  plates to give the appropriate cir-

cular polarizations, some of which are shown in Fig. 2.1, for producing the standard .
1
 The

total spatially-averaged intensity of the trap laser light at the position of the trapped atoms is

typically .

 As the trap laser cycles the atoms between the  ground state and the 

excited state, occasional optical pumping into the untrapped hyperfine ground state

 may occur, when the trap laser off-resonantly excites the the Lorentzian wing of

the   transition. To counteract this effect we employ a

second laser, a “hyperfine-pumping” laser,
1
 that is locked to the 

Figure 2.5: Diode laser. On the left the laser diode is held in a block temperature stabilized with the

help of a heater. A lens collimates the laser diode’s output. The grating that is attached to the mirror

mount on the right serves for optical feedback and output coupling. A piezo mounted behind the grat-

ing allows electronic tuning.
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 resonance. Later in the experiment described in Ch. 5 we switched to

hyperfine pumping on the   transition. The 1.5 cm

diameter beam from this laser is combined with the trap laser beam in one of the beamsplitters

and produces an average intensity of  at the position of the trapped atoms.

2.3.2 Catalysis laser

The purpose of the “catalysis laser” is to induce collisions between the trapped atoms. Since

it contributes to  in Eq. (2.1.6), the trap laser, too, has this effect. However, its detuning can

be adjusted only within a narrow range without loosing its ability to cool and trap the atoms.

Even when adjusted within this range the trap laser drastically changes trap characteristics like

number of trapped atoms, trap density, trap depth (see Sec. 5.5, Fig. 5.7). Thus it is difficult to

make systematic collision measurements by varying the trap laser parameters.

The catalysis laser being a separate laser does not impose these limitations. Apart from about

±50 MHz around an atomic transition, its tuning range is only limited by the technical specifi-

cations of the laser. In this way, the catalysis laser can be swept over several gigahertz of fre-

quency range, and its intensity can be varied without affecting the trapped atoms. In the

vicinity of an atomic transition, it exerts forces on the trapped atoms, which alter the density

distribution such that no reliable measurements can be made. Also, it can contribute to optical

pumping, which renders the fluorescence from the trapped (see Sec. 2.4) atoms a useless diag-

nostic. We check for absence of these effects by rapidly blocking and unblocking the catalysis

laser. Where this results in instantaneous changes in the fluorescence we reject the data. In

addition, using a separate laser as a catalysis laser opens the regime of blue detunings for inves-

tigation (see Ch. 5).

More details on the operation of the catalysis laser and how it is used to observe ultra-cold

collisions is described in detail in Ch. 3.

The catalysis laser is tuned to a specified frequency near the 

 or the   resonances using an

optical spectrum analyzer (finesse ~150, free-spectral-range 300 MHz) as a frequency refer-

ence. To correct for slow drifts in the spectrum analyzer, a small fraction of the trap laser out-

put is simultaneously measured as a stable reference frequency. The catalysis laser beam, after
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passing through an optical isolator and an electro-optic intensity modulator, progresses

through a telescope to produce a beam with a diameter of 3.0 mm. The beam entered the cell

through one of the windows for the trapping beams at a slight angle to them and overlaps the

cloud of trapped atoms. In our second-generation vacuum chamber we had it enter through

one of the off-axis windows, instead. Optimum alignment of the catalysis laser through the

trapped-atom cloud is obtained by tuning the catalysis laser near one of the atomic resonances

to put a force on the trapped atom cloud. Adjustments are made to the catalysis laser beam

alignment to maximize the displacement of the cloud. For the experiment, retroreflection of

the catalysis laser reduces its mechanical influence on the trapped atoms. Ch. 3 describes the

method we employ to make measurements of trap loss spectra in detail.

2.4 Detection

A  video camera is focussed on the cloud of trapped atoms in order to observe its shape.

The position and shape of the cloud can be adjusted by slightly changing the alignments of the

trapping beams as well as by adding a trimming magnetic field using extra coils or a small per-

manent magnet. In this way the shape of the cloud of atoms can be made to be nearly spheri-

cal, and the growth of the cloud as atoms are added is observed to be symmetric. For

quantitative measurements of the spatial distribution of the atoms, a single horizontal line of

the video output is selected for analysis.

In the fluorescence setup a fraction of the trapped atoms’ total fluorescence is collected and

imaged onto a photo diode. With our first-generation vacuum chamber, a part of the fluores-

cence emitted through one of the windows for the trap laser beams was picked off with a mir-

ror and imaged though a bi-convex lens ( , ) onto a Hamamatsu photodiode

(-, spectral response of 0.5  at 780 nm). This lacked a well defined geom-

etry, which made estimating the solid angle subtended by the system difficult. We therefore

used the absorption of an on-resonant probe beam for an absolute measurement of the num-

ber of trapped atoms. This setup did allow us to observe the transient behavior of the trap flu-

orescence, which is of significance for making absolute trap loss rate measurements (see

Sec. 3.2).

f 5 cm= ∅ 1''=

mA mW⁄
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Our second-generation vacuum chamber is a major improvement. In it, the fluorescence

detection setup collects the light from the fluorescence of the trapped atoms that passes

through one of the off-axis viewports. Thus light is emitted into a solid angle fraction of

around 1% is emitted. A combination of two identical plano-convex lenses ( ,

) images the fluorescing cloud of trapped atoms onto a photodiode at 1:1 magnifica-

tion. With the improved determination of the solid angle this allows us to accurately deduce

the number of trapped atoms (see below). 

In both cases an iris is placed in the image plane and opened just enough to transmit the

light from the image of the trapped atoms. The photodiode is placed immediately behind the

iris. This is to increase the rejection of scattered light from within the chamber, as well as of

room lights.

The photocurrent from the photodiode is fed into a current-to-voltage converter (). In it,

the signal is connected to the inverting input of a  op-amp ( ). The non-inverting

input of this op-amp can be biased to make up for any undesired dc offsets in the signal. Resis-

tors in the range of  –  produce a current-to-voltage conversion gain between  and

. The signal of the ’s output is typically displayed on an oscilloscope for measure-

ment and monitoring.

 Knowing the scattering rate  of the trapped atoms at the given trap laser detuning and

power, the number of atoms is given by

, (2.4.1)

where  is the voltage at the output of the ,  is the gain of the ,  is the spectral

response of the photodiode and  the solid angle fraction. The other factors serve the

conversion of units from milliwatts to the number of photons per second emitted by the

atoms. , where  is the absorption cross section of light from the trap laser

beams whose intensity is  and which are at a frequency .

For measurements of the density of the trapped atoms, a small fraction of the trap laser is

split off and focussed to a waist smaller than the size of the atom cloud through the atoms in
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order to probe the absorption. The alignment is optimized by maximizing the absorption of

the light in the beam. Its intensity is reduced with neutral density filters to the point where the

fractional absorption is independent of the intensity of the probe beam.

The absorption  of the beam is given by

, (2.4.2)

where  is the density of atoms along the absorption beam and  the same absorption

cross section as in Eq. (2.4.1). This can be solved for the average density  in the following

way:

, (2.4.3)

where Sec. 3.2 describes how to obtain  from trap fluorescence profiles taken with the 

camera. In lieu of a reliable absolute fluorescence measurement we can use this to get the num-

ber of trapped atoms by multiplying  by the volume .
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3 The catalysis laser method
The last chapter described the apparatus used for investigating ultra-cold collisions. It also

described the laser that we employ as a “catalysis” laser. In this chapter I go into the details of

how it affects the trapped atoms as an ensemble and of how we extract information about the

process of an individual collision from observing this ensemble. The next chapter presents

measurements and their interpretations.

The most straightforward means of observing ultra-cold collisions is to measure the rate at

which atoms are ejected from the trap. The relevant parameter is the loss rate coefficient 

(see Ch. 1). Its frequency dependence gives information about the behavior of collisions with

different initial interatomic separations.

However, in measuring , we face the problem that in traps variables like the number of

atoms, the density distribution and the trap depth are highly coupled with each other and with

the trap laser parameters such as intensity, detuning, polarization and intersection volume.

Many workers in this field have ignored these effects, but they must be accounted for, if reliable

measurements are to be made. Thus, in measuring the frequency dependence of  we devised

a method that affects the trapped atoms in a well-controlled way. The most important feature

of our method is that we employ a separate laser, a “catalysis” laser, to induce the ultra-cold

collisions we observe. That way the trap laser may provide constant trapping while all changes

in the collisional loss rate are due to changes in the catalysis laser’s intensity or detuning. While

the catalysis laser thus leaves the loading rate unaffected, its effect on the loss rate and thereby

on the density distribution of the atoms has to be given special consideration.

Our procedure consists of measuring the frequency dependence on a relative scale first. Then

the absolute value of one particular  in the trap loss spectrum is determined. This scales and

calibrates the whole spectrum. How this is done in detail is described in the following.

3.1 Frequency dependence

The frequency dependence of  can be measured in a very reliable way, as long as no abso-

lute scale is required. At each detuning  is determined relative to its value at a specific refer-

ence detuning. The resulting shape contains most of the information about the collisions, that
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β

β

β

β
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is it is directly related to the collision dynamics. As explained in Sec. 1.1, the difficulties inher-

ent in calculating absolute trap-loss rates make absolute measurements less interesting. The

following describes how we make these measurements and what the underlying physics is.

As described in Sec. 2.3.1 collisional loss rates are related to the loading and capacity of traps.

The balance between loading and losses determines the number of trapped atoms. This is

expressed in (2.1.6).  is the equilibrium number of trapped atoms, which is the steady state

solution of the differential equation in the number of atoms

. (3.1.1)

The terms contributing to the change of  are the loading rate , the rate at which hot back-

ground atoms eject trapped atoms, , and the rate  at which inelastic colli-

sions between trapped atoms contribute to trap loss. The integral in the last term takes into

account that the atoms’ density distribution  is not uniform. In the presence of a catal-

ysis laser there are two contributions to . One, denoted , is that of the trap laser, whose

excitation to the  level can lead to collisional trap loss in the presence of

another distant atom. The other, which we call , is due to the loss rate induced by the catal-

ysis laser.

Because we make our measurements by keeping everything, except the catalysis laser param-

eters, constant, the steady-state solution to Eq. (3.1.1) is important. It is

. (3.1.2)

The objective of maintaining a constant  arises from difficulty in making a measurement of

 as a function of an independent parameter, like catalysis laser detuning . This is because a

change in  affects , which also changes . The density of a sample of trapped

atoms is strongly affected by radiation trapping, which produces mutual repulsion between the

atoms. As the number of atoms changes, the influence of radiation trapping involving atoms

on the edge of the distribution, which do not experience uniform radiation trapping, affects

the overall distribution. Because  is inherently difficult to measure, it is advantageous

N∞

td
dN

L γN– β n2 r N;( )d3r∫–=

N L

γN β n2 r N;( )d3r∫

n r N;( )

β βt

P
2

3 2⁄ F′ I ³⁄₂+=( )

βc

N∞
L

γ βN∞
1– n2 r N∞;( )d3r∫+

-------------------------------------------------------=

N∞

β ∆

β N∞ n2 r N;( )d3r∫

n r N;( )



27
to devise a method that avoids measuring it for every different . For a further discussion see

the following section.

However, we can make use of the linearity of  with respect to the catalysis laser intensity

 (see Sec. 4.1.3), that is

, (3.1.3)

with an arbitrary parameter . We simply adjust  to keep  constant over the range of

detunings at which a measurement is made. That way, we can keep  constant, because nei-

ther  nor, as a consequence,  change. With this method, the collisional trap loss

coefficient is

. (3.1.4)

If absolute values are desired we measure  as a reference value, typically at

 and  (see following section on how this is done). Other-

wise, like for the measurements described in Sec. 4.2, we leave  unspecified and

Eq. (3.1.4) becomes

(3.1.5)

Alternatively, if the intensity is not an independent or linear parameter we can vary the duty

cycle of the catalysis laser, in order to keep  constant, as we have done in the case of our

intensity dependence of repulsive collisions.

There are two advantages to this method of measuring trap loss spectra. First, as already

mentioned, the knowledge of the atoms’ density distribution, which is difficult to measure, is

required at most for one value of . Second, since the measurement of  is

inherently inaccurate, it is advantageous to avoid making it. The scatter in the data is mainly

determined by how well we can maintain the constancy of the number of atoms and by the sta-

bility of the catalysis laser parameters, detuning and intensity. We estimate the typical point-

to-point error of the relative measurements to be around 20%.
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3.2 Absolute calibration

The previous section described how we obtain frequency-dependent trap loss spectra. The

method of making relative measurements of the trap loss rate coefficient at various detunings

is quite robust. Determining an absolute scale for the data is more elaborate and is the subject

of this section.

According to Eq. (3.1.1), the loss rate affects the time dependence of the number of atoms in

the trap. from measuring these loading transients, combined a knowledge of the density distri-

bution of the atoms in the trap we can determine the absolute magnitude of the loss-rate

coefficient . The measurement of such loading transients is shown in Figure 3.1 for two

different collisional loss rates. In the presence of a catalysis laser equilibrium is reached faster

because of a larger . Because our data is taken in a regime ( ) where radiation trap-

ping is nonneglible, this changes the density distribution . To avoid this, for determin-

ing relative values of , the data can be taken in such a way that  remains constant (see

previous section).

An absolute measurement of  requires knowledge of the density distribution . The

analysis of the observed profiles of the density distribution, which we derive from a trap image

taken by a  camera (see Sec. 2.4), is based on the model developed by Sesko et al.27 for the

relationship between radiation trapping and trap densities.

When the number of atoms in an optical trap is small, the atoms move independently of

each other, and the spatial distribution of the atoms is determined by the shape of the trapping

force field and the temperature. For a force proportional to displacement, , the distri-

bution is , where  is the temperature, and  and  are

expressed in terms of temperature units, in which the Boltzmann constant . When the

number of atoms confined by the trap is very large, the density distribution is dominated by

radiation trapping, and the finite temperature may be neglected, and  is given by 

(3.2.1)
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 In general, neither limiting case is appropriate and it is necessary to consider the intermediate

regime where both non-zero temperature and radiation trapping are important. Fig. 3.2 shows

density distributions in the intermediate regime. They were generated by numerically integrat-

ing

, (3.2.2)

which represents hydrostatic equilibrium between the radiation pressure gradient and the

trapping forces.27 A convenient parameter is  which is very nearly the

number of atoms contained in a uniform sphere of radius . As shown in Fig. 3.2, for

 or more the density is limited to the value , so we can write

, with . A typical value for  is , and

 is typically about 150 µm, giving . For our experiment  is typi-

cally 20.

Figure 3.1: Two trap loading transients. They show the fluorescence as a function of time after unblock-

ing the trap laser, which begins loading. The top loading transient is taken with the catalysis laser

blocked. The bottom transient has the catalysis laser induce trap loss collisions in the trap. There the

loss rate is higher and the equilibrium number of atoms is reached faster.
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Even though the density of the atoms is limited by radiation trapping to the value , it is

necessary to consider the effect of temperature on the density-distribution near the edge of the

cloud. This is very important because the collision rate  preferentially weights

large , where the non-zero temperature reduces the density below . To include this effect,

we rewrite Eq. (3.1.1) as

. (3.2.3)

The factor in parentheses,

, (3.2.4)

Figure 3.2: Theoretical density distributions of optically trapped atom clouds for nonzero tempera-

tures at various numbers of trapped atoms.  is the ratidation trapping limited density,  is the

temperature of the atom cloud, and  is the spring constant of the Zeeman trapping force; 

is roughly the radius of the atom distribution when radiation trapping is not present. The number of

atoms in the trap required for radiation trapping to begin to affect the atomic density distribution is

approximately .
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is a measure of the reduction of the collision rate due to the non-uniform density distribution

that arises from non-zero temperature. For , .

In Fig. 3.3 we present model calculations of  for a range of . The dependence of 

on  is very weak, slower than logarithmic, approaching 1 only for . Since the

dependence is so weak, we can approximate  as being independent of time and rewrite

Eq. (3.2.3) as

(3.2.5)

This has transient solutions

, (3.2.6)

where  is the total collisional loss rate and the initial condition is

assumed to be . As Fig. 3.1 shows, Eq. (3.2.6) indeed fits the observed time depen-

dence. Because  and  are not independently determined by a fit to Eq. (3.2.6),

Figure 3.3: Plot of the parameter , which specifies the decrease of the binary collision rate for an

optically thick cloud at finite temperature from the rate for zero temperature.
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we use the catalysis laser technique to isolate the contribution of . To do this we collect two

transients, one with the catalysis laser and one without, and the catalysis laser contribution

 is the difference between the two measured values of .

The approximation  is even better than suggested by Fig. 3.3 for two reasons.

First, for small  the transients depend only on the loading rate, , so the collision rate

does not affect the transients at small . Second, the curvature of the transients, which deter-

mines , is determined mainly by , and in this regime  varies by at most

10%. As an additional test of this we have also measured transients where the trap was allowed

to fill without the catalysis laser present, then the catalysis laser was added and the resulting

transient was observed. The time constants measured in this way agreed to better than 10%

with those obtained in the way described above. Alternatively, one can consider the fitting of

the exponential function in Eq. (3.2.6) as a convenient approximation that obeys the rigorous

limits  for small  and for large . 

 To determine the trap loss rate coefficient  from the value of  as deduced

from the transients, an absolute measurement of the density distribution  is necessary.

The distribution is deduced from the  camera output, with an absolute scale set by an

absorption measurement (see following section). In analyzing the data we have found a conve-

nient parameterization for the density distribution to be

, (3.2.7)

where  is the radius at which the density falls to half its maximum value, and  corresponds

to the range of distances over which the density deviates from . This functional form fits

the calculated distributions of Fig. 3.2 and the observed distributions quite well.

The procedure to determine  was to first determine  and  by fitting the output of

the  camera to the integral of Eq. (3.2.7) along the line of sight. Then we used the absorp-

tion measurement with a calculated absorption cross-section to determine . Typical mea-

sured densities were in the range of . Using the distribution, we calculated

 from Eq. (3.2.4). This procedure was checked to be internally consistent by taking data
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at various trap laser detunings and intensities and background rubidium vapor pressures. The

variation in our results was found to be ±30%, and the results were reproducible over several

months.

Since the absorption measurement is performed with the trap on, a possible concern are the

effect of Raman wave-mixing processes28,29 on the absorption signals. These effects are promi-

nent when the probe laser and the trap laser frequencies differ ~1 MHz. However, since our

probe used for absorption is split off from the trap laser, it has precisely the same frequency

and so we do not expect the Raman processes to be important. As a check, we also measured

the density using fluorescence (which is insensitive to these effects) and the results agreed to

within 50%, the estimated uncertainty of the fluorescence measurement.

The measurement of the frequency dependence (Ch.  4) assumed a linear dependence of 

on the catalysis laser intensity. The assumed linearity was checked in two ways. First, the trap-

loss rate was measured from transients as described above at several catalysis laser intensities

for a single detuning of –300 MHz for 85Rb, as shown in Fig. 4.4. Second, the spectra were

measured using different catalysis laser intensities, and the shape was found to be the same

within experimental scatter. Since the method for obtaining the spectra relies on a linear inten-

sity dependence, finding that the shapes of the spectra are independent of intensity is equiva-

lent to doing an intensity dependence over the whole range of detunings.

β
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4 Excited-state attractive collisions
This chapter presents results of measurements we made applying the method described in

the previous chapter. The comparison of  collisions of the two rubidium isotopes shows

that the hyperfine interaction plays an important role in the dynamics of these collisions. At

the same time,  collisions are insensitive to isotopic effects because the much larger hyper-

fine interaction decouples the interaction between the various potential curves.

In each of these experiments the frequency of the catalysis laser (Sec. 2.3.2, previous chapter)

is adjusted over a spectrum of negative detunings, such that it excites predominantly attractive

interaction potentials. To characterize these collisions we observe the increase in the rate at

which atoms are lost from the trap at each detuning.

We gain considerable information about these collisions by making comparisons between

the two stable rubidium isotopes, 85Rb and 87Rb. Their different hyperfine interaction modi-

fies the colliding atoms’ dipole-dipole interaction in a isotope-dependent way. An additional

parameter is the choice between the  and  excited states. We use the Gallagher-

Pritchard model (Sec. 1.1) to qualitatively, as well as in some cases, to quantitatively describe

the underlying physics of these collisions.

4.1 Isotopic differences in rubidium using P3/2 collisions

The two rubidium isotopes have different nuclear spins and moments (  for 85Rb and

 for 87Rb) and therefore different hyperfine structure. This allows us to make compari-

sons between the collisions of 85Rb and 87Rb. This comparison will experimentally show

under what conditions the hyperfine interaction is important for excited-state collisions. The

results are in contrast to popular theories that neglect such interactions.

4.1.1 Detuning dependence

Fig. 4.1 shows measurements of the trap-loss spectra for the two stable isotopes of rubidium,

85Rb and 87Rb. The detunings of the catalysis laser are measured from the

  atomic transition. Thus zero-detuning corresponds

to infinite separation. There are two regimes in the trap loss spectra. Where the detuning is

within the range of the hyperfine structure (184.1 MHz for  85Rb and 424.3 MHz for  87Rb) the
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spectra are quite different for the two isotopes. For both the maxima in the spectra occur at the

position of the lowest frequency component of the atomic hyperfine structure, just as for

cesium in the data reported by Sesko et al.,15 for which the first such trap-loss spectrum was

measured. Furthermore, for 87Rb another maximum occurs very near the next atomic hyper-

fine resonance, and for small detunings the rate coefficients for the two isotopes differ greatly.

For large detunings, no experimentally significant isotopic dependence is observed. There the

loss rate falls off at the expected  rate.

It is clear from these results that the excited-state hyperfine interaction has a profound effect

on the trap-loss spectra. Based on the ideas behind the Gallagher-Pritchard model,11 there are

several natural reasons why this should be so.6 First, it is clear that the modification of the

potential curves by the hyperfine interaction will change the excitation function  in

Figure 4.1: Trap loss rates for 85Rb and 87Rb.5,6  is the coefficient of the catalysis laser contribution

to the trap loss rate. The catalysis laser detunings are measured from the 

 transition. The gaps in these trap loss spectra result from our inability to make

measurements where the catalysis laser interacts with the atomic excited hyperfine states and thereby

perturbs the operation of the trap. The data points at –7 MHz were measured by Wallace et al.32 and

are in good agreement with our trap loss spectrum.
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Eq. (1.1.8). For a given detuning there will be in general a number of different potential curves

that can be resonantly excited by the catalysis laser. Second, the hyperfine interaction will affect

the survival probability both through  and the spontaneous emission time  (see

Sec. 1.1). Third, curve crossings and avoided crossings that arise from the interplay of the

hyperfine interaction with the dipole-dipole interaction will affect the acceleration process

once the atoms have been excited. To illustrate this, Fig. 4.2 shows selected potential curves19

for 87Rb. For the catalysis laser tuned as shown, an acceleration of the atoms toward each other

that leads to trap loss can happen only if a non-adiabatic transition occurs at the avoided

crossing of the potentials. This could explain the observed isotopic difference for detunings

within the excited-state hyperfine structure since it is within that detuning region that most of

the avoided crossings occur, as shown in Fig. 4.2. For large detunings the 85Rb and 87Rb curves

are similar and so the isotopic difference is small.

An interesting feature of the 87Rb data (and possibly in the older cesium data15) is a mini-

mum in the region between the lower two atomic hyperfine resonances, which has since been

reported for 85Rb by P.D. Lett et al.30 as well. This is somewhat surprising, since one might

expect multiple peaks to arise to the red side of the atomic resonances, if the effect of hyperfine

structure is simply to make the spectrum a sum of contributions similar to Fig. 1.3 but shifted

by the atomic hyperfine splittings. In this case the minimum would be very close to the lower

hyperfine resonance, in contrast to our results that find the minimum at roughly halfway

between the two atomic hyperfine resonances. No simple explanation for the position of the

minimum has been made, yet, but it is possible that it may arise from modification of the exci-

tation rates in the region of avoided crossings of the molecular potentials.31

Besides the shapes of the spectra, the absolute rates are also of interest. Since the absolute

rates depend both on the dynamical factors (excitation and survival in the excited state) as well

as the energy transfer probabilities, successful comparison of theory and experiment requires

accurate calculations of both the dynamics and the energy transfer probabilities. Despite the

neglect of hyperfine effects on the dynamics by the models, there is quantitative agreement

between theory and experiment15 for the case of cesium at very small14 and very large16

detunings. These calculations predict that Rb trap-loss collisions should occur at a rate about

t R( ) τ
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twice that of cesium collisions.14 Thus, our observation of a factor of five or more smaller rate

than expected at small detunings for rubidium, confirmed by Wallace et al.32 (included in

Fig. 4.1), suggests inaccuracies in the calculated energy transfer probabilities. Further calcula-

tions have been made that indeed show a strong sensitivity to the precise knowledge of the

potential curves,12 due to interference effects. It is unclear whether this sensitivity can explain

some of the isotopic difference in the trap-loss rates at very small detunings.

4.1.2 Hyperfine structure

The comparison between the two rubidium isotopes’ trap-loss spectra suggests that their

hyperfine structure is responsible for any differences. At larger detunings potential curves with

Figure 4.2: Avoided curve crossings in potential curves with energy  of the same symmetry. The

curves belong to the  manifold of 87Rb. The numbers on the right are the hyperfine quantum num-

bers of the asymptotically dissociated atoms. Primes indicate the excited state. It is convenient to

express the internuclear separation in terms of , where  is the coefficient of the dipole-

dipole interaction unperturbed by hyperfine effects. Correspondingly, smaller interatomic separations

are on the left and larger ones on the right. The states that connect to the same asymptote have identi-

cal dashing patterns.
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larger dipole-dipole interaction are excited, so that the isotope-dependent hyperfine interac-

tion is increasingly decoupled. A more detailed knowledge of the potential curves gains us

increased insight into the dynamics, as well, and allows a more meaningful interpretation of

the data.

The electron spins of the individual colliding atoms interact with each other during the colli-

sion. At small detunings around a few 100 MHz up to about 10 GHz this interaction is much

stronger than the dipole-dipole interaction.

This dipole-dipole interaction is given by the interaction Hamiltonian

, (4.1.1)

where  is the internuclear separation of the atoms and  are the operators of the coor-

dinates of the two colliding atoms’ valence electrons relative to the corresponding nuclei.

In order to calculate the potential curves we have to diagonalize the Hamiltonian

, (4.1.2)

where  and  are the Hamiltonians of the isolated atoms and  and  are the quantum

numbers of the hyperfine states the atoms are in. This is best done using the basis consisting of

linear superpositions of the two atoms, such that for  we get the atomic energy levels19.

Given the rotational symmetry about the axis connecting the two atoms the angular projection

of the molecule’s angular momentum  on that axis is conserved. The other

conserved quantum numbers is the symmetry parameter ungerade (u) and gerade (g), which

determine whether the state changes sign or not, respectively, under the operation that

exchanges the two atoms. In the limit of  the well-defined quantum numbers also

include the individual atoms’ hyperfine level quantum numbers. Thus in that limit the molec-

ular states can be written as

, (4.1.3)
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where one component state is obtained from the other by exchanging the two atoms.  is the

electronic angular momentum of the valence electron of the excited atoms. In alkali atoms it

can take the value  or . The ground state atoms have . With these basis states, 

and  are already diagonal.

The energies at any given  can be found by numerically diagonalizing the matrix with ele-

ments

. (4.1.4)

Figure  4.3 shows the results of these calculations for molecular states with the  symmetry.

These curves are taken from reference [19].

Looking at these potentials a couple of qualitative statements can be made. Because of

avoided curve crossings none of the potential curves starting from the  asymptotic state

remain attractive. Thus, an atom pair excited with a catalysis laser detuning less than the

-  splitting can only survive to small internuclear separations if it undergoes a

diabatic transition to a different, attractive potential curve. If they do not undergo such a tran-

sition, the interaction will become repulsive and the atoms will quickly turn around without

ever having picked up enough energy to cause trap loss.

Walker and Pritchard19 estimate the probabilities of diabatic transfer between potential

curves according to the Landau-Zener picture. They conclude that rotational coupling of

potential curves with different spin quantum number as well as magnetic coupling is negligi-

ble. The dominant diabatic transfer should be due to radial coupling with a Landau-Zener

transfer probability33 of

, (4.1.5)

where  is have the smallest separation between the potential curves occurring at ,

 and  are the potentials of the two curves and  is the velocity at which the closest

approach is traversed. Radial coupling occurs between potentials of like symmetry. A high
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velocity as well as a small separation of potential curves favors a transfer. This would be the

case, if the atoms were excited sufficiently far to the red of the avoided crossing.

A full quantitative analysis would have to take into account the potential transfer to the mul-

titude of all the other curves of the same symmetry. We can avoid this difficulty by designing

our experiments in such a way that the collisional dynamics does not involve avoided potential

curve crossings (see Sec. 4.2, as well as Ch. 6).

If the detuning is sufficiently large, that is, near the lowest-lying excited-state hyperfine state,

potential curves that are attractive outnumber those that are not. This may explain19 why the

spectrum is peaked there both in 85Rb, 87Rb and in Cs.15 The atom pair then proceed along a

potential curve that is purely attractive until the dipole-dipole interaction becomes roughly

half of the ground-state hyperfine splitting.

Figure 4.3: Calculated hyperfine potential curves for 85Rb. The numbers on the right are the asymp-

totic hyperfine quantum numbers of the two atoms. Primes denote the excited state ( ; the

ground state is ).
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4.1.3 Intensity dependence

The measurement of the frequency dependence (Sec. 4.1) assumes a linear dependence of 

on the catalysis laser intensity. This is predicted by the Gallagher-Pritchard model (see

Eq. (1.1.11)). We checked the assumed linearity in two ways. First, we measured the trap-loss

rate from transients as described above at several catalysis laser intensities for a single detuning

of –300 MHz for 85Rb, as shown in Fig. 4.4. Second, the spectra were measured using different

catalysis laser intensities, and the shape was found up to an overall factor to be the same within

experimental scatter. Since the method for obtaining the spectra relies on a linear intensity

dependence, finding that the shapes of the spectra are independent of intensity is equivalent to

doing an intensity dependence over the whole range of detunings.

4.2 Collisions independent of hyperfine structure in P1/2 collisions

There are two features of  collisions that make them more accessible to theoretical stud-

ies than  collisions. First, trap loss through fine-structure changes is not possible, since

there are no lower-lying excited-state fine-structure potential curves. The only mechanism of

Figure 4.4: Intensity dependence of trap loss collisions. This data was taken with 85Rb at a catalysis

laser detuning of –300 MHz. The solid line is a linear fit to the data.
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energy transfer leading to trap loss is spontaneous emission during the collision process. This

spontaneous emission has to occur at an internuclear separation where the difference between

the energy of the photon absorbed from the catalysis laser and that of the emitted photon

exceeds the trap depth.

Second, the hyperfine structure is much larger in the  state, compared to the  state,

for both rubidium isotopes. Also, the excited atom’s spin can only be , as opposed to

,  for . Thus the dipole-dipole potential curves are greatly simplified, because

they are farther apart and there is a smaller number of them.

We conducted trap-loss experiments in rubidium involving the  excited-state.7 To this

end the catalysis laser was tuned below the   transi-

tion. With this choice of catalysis laser detunings the excited-state energies are beneath the

region where the excited-state hyperfine interaction mixes the various attractive and repulsive

potential curves that extend to the two  asymptotes (see Fig. 4.5).

The trap loss rates due to the catalysis laser as a function of its detuning are shown in Fig. 4.1

for both isotopes, 85Rb and 87Rb. They show no isotopic effect, indicating the insensitivity of

the collision dynamics to hyperfine interactions. Our experimental results are quantitatively

consistent with the Gallagher-Pritchard model11 for the role of spontaneous emission (see

Sec. 1.1), modified in a simple way to account for hyperfine interactions. The data supports

multiple traversals of the potential wells by the colliding atoms.

This effect of multiple traversals, or ultra-cold vibrations, can be described by the Gallagher-

Pritchard model. Fig. 4.6 depicts the collision process. The atom pair is excited at . Only if

the atom has come closer to each other than  will spontaneous emission to the ground state

result in trap loss. At  each atom has picked up a kinetic energy corresponding to the trap

depth. If the kinetic energy exceeds that value the trap cannot continue to hold the atoms.

Thus there are two distinct phases in an atom pair’s trajectory (Fig. 4.6). Phase  is the

motion between  and . Integrating a simplified excited-state potential, which does not
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take hyperfine interaction into account,  ( ), the dura-

tion of phase  is, according to Eq. (1.1.5),

, (4.2.1)

where  and, correspondingly,  depend on .

Phase  lasts for maximum duration of twice

(4.2.2)

Figure 4.5: Calculated potential curves for the relevant  state of 87Rb. The curves shown correlate

at large separations to the  atomic states. In the region on the low

energy side of the  state the potential curves closely follow an R-3 dependence, facilitating a

relatively straightforward comparison with simple models. In between the  and  states

the curves and resulting hyperfine dynamics are more complicated.
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as the atoms continue to approach each other until they rebound at , returning to .

Trap loss occurs only if the atom pair fails to undergo spontaneous emission during phase 1

and does during phase . Thus the probability of trap loss during one orbit is

, (4.2.3)

Figure 4.6: Gallagher-Pritchard model of trap-loss collisions. The laser of detuning  excites atom

pairs at interatomic separation . The atoms are accelerated toward each other by the attractive

excited-state potential curve. If the atoms radiate while separated by , where

 and  is the trap depth, the outgoing atoms have kinetic energy 

and escape the trap.
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where  is the spontaneous emission rate. Subsequent orbits have the property that

spontaneous emission occurs only on the last traversal of the region between  and .

Thus the trap-loss probabilities are

(4.2.4)

Summing over repeated orbits we get a total trap loss probability

. (4.2.5)

The series is geometric and evaluates to

. (4.2.6)

Thus the total trap loss probability is

. (4.2.7)

Our data fits a detuning dependence of the trap-loss rate coefficient

. (4.2.8)

This reflects that the loss rate is proportional to , as well as to  (see Eq. (1.1.11)). In

addition, the approximation is found to hold that for the range of detunings in our experiment

, which means that  and, therefore, that  is independent of detuning. For

detunings large enough that , the argument of the hyperbolic sine in Eq. (4.2.8)

becomes small, such that . This is verified in our data to be valid over the entire

range of catalysis laser detunings.

Our data does indeed exhibit such a detuning dependence (see Fig. 4.7). The dashed line has

a simple  dependence and shows the detuning dependence expected if no multiple orbits
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occurred. With the detuning range of  accessible in this

experiment we expect no resonant trap loss due to vibrations. There are two reasons for this.

First, the discrete vibrational states are the highest-lying ones of the dipole-dipole interaction

well and are thus lying together closer than . Second, there is a multitude of potential

curves as shown in Fig. 4.5 to which the catalysis laser can excite. These effects wash out any

discrete structure in the trap-loss spectrum. Going to very large detunings of a few nanome-

ters, discrete trap-loss peaks become visible as R. A. Cline et al. observed in rubidium.34 The

experiment of R.A. Cline et al. greatly benefits from the weak  detuning dependence of

the loss rate. At detunings of a few nanometers this makes a big difference compared to a 

dependence, which does not take vibrations into account.

Figure 4.7: Measurements of trap-loss spectra for 85Rb and 87Rb for detunings to the red of the lowest

atomic  hyperfine states. The lack of isotopic effect in the shapes of the trap-loss spectra indicates

the relative unimportance of hyperfine dynamics for this data. The data is scaled to allow comparison

of the shapes. Two model calculations are shown, the solid line including effects of multiple orbits of

the atoms and the dashed line assuming a single orbit.
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In addition, despite the simplicity of the potentials in the detuning

region , there are curve crossings and avoided crossings that

will change the values of  and  at distances where the dipole-dipole interaction is compa-

rable to the ground-state hyperfine splitting. Although this effect is important for , it

changes  by only  and therefore changes the absolute scale of the spectrum but not its

predicted shape. 

It is important to address the issue of whether there is a maximum at , as

Eq. (4.2.8) predicts for . Distortion of the atom cloud and optical

pumping effects render the catalysis laser technique unreliable in this range. We have probed

the physics of the  region in a two-color  experiment (see Sec.  6) simi-

lar to the  photo-associative ionization experiment recently reported by Bagnato et al.35.

In this type of experiment, both lasers can be tuned far from atomic resonances and the spon-

taneous emission effects show up in the collision rate as a function of the relative detuning of

the two lasers. Since both lasers are off resonance with the isolated atoms, the distortion and

optical pumping effects would not be a problem.

Finally, it is important to recognize which features of the model are really tested by our data.

In particular, it is surprising that a quasistatic calculation of the excitation rate should be valid

because of motion on both the ground and excited-state potential curves. However, Julienne et

al.36 have shown that the same detuning dependence of the excitation rate results from a sta-

tionery phase calculation where the atoms are moving but spontaneous decay is neglected.

Thus two very different approaches to calculating the excitation rate give the same result.

Based on this we suggest that the trap-loss probability [Eq. (4.2.5)] is what is principally being

tested by our experiment.

So far we have concentrated on the spectra to the red of the  states.

To the blue of these states, the trap-loss rate is smaller and increases for increasing blue detun-

ings, as expected. However, in this region the distortions of the potential curves that are evi-

dent in Fig. 4.5 decrease the prospects for simple interpretation of the data.

Our trap loss experiments involving the  excited state of both stable rubidium iso-

topes has brought us closer to understanding the excited-state ultra-cold collisions. First,
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because the hyperfine splitting is larger than in the  state, isotopic differences in the loss

rate spectra have vanished. This further points to the hyperfine interaction being an important

factor if the collisions involve regions where it is comparable to the dipole-dipole interaction.

Second, because in this experiment this is not the case, a description of the dynamics in terms

of classical mechanics, in the way the Gallagher-Pritchard model does it, is quite success-

ful.Therefore, we have applied these insights to the following experiments.

5 P
2

3 2⁄
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5 Repulsive excited-state collisions
This far we have considered experiments using attractive potential curves. However, the

dipole-dipole interaction between two colliding atoms can be repulsive, as well as attractive.

The repulsive collisions experiments presented in this chapter are a test of the Landau-Zener

model for the excitation process, especially at high intensity. The trap-depth plays an impor-

tant part in these collisions, such that they can be used to measure it.

One of the problems with attractive collisions is the complicated dynamics of the interaction

as the atoms get to within a couple of atomic radii of each other. Detailed analysis is hampered

by the requirement of a precise knowledge of the shape of the potential barrier at .12

When excited by a blue-detuned catalysis laser to a repulsive potential curve, a pair of atoms,

as they are repelling each other, will pick up kinetic energy proportional to the blue detuning.

If this energy is large enough, this will result in trap loss. With the small thermal energies with

which the atoms approach each other in the ground state, they are quickly turned around on

the excited-state potential. Thus they never reach close range, where the complications men-

tioned above arise. Also, after being turned around they pass through the resonance with the

catalysis laser a second time, which can lead to stimulated deexcitation. This results in the

interesting intensity dependence in Sec. 5.3. In addition, we have used repulsive collisions to

measure the trap-depth of our trap.9

5.1 Apparatus

To perform this experiment we made several changes to the apparatus described in Ch. 2.

The catalysis light came from a Ti:Sapphire laser and was sent to the setup by way of a single-

mode optical fiber whose output was collimated and sent through a  plate and linear

polarizer to allow adjustment of intensity (see Fig. 5.1). A beamsplitter picked off a small frac-

tion of the light and sent it to a calibrated photodiode to measure the catalysis laser power.

Using the Ti:Sapphire laser afforded us with two major advantages over the diode lasers we had

used previously for manipulating the atoms’ collisions. First, we were able to tune it over a far

larger range, up to 200 GHz. The diode laser would mode hop in an unpredictable fashion at

the ends of a maximally 4 GHz wide tuning range. Second, we had much more power (1 – 15

R 0=

λ 2⁄
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) at our disposal. At the large detunings used in this experiment, correspondingly

higher catalysis power was necessary to achieve appreciable trap loss. The Ti:Sapphire laser was

detuned relative to the   transition. It was measured by sending a

small amount of light from its output beam into an optical spectrum analyzer, whose zero was

determined by the frequency at which the laser blew away the atoms, that is, was on resonance.

The catalysis laser beam was chopped mechanically at around 1 kHz. By making a chopper

wheel with two triangular cutouts with their tips near the wheel’s hub, we could adjust the

duty cycle of the beam between 0 and 45% by sliding the wheel across the beam. Since we used

the fluorescence as a measure of the trap loss rate coefficient, an increase in loss rate could be

made up for by a decrease in catalysis duty cycle. That way, from data point to data point a

constant number of trapped atoms was maintained. This ensured consistency of the data

across a whole data set.

Figure 5.1: Apparatus for repulsive collisions. The collisions are induced by light from a Ti:Sapphire

laser, which provides up to 15  of intensity. It can be chopped at variable duty cycle with a

chopper wheel. The fluorescence is measured by imaging the trap onto a photo diode. The spatial dis-

tribution of the trap is monitored with a video camera.
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At the large powers used for catalysis the laser produced considerable -Stark shifts. These

decrease only inversely with detuning, unlike mechanical effects on the distribution of atoms

in the trap which go like . This led to changes in the level of fluorescence. Therefore we

observed the trap fluorescence during the phase of the chopping cycle in which the catalysis

laser beam was off. By chopping the beam at a rate faster than 500 Hz, AC-Stark-shift-induced

forces that perturbed the atoms’ density distribution were reduced to a negligible level.

For reasons to be explained later, the parameters of the trap were chosen to reproduce those

reported by Wallace et al.32 The detuning of the trapping light was  from the

  transition. Like in the previous experiments, a

hyperfine-pumping laser repumped the atoms to the upper hyperfine ground state. The 

intensity was 2 . The Gaussian beam diameter was 6.3 mm. The magnetic-field gra-

dient was 20 G/cm. Under these conditions Wallace et al. were barely able to capture 87Rb

atoms which had undergone a ground-state hyperfine changing collision. Therefore the trap

depth of such a trap must be on the order of 6.8 GHz, the ground-state hyperfine splitting.

With these parameters our trap loaded around  atoms at a density of . We

were able to quickly switch between trapping 85Rb and 87Rb by switching the locking of the

trap and hyperfine-pumping laser between the relevant transitions.

In addition, the trap laser locking method was modified. For this experiment we applied a

20 kHz current dither to the laser diode and fed the saturated-absorption signal into a lock-in

amplifier which was synchronized with the dither frequency. In this case, the output of the

lock-in amplifier provides the first derivative of the saturated absorption spectrum, enabling

us to lock the laser to the center of the absorption feature, where the derivative changes most

rapidly with frequency. The beam that was used to operate the saturated absorption setup was

passed through an acousto-optic modulator (). For 85Rb it was driven at a frequency

 , where  means the splitting

between the  and  levels in the  term. Using the minus-first-order output

beam of the  for the saturated-absorption setup and locking the laser to the

  transition in the saturated-absorption spectrum provides

trapping light at a detuning . In 87Rb the  frequency is
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 . The trap laser was therefore locked to the

saturated-absorption crossover between the   and

  transitions. Locking the laser to these non-trapping transi-

tions in this way makes up for the shift in the light passing through the . This method pro-

vided us with more precise control over the trap laser detuning, as well as with a more stable

lock.

5.2 Landau-Zener excitations

As laid out in Sec. 1.1, the Gallagher-Pritchard model11 treats ultra-cold collisions as a

sequence consisting of a quasi-static resonant excitation to an excited-state potential, followed

by motion on the excited-state potential and energy transfer at smaller separations, which

leads to trap loss. More recent models abandon the quasi-static excitation in this model and

substitute a Landau-Zener excitation treatment.17,18,37,38

It is convenient to use a dressed state approach to treat the excitation process. In this picture,

the relevant eigenstates are the ground (“g”) state is  and the excited (“e”) state is

, where  denotes the number of photons in the field. Since the energy of the photon

that is to be absorbed is included in the ground state, for blue detunings it lies above the

excited-state asymptote (see Fig. 5.2). Ground-state and exited-state potential curves intersect

at the resonant internuclear separation . The Landau-Zener transition

probability33 for the adiabatic transition is

, (5.2.1)

where  is the Rabi frequency, and  the radial velocity component of the

relative motion of the two atoms, if their collision has an impact parameter .

Fig. 5.2 illustrates the excitation process. In the ground state ( ) atoms have only small

thermal kinetic energies. When atom pairs are excited to a repulsive potential curve as they are

passing through the resonant internuclear separation, they are quickly turned around by the

strong repulsive interaction. Thus they pass through the resonant internuclear separation a

second time, remaining on the excited-state potential with a probability . Only then does
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trap loss occur. In that case, the probability of trap loss is . If they are not excited in

the first place (probability ), there is a second opportunity of being excited with a proba-

bility  after being reflected off the centrifugal barrier. The total probability  of trap loss

occurring in one approach is thus

. (5.2.2)

This theory can be tested most directly by measuring the intensity dependence of the

excited-state collisions. As the intensity varies between 0 and ,  goes from 1 to 0. As 

depends monotonically on the intensity, that is, on , the intensity dependence should have a

peak corresponding to .

Figure 5.2: Repulsive potential curves in the dressed-state picture. An atom pair approaches each other

in the ground state . Where the ground state curve intersects the excited-state potentials, a transi-

tion may take place, which results in a quick turn-around and in the pick-up of kinetic energy corre-

sponding to , as the atoms repel each other.
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5.3 Intensity dependence

We measured repulsive trap loss as a function of intensity (Fig. 5.3).8 The detuning of the

catalysis laser was held fixed at 10 GHz from the rubidium  transition. The

catalysis laser was chopped with a chopper wheel as described above (see Sec. 5.1), at a duty

cycle . The duty cycle was varied to make up for any change in loss rate in order to maintain

a constant number of atoms , where  is the loading rate,  the loss

rate due to collisions other than those induced by the catalysis laser, and  is the spatially

averaged collision rated induced by the catalysis laser. Thus , with  being the

catalysis laser intensity.

We compared the measurements with a quantitative estimate. This estimate takes a simpli-

fied approach to the multitude of excited-state potential curves involved. Including fine struc-

ture but neglecting hyperfine structure, since it is small compared to the detuning, there are

Figure 5.3: Intensity dependence of repulsive ultra-cold collisions. The maximum in the intensity

dependence of the loss rate  is a consequence of the Landau-Zener excitation mechanism. The cataly-

sis laser was detuned 10 GHz to the blue of the   transition.
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only four molecular curves [ (oscillator strength ),  (0.198),  (0.5), and 

(0.365)] that are repulsive and have radiatively allowed dipole transitions to the ground

state.39 At the detunings used in this experiment the  and  states are strongly mixed by

the hyperfine interaction, so for simplicity we consider them as a single state with total oscilla-

tor strength equal to the sum of the individual oscillator strengths. We then have a model with

the three excited-state potential curves shown in Fig. 5.2.

In the presence of multiple excited-state potentials there are a variety of collision pathways.

To picture this, Fig. 5.4 uses an example of two excited-state potential curves. With a given

detuning an atom 2 in the presence of atom 1 is resonant with the catalysis laser on two spher-

ical surfaces, represented by the semicircles in the figure, centered on atom 1. The solid black

lines show motion of atom 2 on the ground-state potential. The gray ones show repulsion on

an excited-state potential. The expressions show the probability of each branch, calculated

according to Eq. (5.2.2). In these,  is the probability of transfer to the outer potential curve,

Figure 5.4: Trap-loss pathways for the case of two excited-state potentials, denoted “A” and “B.” The

partial circles represent interatomic separations where the laser is in resonance with the colliding

atoms.Motion on ground-state curves is denoted by dark arrows, motion on excited-state curves by

gray arrows. The relevant probabilities for each pathway are also shown.
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and  is the probability of transfer to the inner potential curve. Summing all the possible

branches we get the total trap-loss probability

. (5.3.1)

We see, since each branch’s trap-loss probability contains a factor , that the intensity

dependence has to turn over and eventually reach zero as  increases.

Our estimate took into account the three excited-state potential curves mentioned above and

was based on an integration over velocities , as well as impact parameters . The result is a

curve with the overall scale as its only free parameter, which was adjusted to fit the data. It

reproduces the data’s peak at an intensity between 6 and 8 .

As a further test, we have measured (Fig. 5.5) the positions  of the intensity maxima of

curves like in Fig. 5.3 for various detunings. From Eq. (5.2.1), the detuning dependence should

obey , and the data is consistent with this prediction.

Figure 5.5: The detuning dependence of the maxima  of curves such as in Fig. 5.3 is linear in .

This is the dependence expected from the Landau-Zener model.
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5.4 Detuning dependence

The detuning dependence of repulsive excited-state collisions is expected to look quite simi-

lar to that of attractive collisions. In theory, both fall off like  for larger detunings. There is

an important difference, however. In attractive collisions the onset in the trap-loss spectrum is

a result of spontaneous emission interrupting the collisions for detunings that are too small.

This onset is around 50 MHz to the red of the asymptote. In repulsive collisions the onset is at

a couple of tens of gigahertz. Here the process is very different. Spontaneous emission plays no

role, because with detunings this large the dipole-dipole interaction is so strong that due to

acceleration the duration of a collision is short compared to the exited-state lifetime. Instead,

the onset is a result of the lower limit of detunings leading to trap loss imposed by the escape

velocity of the trap.

Our measurements of repulsive trap-loss spectra in 85Rb and 87Rb are shown in Fig. 5.6.9

The 85Rb data exhibits the expected behavior. Above 20 GHz the loss rate falls off like .

There also is a rapid onset around 15 GHz. From energy conservation we have that the kinetic

energy of the atom pair when they are accelerated on the repulsive potential is  for each

atom. If this is below a certain value, which is called the trap depth, the kinetic energy of the

atoms is insufficient for leaving the trap. The trap depth is determined by the detuning of the

trap laser, by the geometry of the trap laser beams,25 as well as, weakly, by the magnitude of the

magnetic field gradient. This escape velocity  is related to the trap depth by

. While this evokes the image of a potential well, we have to be aware that

the force field of a  is not conservative. Given that the excess energy of the blue-detuned

photon from the catalysis laser has to be shared by both atoms, the position of the onset is in

agreement with a trap depth  around 7.5 GHz.

Qualitatively our 87Rb repulsive trap loss spectrum looks very similar. The data was taken

with the same trap characteristics. However, we observe that at large detunings the 87Rb data

shows a falloff slower than . This deviation extends at least to detunings of 150 GHz. We

address this problem in the following section.
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Figure 5.6: Measurements of repulsive trap loss rates  for rubidium s as a function of catalysis-

laser detuning  from the   transition. The trap laser intensity, detuning, and

beam diameter were 2.0 , –5 MHz, and 6.3 mm, respectively.
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At any rate, the data shows no features that could be attributed to complications arising from

the hyperfine structure of the repulsive excited-state potential curves. Therefore these types of

collisions should be amenable to a comparison with theory.

5.5 Trap depth measurements using repulsive collisions

The trap depth has hitherto been an unaccessible parameter. The interpretation of several

types of collision experiments can be improved by an accurate knowledge of this parameter.

Weak cesium and rubidium have trap depths comparable to the ground-state hyperfine split-

ting, such that ground-state hyperfine-changing collisions can lead to trap loss.32,15 Ritchie et

al.40 relied on a theoretical model for the trap depth of their study of radiative escape in lith-

ium. A more reliable comparison between experiment and theory might have been facilitated

by a direct knowledge of the trap depth. The trap depth is also related to the capture velocity in

a background-vapor loaded trap.15

Dividing the data by the theoretical -detuning dependence arising from the -depen-

dence of the excited-state potential curves, suggests a further interesting interpretation of the

data. Fig. 5.7 shows  for two different trap configurations with different trap laser intensi-

ties and detunings in 85Rb.9 More or less the data has the shape of a step function. We interpret

this to be proportional to the escape probability of a trapped atom with kinetic energy  given

by

. (5.5.1)

The limit  gives the normalization, such that

. (5.5.2)

The fact that the data is not a step function is accounted for by a consideration of the trapping

beam geometry. Because the  force field is not spherically symmetric, different directions

have different escape velocities. This leads to a blurring of the transition from  to

.
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Also, in this picture the influence of different trap parameters, such as detuning and trap

laser intensity is much more apparent. From this data it can be clearly seen that the escape

probabilities at a given detuning decrease for deeper traps. Studies of several different sets of

trap parameter show that deeper traps also have greater anisotropies.

With 87Rb the situation is somewhat different. The falloff does not consistently have a -

dependence. At detunings larger than 30 GHz the loss rate falls off like , instead. The rea-

son for this may be that the larger ground-state hyperfine interaction may interfere with the

dynamics of the excitation process. It is also possible that the oscillator strengths are affected in

a detuning-dependent manner. Any such difference in the behavior of the two rubidium iso-

topes does not, however, show up in an intensity dependence such as in Fig. 5.3, where the

maxima lie at very nearly the same intensities as for 85Rb.

Thus a plot of  is not meaningful for 87Rb. Nevertheless, assuming a decay of the trap

loss rate as , we find consistency when plotting  and

Figure 5.7: Measurement of , which is proportional to the escape probability , as a func-

tion of  for 85Rb s. White circles: trap detuning and intensity of –5 MHz and 2.0 ;

black circles: –9.4 MHz and 3.2 .
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 on one graph (Fig. 5.8). As expected, ,

with identical conditions for both traps of a trap laser detuning –5 MHz and an intensity of

2.0 .9

In spite of this problem with 87Rb, the trap depth can be deduced from repulsive trap-loss

spectra. Should other atomic species exhibit deviations from the -falloff, as well, the data

can be meaningful, if a power law for this falloff can be determined from the data. However, to

this date no one has reported such measurements.

Figure 5.8: Escape probability as a function of  for rubidium s. Trap parameters are a trap laser

detuning of –5 MHz and an intensity of 2.0 .
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6 Two-photon collisions
The experiments that are the subject of this chapter build on the experience gained from

those of both previous chapters. A two-step excitation of the colliding atoms involves the same

 states as in Ch. 4, and the models for describing the collision process use the Landau-

Zener approach of Ch. 5 for the excitation mechanism. The collisions are detected by observ-

ing fluorescence from the colliding atoms. The data shows interesting new features that are not

yet well understood. However, a further understanding of the results has to involve a detailed

look at the hyperfine potential curves in the way prepared in Ch. 4.

Using two catalysis lasers to manipulate the colliding atoms gives us increased control over

the collision process. One laser, red-detuned from the atomic resonance, excites the atom pair

to an attractive potential curve in a manner similar to the other experiments in this disserta-

tion. As before, the atoms are attracted toward each other. A second, blue-detuned laser termi-

nates this attractive motion by exciting the atom pair to a doubly-excited potential curve (cf.

Fig. 6.1). The blue-detuned excitation takes place at an intermediate interatomic separation

where the atoms are still separated by a few tens of nanometers. If spontaneous emission in the

near-infrared occurs after the second excitation, it may terminate the collision much like spon-

taneous emission in singly-excited collisions does, if the catalysis laser detuning is small.

Because of side-effects like optical pumping and disturbance of the atoms’ density distribu-

tion, the influence of those detunings is very difficult to observe quantitatively (Ch. 4). With

these two-photon collisions, however, both catalysis lasers are tuned far enough from the

atomic resonances so that none of the mentioned difficulties arise and spontaneous emission

effects are still observable.

In addition, we observe these collisions directly,10 instead of relying on trap loss, by detec-

tion of a violet photon that may be emitted by the atoms when they reach the chemical binding

region ( ) of the doubly-excited state potential curves. In the  region the over-

lap of the electron clouds breaks down the atomic dipole selection rules and allows the atoms

to radiate directly to the molecular ground state. Because the photon is of a very different color

compared to the laser photons we can separate out two-photon events from the other light

P1 2⁄

R 5 Å< R 5 Å<
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emitted by the atoms, most of which is near the frequency of the trap laser and the two cataly-

sis lasers.

Others have done analogous experiments, involving two-step excitation. These experiments

observe the collisions between ultracold sodium atoms by detecting the ions into which the

Na2 molecule can decay through autoionization.35,41 Analogous processes are energetically

forbidden for rubidium. This experiment constitutes an improvement in that it to a greater

extent decouples the catalysis of collisions from trapping, by making both the initial, as well as

the second excitation independent of the trap laser. It is also the first experiment that directly

observes fluorescence generated during a collision.

6.1 Dynamics

It is the purpose of this experiment to explore the dynamics of the colliding atoms in such a

way that all aspects of it — excitation, motion and termination of the collision by spontaneous

emission — should be well represented by relatively simple collisional models. . The experi-

ment involving excitations to the  term (see Sec. 4.2) already addressed the difficulty

arising from excitation at small detunings to a regime where the atoms had to traverse a multi-

tude of curve crossings and avoided curve crossings.7,19 Our experiment with repulsive

excited-state potential curves (see Ch. 5) also kept the colliding atoms from getting close

enough to each other, where a treatment of the dynamics requires the knowledge of the inter-

action near zero-separation with a precision hard to obtain.12 Neither experiment shows any

effects of spontaneous emission interrupting the collision before it causes trap loss. The 

experiment does not, because it requires catalysis laser detunings so small that they exert a

force on all trapped atoms. The repulsive trap loss experiment, on the other hand, does not,

because the duration of the collisions is too short.

The two-photon experiment gets around these difficulties by exciting the atoms to an attrac-

tive potential in a regime charted by the  experiment described in Sec. 4.2.7 The detuning

of the a catalysis laser (90 MHz to the red of the    transition)

is chosen such that the lowest-lying attractive potential curves of the 

manifold (see Fig. 6.1) are excited (step ). These curves are all fully attractive over a range of a
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couple of gigahertz. Classical motion of the atoms toward each other under the influence of

the dipole-dipole interaction follows (step ). At a smaller separation, depending on the

amount of blue detuning of a second catalysis laser, the atoms are excited to the

 doubly-excited potential curve (step ). After this second excitation they con-

tinue to approach each other (step ) with the momentum gained in step . No appreciable

acceleration occurs, because the dipole-dipole interaction is weak ( ) compared to that on

the singly-excited potential. As the atoms get so close that their electronic wavefunctions over-

lap, they may emit a single photon in the violet to the  state (step ). In the

Figure 6.1: Sequence of a two-photon collision.
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ground state the collision event ends as atoms then recede from each other, or chemically bind

in  or  states.

As an alternative step , there is a possibility of energy pooling to the  state play-

ing a role. Subsequent spontaneous emission at 422 nm ( ) or 420 nm ( ) would

also be detected in this experiment. In order to distinguish this process the violet photons

would have to be analyzed spectrally.

In these two-photon collisions spontaneous emission may occur during step  or . It would

show up as an onset in the data showing the violet photon rate as a function of the detuning of

the second catalysis laser (see Sec. 6.3). If the blue detuning for the second excitation is too

small, the atoms have not been accelerated enough to be able to come close to each other

within one molecular lifetime or so. As long as the atoms are still physically separated, sponta-

neous emission of two separate near-infrared photons is the only decay channel.

 Taking into account the Landau-Zener model (see Eq. (5.2.1)), increasing the blue detuning

reduces the probability of excitation by the second catalysis laser, because of the increased

velocity of the atoms as they move through resonance. Therefore the detuning dependence

should have a decay at larger detunings.

6.2 Apparatus

Setting up this experiment involved a number of fundamental changes from previous

arrangements (see Ch. 2 and Sec. 5.1). The setup is shown in Fig. 6.2.

Hyperfine pumping is now achieved by directly modulating the current of the laser diode in

the trap laser at microwave frequencies42,43 to create sidebands in the output spectrum of the

trap laser at the hyperfine pumping frequency.

We tune a voltage controlled oscillator () to , where  is the detuning of

the trap laser from the   trapping transition of 85Rb. The sig-

nal is amplified by an  amplifier to the 20 dBm level and capacitatively coupled to the laser

diode’s anode. Thus the low sideband created in the diode laser spectrum is resonant with the

  transition and removes atoms from the  state,
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which is dark to the trap laser. The other sideband is detuned by the same amount to the blue

of the trapping transition and has no effect on the operation of the trap. Each of the sidebands

carry between 1½ and 2% of the total power of the laser’s output. The coupling efficiency of

the microwaves into the laser diode appears to strongly depend on the stability of the lasing

mode. Near a mode hop the sidebands were up to three times as strong as elsewhere in the

mode. Since small fluctuations in the diode laser’s operating temperature affect the operating

position within the mode this can lead to large changes in the number of atoms the  is able

Figure 6.2: Apparatus for two-photon collisions. The trap laser light is conveyed by a single-mode fiber

into a   chamber to form a . To ensure perfect overlap, the “blue” and “red” catalysis lasers are

combined in a single-mode whose output is sent through a set of viewports to overlap with the trapped

atoms. The output from all three lasers is switched on and off by s to allow control of the timing

sequence (Fig. 6.4).
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to trap. To make up of the mode drifts we can adjust the operating current of the laser to

ensure maximum hyperfine pumping.

The detuning of the trap laser was chosen to be . The reason for this

detuning being somewhat larger than in our earlier experiments is that it reduces radiation

trapping and thereby permits higher trap densities. This in turn leads to a higher rate of excita-

tion to the excited-state potential curve, which improves the violet-photon rate.

We upgraded the laser diode used in the trap laser to a Spectra Diode Labs --, nom-

inally rated at 100 mW output power. This was necessary as the acousto-optic modulator  used

to switch the trapping light on and off at megahertz rates (see below), has relatively poor

transmission efficiency (60%). Combined with the low transmission efficiency (50%) of the

single-mode optical fiber in the trapping optics and the low output coupling of the feedback

grating inside the laser itself, this still produces no more than 10 mW of light available for

trapping.

The single-mode fiber was used to decouple the trapping optics from the laser optics. This

allows changes made to the alignment of the feedback grating to leave the alignment of the

trapping optics past the output of the fiber unaffected. Occasionally such grating adjustments

are necessary to keep the laser operating at the trapping frequency when some of the operating

parameters, especially the temperature, has drifted over the space of a few days.

In this experiment two catalysis lasers excite the colliding atoms. One, which we call the

“red” laser, is detuned 90 MHz to the red of    transition. It

provides the initial excitation to the attractive potential curve. After acceleration toward each

other, the “blue” laser, detuned between 90 MHz and 2.4 GHz to the blue of the

  transition may pick up the atoms and excite them to the

doubly-excited potential curve.

One weakness of the experiment involving doubly-excited collisions of sodium by Bagnato et

al.35 is that the initial excitation is provided by the trap laser, so that the atoms have to traverse

multiple avoided curve crossings before they get to interatomic separations, where they can be

excited to a doubly-excited potential curve. Furthermore, more than two frequencies are
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present and can influence the collisions. This makes the data more difficult to interpret, as

multiple two-step excitation processes are possible concurrently.

We avoid this complication by alternating trapping and catalysis by the “red” and “blue”

lasers (see Fig. 6.4 for timing). To this end, the beams from the three lasers are passed through

separate acousto-optical modulators () before they reach the atoms in the vacuum cham-

ber. On top of that, the switching has to occur at a rate of at least about 10 kHz, so that the

“red” catalysis laser does not have enough time to pump the atoms into the dark  state.

We use the first-order diffracted beams on the output side of the s, because they have a

high extinction ratio when the  is off, as opposed to the zeroth-order beams. Because the

frequency of the st order beams is shifted by the  frequency, we have to lock the trap and

“red” catalysis lasers to saturated-absorption features appropriately offset in the opposite

direction. The “blue” catalysis laser is left free running. Its detuning is measured with a confo-

cal optical spectrum analyzer with a free spectral range of 1.5 GHz. Light from the “red” catal-

ysis laser is fed into the spectrum analyzer, as well, and provides an absolute frequency

reference.

Figure 6.3: Violet photon collection and detection optics.
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The beams of both catalysis lasers are combined in a polarizing beam splitter, where 

plates allow us to adjust the intensity of each beam. To ensure perfect overlap as the catalysis

light overlaps the trap atoms they are run through a single-mode fiber. As a result, at the fiber

output both beams have the same geometrical properties. A microscope objective reduces the

divergence of the light and before entering the vacuum chamber through one of the off-axis

viewports sends it to a lens that produces a 1 mm waist at the position of the atom trap. After

passing through the trap and the vacuum chamber the light passes through a second lens that

brings the light to a waist on in the plane of a mirror. There the catalysis light has a plane wave-

front, such that the mirror folds the beam geometry back on itself. Optimal retroreflection of

the catalysis light is checked by maximizing the throughput through the fiber of the retrore-

flected light. The maximum single-pass peak intensity of the “red” catalysis light is

30 , and 220  for the “blue” light.

The viewport on the vacuum chamber through which we observe the violet photons is

uncoated. The coatings we have on the other viewports have very poor transmission in the

blue to violet range. The light from the viewport is roughly collimated by a 8.83 cm plano-

Figure 6.4: Timing of trap laser, “blue” and “red” catalysis lasers. Shown is one period of 100 µs dura-

tion. The trap laser is turned off, when the “blue” and “red” catalysis lasers are turned on to induce

two-photon collisions. This prohibits any involvement of the trap laser in the collision process. The

optimal trap laser duty cycle is 75%.
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convex lens passed through an interference filter, whose reflective side faces the trapped atoms,

through one 1 mm and another 2 mm thick blue-glass filter (Schott -) and is focused on

the active region of the  by a 25 cm plano-convex lens (see Fig. 6.3). The interference filter

has a 55% transmission centered at 405 nm and a 40 nm bandwidth. Together with the -

filters it provides a  rejection of near infrared photons at 780 nm over violet ones.

The violet photons generated in the collisions are detected by a photo-multiplier tube ()

that has a quantum efficiency of roughly 10%. The electronic pulses from the  are passed

through a discriminator and a series of two amplifiers. The signal is in  logic levels and we

convert it to . We then  the signal with the timing pulses going to the s in order to

be able to restrict photon counting to specific phases in the timing diagram (see Fig. 6.4). The

TTL counters used can be preset to count for a specific duration. In our experiment this was

10 — 15 min, in order to have reasonable counting statistics.

6.3 Detuning dependence

We measured the detuning dependence of the emission rate of violet photons generated in a

two-photon ultra-cold collision.10 This constitutes the first experiment that directly observes

fluorescence from excited-state collisions. Fig. 6.5 shows our measurements. As expected, for

small relative detunings the collision rate increases, suggestive of spontaneous emission. At

large detunings, however, some unexpected behavior occurs.

In developing a qualitative understanding we progress from simple approaches to ones that

acquire more complexity as more effects are included. The simplest approach to the problem

neglects spontaneous emission from the singly-excited-state potential curve. For simplicity,

hyperfine interaction is also neglected. Our violet photon detuning dependence was taken

with  fixed parameters in the initial excitation. This excitation takes place, when a photon from

the “red” catalysis laser is absorbed, which has a detuning of 90 MHz to the red of the

  transition and an intensity of 30 . The excitation

rate is fixed and only affects the scaling of the detuning dependence. This is justified in that

there are other factors that determine the overall scaling of the spectrum that are very hard to
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determine, for example, the violet-photon decay rate. Thus, we concentrate on the spectral

shape of the violet photon emission data.

After excitation, attractive motion follows. We treat this classically, as spontaneous emission

is negligible. This is shown by our  collision data, where –90 MHz is well to the red of the

trap loss spectrums onset, which is the detuning region where spontaneous emission inter-

rupts the collision. Multiple orbits in the excited-state potential are also not important, as sug-

gested by the same  trap loss spectrum. At a detuning of –90 MHz the model calculations

for motion with and without orbits shows no difference (see Fig. 4.7).The excitation by the

“blue” laser to the doubly-excited state is treated using the Landau-Zener mechanism in the

same manner as in Sec. 5.2.

Figure 6.5: Measurement of the emission rate of violet photons as a function of the detuning of the

“blue” catalysis laser. The multi-peaked structure cannot be explained with a simple picture of the

potential curves involved.  The line is drawn to guide the eye.
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With these assumptions the the violet photon rate is proportional to the excitation rate 

from the “blue” catalysis laser and the survival rate

(6.3.1)

on the doubly excited-state potential to  that is given by spontaneous emission:

, (6.3.2)

where  is the detuning of the “blue” catalysis laser and  is the lifetime of the atoms on the

doubly-excited potential curve.

In the Landau-Zener model33 the excitation probability is given by the velocity at which the

transition region is traversed, by the relative curvature of lower and upper state, and by the

intensity. The Landau-Zener transition probability is (Eq. (5.2.1)):

. (6.3.3)

Since the violet photon rate in the range of intensities accessible to us ( ) is

linear in the intensity of the “blue” catalysis laser, we may assume that the argument of the

exponential function is small such that

. (6.3.4)

The excitation rate by the “blue” catalysis laser is the product of the arrival rate of atoms on the

singly-excited potential, which is given by intensity and detuning of the “red” catalysis laser,

and the excitation probability. It is therefore

. (6.3.5)
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Considering, for simplicity, only radial motion, the relative velocity of the atoms at the point

of exciation by the “blue” catalysis laser is determined by conservation of energy. If the thermal

energy of the atoms when they are excited by the “red” catalysis laser is negligible, then

, (6.3.6)

where  is the reduced mass of the atoms and the detunings relate to the singly-excited poten-

tial through the relation , as described in Sec. 1.1. The rate of excitation

by the “blue” catalysis laser is therefore

. (6.3.7)

The survival rate on the doubly-excited potential depends on the time spent to get from the

excitation separation of the atoms to . The doubly-excited potential asymptotically

connects to the  state of the infinitely-separated atoms. In that case, the dipole-

dipole interaction vanishes, leaving the interaction between the atoms’ quadrupole moments

as the highest contributing term. This interaction has a  dependence, which, for the pur-

pose of this calculation, is considered to be independent of the atoms’ separation. The atoms

therefore move toward each other with the nearly uniform velocity . Thus, the time it takes to

get to  is

. (6.3.8)

Substituting Eqs. (6.3.7) and (6.3.8) into Eq. (6.3.2) we then get

, (6.3.9)

which is plotted in Fig. 6.6. The width is considerably narrower than what we observed. The

calculation contains nothing to accomodate a multipeaked structure like in the data.

When looking at a picture of the potential  curves for 85Rb (Fig. 6.7), a quite different

interpretation emerges. As the dipole-dipole interaction of the atoms becomes strong enough,

v vr 2h µ⁄( ) ∆b ∆r+( )= =

µ

h∆ V R( )≡ C– 3 R3⁄=

ℜ 1
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it mixes the two ground-state hyperfine levels. The curves emerging from the

 and  asymptote are strongly mixing with those of the  and

 asymptotes around half the ground-state hyperfine splitting below the  and

 levels. Furthermore, the potential curves have nearly no dependence on the atoms’ sep-

aration.

Since only a very small portion of the curves behave like , the considerations leading

to a theoretical violet photon spectrum like in Eq. (6.3.9) have to be modified extensively. We

could simplify the description of the collision dynamics by picking a characteristic potential

curve going from  level to the flat manifold. The excitation rate would then be deter-

mined by the density of states to which all the other curves contribute.

Because of the lack of acceleration on most of these potential curves, motion on them toward

 can last several hundred nanoseconds. This is enough time for spontaneous emission

Figure 6.6: Theoretical spectrum of the violet photon emission rate. The onset is at 90 MHz, corre-

sponding to the detuning of the “red” catalysis laser. The fall-off is noticeably sharper than observed in

the data (Fig. 6.5). The calculation assumes a molecular lifetime in the  state of

.
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to significantly limit the interaction time of the “blue” catalysis laser with the colliding atoms.

An accurate treatment of spontaneous emission from the singly-excited potential involves

numerical integration of the potential curves, as their dependence on the interatomic separa-

tion is not simple.

Another question is, how valid the Landau-Zener picture is in this case. The term

 in Eq. (4.1.5), which is implicit in Eq. (6.3.3) with the assumption of a

 potential, goes to zero. The excitation probability would therefore automatically go to

one, without taking the duration of the atoms’ interaction with the “blue” catalysis laser into

account. It is likely that a quasistatic approach to this excitation is more appropriate.

In spite of these difficulties a few qualitative observations can be made. The broader onset

observed in the data (Fig. 6.5) may very well be explained by the longer duration of the singly-

Figure 6.7: Selected potential curves corresponding to the  asymptote in 85Rb. Shown

are the ,  and  symmetries. Around –1.5 GHz there are a large number of curves (solid lines)

with  that are resonant with the “blue” catalysis laser over a large range of interatomic sep-

arations . This greatly enhances the excitation rate around that detuning.
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excited dynamics. Here there is a survival term like in expression (6.3.1) that is responsible for

the onset. The main difference is that  is the time between the excitations by the “red” and

“blue” catalysis lasers. The steepness of the onset is given by the ratio

. Thus, the longer  is, the more gradual do we expect the

onset of the violet photon rate to be. Further broadening is expected to result from the differ-

ent dynamics on the different potential curves. As can be seen from Fig. 6.7, some of the

potential curves have a minimum near , which produces different times

.

One explanation for the multi-peaked structure in the data is excitation to the multiplet of

doubly-excited-state potentials having asymptotic quantum numbers ,  and

. The potential curves associated with these states are offset from each other by the 

hyperfine splitting of 362 MHz. Thus, for each given interatomic separation , the “blue”

catalysis laser will be resonant with an excitation to the doubly-excited potential curve mani-

fold at three detunings, about 360 MHz apart from each other (see Fig. 6.8).

More calculations are needed to account for these effects quantitatively.

The comparison with a violet photon spectrum from collisions starting from  excited-

state potentials should give further insight into these collisions. This requires that the atoms be

optically pumped to the lower ground-state hyperfine state, before catalysis begins. The benefit

of this type of collision is that all of the attractive potential curves emerging from that asymp-

totic state remain so over the entire range of interatomic separations that is of interest. This

greatly increases the validity of the simple model. We expect the spectrum to be considerably

sharper.

6.4 “Saturation”

Another, as yet unexplained phenomenon is what appears to be saturation of the violet-pho-

ton signal that results from the “red” catalysis laser. In testing the dependence on the intensity

of the “red” catalysis laser intensity, the violet-photon rate decreased less than linearly. In addi-

tion, blocking the retro-reflection of the catalysis laser beams resulted in a reduction of the sig-

t ∆b( ) τM⁄[ ] t– ∆b( ) τM⁄( )exp t ∆b( )

C3– R3⁄ 2 GHz=

t ∆b( )
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nal of only a factor of two, instead of four, as expected, if the rate depends linearly on each of

the intensities of the “red” and “blue” catalysis laser. The measurements are shown in Fig. 6.9.

The data is fit to a saturation function of the form

, (6.4.1)

Figure 6.8:  Because of the doubly-excited-state hyperfine splitting of 362 MHz, the “blue” catalysis

laser is resonant with a transition from the singly- to the double-excited potential curves at three

detunings, separated by this hyperfine splitting from each other. The singly-excited potential curve

shown belongs to the manifold for which  for smaller .
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in the case of the blocked retro-reflection, where  allows for overall scaling, and

, (6.4.2)

in the case of the presence of the retro-reflection of the catalysis laser beam, where  accounts

for the increased intensity in the “blue” and “red” catalysis lasers resulting from it. The fit

determines  to be 1.8, which we attribute to the losses in the retro-reflection optics on one

hand and a decrease of intensity due to widening of the catalysis laser beams on the other.

We measured this intensity dependence several times, but the “saturation intensity” deter-

mined from the fits to the data varied by up to a factor of three. In part this may have to do

with the large errors in the measurement, which results from the counting statistics. While the

trap was sufficiently stable while taking data, it did not provided identical conditions from day

Figure 6.9: “Saturation” of the violet-photon rate as a function of the intensity of the “red” catalysis

laser. The solid triangles show the data taken with blocked retro-reflection. The outline-triangles repre-

sent the data with retro-reflection. The lines are fits of the form , where 

allows for overall scaling and  can be interpreted as the saturation intensity. The fits give a saturation

intensity of 8.4 . The intensity of the “blue” catalysis laser was 220 .
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to day. Largely because of less than optimal hyperfine-pumping the equilibrium number of

atoms in the absence of the catalysis lasers varied by as much as a factor of four. The sensitivity

of the “saturation” data may therefore be closely connected to the density of the trapped atoms

or their temperature.

This measurement, as well as the violet-photon spectrum, has to be repeated in the case

where the atoms start in the  ground state. If a difference in the behavior shows up, it will

provide important clues to understanding the data presented here.

Obviously, considerable additional work is to be done on this experiment, which is beyond

the scope of this dissertation. Further investigations are hoped to shed light on the nature of

the “saturation” phenomenon, as well as the quantitative shape of the violet-photon spectrum.

2 2+
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7 Conclusion and outlook
In retrospect, the experiments described in this dissertation fit into the historical context of

the development of the field of ultra-cold collisions in the following way. The comparison

between the  data of 85Rb and 87Rb led to an understanding of the importance of hyper-

fine interaction in the description of the collision. Up to that point none of the models took it

into account.

The  experiment was the first one that exhibited quantitative agreement with the

dynamics of the Gallagher-Pritchard model. This was the first quantitative confirmation of any

aspect of an ultra-cold collisions model. Furthermore, it shed additional light on how hyper-

fine and dipole-dipole interaction together influence the collision dynamics. In this experi-

ment we observed evidence of multiple collision orbits, which had not been seen before.

Further development of this by others led to new sensitive forms of molecular spectroscopy.

In the meantime theories had been proposed that involved various ideas for the process of

the initial excitation by the catalysis laser. Our experiment on repulsive trap loss provided the

first direct test of one of these, the Landau-Zener excitation mechanism, in that the intensity

dependence of the trap loss rate showed a maximum.

Finally, the two-photon experiment presented new challenges. It became clear that an under-

standing of the results involves the details of the hyperfine potential curves of the two interact-

ing atoms. A further investigation of the non-linear dependence of the violet-photon

generation rate upon the intensity of the light inducing the first excitation potentially might

lead to interesting insights into the physics of ultra-cold collisions as a whole. In addition, the

two-photon experiment is the first one that directly measures fluorescence generated in spon-

taneous emission from colliding excited-state atoms.

We hope to gain a better understanding of the two-photon collision dynamics by letting the

colliding atoms begin in the lower hyperfine ground state. The attractive potential curves

belonging to this state do not exhibit any avoided crossings with other hyperfine potential

curves. The comparison of the violet-photon emission spectra from the two collision processes

should provide valuable clues for understanding the challenges posed by the existing data.

P3 2⁄

P1 2⁄
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Two ongoing investigations in our research group also concern ultra-cold collisions. One

looks at the collision rate between spin-polarized atoms. If the atoms are spin-polarized, the

number of potential curves involved in the collision is greatly reduced. This could considerably

alter the shape of the loss rate spectrum, especially at catalysis laser detunings between hyper-

fine levels.

The other will let ultra-cold atoms from a  drop onto a glass surface with an evanescent

wave. In addition to their repulsion with the light from the evanescent wave, the atoms interact

with their images. The evanescent wave is necessary to prevent atoms from colliding with the

surface, because the interaction between atom and image is always attractive. This is a conse-

quence of the perfect correlation between the dipole moment of the atom and its image. This

correlation is also responsible for a vastly simplified dipole-dipole interaction. Thus, it is

hoped that ultra-cold collisions models can be tested for this case particularly well.

The experiments described in this dissertation have spurred the development of theories and

have helped establish the catalysis laser method and the interplay between experiment and the-

ory has led to significant improvements in our understanding of ultra-cold collisions. In sum-

mary it can be said, that the experiments reported in this dissertation have been an important

contribution to the field of ultra-cold excited-state collisions.
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