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Chapter 1

Introduction and Motivaton

1.1 Overview and Motivation

This thesis describes work I have undertaken to better understand spin-relaxation pro-

cesses in a polarized alkali vapor. I have studied vapors of the three heaviest naturally

occurring alkali atoms, K, Rb and Cs. The choice of atom is motivated by the many

applications of a spin-polarized alkali vapor (see, for example [Walker97, Happer72]), a

desire to study processes that limit the lifetime of recently created alkali Bose-Einstein

Condensates, and the relative ease with which alkali atoms can be handled both exper-

imentally and theoretically.

This investigation is geared toward three speci�c goals. First, I wish to be able

to predict relaxation rates under a wide variety of conditions. Since spin relaxation is

generally undesirable, this will allow other workers to choose conditions that minimize

depolarization. Toward that end, I present a large volume of new data that allows

prediction under a much more complete set of circumstances than was possible before.

Second, I wish to identify the microscopic origin of relaxation processes. This allows

prediction of relaxation rates under conditions that have not been reached experimen-

tally. In addition, since the important relaxation mechanisms are collisional in origin,

such an identi�cation adds to our basic physical understanding of spin-dependent colli-

sions. Considerable e�ort has been expended to this end over the last two decades

(refs. [Knize89, Wagshul94, Nagengast98, Bhaskar80, Wu85] and many others) and

the data I present here is consistent with much of the previous work. However, I
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have shown that one relaxation mechanism, alkali-alkali relaxation, has an unexpected

magnetic �eld dependence. This discovery requires a new theoretical interpretation of

alkali-alkali relaxation, and I present here the signi�cant steps taken toward the correct

interpretation.

Third, my relaxation measurements can be used to probe the dynamics of molecular

formation and dissociation in the vapor. I show how this is achieved using measure-

ments of relaxation in alkali singlet dimers similar to the pioneering work of Bouchiat

([Bouchiat71]) on alkali-noble gas Van Der Waals molecules. In addition, I present an

accurate model of relaxation in singlet dimers and show how it can be used to determine

the nuclear electric quadrupole interaction strength.

1.2 De�nition and Usefulness of a Polarized Vapor

To see why a polarized alkali vapor is useful and to understand the signi�cance of

polarization-destroying collisions, we must consider the atom's electronic and nuclear

structure. To a very good approximation, the alkali atom can be treated theoretically

as a nucleus and a single valence electron. Each principal electronic level jnJi therefore
has (2J+1)(2I+1) nearly degenerate sublevels that correspond to di�erent orientations

of electronic and nuclear angular momentum. Within an order of magnitude of room

temperature, alkali atoms are particularly easy to handle thermodynamically because

the energy of the �rst electronic excited state is much greater than kT. Therefore, a

typical vapor cell in thermodynamic equilibrium will most likely have no electronically

excited atoms at all. On the other hand, the splitting between the nearly degenerate

electronic ground states is much smaller than kT, so population is divided equally among

them.

We know from experience that such a low dimensional quantum system becomes

interesting if we can somehow take it out of thermodynamic equilibrium. For instance, if

we create a population inversion between electronic levels, a system can be made to lase.

We can observe similarly interesting and useful behavior (i.e. masing, nuclear magnetic

resonance) by changing the population distribution among the electronic ground states,

or polarizing the atom.

An analogy with population inversion in a laser is in many ways a good one, but

unlike a population inversion, polarized ground state atoms do not return to thermal
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equilibrium through spontaneous emission. Therefore, return to equilibrium is entirely

through collisional processes that couple to one or more of the atomic spins. Some

applications of polarized atoms depend on phase coherence between atoms, which is

limited by such collisional processes as well. Thus, collisional relaxation processes limit

the usefulness of a polarized vapor, and this investigation is motivated by a desire to

understand and minimize their detrimental e�ects. Note that the relaxation processes

of interest here are transitions between electronic ground states.

1.3 Optical Pumping

The easiest way to polarize an alkali vapor is to use a technique known as Optical

Pumping. This technique was �rst demonstrated in the 1950's and led to the Nobel

Prize for Alfred Kastler in 1966. The basic idea behind Optical Pumping is to use the

absorption of circularly polarized light to transfer angular momentum to the atoms.

Figure 1.1 shows the simplest possible scenario{ �+ circularly polarized light is tuned

close to the J=1/2$J'=1/2 alkali resonance (the D1 resonance) and sent through the

vapor cell. Each photon absorption transfers one unit of angular momentum to the

atom. The subsequent transition back to the electronic ground state may or may not

conserve angular momentum, but on average, the atomic polarization increases until the

rate of angular momentum transfer is balanced by the relaxation rate. This is, of course,

a highly simpli�ed picture of Optical Pumping. More detail is given in chapter 2 and

in several excellent reviews of the subject (for instance, refs. [Happer72, Happer87]).

1.4 Technological Applications / Spin Exchange Optical Pumping

Once a non-thermal spin distribution is created through optical pumping, it can be

put to a variety of interesting scienti�c and technological uses. However, it is often

diÆcult to use alkali polarization directly. Instead, a noble gas is typically introduced

into the cell while the alkali polarization is maintained through optical pumping. After

a period of minutes to hours of spin-exchange collisions with polarized alkali atoms,

the noble gas nuclei will reach an equilibrium, nonzero polarization. This process is

known as Spin-Exchange Optical Pumping (SEOP), and the noble gas produced is called
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Relaxation
processes

Optic
al 

pumping
J'=1/2

J=1/2

m  = -1/2J Jm  = 1/2

Figure 1.1: Simpli�ed picture of Optical Pumping on D1 line. The arrow between
excited states and wavy arrows represent collisional mixing and de-excitation that is
usually present due to bu�er gas collisions. Collisional processes tend to return the
optically excited atom to either ground state with roughly equal probability, but proba-
bility still builds up in the mJ=1/2 ground state due to optical depletion of the mJ=-1/2
ground state.
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'Hyperpolarized' to indicate its larger-than-thermal polarization. A detailed description

of SEOP can be found in ref. [Walker97].

A hyperpolarized noble gas has three practical advantages over a polarized alkali

vapor. First, a noble gas can be introduced into almost any environment, including a

living system, without a�ecting it chemically. Also, noble gases remain gaseous except at

very low temperatures, so the nucleus is well isolated from its environment. Therefore,

in a suitable container, the noble gas will maintain its polarization for many hours

or days. Finally, the heavier noble gases are soluble in a variety of liquids, including

blood, and many species are soluble in liquid Xe. This opens up the possibility of

polarizing other systems through a similar spin-exchange process ([Fitzgerald98]). For

these reasons, it is Spin-Exchage Optically Pumped noble gases that have found direct

technical applications in the following areas:

1 Medical Magnetic Resonance Imaging (MRI)

MRI techniques have made enormous progress in the last decade, but the

current state of the art still relies on a large magnetic �eld to polarize protons

in the subject. This limits polarization to O(10�6). Recently, researchers

have shown that having the subject breathe polarized Xe or He can dramat-

ically increase polarization (and therefore signal), particularly for images of

lungs (see [Chupp94, Newbury91]). Since Xe is soluable in blood, there is

also hope that this technique will lead to more accurate images of other ar-

eas such as the brain, and possibly real-time images of circulation and brain

function.

2 Surface and Di�usion Studies

The dramatically increased signal from hyperpolarized gases makes surface

studies possible with less than a monolayer of adsorbed noble gas. This

makes it feasible to investigate crystal surfaces, surface defects and sur-

face reactions with a conventional NMR spectrometer ([Wu90, Raferty91,

Jansch98]). In addition, researchers have used this increased signal to study

novel di�usion e�ects, including self-di�usion and the e�ect of temperature

gradients, as well as to measure di�usion coeÆcients with high accuracy.

([Wolber98, Schmidt97]).
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3 Spin-Polarized Targets

The relatively simple nuclear structure of 3He makes it a good target for

certain high energy experiments. By hyperpolarizing the target nuclei, one

can perform experiments that otherwise require the collision of polarized

particle beams. One can thereby simplify the experiment design and in-

crease the interaction rate by many orders of magnitude. This technique

was used to make the �rst measurement of the neutron spin-structure func-

tion ([Anthony93]).

4 Quantum Computing

The idea of using quantum states as basic computational elements is at

least thirty years old, but it is with Peter Shor's 1985 discovery of a quan-

tum factoring algorithm that the advantages of quantum computing have

become clearly apparent. Several realizations of a quantum computer have

been proposed, but one of the leading candidates is implemented using NMR

techniques on an ensemble of identical molecules in a bulk liquid. Simple

computations have already been demonstrated on a thermally polarized liq-

uid ([Linden98]), but it is clear that more complicated work will require the

spins to be polarized, most likely through SEOP ([Gershenfeld98]).

Because one needs to maintain a high alkali polarization in order to eÆciently polar-

ize other substances, the study of alkali relaxation processes can directly bene�t those

interested in any of the above areas.

1.5 Brief Description of Experiment

My experimental setup is similar to that of a typical SEOP apparatus. The alkali is

contained within a cell of volume �100 cm3 with optical access. This cell is then heated

(to control alkali vapor density) and a bu�er gas or mixture of bu�er gases is added

from an external manifold. The cell is placed within a uniform magnetic �eld, as is

true for SEOP, but my largest available �eld is �1 Tesla, which is much larger than is

typically used for that purpose.
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I then polarize the alkali vapor using a strong (�100 mW/cm3) circularly polarized,

pump beam. It typically takes �100 ms for the alkali atoms to arrive at their equilibrium

polarization of �1%. At this point, I chop o� the pumping light and measure the

exponential decay of the polarization with a weak (�10�W/cm3) probe beam. The

exponential decay rate constant is the spin relaxation rate. Much more detail about

cell construction and experimental technique is provided in chapter 2.

In order to identify the spin-relaxation mechanism, I vary conditions inside the cell.

Speci�cally, I have mapped out relaxation rates for K, Rb and Cs at vapor pressures

from 1013 to 5�1015 cm�3, using combinations of N2, H2 and He as a bu�er gas at

pressures from 1 to 20000 Torr, magnetic �elds from �1G to 1 Tesla and cells made

from aluminosilicate glass and stainless steel/pyrex.

1.6 Brief Summary of Findings

The data over these parameter ranges are well described by a model consisting of four

relaxation mechanisms. Other mechanisms are certainly present, but one or more of

these four is dominant over all conditions I have investigated, and also at conditions

appropriate for SEOP. What follows is a brief description of each of these relaxation

mechanisms and its dependence on cell conditions:

1 Relaxation on the Cell Walls.

If an alkali atom collides with the cell wall, it will often stick for a long

time (compared to atomic collision times) before returning to the vapor.

During this period, it may relax by interacting with other atomic spins in

the wall. The relaxation rate due to wall collisions is proportional to the

rate at which atoms in the vapor di�use to the walls; that is, inversely pro-

portional to bu�er gas pressure. Our measurements show that, as has been

noted before ([Barrat54]), atoms encountering the cell walls are essentially

completely relaxed, independent of cell temperature and magnetic �eld. We

may therefore write the wall relaxation rate �wall in terms of bu�er gas

pressure P and vapor temperature T as

�wall = �0;wall(P0=P )(T=T0)
3=2 (1.1)
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�0 is a function of the cell size and geometry and possibly also the pump

beam geometry.

2 Relaxation due to Alkali-Bu�er gas collisions.

Although the interaction time is much shorter, there is a small probability

for alkali polarization to be lost during a collision with a bu�er gas atom

or molecule. As might be expected, this relaxation rate is proportional to

alkali-bu�er gas collision rate and therefore to bu�er gas pressure (unless

Van Der Waals molecules are formed as in ref. [Bouchiat71], which does

not seem likely in this experiment). It does not depend on alkali density or

magnetic �eld, although there may be a temperature dependence. We may

therefore express the relaxation rate due to bu�er gas collisions as

�buf = [B]h�A;BvA;Bi (1.2)

for alkali species A and bu�er gas B.

3 Relaxation in 1�+
g dimers.

In an alkali vapor at densities appropriate for SEOP, approximately 1%

of the atoms are in singlet dimers. Because they are paired into a singlet

state, there is no net electron polarization to be relaxed, but the nucleus

can be relaxed via the electric quadrupole interaction and that depolariza-

tion is then transferred to the electron via the hyper�ne interaction. This

relaxation mechanism has a complicated dependence on the cell conditions,

but it is readily calculated and can be used to identify its e�ects exper-

imentally. Qualitatively, relaxation in singlet molecules increases rapidly

with alkali density, decreases with bu�er gas pressure and, under certain

circumstances, is decoupled by a magnetic �eld.

I present a model that accurately describes the relaxation rate in singlet

molecules in chapter 3. According to this model, the relaxation rate can be

calculated from the density of singlet molecules, the cross-section for alkali

atom-dimer chemical exchange (�ex), the cross-section for reorientation of

the dimer's angular momentum by collisions with the bu�er gas (�J), and



9

the strength of the electric quadrupole interaction in the dimer (
Q). I have

determined the latter three quantities experimentally for Rb in N2. This

work is the �rst direct measurement of alkali relaxation in singlet molecules.

4 Alkali-Alkali relaxation.

The �nal relaxation mechanism I have measured is thought to arise from

alkali-alkali interactions because it scales very nearly linearly with alkali den-

sity. Until recently, the microscopic explanation was thought to be alkali-

alkali binary collisions [Bhaskar80, Knize89, Chupp94], which can success-

fully reproduce the alkali density dependence. However, in studying this

relaxation process, I have shown that it can be largely decoupled by apply-

ing a �kG magnetic �eld. For reasons I discuss in the next section, this

observation rules out the previously accepted explanation, but I have been

unable thus far to show de�nitively what the microscopic cause of alkali-

alkali relxation is. As of this writing, it appears that relaxation in alkali

trimers is the leading candidate. Since three body problems are notoriously

diÆcult to handle theoretically, and hot trimers are nearly impossible to de-

tect experimentally, verifying this supposition is a formidable task. I have

characterized this relaxation mechanism experimentally, however, and �nd

that it is well represented by

�alk = (�A +
�B

1 + (B=B0)2
)[A]

whereBD = BD;0

q
1 + (P=PD)2 (1.3)

Note that each of these mechanisms has a di�erent dependence on conditions inside

the cell, which makes it possible to separate them out experimentally and study each

individually. Over the large range of parameters investigated by myself and others, the

four processes listed above appear to be independent of each other. Therefore, the total

relaxation rate is simply the sum of the rates due to these four processes and we may

write the relaxation rate � as

� = �buf + �wall + �sing + �alk: (1.4)
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K Rb
He 1.3�10�23 (520K) (*)

5.3�10�24 (380K) ([Baranga98])
1.0�10�23 (450K) ([Baranga98])

N2 7.9�10�23 (440 K) (*) 2.0�10�22 (480K) (*)
2.5�10�22 (520K) (*)

H2 1.7�10�23 (500K) (*)
2.4�10�23 ([Brewer62])

Table 1.1: measured values for �A;B (in s�1). (*) indicates this work. See ref. [Happer72]
for measured cross-sections involving Cs. See ref. [Walker97] for measurements and
theoretical estimates of alkali-noble gas cross-sections.

�A �B B0;D PD

K (nat.) 7.5�10�15 (*) 8.2�10�15 (*) 230 (*) 1700 (in N2) (*)
�A+�B=3.0�10�14 ([Knize89]) 5800 (in He) (*)

Rb (nat.) 1.50�10�14 (*) 2.6�10�14 (*) 1150 (*) >15000 (*)
�A+�B=7.3�10�14 ([Knize89])

85Rb 1010 (y)
87Rb 1450 (y)
Cs (nat.) 1.9�10�13 (*) 1.8�10�13 (*) 2900 (*)

�A+�B=4.1�10�13 ([Bhaskar80])
Table 1.2: measured values for �A, �B (in cm3/s), B0 (in G) and PD (in Torr). (*)
indicates this work. (y) indicates recent, unpublished measurements by Christopher
Erickson and William Happer at Princeton University.

Thus, the relaxation depends on the parameters �0;wall, �A;B, �A, �B, B0;D, PD, �ex,

�J and 
Q, to be determined experimentally. �0;wall is function of cell geometry and is

therefore not of fundamental interest (except as a measurement of di�usion coeÆcients),

but I have listed the measured values for all the other coeÆcients in tables 1.1-1.3.

To put these numbers into perspective, I have included �gure 1.2, which shows the

cell conditions under which each of the above four relaxation mechanisms becomes

important.

�ex �J 
Q

Rb 173(35)�A2 12(2)�A2 80(8) KHz (85Rb) 130(13) KHz(87Rb)

Table 1.3: measured values for �ex, �J and 
Q.
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1.7 Overview of Alkali-Alkali Relaxation

Because of its detrimental e�ects on SEOP and the opportunity to probe new dynam-

ical processes in the alkali vapor, the bulk of my experimental work has been directed

toward measurements of alkali-alkali relaxation in the di�erent alkalis and developing a

consistent microscopic theory of this mechanism. The way we have chosen to attack this

problem is to consider each possible relxation mechanism in increasing order of com-

plexity. Since, to the best of our knowledge, the cell consists only of walls, alkali, bu�er

gas and a magnetic �eld, the relaxation must be coming from an interaction between

an alkali atom and one or a combination of these four. I have enumerated possible

relaxation processes below. I give a brief assessment of each, along with references in

this dissertation for additional information:

1 Interactions Between Alkalis and the Wall.

Interactions with the cell wall are clearly not the cause of alkali-alkali re-

laxation because the relaxation rate is often much larger than the di�usion

rate. Thus, an alkali atom is relaxed before it has a chance to encounter the

wall.

2 Interactions Between Alkalis and the Magnetic Field.

Because the polarization axis and the magnetic �eld direction are colinear,

a constant magnetic �eld can not cause relaxation, although a time varying

magnetic �eld or di�usion through magnetic �eld gradients may. We have

eliminated this as a possible source of relaxation because it would not have

the observed pressure independence or alkali density dependence, and it

would require much larger inhomogeneity than is present in our magnet.

3 Interactions Between Alkalis and the Bu�er Gas.

These interactions are already well studied and characterized, and they do

not have the observed pressure independence and alkali density dependence.

4 Interactions Between Two Alkalis (binary collisions).

When two alkali atoms interact without the presence of a third body, the

interaction time is typically no more than a few ps (under certain conditions,
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a resonant collision may lead to longer interaction times, but such collisions

are quite rare). Since the precession of any atomic spin around a kG mag-

netic �eld takes much longer than that, we should not expect the application

of a �eld to change the observed relaxation rate. Thus, the observation of

a �eld dependence to this relaxation mechanism eliminates alkali-alkali in-

teractions as a possibility. For a more detailed argument, along with an

estimate of resonance e�ects, see chapter 5 and section 6.6.

5 Interactions Between Two Alkalis and the Bu�er Gas (stable dimers).

If two alkali atoms collide in the presence of a third body, a stable dimer

may be formed. Singlet dimers, bound by about 0.5 eV are by far the

more numerous, but triplet dimers (bound by about 0.03 eV) are present

as well. Relaxation is possible in either species. I have measured relaxation

in singlet molecules and �nd that, in agreement with a theoretical treat-

ment, relaxation becomes negligible at pressures above a few hundred Torr.

Because of its nonzero electron angular momentum, relaxation could pro-

ceed quickly in triplet dimers through the anisotropic spin-spin interaction

([Mies96]), in which electron angular momentum is coupled to the rotation

of the two alkali atoms around each other. However, the expected relaxation

rate should depend on trimer formation, destruction and angular momen-

tum reorientation, each of which is sensitive to bu�er gas pressure. I have

done extensive modeling of this interaction and �nd no way to reproduce the

observed pressure independence of alkali-alkali relaxation. We therefore re-

ject alkali-alkali-bu�er gas interactions as the source of this relaxation. See

chapter 3 for further discussion of relaxation in singlet dimers, and chapter

6 for triplet dimers.

6 Interactions Between Three Alkalis (metastable trimers).

The reactive collision between an alkali atom and an alkali singlet dimer is

a fascinating and well studied problem. As one would expect from energy

considerations, the products are almost always an atom and a dimer, but

the three atoms can stay together in a metastable complex for a surprisingly

long time{ hundreds of ps or even ns dwell times are not uncommon. This is
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long enough to explain our magnetic �eld measurements, and the reaction is

common enough to explain the measured relaxation rates. In addition, the

expected alkali density dependence is consistent with our measurements. I

therefore consider metastable trimers to be the structure in which alkali-

alkali relaxation is most likely taking place. See chapter 7 for more detail.

7 Interactions Between Four Alkalis or Three Alkalis and the Bu�er Gas (sta-

ble trimers).

A stable alkali trimer may be formed by any of the following reactions (A

refers to an alkali atom, B to a bu�er gas atom or molecule):

I: A +A+ A+B ! A3 +B

II: A +A2 +B ! A3 +B

III: A +A3 ! A+ A3 (chemical exchange)

IV: A2 +A2 ! A+ A3

I have estimated alkali density and bu�er gas pressure dependences for the

above processes (see chapter 7) and I do not �nd them to be in agreement

with measured alkali-alkali relaxation rates.

The above list shows how we have attempted to understand alkali-alkali relaxation{

by eliminating all the simpler possibilities, we are left to consider the exotic mechanisms

involving metastable alkali trimers. Processes involving more than three alkali atoms

can be neglected because they are very rare in all but extremely high density vapors.

1.8 Direct Applications Of This Work

Under conditions suitable for Spin-Exchange Optical Pumping, I �nd that alkali-bu�er

gas collisions and alkali-alkali relaxation dominate the relaxation rate. Unfortunately,

little can be done to reduce alkali-bu�er gas collisions, because another gas needs to

be present as a spin-exchange partner (and to avoid rapid alkali di�usion). However,

the discovery of magnetic decoupling of alkali-alkali relaxation may have important

consequences, because this mechanism accounts for much of the relaxation present in a
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SEOP apparatus. I estimate that by applying a magnetic �eld of a few kG, a typical

large-scale SEOP apparatus can increase its production rate by at least factor of 2.
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Chapter 2

Experimental Design

This chapter describes my experimental apparatus and how it is used. In section 2.1,

I describe the light sources used to optically pump and probe the alkali vapor (2.1.1),

explain how the cell is constructed (2.1.2) and show how the polarization is detected

and averaged (2.1.3). Section 2.2 shows how these elements are put together to make a

relaxation rate measurements. Finally, I describe two methods for measuring the alkali

vapor density{ using absorption spectroscopy (2.3.1) and Faraday rotation (2.3.2).

2.1 Experiment Overview/Diagrams

2.1.1 Light Sources

In order to measure relaxation rates, I �rst polarized the alkali vapor with a strong

(100 mW { 1W), circularly polarized laser beam (the pump beam). This brings the

vapor into a new equilibrium, with a polarization of �1%. I then turned o� the pump

beam suddenly and measured the subsequent decay of polarization with a weak (�1�W)

laser beam (the probe beam). I kept the probe intensity suÆciently low that it did not

signi�cantly a�ect the polarization of the vapor. A diagram of this setup is shown in

�g. 2.1.

Typically, I used an Ar+ (Spectra Physics model 171) pumped Titanium:Sapphire

laser (Spectra Physics model 3900) as both pump and probe beam. This laser was

typically detuned about 1 nm from either the D1 or D2 atomic resonance, although

I used detunings from 0.2 to 40 nm, depending on cell conditions (detunings mea-
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sured using a Burleigh WA-1500 or New Focus model 7711 Fizeau wavemeter). The

Ti:Sapph linewidth was approximately 30 GHz. I also made measurements using an

Optopower OP-A015-795 (�2 nm. linewidth, up to 15W power) or a Microlase MBR-

110 Ti:Sapph (100 KHz linewidth, �300 mW power) as the pump laser, and used a

grating-stabilized diode laser (100 kHz linewidth, 20 mW Power, constructed in the

manner of ref. [Wieman91]) as the probe beam. The measurements presented here do

not depend on the light sources or detunings used (although for the reasons described

in appendix A, the results are hard to interpret at very small pump or probe detuning).

I used neutral density �lters (NDFs) to attenuate both pump and probe to the de-

sired intensity and chopped the pump beam with a Uniblitz model 136ZM2 mechanical

shutter (full-on to full-o� in 0.5 ms).

2.1.2 The Cell

The alkali vapor was typically contained inside a stainless steel cell, although I took

measurements in all-glass cells as well, to verify that the stainless steel had no e�ect

on the measured relaxation rate. The exact size and shape of the cell depended on

the pressure, alkali density and magnetic �eld conditions desired, but the nearly all the

measurements presented here were done using one of the four cells shown in �g. 2.2. As

a rule, the smaller cells were used for high pressure (where di�usion presents minimal

diÆculty) and high magnetic �eld (to �t between the pole faces of the magnet). All of

the work with Cs was done in the cell shown in �g. 2.2c.

Much of this work required the bu�er gas pressure or species to be changed. I

accomplished this by attaching the cell to a gas manifold as shown in �g. 2.3, which

contained gases of 99.999% purity. I measured the pressure using a mechanical gauge

and a series of capacitance manometers (Baratron model 0BHS-2A3-B-1 for pressures

up to 1 Torr, Varian model BGG22300 for pressures up to 1000 Torr and Baratron

model 122AA-10000BB for pressures up to 10000 Torr).

The windows of the stainless steel cells were aÆxed in the manner of ref. [Noble94].

I used plain pyrex circles (2" diameter x 3/8" thick) for the windows and 30-40 sheets

of aluminum foil as a pad between the window and the stainless retaining ring. For

high pressure work, I found that the cell survived much longer if I tightened the bolts

to �60 in-lb, as compared to the �36 in-lb used by ref. [Noble94]. The window attach-
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ment procedure is otherwise identical to that described in the reference, including the

machining of the copper knife-edge gaskets. These windows successfully held pressure

from 10�9 Torr to 20 atmospheres. The seal also withstands alkali attack quite well,

although the windows themselves deteriorate over a period of about a month until they

are too opaque to be useful.

I placed the cell inside an high-temperature ceramic �berboard oven with optical

access and attached it to a gas manifold as shown in �g. 2.3. To prevent the alkali

from escaping, the cell was valved o� inside the oven, and I kept this valve closed

whenever the oven was on, except for brief periods to change the bu�er gas pressure or

composition. The oven was heated with space heaters and heater tape, which produced

stray �elds on the order of a few mG at the alkali sample. I checked that the neither

position of the heaters nor whether AC or DC current is used has any e�ect on the

measured relaxation rate.

Finally, I placed the oven between the pole faces of a water-cooled NMR magnet

(Ventron model 1365) which can produce a �eld of approximately 1.2 Tesla over a 3"

high by 5" diameter cylinder. Alternatively, one can remove the pole faces, which re-

duces the maximum �eld to 6 kG, but increases the volume to 6.5" high by 5" diameter.

In either case, the �eld is constant to at least a few percent over the available volume,

despite holes that have been drilled in the pole faces to allow optical access. This is

an upper limit based on my inability to detect �eld gradients with a Bell model 610

Gaussmeter.

2.1.3 Polarization Detector

An atomic vapor a�ects near-resonant light in several ways, which can be used to mon-

itor the polarization. For most measurements, I used the setup shown schematically in

�g. 2.4a, which takes advantage of the rotation of a linearly polarized probe beam. I

sent this beam nearly colinear to the pump beam such that the two beams overlapped

in the cell. The probe then passed through a �/2 plate and a polarizing beamsplitter.

I rotated the �/2 plate until equal amounts of light were sent through each arm of

the beamsplitter and therefore onto two balanced photodetectors, giving a null signal

when the vapor was unpolarized. Subsequent changes in vapor polarization cause the

probe beam's polarization axis to rotate by an angle proportional to the vapor polar-
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ization P (see Appendix A for the theory behind this e�ect) and the current from the

photodetectors is proportional to sin(P ). By adjusting the probe detuning, I kept the

maximum rotation angle to a few degrees, so that sin(P ) � P . The photodetector

current was then amplifed and sent to an oscilloscope, yielding a signal proportional to

vapor polarization. This setup has extremely good sensitivity. In addition, it provides

excellent common-mode laser amplitude noise rejection.

Under certain cell conditions, however, it may be impossible to remain in the small

angle regime if one wishes to use the same laser for both the pump and probe beams.

Some measurements therefore required the detector shown in �g. 2.4b, which takes

advantage of the change in absorption of a circularly polarized probe as the atomic

vapor polarization is changed (again, see Appendix A).

The absorption of circularly polarized light has a standard Beer's law form I(z) =

I0e
�z=z0 . To simplify the analysis, I kept the probe detuning large enough that z0

was much larger than the cell length whever possible to maintain the linearity of the

detector (this is the equivalent of the small angle approximation above). In order to

verify that my polarization detection was accurate and linear, I took care to compare

the two detection methods periodically. The measured relaxation rate did not depend

on which method was used.

For both setups, I found it advantageous to put the photodiodes in a light-tight box.

I focused the probe light through a pinhole in the box (to minimize stray pump light),

and put red �lter glass in front of the hole (to minimize other stray light).

2.2 Relaxation Rate Measurements

Combining the pump/probe techniques described above gives a relaxation rate transient

similar to the one shown in �g. 2.5. I recorded the transients with a Lecroy model 9304

digital oscilloscope. A single relaxation transient was almost always too noisy to be

useful, so I would usually average between 100 and 5000 pump/relax cycles recorded

with identical cell conditions (�g. 2.5 is actually the result of such averaging). The

measured relaxation rate is then the time constant of an exponential �t to the averaged

transients. As long as I met the conditions of small absorption/rotation angle and

small polarization fraction (to avoid complicating nuclear e�ects{ see appendix B), the

exponential �t was always excellent, subject to the limits of experimental noise.
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My experiment consisted mainly of measurements like this. It is impossible to de-

termine the cause of spin-relaxation by looking at a single relaxation transient, so my

strategy was to vary the cell conditions (bu�er gas pressure and composition, alkali

species and density, and magnetic �eld) and compare the relaxation rate's dependence

on these conditions to theoretical predictions. I also varied other experimental parame-

ters, such as pump and probe intensity, helicity, linewidth and beam shape, electronics

and detector proximity to the magnetic �eld and cell composition, to verify that the

measured rates were not due to experimental artifacts.

2.3 Vapor Pressure Measurement

In order to identify the source of alkali relaxation, it is necessary to have an accurate

measurement of alkali vapor density. Ideally, this would be accomplished with a sensor

placed inside the cell, but I know of no sensor that would survive the extremely corrosive

conditions. The simplest alternative is to measure the temperature on the outside of
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the cell, using multiple sensors, and estimate the vapor density using the published

vapor pressure curves (see Appendix A). I found this to be unreliable, although I am

not sure what the source of the error is. One possible explanation is the diÆculty I

had in avoiding large temperature gradients and radiative heating of the temperature

sensors in such a small oven. Additionally, the alkali may fail to reach its quoted vapor

pressure due to the presence of bu�er gas and the composition of the cell walls. I

therefore settled on two direct optical methods of determining alkali vapor pressure{

absorption spectroscopy and Faraday rotation.

2.3.1 Absorption Spectroscopy

This technique is based on the following relation for the integrated absorption cross-

section across one of the atomic spectral lines

Z 1

�1
�(�)d� = �refc: (2.1)

The absorption cross-section �(�) can be written in terms of the alkali density [A] and

the 1=e absorption length l(�) as �(�) = ([A]l(�))�1. In the special case of a Lorentzian

lineshape, we can parameterize � as

�(�) =
�
[A]l0

�
1 + (

�

�0
)2
���1

; (2.2)

where l0 is the 1=e absorption length at line center. Equation 2.1 can be easily inte-

grated, giving

[A] =
�0

l0refc
(2.3)

(�0 is the detuning in frequency, not angular frequency). We can therefore arrive at

the alkali density by measuring l0 and �0. The oscillator strengths f are given for all

alkali species and transitions of interest in ref. [Migdalek98].

I �rst attempted to measure l0 and �0 for the most experimentally convenient

transition, the D1 line. Since our spin relaxation measurements must take place at

high alkali densities (usually 1014 � 1016 cm�3), l0 for this transition is of order 0.1

- 1 mm. Therefore, no detectable light penetrates the cell within several linewidths

of the resonance and I am dependent on absorption measurements in the far wings.
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Unfortunately, the wings are broadened in a quasistatic interaction with the bu�er gas

which depends on bu�er species and pressure, and is insuÆciently well characterized

for this purpose. This leads to unacceptable error in determining l0 and �0.

I avoided this uncertainty by choosing a weaker transition, the J = 1
2
! J 0 = 3

2

transition in the second doublet of the alkali principal series. The oscillator strengths

for this transition are typically two orders of magnitude smaller than those of the �rst

resonance, so l0 is well matched to our cell size for alkali densities of interest. This leads

to the following relationships between alkali density, �0 and l0:

[K] = 21360 cm�3
�
�0

Hz

� �
cm

l0

�

[Rb] = 12400 cm�3
�
�0

Hz

� �
cm

l0

�

[Cs] = 10480 cm�3
�
�0

Hz

� �
cm

l0

�
(2.4)

Working at the second resonance requires tunable light in the visable blue to near UV

range, which I produced by frequency doubling the Ti:Sapph laser. The experimental

setup is shown in �g. 2.6. The following description is for work at the second resonance

of potassium, but is applicable to Rb and Cs as well by changing the frequencies and

phase matching conditions. See, for example, ref. [Arecchi], p. 941 for a description of

phase matching and indices of refraction for common doubling crystals.

Using a 1 cm cube LiIO3 crystal, I doubled approximately 500 mW of 808 - 810

nm to fully resolve the 4s1=2-5p1=2 and 4s1=2-5p3=2 resonances. The incident red light

had a bandwidth of approximately 8 GHz and since the doubled spectral intensity is

proportional to the square of the incident spectral intensity, I expect that the doubled

light was signi�cantly narrower. My crystal was cut with a 38 deg. angle between the

optical axis and one set of faces, so phase matching requires that the incident light make

a 14.1 deg. angle with the normal to those faces. The incident light was polarized in

the ordinary/extrordinary plane and was focused inside the crystal with a f=15 cm lens.

This produces approximately 1-5 �W of blue light polarized in the ordinary/ordinary

plane. I corrected the signi�cant astigmatism of the blue light with a f=8 cm cylindrical

lens and sent it down a 5 m multimode �ber over which it became unpolarized. The

transmission measurement is scaled by the intensity at a reference photodiode, right

before the cell. This is necessary to eliminate intensity 
uctuations as the Ti:Sapph is
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scanned.

Typical absorption spectra along with the extracted [K] are shown in �g. 2.7. I

sweep the blue light across both resonances of the doublet in order to accurately �t to

two Lorentzian lines as well as to verify that the presence of the bu�er gas does not

redistribute oscillator strength between the two. It is interesting to note that although

the oscillator strengths have the same ratio as in vacuum (2.16 for K, 2.34 for Rb

and 4.23 for Cs), the s1=2-p3=2 shows much more pressure broadening than the s1=2-p1=2

transition.

2.3.2 Faraday Rotation

The above technique is very accurate and easy to interpret theoretically, although it

is time consuming to align. In addition, its accuracy is diminished for alkali densities

below about 1014cm�3 (where the absorption is too small to detect reliably) and above

about 3�1015cm�3 (where the optical thickness starts to present the same problems

as discussed above for the D1 line). I therefore used the Faraday rotation of linearly

polarized light, which is proportional to vapor density, for most of my vapor pressure

determinations. I discuss the quantitative theory of Faraday rotation in Appendix A,

but a very useful approximation for this work can be found in [Wu86]{ the amount by

which linearly polarized light rotates � (in radians) as one changes the magnetic �eld

by B is determines the alkali vapor density [A] as

[A] =
18 c �

[4=(��1=2)2 + 7=(��3=2)2]re�4l�BB=h
(2.5)

in which ��J is the wavelength detuning to the component J of the �rst �ne struc-

ture doublet and l is the length of the light path through the cell. This expression is

remarkably independent of bu�er gas pressure.

A typical rotation spectrum is shown in �g. 2.8, along with a �t to the above form

plus a rotation o�set (caused by optical activity in the cell windows). The �t is quite

good except for a small deviation between the two resonances. I do not know the source

of this deviation, although it does not appear to be due to the bu�er gas. It also appears

to scale with the rotation angle as the vapor pressure is changed, which suggests it is

not due to alkali-alkali broadening or alkali dimers. In order to minimize the e�ect of
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this discrepancy, I have made my rotation measurements in the line wings, detuned

by at least 1 nm, where I have found this method to reliably match number density

measurements using absorption spectroscopy.
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Chapter 3

Measurements and Model of

Relaxation in Singlet Dimers

In this chapter, I present the details of spin-relaxation due to the electric quad-rupole

interaction in alkali 1�+
g dimers. I begin by discussing a calculation of the equilibrium

dimer density and the molecular potential on which it is based. In section 3.2, I show

how the well known form of the quadrupole interaction can be simpli�ed for this appli-

cation. Next, I discuss dimer formation, breakup and reorientation processes (section

3.3). This leads to an analytic model of spin relaxation, applicable at all cell conditions.

The calculation is fairly long, so I have broken it down into a preliminary qualitative

analysis (3.4.1), discussion of coherent relaxation (3.4.2), the e�ect of decohering col-

lisions (3.4.3), and �nally the full calculation of relaxation rate in singlet molecules

(3.4.4). I then revisit the qualitative behavior and limiting cases in section 3.5.

I present my relaxation rate measurements in section 3.6, and show how these mea-

surements allow determination of chemical exchange and molecular reorientation rates

in the vapor, as well as the strength of the quadrupole interaction. Finally, I compare

these measured quantities to previous related measurements and classical-trajectory

simulations in section 3.7.
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3.1 The 1�+
g Alkali Dimer Potential

At alkali densities suitable for most applications of a polarized vapor, roughly 0.1{1%

of the atoms are in 1�+
g dimers. This makes them by far the dominant molecular

species. Although the singlet dimer has no net electron spin, the nucleus is subject to

depolarization via the electric quadrupole interaction (and, to a lesser extent, via the

spin-rotation interaction). Then, after the dimer has been broken up, the electronic

and nuclear polarization quickly come into equilibrium through a combination of the

atomic hyper�ne interaction and spin-exchange collisions (see appendix B). Thus rapid

polarization transfer, plus the large density of singlet molecules, make nuclear depolar-

ization an eÆcient means of spin relaxation, despite the relatively small coupling typical

of nuclear interactions.

In order to make quantitative relaxation rate calculations, we need to know how

many singlet molecules are present in the vapor. Unfortunately, the dimer density is

much more diÆcult to measure than the atomic density because the dimer ro-vibrational

states broaden its resonances into bands. This complicates an absorption measurement,

such as that described in section 2.3.1, considerably.

I have therefore chosen to calculate the dimer density from statistical considerations

(see, for example, [Reif]). Because this procedure depends sensitively on the molecu-

lar potential, I have attempted to construct the most accurate potential possible by

starting with the ab initio calculations of ref. [Krauss90], scaling them to match recent

spectroscopic determinations of the dimer binding energies ([Elbs99, Amiot91, Tsai97])

and matching them to the well studied long range 1/R6 potentials of refs. [Marinescu94,

Boesten96]. Table 3.1 gives a convenient parameterization of the resulting potentials

for K, Rb and Cs, as well as the most recent measurements of binding energy and C6

coeÆcients. Figure 3.1 is a plot of the parameterized potentials for comparison to the

(scaled) calculations of ref. [Krauss90].

Next, I numerically determined the energy eigenstates of these potentials and summed

them, weighted by a Boltzmann factor, to determine the chemical equilibrium coeÆcient

as

1kchem =
1

8

"
h2

�mkT

#3=2X
i

e�Ei=kT (2Ji + 1) (3.1)

in which m is the atomic mass and Ei; Ji are the energy and rotational angular momen-
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plotted are the (scaled) ab initio calculations of ref. [Krauss90]. The curves are a
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DE C6 c0 c1 r0 r1 r2 r3
K 0.02028 3813 7.7199 -0.14708 1.3579 -0.5126 6.707 2.4974
Rb 0.01820 4550 7.7119 -0.04466 1.3579 4.3540 4.979 2.4974
Cs 0.01630 6330 3.2909 -0.32850 2.2000 -0.8000 7.597 2.9727

Table 3.1: Fit parameters for 1�+
g potentials. Column 1 is the most recent experimental

determination of the dimer binding energy. The other entries parameterize the potential
as V (r) = c0e

�r=r0 + c1e
�((r�r1)=r2)2 � C6(1� e�r=r3)=r6. All table entries are in atomic

units.

a0 a1 a2�104 a3�107
K 2.707 -0.1781 2.551 -1.350
Rb -4.6452 -0.1470 2.003 -1.005
Cs -7.9145 -0.1426 2.043 -1.081

Table 3.2: Fit parameters for calculated 1�+
g dimer chemical equalibrium coeÆcient to

the form ln(1kchem)=
P
anT

n. an are given in the table and T is the vapor temperature
in K.

tum of the i'th energy eigenstate. The density of singlet dimers of alkali species A is

then

[1A2] =
1kchem[A]

2: (3.2)

Table 3.2 gives a parameterized �t to 1kchem(T ) for K, Rb and Cs, and Fig. 3.2 shows
1kchem(T ) and the calculated fraction of alkali atoms bound in singlet dimers.

3.2 The Quadrupole Interaction in Singlet Molecules

The electric quadrupole interaction in a rotating molecule takes the form (originally

due to Casimir and discussed in detail in ref. [Townes], p. 138)

VQ =
1

2

eqQ

I(2I � 1)J(2J � 1)
[3(I � J)2 + 3

2
(I � J)� I2J2] (3.3)

in which Q is the nuclear electric quadrupole moment and q=hJJ j@2V=@z2jJJi is the
electric �eld gradient at the nucleus in the stretched rotational state. A somewhat

smaller coupling is also present, known as the spin-rotation interaction ([Huber80,
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VanEsbroeck85])

VSR = c0(I � J) (3.4)

Although measurements of the spin-rotation interaction are not complete, its contribu-

tion to relaxation is expected to be much smaller than that of the quadrupole interaction

in all alkali dimers (with the possible exception of Cs2)[Huber80], so I do not include

it in the following calculations. In situations in which the spin-rotation interaction is

large, it can be treated analytically in a manner completely analagous to the following

treatment of the quadrupole interaction.

Under conditions appropriate for SEOP, the average rotational angular momentum

J is, on average, greater than 100 �h. The �rst term of VQ is therefore dominant, allowing

eq. 3.3 to be simpli�ed to

VQ � �h
Q I �
 
3ĴĴ� 1

2

!
� I (3.5)

where


Q = � eqQ=�h

4I(2I � 1)
: (3.6)

This interaction couples the nuclear spin to molecular rotation, from which it is lost in

subsequent collisions. It is important to point out that the electric �eld gradient q may

depend sensitively on the ro-vibrational state of the molecule. The appropriate value

of q to use in eq. 3.6 is the root mean square over the thermal distribution of molecular

states. Some consequences of this averaging are discussed in section 3.6.

3.3 Singlet Molecules in a Bu�er Gas

Of course, evolution according to eq. 3.5 does not proceed unimpeded. Singlet molecules

are formed and dissociated and, on a much shorter time scale, reoriented by collisions

with the bu�er gas. Since the quadrupole interaction depends on the direction of

molecular angular momentum J, such reorienting collisions also halt coherent evolution.
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3.3.1 Dimer Formation and Dissociation

Since the singlet dimer binding energy is much larger than kBT, only a rare combina-

tion of bu�er gas impacts transfers suÆcient energy to cause dissociation. Three-body

breakup and formation is therefore greatly suppressed, and previous work ([Glas78])

is consistent with the requirement that each 1�+
g molecule undergo approximately

exp(0.5eV/kT) � 104 collisions before dissociating.

Therefore, despite the relative infrequency of A� 1A2 collisions for alkali species A,

they dominate the formation and breakup of singlet dimers through chemical exchange

processes of the form

A1 +
1(A2A3) ! 1(A1A2) + A3 (3.7)

under conditions where the alkali density exceeds approximately 10�5 of the bu�er gas

density. There is no Boltzmann suppression of the chemical exchange process because

it does not need to overcome the large singlet binding energy. Note that the terms

'formation' and 'breakup' may be somewhat misleading, since the number of dimers

is not changed by process (3.7). More precisely (but awkwardly), we might say that

chemical exchange is the dominant process by which atoms enter into and exit from

singlet molecules.

In order to completely describe molecular dynamics of singlet dimers in a bu�er

gas, we need to include three-body formation and breakup, chemical exchange, and

J-reorienting collisions. However, because the cross-section for reorientation is so much

larger than for three-body breakup, relaxation during a molecular lifetime is very small

whenever the bu�er gas pressure is high enough that three-body breakup is signi�cant.

In this regime, the atom is cycled through many singlet dimers before relaxing com-

pletely, so the relaxation rate depends only on the fraction of time spent in singlet

dimers, not the rate or mechanism of formation and breakup (see section 3.4). There-

fore, we can simplify our treatment by ignoring three-body processes entirely. The

resulting model is valid at all bu�er gas pressures and alkali density >1011cm�3.

To characterize the exchange process (3.7), I de�ne the chemical exchange cross-

section as follows; the rate at which a given member of a 1A2 dimer is ejected by

chemical exchange is 1=�ex = [A]h�exvA�A2
i/2. The factor of 1/2 represents the fact that

either atom may be ejected.
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3.3.2 Molecular Reorientation

Similarly, I de�ne the molecular reorientation cross-section as follows; the rate at which

the quadrupole interaction in a singlet molecule is subject to decoherence from collisions

with bu�er gas species B is 1=�J = [B]h�JvB�A2
i. Because of the large values of J

typical of singlet molecules, this collision-induced decoherence can be thought as the

reorietation of the classical dyadic (3ĴĴ�1)=2 in eq. 3.5. Thus, in terms of the classical

vector Ĵ, I de�ne �J as

h
3
�
Ĵ(t) � Ĵ(t + �J)

�2 � 1

2
i = 1=e: (3.8)

Of course the magnitude of J is changed as well, but since the quadrupole interaction

is nearly independent of rotational quantum number, this is of no consequence.

3.4 Calculation of Relaxation Rates

3.4.1 Brief Qualitative Discussion

Because of its importance for interpreting NMR experiments, quadrupolar relaxation

has been well studied. In particular, many useful results are derived in ref. [Abragam]

and we can make a few preliminary predictions based on that work.

At suÆciently high pressure, relaxation is hindered by rapid reorientations of the

molecular angular momentum during collisions with the bu�er gas. This case is ad-

dressed in ref. [Abragam], p. 314, although the derivation assumes that the reorien-

tation is so rapid that even the molecular rotation is hindered, which is not true for

singlet molecules in a bu�er gas. Thus, the result must be modi�ed to include rotational

averaging, but that simply reduces the e�ective interaction strength by a factor of 2

(see section 6.2). The high pressure relaxation rate is therefore well known: nuclei in a

singlet molecule relax at the rate

3

10

2I + 3

I2(2I � 1)

�
eqQ

�h

�2

�J : (3.9)

Note that the relaxation rate becomes inversely proportional to bu�er gas pressure at
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suÆciently high pressure.

We can also predict the low pressure limit because, regardless of the details of the

relaxation in a dimer, it must saturate given suÆcient interaction time. Thus, we expect

the relaxation rate to be proportional to dimer formation rate at low pressure. Since

the dominant formation mechanism is pressure independent (section 3.3.1), we expect

the relaxation rate to become presure independent as well.

Relaxation in singlet dimers is an unusual example of quadrupolar relaxation because

by changing the bu�er gas pressure, we can observe the transition from high to low

pressure behavior. In the rest of this section, I develop a model that predicts relaxation

rates at all pressures.

3.4.2 Density Matrix Evolution

The �rst task a full calulation of the relaxation rate from singlet dimers is to investigate

the evolution of the nuclear density matrix under the in
uence of eq. 3.5. Speci�cally,

we need to know the average fractional polarization loss (which I will refer to as FJ)

during a period of coherent evolution.

Coherent evolution is interrupted by molecular reorientation and chemical exchange,

which are both random collisional events, so we expect the duration of coherent evolu-

tion � to be Poisson distributed as

P (�) =
1

�c
e��=�c (3.10)

in which 1=�c = 1=�J + 1=�ex. The density matrix after a period of coherent evolu-

tion should therefore be averaged over period durations and a uniform distribution of

molecular orientations Ĵ as

�F = Eu
Z 1

0

d�

�c
e��=�ce�iVQ��0e

iVQ� : (3.11)

VQ is as in eq. 3.5 and Eu denotes an average over Euler angles for Ĵ. I assume that

evolution begins with an axially symmetric density matrix with a spin temperature

distribution

�0mn = TmÆmn: (3.12)
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Tm is the probability to be in nuclear sublevel m. In spin temperature (see ref.

[Anderson60] and Appendix B),

Tm =
(1� �)�I�m

1� �2I+1
where � =

1� 2hSzi
1 + 2hSzi = e�� (3.13)

1=� is the spin-temperature. In the low polarization limit,

Tm = (1 +mhSzi)=(2I + 1): (3.14)

The derivation thus far is independent of the form of the interaction and may be

solved in general by diagonalizing the interaction numerically as described in appendix

C. However, it is clear that the transformation that diagonalizes the eq. 3.5 is the

rotation to the primed system ẑ0 = Ĵ. The density matrix in that system is

�0m0n0 =
X
n

Tnhm0jnihnjn0i (3.15)

Note that this transformation does not diagonalize the interaction Hamiltonian appro-

priate for evolution in a magnetic �eld. In that case, we need to resort to the numerical

solution.

We may further simplify eq. 3.5 by rescaling the energy to eliminate the second term

(�h
QI(I + 1)=2) and use this form to solve eq. 3.11

�Fm0n0 = Eu
Z 1

0

d�

�c
e��=�c�0m0n0cos(!m0n0�)

= Eu
�0m0n0

(1 + !2
m0n0�

2
c )

(3.16)

where

!m0n0 =
3

2

Q(m

02 � n02) (3.17)

Now, transforming back to the unprimed system,

�Fmm = Eu
X
m0n0n

Tn
1 + !2

m0n0�
2
c

hmjm0ihm0jnihnjn0ihn0jmi (3.18)

The bra-ket inner products can be written in terms of Wigner D functions, and reduced
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by the Clebsch-Gordan series to make the angular integration possible. In the following,

the implicit arguments to DI
m1m2

are the Euler angles for the rotation ẑ! Ĵ.

�Fmm =
X
m0n0n

Tn
1 + !2

m0n0�
2
c

Eu
�
DI

mm0DI�
nm0DI

nn0D
I�
mn0

�

=
X

m0n0nj

(�)2I�j
2j + 1

Tn
1 + !2

m0n0�
2
c

C2(IIj;mn)C2(IIj;m0n0)

=
X
j

(�)2I�j
2j + 1

X
n

TnC
2(IIj;mn)

X
m0n0

1

1 + !2
m0n0�

2
c

C2(IIj;m0n0)

In the low polarization limit, �Fmm - 1/(2I+1) remains proportional to m, thus

assuring a spin temperature distribution for the start of the next period of coherent

evolution. Thus,

FJ(�J ; �ex) = 1�
P

mm�FmmP
mm�omm

= N(�)
2IX
j=0

(�)2I�j
2j + 1

0
@ IX
m;n=�I

m��nC2(IIj;mn)

1
A�

0
@ IX
m;n=�I

C2(IIj;mn)
!2
mn�

2
c

1 + !2
mn�

2
c

1
A (3.19)

where the normalization

N(�) =
(1� �)2�I

I(1� �)(1 + �2I+1) + �(�2I � 1)
: (3.20)

In the low polarization limit, this becomes

FJ(�J ; �ex) =
1

6

2IX
j=0

(�)2I�j
 

3j(j + 1)

I(I + 1)(2I + 1)
� 1

!
�

IX
m;n=�I

C2(IIj;mn)
!2
mn�

2
c

1 + !2
mn�

2
c

: (3.21)

By summing terms with the same !m;n, we can show that FJ is a Lorentzian function
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for nuclear spin I �3/2, or a sum of Lorentzians for higher spin.

FJ(�J ; �ex) =
X
l=1

cl
(3l
Q�c)

2

1 + (3l
Q�c)2
(3.22)

where, as before, 1=�c = 1=�J + 1=�ex and the coeÆcients cl are

spin 3/2 (39K,87Rb) c1 = 2/5

spin 5/2 (85Rb) c1 = 32/105, c2 = 4/21

spin 7/2 (133Cs) c1 = 5/21, c2 = 4/21, c3 = 1/9

There is a similarly simple and exact expansion for all I.

Note that for short coherence times, this reduces to

FJ(�c) =
3

10
(2I � 1)(2I + 3)
2

Q�
2
c ; (3.23)

in agreement with ref. [Abragam].

3.4.3 The E�ect of Decoherence

Having calculated FJ , the average fractional polarization loss during a period of coherent

evolution, we now need to sum the losses from the multiple periods during a molecular

lifetime. If an atom undergoes N coherence periods before exiting a molecule, then

the fraction of polarization remaining is [1� (1� FJ)
N ]. Note that because decoher-

ence events are Poisson distributed, setting a �xed value for N does not change the

distribution of coherence period lengths that were used for calculating FJ .

Now, if P (N) is the probability of getting N coherence periods before an leaving

the dimer, the average fractional polarization loss Fmol for a nucleus during a molecular

lifetime is

Fmol =
1X

N=1

P (N)[1� (1� FJ)
N ]

= 1�
1X

N=1

P (N)(1� FJ)
N : (3.24)

To evaluate P (N), we simply integrate over all possible molecular lifetimes and
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coherence times while maintaining N coherence periods. Thus one can show that

P (N) =
Z 1

0
(dtex=�ex) e

�tex=�ex
Z tex

0
(dt2=�J) e

�t2=�J
Z tex�t2

0
(dt3=�J) e

�t2=�J

: : :
Z tex�t2�:::�tN�1

0
(dtN=�J) e

�tN=�J e�(tx�t2�:::�tN )=�J

= 1=(�ex�
N�1
J )

Z 1

0
e�tex=�

Z tex

0
dt2

Z tex�t2

0
dt3 : : :

Z tex�t2�:::�tN�1

0
dtN

= 1=(�ex�
N�1
J )

Z 1

0
e�tex=�

Z tex

0
dt2

Z t2

0
dt3 : : :

Z tN�1

0
dtN

= 1=(�ex�
N�1
J )

Z 1

0
dtex e

�tex=� t(N�1)ex

(N � 1)!

=
�N�1ex �J

(�ex + �J)N
(3.25)

and therefore that

Fmol = 1� �J
�ex

1X
N=1

"
�ex(1� FJ)

�ex + �J

#N
=

(1 + hNi)FJ
1 + hNiFJ (3.26)

in which hNi = �ex=�J is the average number of reorientations before an exchange.

3.4.4 Singlet Molecule Relaxation Rate

Finally, we can use the average fractional polarization loss Fmol from the previous section

to arrive at the total relaxation rate in singlet molecules of species A

�sing = [1A2]h�exvA�A2
i s Fmol (3.27)

where s is the fraction of atomic polarization stored in the nucleus. For Rb, in which

two isotopes are present, the appropriate generalization is

�sing = [1A2]h�exvA�A2
iX

i

siFmol;i (3.28)
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s
K 5/6
85Rb (pure) 35/38
87Rb (pure) 5/6
85Rb (nat.) 0.7778
87Rb (nat.) 0.1296
Cs 21/22

Table 3.3: Fraction of vapor polarization contained in the nucleus (s). This quantity
is changed by the presence of other isotopes{ the 'pure' values should be used with an
isotopically pure sample, and the 'nat.' values for a sample with natural abundances.

where the sum is over isotopes. Note that the factor s is analagous to the nuclear

slowing down factor discussed in [Happer72] and can be calculated similarly, yielding

si = fi
(Ii + 1=2)ctnh(�(Ii + 1=2))� 1=2ctnh(�=2)

1=2(tanh(�=2)� ctnh(�=2)) + �jfj(Ij + 1=2)ctnh(�(Ij + 1=2))
(3.29)

in terms of the spin temperature parameter � [Anderson60] and the isotopic fraction fi

of species i. In the low polarization limit,

si =
fi((Ii + 1=2)2 � 1=4)

1=2 + �fj(Ij + 1=2)2
: (3.30)

Table 3.3 gives the appropriate values for K, Rb and Cs in the low polarization limit.

3.5 Qualitative Behavior and Limiting Cases

The calculation above is valid at all bu�er gas pressures and alkali densities above

1011cm�3. Unfortunately, it does not have a particularly simple form and does not ad-

dress the e�ect of a magnetic �eld on the relaxation rate, except as mentioned in section

3.4.2. It is therefore instructive to look at a few limiting cases and approximations to

eq. 3.28. This process also makes it clear how experimental measurements can provide

values for the unknown parameters �J ; �ex and 
Q.

We �rst consider the qualitative e�ect of a magnetic �eld on the relaxation rate. As

with other examples of magnetic decoupling (such as the hyper�ne interaction), the �eld

must be larger than the interaction to be decoupled in order to have signi�cant e�ect.
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In addition, the presence of reorienting collisions adds the more stringent requirement

that the nuclear precession due to the magnetic �eld must be large (�1 radian) during a
coherence period for decoupling to occur. Otherwise, the (small) precessions due to the

�eld and the quadrupole interaction simply add and do not interfere with one another.

Thus, a qualitative prediction for �eld decoupling is

�sing(B) = �sing(B=0)
(!B�J)

2

1 + (!B�J)2
with !B =

gI�NB

I�h
(3.31)

This turns out to be quite a good approximation, although the exact �eld dependence

requires a numerical solution as described in appendix C. Note that the only unknown

parameter in eq. 3.31 is �J , which makes the �eld dependence an excellent way to

measure the molecular reorientation cross-section. The more exact, numerical solution

has this feature as well.

It is also instructive to consider relaxation in the limit of high and low bu�er gas

pressure. In the high pressure limit (�J � �ex;

2
Q�J�ex � 1)

�sing =
3

10
(2I � 1)(2I + 3)

[1A2]

[A]
s 
2

Q�J : (3.32)

This expression is correct for all magnetic �eld. The relaxation rate is inversely propor-

tional to bu�er gas pressure, varies with alkali density as 1kchem[A] and is independent

of the chemical exchange cross-section (justifying the assertion in section 3.3.1 that the

high pressure relaxation rate is independent of dimer formation mechanism). Note that

eq. 3.32 depends on the interaction strength 
Q and reorientation rate. Once the reori-

entation cross-section has been measured by observing the magnetic �eld dependence,

the high pressure relaxation rate provides a good measurement of 
Q.

In the low pressure limit, as long as the alkali vapor pressure is not too large (�J !
1;
Q�ex � 1); Fmol ! FJ =

P
cl. Therefore,

�sing = [1A2]h�exvA�A2
i s X

l

cl (3.33)

with cl as de�ned in eq. 3.22. In this regime, the relaxation rate becomes independent

of bu�er gas pressure and depends on alkali density as 1kchem[A]
2. Note that the only

unknown parameter in eq. 3.33 is �ex, which makes low pressure studies an excellent
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way to measure chemical exchange.

The transition between the high and low pressure regimes occurs when the terms

in the denominator of eq. 3.26 are equal{ that is, at a characteristic pressure where

�J = �exFJ . Substituting in for FJ , and noting that 
�J � 1, we see that the transition

occurs when

9
2
Q�ex�J

X
l

cll
2 = 1 (3.34)

which shows that the characteristic pressure is inversely proportional to alkali density.

This feature depends on all three unknown parameters, and provides a good consistency

check for our model.

3.6 Measurements

Figure 3.3 summarizes my measurements of Rb relaxation in N2 as a function of mag-

netic �eld. The main part of the �gure shows a typical �eld decoupling. The insert

shows that the �eld width varies linearly with bu�er gas pressure in agreement with

eq. 3.31.

These �eld dependence measurements are especially revealing because the �eld width

depends only on the reorientation cross-section. I have �t eq. 3.28 to this data, allowing

�J to vary (and numerically diagonalizing the interaction as described in Appendix C)

and �nd that �J = 12(2)�A2. The measurements summarized in �g. 3.3 were taken at

alkali densities between 2.5�1014cm�3 and 3.0�1015cm�3. The �eld widths show no

dependence on alkali density.

Figure 3.4 shows my measurements of Rb relaxation in N2 near the transition be-

tween the high and low pressure regimes described in section 3.5. Note that the qualita-

tive behavior is essentially as described in section 3.5, although instead of approaching

a constant at low bu�er gas pressure P , the relaxation rate continues to increase at

approximately 530 s�1(Torr/P ). I believe that this e�ect is unrelated to relaxation

in singlet dimers, and represents the decay of polarization due to di�usion to the cell

walls. This hypothesis explains the experimental fact that the extreme low pressure

behavior is approximately independent of alkali density. In addition, if we assume that

the additional low pressure relaxation represents the decay of the lowest di�usion mode

([Happer72]) of the cell, the implied di�usion coeÆcient is for Rb in N2 is 0.22 cm2/s
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Figure 3.3: Measured Rb relaxation rate as a function of magnetic �eld at
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which is in fair agreement with published value of 0.33 cm2/s (ref. ([McNeal62]).

I therefore �t the measurements in �g. 3.4 to a function of the form � = �sing +

a1 + a2=P with the additional terms representing alkali-alkali relaxation and di�usion.

These are the �ts shown in �g. 3.4. As described in section 3.5, the combination of

low and high pressure behavior constrains both �ex and 
Q and I �nd the best �t for

�ex = 173(35)�A2, 
Q = 80(8) kHz for 85Rb and 
Q = 130(13) kHz for 87Rb. Note that

since the ratio of the quadrupole moments Q85/Q87 = 2.07, and the �eld gradient q is

essentially independent of isotope, we know from eq. 3.6 that 
85=
87 = 0.62. The two

values are therefore not independent and I maintained this ratio while doing the �t.

Because of the much smaller quadrupole coupling in K and Cs, similar measurements

in those alkalis are diÆcult with my current apparatus and I did not pursue them.

3.7 Previous Measurements

To the best of my knowledge, these are the �rst direct measurement of relaxation rates

due to singlet molecules. However, the electric quadrupole interaction has been studied

previously and values for �ex and �J inferred by observing the dependence of NMR

linewidths on experimental conditions. The �rst such experiment, by Gupta, et al.

([Gupta74]), quotes approximate values for Cs in Ne that are similar to ours�. Sub-

sequent work on Na ([Huber80, Kompitsas75]), K ([Kamke75], and Cs([Kompitsas75])

gives similar values as well, with the exception of ref. [Huber80], which implies an im-

probably small �J for Rb in Ne. Atom-dimer exchange processes have also been studied

using colliding atomic and molecular beams ([Mascord76]), and yield cross-sections sim-

ilar to our measurements. Finally, I have performed classical-trajectory Monte Carlo

modeling of atom-dimer exchange collisions (see appendix D) using the trimer potential

of ref. [Martins83] scaled to re
ect recent dimer binding energy data (see section 3.1).

Because of the large angular momenta typical of these collisions, a semi-classical cal-

culation should be suÆcient. The reliability of these results is probably limited by the

quality of the trimer Born-Oppenheimer potential. I predict a chemical exchange cross-

section of 180�A2 in K, 193�A2 in Rb and 210�A2 in Cs. This work compares favorably to

�Equation (7) in ref. [Gupta74] is too large by a factor of 4 because of its failiure to account for the
motional narrowing in a rotating singlet molecule. Thus, the implied value of �J in that experiment
(eq. 13) should be changed to � 2.5�A2.
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my measurements as well. See ref. [Whitehead75] for a similar calculation.

There has also been one previous measurement of 
Q, and here the comparison is

not as good. This measurement, made by Logan, et. al. in 1952 ([Logan52]) used

molecular beam methods to measure the quadrupole energy splittings directly. Their

quoted values (translated using eq. 3.6) are 27.5 kHz for 85Rb and 48.3 kHz for 87Rb.

This discrepancy may be resolved by noting, as has been recognized before (see ref.

[Logan52] and references therein), that the interaction strength 
Q varies with molecular

ro-vibrational state. The Logan result must be interpreted as the statistically most likely

value of the interaction strength, whereas the spin-relaxation experiment measures the

root mean square value. I also note that due to certain experimental artifacts (discussed

in ref. [Logan52]), the Logan results was intended as a lower bound on 
Q.
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Chapter 4

Measurements of Alkali-Alkali

Relaxation

In this chapter, I present my measurements of alkali-alkali and alkali-bu�er gas re-

laxation. This work has led me to reject the previously held belief that alkali-alkali

relaxation occurs in binary collisions between alkali atoms. In subsequent chapters, I

develop and evaluate alternate theories to explain the experimental phenomena.

I begin by explaining the usefulness of bu�er gas pressure series in studying relax-

ation processes individually. I show how I have used this technique to establish the

alkaki density dependence of alkali-alkali relaxation in section 4.2, and the magnetic

�eld dependence in section 4.3. I then discuss the implications of a magnetic �eld

dependence in section 4.4.

4.1 Use of Pressure Series

As I have described in chapters 1 and 3, the four most important relaxation mechanisms

in this experiment each depend on bu�er gas pressure di�erently. The clearest way that

I have found to separate the mechanisms from each other experimentally is to vary

the bu�er gas pressure while keeping all other cell conditions constant. This technique

yields a series of relaxation rates such as that shown in �g. 4.1.

Note that each of the major relaxation mechanisms contributes a distinct feature

to the pressure series. At extreme low pressure, vapor relaxation is dominated by



53

140

120

100

80

60

40

20

0

R
el

ax
at

io
n 

ra
te

 (
s-1

)

3000200010000
P (Torr)

Buffer gas collisions

Alkali-Alkai
  relaxation

Diffusion and
1Σ  molecules

Figure 4.1: A typical pressure series of relaxation rates as a function of bu�er gas
pressure. This series was taken with [Rb]=1.1�1015cm�3 in N2. Note the characteristic
behavior due to singlet dimers at low pressure and bu�er gas collisions at high pressure.
Alkali-alkali relaxation is an o�set that is not accounted for by any other mechanism.



54

di�usion and, as the pressure increases, one passes through a region dominated by singlet

molecules and �nally alkali-bu�er gas collisions. Alkali-alkali relaxation corresponds to

an o�set to the curve that is not accounted for by the other three mechanisms. These

characteristic pressure dependences are demonstrated in �g. 4.1 as well.

I have therefore found it useful to measure a pressure series before and after changing

an experimental parameter. That way, by noting which features have changed, I can

�nd out the individual dependences on that parameter.

4.2 Alkali Density Dependence of Alkali-Alkali Relaxation

I �rst used this technique to investigate the alkali density dependence of alkali-alkali

relaxation. Figure 4.2 shows three pressure series recorded at di�erent alkali densities.

Note that both the alkali-alkali and singlet dimer contributions increase quickly with

alkali density. The investigation of relaxation in singlet dimers (chapter 3, eq. 3.28)

makes it possible to subtract o� the low pressure contributions, leaving only alkali-

alkali and alkali-bu�er gas relaxation. The residuals then �t well to a line whose slope

is a measure of the alkali-bu�er gas relaxation cross section, and whose intercept is the

alkali-alkali relaxation rate. Figure 4.2 demonstrates this process, and �gure 4.3 shows

how the slopes and intercepts vary with Rb density. Note that alkali-alkali relaxation

varies approximately linearly with alkali density. This is consistent with the assumption

that it arises from an alkali-alkali interaction. The alkali-bu�er gas relaxation cross-

section also increases with Rb density, although only very slowly. A similar (but larger)

increase has been noted before, for Rb in He ([Baranga98]).

Table 1.1 gives my measured values for alkali-bu�er gas relaxation cross-sections.

As described in the next section, alkali-alkali relaxtion is more complicated and can not

be described by a single cross-section.

4.3 Magnetic Field Dependence of Alkali-Alkali Relaxation

4.3.1 Observation

While I was measuring coherence times in singlet dimer relaxation, I noticed that the

magnetic decoupling characteristic of low pressure relaxation (see chapter 3) does not
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entirely disappear at higher pressures. In fact, it persists at pressures of many atmo-

spheres, even though the predicted relaxation rate in singlet molecules becomes neg-

ligible. Thus, either alkali-alkali or alkai-bu�er gas relaxation must be sensitive to a

magnetic �eld as well.

In order to learn which relaxation mechanism was being decoupled, and to guard

against experimental artifacts, I used the pressure series technique described in section

4.1. Two such series are shown in �g. 4.4, which clearly demonstrate that over a large

range in bu�er gas pressure, only the alkali-alkali relaxation is a�ected by application

of a magnetic �eld.

Note, however, that some alkali-alkali contribution is still required to �t the 6 kG

series in �g. 4.4. This indicates that 6 kG is suÆcient to decouple most, but not all,

of the alkali-alkali relaxation. I have veri�ed that further increasing the �eld to 1.2

Tesla does not signi�cantly change the relaxation rate. I therefore conclude that alkali-

alkali relaxation has two components, only one of which is decoupled by a relatively

small magnetic �eld. These components may or may not be explained by the same

mechanism, but any consistent theory must account for this partial decoupling.

Finally, I observed how the relaxation rate depends on magnetic �eld while keeping

alkali density and bu�er gas pressure constant. One such example is shown in �g. 4.5.

I �nd that the decoupling is always well represented by a Lorentzian function.

The experimental observations thus far have led me to parameterize alkali-alkali

relaxation of alkali species A as

�alk([A]) =

 
�A +

�B
1 + (B=BD)2

!
[A]: (4.1)

Having used pressure series to establish that only alkali-alkali relaxation is a�ected

by changes in alkali density and magnetic �eld, it is now much more straightforward

to study this phenomenon using �eld dependences like �g. 4.5 as follows; �rst, measure

relaxation rate as a function of magnetic �eld at many di�erent bu�er gas pressures

while holding alkali density constant. This allows direct measurement of �B and BD,

and highlights any pressure dependence of either parameter. Next, measure relaxation

rate as a function of magnetic �eld at many alkali densities while holding bu�er gas

pressure constant. This allows measurement �A, �B and BD, highlights any alkali

density dependence of the parameters.
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Figure 4.5: A typical series showing decoupling of alkali-alkali relaxation in a magnetic
�eld. This series was taken with [Rb]=6.8�1014cm�3 in N2.

I have shown three examples of this process, with K in N2 given in �g. 4.6, Rb in

He in �g. 4.7, and Cs in He in �g. 4.8. Note that the Cs was contained in a sealed glass

cell, so I did not vary the bu�er gas pressure.

The data can be summarized by the following qualitative observations: observations:

1 Over a range of pressures from 20 Torr to 20000 Torr and alkali densities

from 2�1013 to 5�1015cm�3, I saw no cases in which the form of eq. 4.1 did

not accurately �t the data.

2 �A and �B are independent of bu�er gas species and are pressure inde-

pendent over at least two orders of magnitude. Some lessening of �B may

occur at extremely high pressure, although the interpretation of this data

is complicated by departure from spin temperature equilibrium (see �g. 4.6,

appendix B).

3 �B has a weak, positive alkali density (or temperature) dependence. That is,

the �eld dependent alkali-alkali relaxation rate increases with alkali density

slightly faster than linear. I �nd that the �eld dependent relaxation rate

in K and Rb are well represented by �B[A]([A]=10
15cm�3)1=4. �B in Cs
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Figure 4.6: Magnetic �eld dependence of K relaxation as N2 pressure (top) and [K]
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appears to have a smaller alkali density dependence and is suÆciently well

represented by a single value.

4 BD is bu�er gas species and pressure independent over two orders of magni-

tude in Rb, although slight broadening appears to occur at extremely high

bu�er gas pressure. Much more signi�cant broadening occurs for K at high

pressure, especially for K in N2. This indicates that the interaction causing

relaxation is subject to decoherence through collisions with the bu�er gas.

I represent this e�ect with the approximate pressure dependence

BD = BD;0

q
1 + (P=PD)2 (4.2)

as introduced in eq. 1.3. I saw no dependence of BD on alkali density.

5 �A, �B and BD are all smallest in K, larger in Rb and largest in Cs

6 In all three alkalis, BD at low bu�er gas pressure is fairly close to the �eld

required to decouple the hyper�ne interaction (BD � �Ehyp=gS�B, where

�Ehyp is the ground state hyper�ne splitting.

These observations are shown quantitatively in �gs. 4.9, 4.10, 4.11 and 4.12. Fig-

ure 4.9 shows the Lorentzian �eld widths as a function of bu�er gas pressure, and

demonstrates the broadening noted above. Figure 4.10 shows how the high �eld relax-

ation rate increases with alkali density, which is a measure of �A. Note, however, that

a small part of the increase is likely due to temperature dependence of the alkali-bu�er

gas relaxation, so the implied value of �A is an upper bound. Figure 4.11 shows how

the �eld decoupling increases with alkali density, which is a measure of �B. Finally,

�g. 4.12 shows that �B is remarkably independent of bu�er gas pressure, despite clear

indications in �g. 4.9 that the interaction is subject to decoherence through collisions

with the bu�er gas.

My measured values for �A, �B, BD;0 and PD appear in table 1.2.



64

1400

1200

1000

800

600

400

200

0

B
D

 (
G

)

20x103 151050
Buffer gas pressure (Torr)

K in N2

K in He

 Rb in N2 Rb in He

Figure 4.9: Magnetic �eld decoupling widths (BD) as a function of bu�er gas pressure.
Measured widths are shown for K (�lled) and Rb (un�lled) in He (triangles) and N2

(circles).



65

200

150

100

50

0

H
ig

h 
fi

el
d 

re
la

xa
tio

n 
ra

te
 (

s-1
)

4x1015 3210
Alkali density (cm-3)

         Cs
κA=1.9x10-13cm-3s-1

           K
κA=7.5x10-15cm-3s-1

           Rb
κA=1.5x10-14cm-3s-1

Figure 4.10: High �eld relaxation rates as a function of alkali density. The K data
were taken with N2 pressure of 1300 Torr. The Cs data were taken with He pressure
of 760 Torr. The Rb data are from �ts to high �eld pressure series like that shown in
�g. 4.4. Note that the K and Cs numbers should be considered an upper bound because
some of the increase with alkali density may be due to a temperature dependence of
the alkali-bu�er gas relaxation cross-section.



66

200

150

100

50

0

Fi
el

d 
de

pe
nd

en
t r

el
ax

at
io

n 
ra

te
 (

s-1
)

6x10
15

 543210

Alkali density (cm-3)

         Cs
κB=1.8x10-13cm-3s-1

                     Rb
κB=2.6x10-14cm-3s-1([Rb]/1015cm-3)1/4

                      K
κB=8.2x10-15cm-3s-1([K]/1015cm-3)1/4

Figure 4.11: Field-dependent part of alkali-alkali relaxation �B[A] in K (triangles), Rb
(circles) and Cs (squares) with He (un�lled) or N2 (�lled) as the bu�er gas. Note that
�B is independent of bu�er gas species. I �nd that in K and Rb, �B increases slightly
with alkali density (or temperature). I have represented that increase by using the �ts
shown in the �gure.



67

3

4

5
6
7
8
910-14

2

3

4

5
6
7
8
910-13

2

3

κ B
 (

cm
3 /s

)

20x103 151050
P (Torr)

Rb in N2

Rb in He

K in HeK in N2

Cs in He

Figure 4.12: Measured dependence of �B on bu�er gas pressure. The values shown
are the �eld-induced reduction in relaxation rate divided by [A]([A]=1015)1=4, as per
�g. 4.11. Alkali densities used were 4.5�1015cm�3 (K in N2), 1.3�1015cm�3 (K in He),
1.5�1015cm�3 (Rb in N2), and 7.3�1014cm�3 (Rb in He). Note that �B shows no
consistent dependence on bu�er gas pressure.



68

4.4 Implications

In the analysis of relaxation in singlet dimers, I explained how measuring magnetic

�eld decoupling of quadrupole tells us how long the relaxing interaction acts coherently

(section 3.5). The same argument applies to alkali-alkali relaxation, regardless of the

underlying mechanism.

Of course, the relaxation mechanism can (and probably does) act on the alkali elec-

tron, so if we measure that a �eld of BD is required to decouple alkali-alkali relaxation,

a lower bound on the coherence time �C for the relaxing interaction is

�C > 1=gS�BBD: (4.3)

If the relaxation occurs through an interaction with the nuclear spin, the required

coherence time would be much longer.

Thus, the interaction causing alkali-alkali relaxation must last at least 300 ps in

K, 50 ps in Rb and 18 ps in Cs. These times are much longer than a typical atomic

collision at the temperature in the cell and therefore leads me to reject the previously

held belief ([Knize89, Wagshul94]) that alkali-alkali relaxation arises during a binary

alkali collision. This argument is expanded and made more quantitative in chapters 5

and 6.
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Chapter 5

Model of Relaxation in Alkali-Alkali

Collisions

In this chapter, I discuss the expected relaxation rate due to binary alkali-alkali colli-

sions. I will show that it is too small to match the experimentally observed alkali-alkali

relaxation rate and lacks the observed magnetic �eld dependence. I begin with a pa-

rameterization of the of potential between two alkali atoms in the triplet state. This is

followed in section 5.2 by a discussion of the spin-dipolar and second order spin-orbit

couplings, which are thought to be the largest interactions that can cause spin-relaxation

in binary collisions. I then outline a classical trajectory calculation of relaxation rates in

section 5.3 and compare its predictions to experiment section 5.4. Note that this calcu-

lation does not include quantum e�ects such as the tunneling and Feshbach resonances.

I discuss those corrections and show them to be negligible in chapter 6.

5.1 The 3�+
u Alkali Dimer Potential

As two alkali atoms approach each other, the coupling between the valence electron spins

through the exchange interaction becomes larger than the individual atomic hyper�ne

couplings at a distance of about 25 a0. At distances closer than that, it is convenient to

consider the electronic states as coupled in the singlet or triplet manifold. The largest

spin-relaxing interaction does not mix the two manifolds, so any collisions that cause

relaxation must be take place along the triplet potential.
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DE C6 c0 c1 r0 r1 r2 r3
K 0.0195 2.4293 3813 -0.03173 1.5877 -3.3752 8.656 3.7
Rb 0.0184 2.9074 4550 -0.02321 1.5812 -2.6054 8.478 3.7
Cs 0.0162 1.7451 6330 -0.01271 1.9893 5.3418 6.042 3.7

Table 5.1: Fit parameters for the 3�+
u potentials. Column 1 the

dimer binding energy. The other entries parameterize the potential as
V (r) = c0e

�r=r0 + c1e
�((r�r1)=r2)2 � C6(1� e�r=r3)=r6. All table entries are in atomic

units.

As is the case for the singlet dimers, Krauss and Stevens (ref. [Krauss90]) have

performed ab inito calculations of the 3�+
u Born- Oppenheimer potentials. As of this

writing, there are no experimental measurements of these potentials comparable to

those of the singlet dimers, so I have used their calculations unmodi�ed. Figure 5.1

shows the calculated triplet potentials for K, Rb and Cs along with a convenient �t,

which is parameterized in Table 5.1.

5.2 The Spin-Dipolar and Second Order Spin-Orbit Interactions

5.2.1 Spin-Dipolar Coupling

As shown in chapter 4, the alkali-alkali relaxation rate is nearly proportional to alkali

density. Therefore, the most obvious candidate mechanism involves the interaction of

one alkali atom with another. As always, angular momentum is conserved in such an

interaction, and the only place spin polarization can go is into the rotation of the two

atoms around each other. All other possible couplings are either completely negligible

(such as coupling to the radiation �eld), or do not constitute spin relaxation because

the polarization is eventually recoupled to an alkali electron (such as the hyper�ne and

exchange interactions).

One possible relaxation mechanism is the classical interaction of the valence electrons

as magnetic dipoles when the atoms approach each other. I will refer to this as the spin-

dipolar coupling, and it takes the form

VSD =
(gS�B)

2

r312
S1 � (3r̂12r̂12 � 1) � S2 (5.1)
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where r̂12 is the unit vector between the electrons. When this interaction is averaged

over the electron wavefunctions and a collisional trajectory, the total electron polariza-

tion in the two atoms can change.

5.2.2 Correction Due to Electron Correlation

In order to simplify relaxation rate calculations, it is convenient to write the interaction

in terms of the nuclear separation ~r rather than the electronic separation ~r12. At large

r, the distinction is not important, but at the small separation where relaxation occurs,

they di�er due to the spatial distribution of the electron charge and the correlation be-

tween the electrons' positions required by the Pauli principle. The following calculation

allows us to estimate the importance of these e�ects.

We can take the wavefunction of the triplet state of an alkali dimer to be

	(r1; r2) =  (r1; r2)
3�

= N ['A(1)'B(2)� 'B(1)'A(2)]
3� (5.2)

where 'A(1) is a spatial orbital for electron 1 centered at nucleus A, N a normalizing

factor, and 3� is the (symmetric) spin part of the wavefunction. The expectation value

of the spin-dipolar interaction can then be written as

h j�
2a20e

2

r312
(3S1 � r̂12r̂12 � S2 � S1 � S2) j i

= BSDh3�j3S1 � r̂r̂ � S2 � S1 � S2j3�i (5.3)

where

BSD(r) = �2a20e
2
Z
d3r1d

3r2
3z212 � r212

2r512
j (r1; r2)j2: (5.4)

I made the simplifying assumption that ' can be approximated as the unperturbed

wavefunction of the alkali atom in its ground state. I then evaluated the integral 5.4 for

K, Rb and Cs numerically using the valence electron wavefunction of ref. [Clementi74].

The e�ects of this averaging are shown for Rb in Fig. 5.2. Note that the electron

correlation reduces the value of BSD(r) as compared to the point dipole approximation.

The predicted relaxation rate is therefore also reduced slightly, as I discuss quantita-

tively in section 5.4.



73

50

40

30

20

10

0

G
H

z

1210864
Internuclear separation (A)

  (gSµB)2/r3

  BSD(r)
  BSO(r)

(x -1)

Figure 5.2: ab initio calculations of BSO(r) from ref. [Mies96], and BSD(r) for Rb (r is
the internuclear separation). This shows the e�ect of electron correlations on the spin-
dipolar interaction as compared to the uncorrected (� 1=r3) interaction. The vertical
solid line is at the classical turning point for a zero-impact parameter collision at kT
collision energy. Note that BSO is negative, so I have plotted -BSO for comparison to
the other quantities.



74

5.2.3 Second Order Spin-Orbit Coupling

The spin-dipolar is probably the largest spin-relaxation interaction in alkalis lighter than

(and maybe including) K. However, the second order spin-orbit coupling is thought to

be larger in Rb and Cs [Mies96].

The spin-orbit interaction arises from �ne structure coupling of the electron spin to

the admixture of pr̂ in the Born-Oppenheimer ground state of two alkali atoms (hence

the increase with alkali weight). Its �rst nonvanishing term is in second order, and it

depends on the electron spins in the same way as the spin-dipolar interaction, but at

short distance is proportional to wavefunction overlap.

In the context of ultracold collisions, Mies et al. [Mies96] recently published ab initio

calculations of the second order spin-orbit interaction, which they parameterized as

BSO(r) = �C�2e�B(r�rS) (5.5)

where, in atomic units, B = 0:975; C = 0:001252; rS = 10 in Rb, B = 0:830; C =

0:02249; rS = 10 in Cs, and C is assumed to be small in K.

5.2.4 Spin-Axis Interaction

The interaction is therefore the sum of the spin-orbit and spin-dipolar couplings. I will

refer to the total interaction as the spin-axis coupling, which can be written in general

as

VSA = BSA(r)S1 � (3r̂r̂� 1) � S2 (5.6)

where B(r) = BSD(r) + BSO(r). Equation 5.6 can also be written in the coupled spin

basis S = S1 + S2 as

VSA =
B(r)

2
S � (3r̂r̂� 1) � S: (5.7)

5.3 Classical Trajectory Relaxation Rate Calculation

In a binary collision at temperatures of a few hundred Kelvin, many partial waves

contribute to spin relaxation, so a classical path treatment should be adequate. We

have published one such treatment in ref. [Kadlecek98C]. I present another, somewhat



75

di�erent calculation below which leads to a slightly modi�ed functional form of the

answer, although the two results are exactly equivalent.

Once the potential between two alkali atoms is known, a collision can be completely

described by specifying its impact parameter b, the initial relative velocity v and the

angles � and � as shown in �g. 5.3. � and � represent rotations of the trajectory around

two of the Euler angles. The problem is invariant under the third Euler rotation.

In order to compare the results of this calculation to the measurements presented

in chapter 4, I de�ne the rate coeÆcient � in terms of the predicted relaxation rate �

and alkali density [A] as � = �[A]. If I denote the fractional polarization loss along a

trajectory as F (b; v; �; �), the expected value of � is found by averaging F (b; v; �; �) over

a Maxwellian velocity distribution f(v) and a uniform distribution of collision directions

as

� =
1

1 + �

Z 1

0
f(v) v dv

Z 1

0
b db

Z 2�

0
d�

1

2

Z �

0
F (b; v; �; �) sin(�)d�: (5.8)

Note the inclusion of a slowing down factor 1=(1 + �), which is a consequence of the

hyper�ne interaction acting between collisions (see appendix B). Since the collision time

is so short, we may ignore the hyper�ne interaction during the collision.

We can now calculate F (b; v; �; �) by evolving the atomic density matrix �0 ! �F

during the collision. Since we are interested in predicting relaxation rates and their

magnetic �eld dependences, I will evolve the density matrix according to the interaction

Hamiltonian

H = VSR + gS�BB SZ (5.9)

If we introduce the polarization operator P (�) =
P

mm�mm then

F (b; v; �; �) =
P (�0 � �F )

P (�0)
(5.10)

Note that eq. 5.9 does not cause transitions between the singlet and triplet manifolds, so

we need only consider the triplet manifold in this calculation. The polarization operator

is therefore simply P (�) = �11 � ��1�1.

Next, we calculate �F = U y�0U by expanding the time evolution operator U as

U = 1 + (� i

�h
)
Z 1

�1
dt H(t) + (� i

�h
)2
Z 1

�1
dt
Z 1

�1
dt0H(t)H(t0) + : : : (5.11)
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Figure 5.3: Classical alkali-alkali binary collision trajectory. The shape of the trajectory
is entirely determined by electrostatic forces, so we calculate a reference trajectory once
for each initial velocity v and impact parameter b. The reference trajectory is in the xz
plane, its initial velocity is in the -ẑ direction, and the internuclear separation r̂ref(t)
makes angle �(t) with the ẑ axis. Having calculated this trajectory once, any trajectory
with the same b and v can be found by rotating the reference trajectory through the
Euler angles Rx(�)Rz(�). The problem is invariant under the third Euler rotation.
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Combinding eqs. 5.11 and 5.10, and keeping only terms up to second order gives

F (b; v; �; �) = � i

�h

Z 1

�1

P ([H(t); �0])

P (�0)

+
1

�h2

Z 1

�1
dt
Z 1

�1
dt0
P
�
H(t)�0H(t0)� 1

2
[H(t)H(t0); �0]

�
P (�0)

: (5.12)

Substituting the explicit form of H from eq. 5.9 and assuming that the initial state �0

is in spin temperature equilibrium (see appendix B), eq. 5.12 reduces to

F (b; v; �; �) =
9

32�h2

Z 1

�1
dt
Z 1

�1
dt0B(r)B(r0)

�
r+rzr

0
�r

0
z + r2+r

02
�
�

(5.13)

where r+;�;z and r0+;�;z are the components of the unit vector between the alkali nuclei

at time t and t', respectively. Note that there is no dependence on magnetic �eld up

to second order. Although the �eld does have a small e�ect in third and higher orders,

I have veri�ed that the predicted �eld decoupling in all three alkalis is less than 1% at

1 Tesla. The e�ect of the �eld is therefore negligible, in agreement with the qualitative

discussion of section 4.4.

Finally, we must integrate eq. 5.8 over angles (�; �). Since the trajectory is en-

tirely determined by rotationally invariant electrostatic interactions, we can do this

by calculating a reference trajectory ~rref(t) and rotating it as ~r(t) = Rx(�)Rz(�)~rref .

We may choose the reference trajectory to be in the xz plane with ~rref(�1) = ẑ.

If we de�ne the angle � as cos(�) = ~rref � ẑ (see �g. 5.3), then we may substitute

~r = Rx(�)Rz(�) (ẑ cos(�) + x̂ sin(�)) and perform the integrals over � and � in eq. 5.8

yielding

� =
3�

8(1 + �)

Z 1

�1
f(v) v dv

Z 1

�1
b db

�
'2
0 + 3('2

sc � 'ss'cc)
�

(5.14)

where

'0 = �h
Z 1

�1
dt B(r(t)) 'sc = �h

Z 1

�1
dt B(r(t)) sin(�(t)) cos(�(t))

'ss = �h
Z 1

�1
dt B(r(t)) sin2(�(t)) 'cc = �h

Z 1

�1
dt B(r(t)) cos2(�(t)) (5.15)



78

Prediction Experiment
K 4.3�10�16cm�3/s 1.6�10�14cm�3/s
Rb 2.5�10�16cm�3/s 4.1�10�14cm�3/s
Cs 2.0�10�14cm�3/s 3.7�10�13cm�3/s

Table 5.2: Predicted spin-relaxation rate coeÆcients using the second order spin-
rotation interactions of ref. [Mies96] and the theory developed in this chapter. For com-
parison, the experimentally determined alkali-alkali relaxation coeÆcients from chapter
4 are included as well. Note that the theoretical rates are an order of magnitude too
small for all of the alkalis and two orders of magnitude too small for Rb.

5.4 Numerical Results and Comparison to Experiment

I integrated eq. 5.14 numerically by calculating the classical trajectories rref(t); �(t) for

0 � b � 100a0 in 0.1 a0 increments and 0 < v < 10
q
2kT=m in 0.01

q
2kT=m increments.

The resulting rate coeÆcients are given in table 5.2 along with the experimental values

for alkali-alkali relaxation from chapter 4. Note that the predicted relaxation rates are

one or two orders of magnitude smaller than the experimentally observed rates.

In addition, the theory predicts negligible decoupling in a magnetic �eld, which is

at odds with the substantial �eld dependence shown in chapter 4.

These signi�cant discrepancies lead me to reject the idea that alkali-alkali relaxation

is taking place during binary alkali collisions. Even if one supposes that the second order

spin-orbit calculations of Mies, et al. are suÆciently in error to explain our measured

rates, the observed �eld dependence is impossible to explain with the model presented

here. Note that because of its failure to account for resonance e�ects, the semi-classical

approach is certainly suspect for collisions near the top of the molecular rotational

barrier. However, as I show in chapter 6, there are few enough such collisions that

treating them correctly does not change the results quoted in this chapter appreciably.

It is possible that relaxation in binary collisions could explain the �eld-independent

part of alkali-alkali relaxation. If we scale the second order spin-orbit calculations of

ref. [Mies96] by a 2.5 for Cs, 7 for Rb, and suppose that the spin-orbit coupling is not

negligible in K, the predicted relaxation rates can be brought into agreement. However,

this leaves us to explain the �eld-dependent component of alkali-alkali relaxation by

an entirely di�erent microscopic mechanism. In addition, such an increase in the spin-

orbit couplings presents diÆculties because the predicted relaxation rate in alkali triplet
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dimers becomes larger than the observed alkali-alkali relaxation rate. Thus, we must

additionally suppose that relaxation in triplet dimers is somehow suppressed. This issue

is discussed in detail in the next chapter.
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Chapter 6

Model of Relaxation in Alkali Triplet

Molecules

In this chapter, I describe a model of relaxation in alkali triplet dimers, including

metastable dimers formed thorough resonant alkali-alkali collisions. I will show that

the expected relaxation rate is strongly pressure dependent, and therefore does not

explain the pressure-independent alkali-alkali relaxation.

In section 6.1, I explain the method I used to calculate the equilibrium triplet

dimer density and give the resulting chemical equilibrium coeÆcient. I discuss the spin-

axis interaction in triplet molecules in section 6.2 and present estimates of three-body

molecular formation, dissociation and reorientation rates in section 6.3. In section 6.4,

I use the results of the previous sections to calculate the expected relaxation rate in

triplet dimers, highlighting in particular its strong dependence on bu�er gas pressure.

I clarify the circumstances under which the hyper�ne interaction can mimic a pressure-

independent relaxation mechanism in section 6.5, and show that this limited pressure

independence is not suÆcient to explain alkali-alkali relaxation. Finally, I discuss how

this model could be made pressure independent if triplet molecules form without the

presence of a third body. I estimate the formation rates from two such mechanisms in

section 6.6, and show that they are far too small to explain alkali-alkali relaxation.

As might be expected, there are substantial similarities between a model describing

relaxation in triplet molecules and the model for singlet molecular relaxation presented

in chapter 3. I will therefore refer to chapter 3 where appropriate, but point out where
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the larger spin-axis coupling strength and the smaller molecular binding energy in triplet

molecules cause di�erent behavior. It is important to note, however, that in contrast to

chapter 3, the purpose of this chapter is to show that that triplet dimers can not explain

the observed alkali-alkali relaxation rates. Therefore, instead of using experimental data

to �x model parameters as in chapter 3, I must estimate the parameter values and show

that the model does not work for any reasonable modi�cations of those values.

6.1 Equilibrium Triplet Dimer Density

The triplet dimer di�ers from the singlet dimer in two important respects. First, be-

cause the electrons are coupled into a triplet state, relaxation is possible through direct

magnetic coupling to the electron spins. This is likely to produce much faster relaxation

rates due to the larger magnetic moment. However, the binding energy of the triplet

dimer is only about kBT , which is more than an order of magnitude less than that of

the singlet dimer. Therefore, the equilibrium density is reduced by more than a factor

of 104.

The �rst step in calculating the equilibrium triplet dimer density is to �nd the

eigenstates of the Born-Oppenheimer potential. The 3�+
u potential is the same one

that governs the dynamics of binary collisions as discussed in chapter 5. See section 5.1

for a plot and a convenient parameterization of this potential.

As in section 3.1 for the singlet dimers, I determined eigenstate energies of this

potential numerically and summed over the states, weighted by a Boltzmann factor, to

determine the chemical equilibrium coeÆcient as

3kchem =
X
i

3kchem;i

3kchem;i =
3

8

"
h2

�mkT

#3=2
e�Ei=kT (2Ji + 1) (6.1)

where m is the atomic mass and Ei; Ji are the energy and rotational angular momentum

of the i'th energy eigenstate (see �g. 6.1 for the calculated eigenstate energies). Note that

eq. 6.1 is identical to eq. 3.1 except for a factor of 3 to account for the spin degeneracy of

the triplet state, and the introduction of the individual chemical equilibrium coeÆcient

kchem;i of each energy eigenstate. The density of triplet dimers of alkali species A is
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a0 a1 a2
K 2548 -6.845 5.302�10�3
Rb 1834 -4.866 3.741�10�3
Cs 3269 -8.808 6.842�10�3

Table 6.1: Parameterized �t to 3kchem.
3kchem =

P
an(T=K)n�A3

then

h
3A2

i
i

= 3kchem;i [A]
2

h
3A2

i
= 3kchem [A]2 : (6.2)

Table 6.1 gives a parameterized �t to 3kchem(T ) for K, Rb and Cs, and Fig. 6.2 shows

kchem(T ) and the calculated fraction of alkali atoms bound in triplet dimers.

One interesting feature of triplet dimers is that a signi�cant fraction of them have

positive energy with respect to dissociation, as can be seen in �g. 6.1. This opens up

the possibility of spontaneous dimer formation and breakup and is discussed in more

detail in section 6.6.

6.2 Spin-Axis Coupling

Relaxation in a triplet dimer and in a binary collision are similar in that the electrons

are coupled in the triplet state, so relaxation is almost certainly caused by the same

spin-axis interaction in either case. The one signi�cant di�erence, however, is that the

interaction time in a triplet dimer is suÆciently long that the arguments of section 4.4

do not apply, and we would expect relaxation in a triplet dimer to be decoupled by a

magnetic �eld.

As in section 5.2, the total electronic spin relaxes through the interaction

VSA =
BSA

2
(r)S � (3r̂r̂� 1) � S (6.3)

in which r̂ is the unit vector between the two nuclei. To calculate an e�ective interaction

for each molecular eigenstate, we must average B(r) over the radial part and (3r̂r̂� 1)

over the angular part of the molecular wavefunction.
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The angular average of 3r̂r̂� 1 for a molecular state jJmJi is well known (see, for

instance, ref. [Townes]) and can be used to replace r̂ by the more convenient molecular

angular momentum J. This averaging was used to arrive at eq. 3.3. By analogy with

the approximations used to turn eq. 3.3 into the simpler eq. 3.5, it is suÆcient to keep

only one term of the angular average

h3r̂r̂� 1i � 1

2
(3ĴĴ� 1) (6.4)

Unfortunately, because of the strong anharmonicity of the triplet potential, the

radial average of BSA(r) has no comparable analytic approximation. I have therefore

calculated the averaged coupling strengths individually for each molecular ro-vibrational

state i

BSA;i =
Z
dr u�iuiBSA(r) (6.5)

with BSA(r) as speci�ed in section 5.2 and the radial wavefunctions u(r) calculated

numerically. Figure 6.3 shows the values of this interaction for each Rb2 molecular

state. This gives a sense of the scale and variability of BSA. The corresponding values

have a similar variability in K2 and Cs2, although the scale is slightly smaller for K and

about an order of magnitude larger in Cs.

Having performed these averages, I now write the spin-axis interaction for molecular

state i as

VSA;i =
BSA;i

4
S � (3ĴĴ� 1) � S (6.6)

6.3 Three-Body Dissociation, Formation and Reorientation

As is the case with singlets, triplet molecules are formed, dissociated and reoriented

by collisions with the bu�er gas. Unlike singlet molecules, however, the small triplet

binding energy leads to essentially no suppression of three-body formation and breakup.

So, whereas these processes can be safely ignored when dealing with relaxation in singlet

dimers, they almost certainly dominate triplet molecular dynamics. To verify this claim,

I include a calculation of triplet dimer formation via alternate mechanisms (section 6.6),

and show that three-body formation gives by far the largest contribution at pressures

above a few Torr.
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�b �J
K in He 0.95�A2 6.1�A2

K in N2 3.1�A2 17�A2

Rb in He 1.1�A2 3.3�A2

Rb in N2 3.4�A2 12�A2

Cs in He 0.23�A2 2.0�A2

Cs in N2 0.95�A2 8.8�A2

Table 6.2: Estimates of reorientation (�J) and breakup (�b) cross-sections for alkali
dimers in He and N2. These values are a result of a classical-trajectory simulation
described in appendix D.

I characterize three-body formation and breakup using the breakup cross-section �b

for alkali triplet dimer 3A2 and bu�er gas species B in terms of the mean molecular

lifetime 1=�b = [B]h�bvA2�Bi. I characterize molecular reorientation using �J ; �J as in

section 3.3.2. Note that it does not take very many bu�er gas collisions to break up

the weakly bound triplet molecule, and molecular reorientation is essentially the same

in both types of molecules. Therefore, we expect both the breakup and reorientation

cross-sections to be roughly the kinetic cross-section, or O(10�A2).

I used a classical trajectory molecular dynamics simulation (described in appendix

D) to re�ne this estimate somewhat, and the results appear in table 6.1. The simulation

was designed to reproduce measured value of �J for 1Rb2 in N2 (chapter 3). However,

given the limitations of a classical approach and the lack of experimental 3�+
u binding

energies, these values are still approximate.

Having calculated the equilibrium density of each state in section 6.1, and estimated

the dissociation rate above, we may now write the rate at which alkali atoms enter triplet

dimers (1/�F ) using detailed balance

2 [3A2]=�b = [A]=�F (6.7)

or, for each triplet state i,

1

�F;i
= 2 3kchem;i[A][B]h�bvA2�Bi (6.8)
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6.4 Relaxation Rate Calculation

The calculation of relaxation rates may now proceed in a manner analagous to section

3.4. The total relaxation rate is the product of the formation rate and the fraction of

polarization lost during a typical molecular lifetime. Using eq. 3.26, we may write this

as

�trip =
X
i

1

�F;i

1 + hNi)FJ;i(�c)
1 + hNiFJ;i(�c) (6.9)

where FJ(�c) is the average fractional polarization lost before either a molecular reorien-

tation or dissociation halts coherent evolution and hNi = �b=�J = �J=�b. As in section

3.3, the periods of coherent evolution are distributed as 1
�c
e��=�c with 1=�c = 1=�J+1=�b.

In the absense of nuclear spin, FJ may also be calculated in the manner described

in section 3.4, leading to the analytic form of eq. 6.12. However, the molecular lifetime

is long enough that the hyper�ne structure can not be ignored. Nor can it be treated

perturbatively since, although the spin-axis coupling varies between molecular states,

the two interactions are of similar strength. Therefore, as was true for singlet molecule

relaxation in a magnetic �eld, the only solution is to diagonalize the full interaction

Hamiltonian as per appendix C. The Hamiltonian I have used to describe relaxation in

triplet molecules is

Hi = VSA;i +
A1

2
I1 � S+

A2

2
I2 � S+ gS�BBSz (6.10)

Thus, in order to calculate the appropriate values of FJ(�c) to use in eq. 6.9, I

diagonalized eq. 6.10 numerically for many values of the spin-axis interaction strength

BSA and molecular coherence time �c, and for each of the alkali dimers 39K2,
85;85Rb2,

85;87Rb2,
87;87Rb2 and

133;133Cs2. A typical FJ(�c) (for a
85;85Rb2 dimer state with BSA;i

equal to the hyper�ne coupling constant A) is shown in �g. 6.4. Note the qualitative

similarity to the analytic FJ(�c) calculated for singlet molecules in section 3.4{ at short

�c, the fractional relaxation is proportional to �
2
c , and it saturates at a relaxation fraction

of 2/3 (due to angular averaging of Ĵ) at a characteristic value of �c. As BSA is changed,

the qualitative behavior stays roughly the same, although the short time proportionality

constant and saturation value of �c shift.

We may use this qualitative behavior and eq. 6.9 to predict the pressure dependence
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Figure 6.4: FJ(�c), the average fraction of polarization lost during molecular evolution
of average duration �c (A is the hyper�ne coupling and this calculation is for two spin
5/2 nuclei). Note the quadratic dependence on �c at small �c and the eventual saturation
at FJ = 2=3 at suÆciently large �c. This behavior comes from very general principles
of quantum mechanics, and is independent of the form of the relaxing interaction. The
details of the interaction are manifest as the intermediate �c behavior.

of the total relaxation rate. At high pressure,

�trip ! �i
1

�F;i
(1 + hNi)FJ;i(�c): (6.11)

From eq. 6.8, 1=�F;i is proportional to bu�er gas pressure P , (1+hNi) independent
of P and, since FJ;i is proportional to 1=P 2, the relaxation rate must fall o� as 1/P .

Identical behavior was predicted, and observed, for relaxation in singlet molecules. In

fact, this high pressure behavior is a general feature of short time evolution in quantum

mechanics, so it is independent of the details of the interaction causing relaxation.

Similarly, as FJ;i saturates at low pressure, the last factor of eq. 6.9 becomes pressure

independent, giving a total relaxation rate that is proportional to pressure. This behav-

ior is di�erent from relaxation in singlet dimers because the dominant triplet molecule

formation mechanism is three-body formation, which occurs at a rate proportional to

bu�er gas pressure, as opposed to chemical exchange, which is pressure independent.

If we use the full form of eq. 6.9, along with the Ei; BSA;i, and cross-sections esti-
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mated above, the calculated relaxation rate varies with pressure just as this qualitative

discussion suggests. Figure 6.5 shows the expected rate coeÆcient for K, Rb and Cs in

He and N2 bu�er gas, and its variation with bu�er gas pressure. Note the linear pres-

sure dependence at low pressure and inverse pressure dependence at high pressure. As

summarized in chapter 4, I have measured alkali-alkali rate coeÆcients over the entire

pressure range shown in �g. 6.5 (about three orders of magnitude) and I do not see any

pressure dependence at all, much less the strong pressure dependence predicted by this

model.

Except as noted in section 6.5, the shape of �g. 6.5 is a very general feature of

relaxation in a weakly bound system. For instance, relaxation has been measured in

the similarly weak Rb-Xe Van Der Waals molecule ([Bouchiat71]), and it exhibits a

pressure dependence very similar to what I have predicted for alkali triplet dimers. In

both cases, the pressure dependence can be argued from general quantum and statistical

arguments that do not depend on the values of the model parameters, or even the form

of the interaction causing relaxation. I therefore �nd that it is impossible to reproduce

the pressure independence of alkali-alkali relaxation by changing the values of �b, �J or

BSD.

Certainly, the model presented above does not incorporate all of the many subtleties

of triplet molecule dynamics. I have tried to consider all physically reasonable modi-

�cations, but I do not �nd any way that relaxation in triplet molecules can be made

pressure independent. Pressure independence would require either that the shape of

FJ(�c) be substantially changed, or that the formation and breakup of triplet dimers

proceed other than via three-body processes. In the next two sections, I describe my

investigations of both of these possibilities, and why I believe they cannot help resolve

this discrepancy.

6.5 The E�ect of Hyper�ne Structure

Although hyper�ne structure is included in the full interaction Hamiltonian of eq. 6.10

and the predictions shown in �g. 6.5, I include this section to give an intuitive feel for

the e�ect of nuclear spin, the conditions under which the hyper�ne coupling can lead

to limited pressure independence, and why that pressure independence is insuÆcient to

allow relaxation in triplet dimers to explain the observed alkali-alkali relaxation rates.
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We can extend the qualitative argument of section 6.4 to investigate what happens

around the transition between the low pressure limit (�trip / bu�er gas pressure P )

and the high pressure limit (�trip / 1=P ). In the absense of nuclear spin, relaxation

in a triplet molecule is formally identical to the relaxation of a spin 1 nucleus via the

quadrupole interaction. Therefore, just as in section 3.4.2, we can write an analytic

expression for FJ(�c)

FJ(�c) =
2

3

[(BSA=�h)�c[
2

1 + [(BSA=�h)�c]
2 (6.12)

which leads to an analytic form for the relaxation rate

�trip =
4 3kchem[A][B]�v

(3 + 2hNi) + 3 ([B]�v=(BSA=�h))
2 (6.13)

in which �v = h(�J + �b)vB�A2
i, [A] and [B] are alkali and bu�er gas number density.

The maximum relaxation rate, which marks the transition between the low and high

pressure limits, occurs when the two terms in the denominator are equal. Note that

eq. 6.13 transitions smoothly from linear to inverse pressure dependence. That behavior

originates in the similarly smooth transition of eq. 6.12 from quadratic �c dependence to

�c independence near (BSA=�h)�c = 1. In order for the relaxation rate to be independent

of pressure, FJ(�c) must depend linearly on �c near FJ = �J=�b.

We might hope for some 
attening of eq. 6.13 with the inclusion of hyper�ne struc-

ture. Depending on which of the spin-axis or hyper�ne interactions is larger, the nuclear

coupling causes one of three things to happen; If BSA � A, the coupled atomic spin

F relaxes by interacting with the molecular angular momentum J. This is formally

identical to nuclear relaxation due to the electric quadrupole interaction (chapter 3),

so FJ(�c) has a familiar shape, as is shown at the top of �g. 6.6 with a calculation of

FJ(�c) for BSA = A=100. There is no range of �c for which FJ / �c.

If BSA � A, the electrons relax quickly and we may ignore the nucleus for short

times. Then, at times � �h=A, the nucleus relaxes by interacting with the strongly

coupled J + S. I show this limit with a calculation of FJ(�c) for BSA = 100A in the

middle of �g. 6.6. As before, there is no extended range for which FJ / �c.

For BSA � A, there is a range of �c for which FJ / �c, as demonstrated at the

bottom of �g. 6.6. This is the condition required for a pressure independent relaxation

rate. Nonetheless, I �nd that this matching of coupling strengths can not explain our
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this function changes as the spin-axis coupling strength BSA is changed relative to the
hyper�ne coupling strength A, but under no circumstances can it be made suÆciently

at to mimic the observed pressure independence of alkali-alkali relaxation.
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observations for the following three reasons:

1 Although by carefully picking BSA for each alkali pair I can make the pre-

dicted relaxation rate independent of pressure over about a factor of 10 (for

the spin 3/2 K) to a factor of 50 (for the spin 7/2 Cs), this is far less than

the observed pressure independence over three orders of magnitude for K.

2 In order to predict pressure independence, the interaction strength must

be set such that the total predicted relaxation rate is about two orders of

magnitude larger than the observed rate.

3 This pressure independence only appears in the absense of reorienting col-

lisions (�J ! 0) because otherwise, the condition that FJ / �c near FJ =

�J=�b becomes impossible to meet. If �J=�b is about 10, as I have predicted

in section 6.3, the relaxation rate can only be made pressure independent

over about a factor of three in pressure, even with the most favorable choice

of BSA.

Therefore, I �nd that the inclusion of hyper�ne structure does not allow for suÆcient

pressure independence to explain alkali-alkali relaxation.

6.6 Alternate Triplet Molecule Formation Mechanisms

The ultimate source of the pressure dependence in this model is that we are forced

to rely on three-body processes to form and dissociate the triplet dimers. If dimers

could form spontaneously, without the presence of the bu�er gas, the predicted pressure

dependence might be eliminated. In this section, I discuss two processes by which alkali

atoms spontaneously associate into metastable molecular states, and show that the

formation rates are not suÆcient to explain alkali-alkali relaxation.

6.6.1 Tunneling Resonant Collisions

The triplet dimer potential curves as shown in �g. 5.1 are for a non-rotating molecule,

and can support only bound states. However, with the addition of a 1/r2 centrifugal

potential, the molecule develops a centrifugal barrier and can support quasi-bound
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states of positive energy (see �g. 6.1). These states are referred to as quasi-bound (or

resonances) because they may spontaneously dissociate into free atoms by tunneling

through the centrifugal barrier.

The inverse process (spontaneous association) happens as well. This is an attrac-

tive candidate mechanism for alkali-alkali relaxation because it would match the nearly

linear alkali dependence, third body independence, and might have a suÆciently long

interaction time to explain the magnetic �eld dependence. Note that as the quasi-bound

states approach the top of the centrifugal barrier, the resonances become increasingly

broad and spontaneous association becomes essentially indistinguishable from the bi-

nary collisions addressed in chapter 5. Therefore, by calculating the expected relaxation

rate in spontaneously associated molecules, I am recalculating the binary collision re-

laxation rate in the small region of phase space where quantum e�ects are important.

A shown in section 6.6.3, the correct quantum treatment of these resonances makes

a negligible change to the predicted relaxation rate. This justi�es the semi-classical

approach in chapter 5.

For each state of positive energy calculated in section 6.1, I determined the spon-

taneous dissociation rate 1=�tun. In accordance the theory of spontaneous decay well

known in nuclear physics (see [Blatt], p. 401, for instance), a molecule in ro-vibrational

state i decays at a rate

1=�tun;i = ÆEi=�h (6.14)

where ÆEi is the energy width of the resonance at energy Ei. The energy width is de�ned

in terms of the asymptotic solutions to the Schr�odinger equation u(Ei � ÆEi; r)r!1 �
sin(kr + �(Ei � ÆEi)) such that

j�(Ei + ÆEi)� �(Ei � ÆEi)j = �=2: (6.15)

I calculated the energy width numerically as follows:

1 For each angular momentum and 0 < E < the centrifugal barrier height,

search for energies such that u(E � �) changes sign in the tunneling region,

but u(E) does not, for some very small. �. This is the center energy of a

resonance.

2 Pick a small ÆE and integrate the Schr�odinger equation outward, to a dis-
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Figure 6.7: Schematic depiction of a Feshbach resonant collision

tance where the triplet potential is much smaller than E. By noting the

positions of successive maxima, determine the phase shift �(E � ÆE).

3 Keep adjusting ÆE and repeating step 2 until eq. 6.15 is met.

The resulting tunneling rates for the 3K2 dimer states are summarized in �g. 6.8.

6.6.2 Feshbach Resonant Collisions

Since the singlet molecular potential is much deeper than the triplet potential, the

centrifugal barrier for a given axis angular momentum is lower for a singlet molecular

state. Therefore, another spontaneous dissociation/formation process can take place if

the hyper�ne interaction causes a transition between a quasibound triplet state and a

free singlet at the same energy. I will refer to this mechanism as a Feshbach resonance. It

is depicted schematically in �g. 6.7. Note that it has the same attractive characteristics

for explaining alkali-alkali relaxation as the tunneling resonant collisions.
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Dissociation via a Feshbach resonance is a bound!free process, so I have estimated

the dissociation rate 1=�fesh for each quasi-bound triplet molecular state using Fermi's

Golden Rule. Thus, the transition rate from triplet molecular state j1mSmI1mI2JmJni
to free singlet state j0 0mI10 mI20 J mJ Ei is

1=�fesh =
2�

�h

Z
dE h1mSmI1mI2JmJ njHhypj00mI10mI20 JmJEi2g(E)Æ(E�En) (6.16)

where g(E) is the density of free singlet states with J;mJ at energy E and Hhyp is

the free atom hyper�ne Hamiltonian, A1I1 � S1 + A2I2 � S2. In order to get the the

normalization and g(E), we can picture a system which has an in�nite potential barrier

at r = R. As R ! 1, the sinusoidal oscillations of u(r) at large r determine its

normalization. So,
R R
0 dr ju(r)j2 � R=2 and the correct normalization is such that the

amplitude of large r oscillations is
q
2=R. To get g(E), note that in order to �t one more

half-wavelength into length R, we need to increase k by Æk so that kR+� = (k+ Æk)R.

This corresponds to an increase of the energy by ÆE = h=R
q
E=2� yielding

g(E) = 1=ÆE = R=h
q
2�=E: (6.17)

Now, to eliminate R, we change the normalization of the singlet state wavefunction so

that the amplitude of oscillations at large r is 1. To keep everything the same, we divide

g(E) by R=2. This gives

1=�fesh = 2h1mS mI1 mI2j
Hhyp

�h
j0 0mI10 mI20i2

�Z 1

0
dr u�J;n(r) uJ;En(r)

�2s2�

E
(6.18)

(the units of eq. 6.18 look odd because uJ;En(r) is normalized such that
R1
0 dr u�u has

units of (distance)1=2).

We can now replace the the �rst matrix element by an average over initial and sum

over �nal electron and nuclear spin projections

1

3(2I1 + 1)(2I2 + 1)

X
mS;mI1

;m
I2

m
0

I1 ;m
0

I2

h1mS mI1 mI2j
Hhyp

�h
j0 0mI10 mI20i2

=
1

12�h2

�
A2

1I1(I1 + 1) + A2
2(I2 + 1)

�
(6.19)
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to arrive at the total transition rate

1=�fesh =
A2

1I1(I1 + 1) + A2
2I2(I2 + 1)

6�h2

s
2�

E

�Z 1

0
dr u�J;n(r) uJ;En(r)

�2

(6.20)

or for a homonuclear molecule, with spin I and ground state hyper�ne splitting ��,

1=�fesh =
I(I + 1)

3

s
2�

E

�
4���

2I + 1

Z 1

0
dr u�J;n(r) uJ;En(r)

�2

(6.21)

with
R
dr juJ;n(r)j2 = 1 and uJ;En(r)! cos(kr+ �) as r !1. I performed the integral

in eq. 6.21 numerically after calculating the singlet and triplet spatial wavefunctions

numerically to arrive at a dissociation rate for each triplet molecular state via Feshbach

resonant dissociation. Figure 6.8 shows the calculated dissociation rates for selected

states of the K2 triplet dimer.

6.6.3 Relaxation Rate in Spontaneously Associated Dimers

In order for spontaneously associated triplet states to explain alkali-alkali relaxation,

they have to live suÆciently long to explain the observed magnetic �eld dependence.

As discussed in section 4.4, this puts a lower limit of 300 ps on the lifetime of states

we need consider. On the other hand, the states can not spontaneously dissociate too

slowly, or three-body processes would become the dominant dissociation and formation

mechanism, and the desired pressure independence would be lost. Thus, we can set

an upper limit of about 1 ns on the lifetime of states that might contribute to alkali-

alkali relaxation based on a conservative estimate of the three-body breakup rate at 10

atmospheres of bu�er gas pressure. The two limits exclude all but about 1 percent of

the spontaneously dissociating dimer states. In addition, those that do meet our criteria

are very near the top of the centrifugal barrier and, as can be seen from �g. 6.3, have a

very small spin-axis interaction. Thus, it is diÆcult to see how there can be signi�cant

relaxation in states primarily formed through spontaneous association without without

it being dwarfed by the relaxation in stable dimer states formed by three-body processes.

We can make this argument more quantitative by including the spontaneous disso-



99

104

105

106

107

108

109

1010

1011

1012
Sp

on
ta

ne
ou

s 
di

ss
oc

ia
tio

n 
ra

te
 (

s-1
)

140120100806040200
Molecular angular momentum (h)
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too few states to explain the alkali-alkali rate coeÆcients.
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ciation rate as a breakup mechanism in eq. 6.8{ that is,

1=�d;i = [B]h�bvA2�Bi+ 1=�fesh;i + 1=�tun;i
1

�F;i
= 2 kchem;i[A]=�d;i

�trip = �i
1

�F;i

(�J + �d)FJ;i
�J;i + �d;iFJ;i

(6.22)

in which �d is the total dissociation rate of state i due to all three breakup processes.

I have recalculated the predicted relaxation rates shown in �g. 6.5 and �nd that the

di�erence made by including spontaneous association processes below the percent level

at all bu�er gas pressures above a Torr and therefore do not help explain the pressure

independence of alkali-alkali relaxation.
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Chapter 7

Model of Relaxation in Alkali Trimers

In this chapter, I assess the likelihood that alkali-alkali relaxation is taking place in

alkali trimers. The alkali trimer potential energy surfaces are not particularly well

known and, to the best of my knowledge, no calculations of spin-dependent interactions

in trimers have ever been undertaken. Nonetheless, it is possible to reach some general

conclusions based on statistical arguments and our knowledge of short-time evolution

in quantum mechanics.

Sections 7.1.1-2 explain a simple model of electron spin coupling in alkali trimers

and give an estimate of the trimer potential energy surface. I refer to and discuss a more

sophisticaed calculation of the K3 potential energy surface by Martins, et al. in section

7.1.3. I use this surface to estimate the equilibrium density of stable K3 in section 7.2.

I then explain in section 7.3 why I believe that no model of relaxation in stable trimers

can be made to match the experimentally observed alkali-alkali relaxation rates.

The situation looks more hopeful for relaxation in metastable trimers, however. I

discuss this possible explanation in section 7.4, including a description of a classical-

trajectory simulation of metastable trimer dynamics in section 7.4.1 and an estimate of

the spin-dependent coupling needed to match the experimentally observed K-K relax-

ation rate.

Considerable experimental and theoretical e�ort has been devoted to understand-

ing alkali trimers ([Frederico99, Woste96, Martins83, Kornath98, Eckel93] and many

others). As with the alkali dimers, Na has been studied most carefully, but only the

low lying ro-vibrational states have been classi�ed and even the Na3 binding energy is

largely unknown. Information is scarse or nonexistant for the heavier alkalis. In order
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to estimate relaxation in trimers, I have had to make considerable simpli�cations and

approximations. Therefore, this analysis is much more speculative than that of previous

chapters.

7.1 Spin Coupling in Alkali Trimers

7.1.1 Review of Alkal Dimer Eigenstates

Being the simplest molecules, alkali dimers are discussed in nearly all introductory

molecular physics texts (see, for example, [Woodgate]). I will quickly review the results

to introduce formalism necessary for handling trimers.

Consider two alkali atoms with nuclei at ~ra and ~rb. The spatial wavefunctions of

their (ground state) valence electrons are u(~r� ~ra) and u(~r� ~rb) which I will abbreviate

as ua and ub. The electrons are indistinguishable and therefore not necessarily tied to

a particular atom, so I will refer to them as electrons 1 and 2.

The Hamiltonian that describes the atoms is the sum of the free atomic Hamilto-

nians, H0, and the interaction Hamiltonian HI which describes the repulsion between

electrons and the attraction between the electrons and the other nuclei.

As the atoms approach each other, the eigenstates are the singlet and triplet

j si = 1

2
(juaubi+ jubuai)� (j "#i � j #"i)

j ti = 1

2
(juaubi � jubuai)� f

p
2j ""i, (j "#i+ j #"i), or

p
2j ##ig (7.1)

where the state of electron 1 is �rst and electron 2 is second in each ket.

If we de�ne the direct and exchange integrals as

direct : J = huaubjHI juaubi
exchange : K = huaubjHI jubuai (7.2)

we �nd that the eigenenergies of HI are

h sjHI j si = J +K

h tjHI j ti = J �K (7.3)
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The trimer eigenenergies depend on the same integrals, so it is useful to write them

in terms of the experimentally measured singlet and triplet potentials Vs and Vt:

J = huaubjHI juaubi = (Vs + Vt)=2

K = huaubjHIjubuai = (Vs � Vt)=2 (7.4)

7.1.2 Simple Approximation to Alkali Trimer Surfaces

Three separated alkali atoms have eight possible combinations of valence electron spin

states. In order for the coupled spin representation to have the same number of states,

the electrons must couple into a spin 3/2 manifold and two spin 1/2 manifolds. In the

absence of magnetic �eld, each of these manifolds is degenerate, so we can �nd their

energies by diagonalizing HI in the space of the three states with projection 1/2.

The most general projection 1/2 state is a linear combination of states in which one

electron is on each atom, two electrons have spin up and the third has spin down. Not

all such states are independent, however, because the total electron wavefunction must

be antisymmetric with respect to exchange of two electron labels. To enforce this, I

introduce the permutation operator P such that P acting on a state gives the normalized

sum of all permutations of electron label with appropriate signs. For instance,

P (jua" ub" uc#i) = 1p
6
[jua" ub" uc#i � jub" ua" uc#i+ jub" uc# ua"i �
juc# ub" ua"i+ juc# ua" ub"i � jua" uc# ub"i] (7.5)

where as in the dimer states, jua" ub" uc#i has electron 1 in state ua and spin up,

electron 2 in state ub and spin up and electron 3 in state uc and spin down.

The most general projection 1/2 state that obeys the Pauli exclusion principle is

therefore a linear combination of P (jua " ub " uc #i), P (jua " ub # uc "i), and P (jua #
ub" uc"i). As a starting point for diagonalizing HI , I somewhat arbitrarily choose the

orthogonal states

j 0i =

s
1

3
[P (jua" ub" uc#i) + P (jua" ub# uc"i) + P (jua# ub" uc"i)]

j 1i =

s
1

6
[P (jua" ub" uc#i) + P (jua" ub# uc"i)] +

s
2

3
P (jua# ub" uc"i)
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j 2i =

s
1

2
[P (jua" ub" uc#i)� P (jua" ub# uc"i)]: (7.6)

Note that the j 0i factors into P (juaubuci) � P(j ""#i), which gives it a pure triplet

character, but the other two states have mixed triplet and singlet character.

As in the dimer case above, we may write the matrix elements of HI in this space

in terms of the exchange integrals J and K, although in this case the exchange integral

acquires subscripts to identify the wavefunctions being exchanged. There is also a

multiple-exchange integral of the form huaubucjHI jubucuai which is assumed to be very

small compared to the direct and single-exchange integrals, and which I will therefore

ignore.

HI = J +

0
BBB@
�Kab�Kbc�Kac 0 0

0 1
2
(Kab+Kac)�Kbc

p
3
2
(Kac�Kab)

0
p
3
2
(Kac�Kab) �1

2
(Kab+Kac) +Kbc

1
CCCA (7.7)

This shows that j 0i is an eigenstate of HI (which is true even if the multiple exchange

terms are included). Note also that applying the spin raising operator to j 0i gives
P (juaubuci) � j """i which makes it part of the spin 3/2 manifold. Diagonalizing HI

with respect to the spin 1/2 states gives eigenvalues

E� = J �
s
1

2
[(Kab �Kac)

2 + (Kab �Kbc)
2 + (Kac �Kbc)

2] (7.8)

and the corresponding eigevectors

j�+i = cos(�)j1i+ sin(�)j2i
j��i = sin(�)j1i � cos(�)j2i (7.9)

with the mixing angle � given by

tan(2�) =

p
3(Kac �Kab)

Kab +Kac � 2Kbc
: (7.10)
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7.1.3 More Sophisticated Trimer Surfaces

The above calculation gives us a fairly good approximation to the trimer potential

energy surfaces (as compared to the more sophisticated calculation referenced in this

section). In addition, eq. 7.8 suggests that only the lowest lying spin 1/2 manifold is

likely to be more deeply bound than the singlet molecule. Thus, all stable trimers are

almost certainly in this spin 1/2 manifold, and any relaxation processes are limited to

transitions between its Zeeman levels.

However, the approximate calculation does not take into account valence electron

wavefunction distortions or core polarization e�ects, except to the extent that they

determine the dimer potentials. I have therefore used the published potential energy

surface of ref. [Martins83] for K3. This calculation uses pseudopotentials, chosen to

reproduce alkali ion energies, to describe the core electrons. The e�ect of correlation

between valence electrons is treated using the local spin density approximation (see

references in ref. [Martins83]). The potentials are parameterized in terms of the singlet

dimer potential, which I have scaled by about 5 percent to match the recent experi-

mental binding energy determination by [Amiot91].

At present, no published surfaces exist for Rb3 or Cs3.

Comparison of the two approaches show the the simple calculation of section 7.1.2

underestimates the trimer binding energy by about 10 percent. This is enough error

to signi�cantly change the predicted equilibrium trimer density, and the e�ects of core

polarization almost certainly get more pronounced for Rb and Cs. Because of the

uncertainty of calculations for the heavier alkalis, I have limited my estimates to K3.

7.2 Stable Trimer Density

Ideally, we would calculate the chemical equilibrium coeÆcient for K trimers by counting

eigenstates as I have done for the dimers (sections 3.1 and 6.1). Given the diÆculty of

�nding three-body eigenstates, however, I have used a classical phase space derivation

instead. The trimer potential surface is suÆciently 
oppy that I do not expect this

approximation to introduce signi�cant error.

Using standard statistical arguments (see [Reif], for example), we may write the

trimer chemical equilibrium coeÆcient kchem as a ratio of classical atomic (ZA) and



106

trimer (ZA3
) partition functions

[A3] = kchem[A]
3; kchem =

ZA3

ZA
(7.11)

with

ZA = 2
V

h3

Z 1

0
4�p2dp e�p

2=2mkBT

ZA3
= 2

1

6

V

h9

Z
d3r1

Z
d3r2

Z pmax

0
4�p21 dp1

Z pp2max�p21

0
4�p22 dp2 �

Z pp2max�p21�p22

0
4�p23 dp2e

�(p12+p2
2
+p2

3
)=2mkBT (7.12)

where ~r1 and ~r2 are the positions of atoms 1 and 2 relative to atom 3, and p2max=2m+

V (~r1;~r2) = Emax is the maximum bound trimer energy. I have introduced Emax as a

parameter because it is not clear which states are bound and which will dissociate into

a singlet molecule and an atom, but we can get a lower bound on kchem by taking Emax

equal to the singlet dimer binding energy. The factors of 2 in front of each partition

function take into account spin degeneracy, and the 1/6 multiplying ZA3
re
ects the

6-fold permutation symmetry of a trimer with respect to atom label.

Most of the integrals of eq. 7.12 can be done analytically, yielding

kchem =
16�3=2

415

Z 1

0
r21dr1

Z 1

0
r22dr2

Z 1

�1
d(cos �)�

e�V (r1;r2;�)=kBT
(9=2;
Emax � V (r1; r2; �)

kBT
) (7.13)

in which 
() is the incomplete gamma function.

I have performed the spatial integrals of eq. 7.13 numerically using the (scaled)

potential of ref. [Martins83]. Figure 7.1 shows the resulting chemical equilibrium coef-

�cient for K3 and the fraction of K atoms in stable trimers. Although absolute density

of trimers is typically small (about 109-1010cm�3), there are more trimers than there

are triplet dimers. In addition, if we assume that the cross-section for atom-trimer

exchange is similar to the cross-section for atom-dimer exchange (section 3.4-5), trimer

densities are large enough for each alkali atom to pass through several to tens of trimers

per second. Thus, trimers are numerous enough to warrent further examination.
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K atoms in stable trimers, as a function of temperature.
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7.3 Relaxation in Stable K3

The interaction causing relaxation in a trimer would presumably be a spin-rotation

coupling like that discussed in section 3.2. However, since the atomic wavefunctions

(or classically, the atomic motions) are so complicated, it is quite diÆcult to estimate

the e�ective interaction for a given bound trimer state, or even to classify the states

in the �rst place. Nonetheless, it is possible to make some general observations that

are diÆcult to reconcile with the notion that alkali-alkali relaxation is taking place in

stable alkali trimers.

We can use the chemical equilibrium coeÆcients calculated in sections 7.2 and 3.1

to predict how the relaxation rate in trimers depends on alkali density and bu�er gas

pressure. Although we do not know the strength or form of the interaction causing

relaxation, it must couple an atomic spin to trimer angular momentum because there is

nowhere else that polarization can be lost. In addition, I will assume that, although the

trimer eigenstates can not be classi�ed in the straightforward manner used for dimers,

they are discrete, so the transition rate for small time � is proportional to � 2.

If we accept those two core assumptions, we can estimate relaxation rates in trimers

by classifying all possible relaxation models as follows:

1 The dominant mode of entry into a trimer is one of the following

I: K +K +K +B ! K3 +B

II: K +K2 +B ! K3 +B

III: K +K3 ! K +K3 (chemical exchange)

IV: K2 +K2 ! K +K3

All other formation mechanism involve at least �ve bodies and are therefore

greatly suppressed.

2 Once an atom becomes part of a trimer, it relaxes governed by an interaction

that has one of the following characteristics

strong. If the interaction causing relaxation in trimers is strong, the spins

relax to a constant polarization (possibly zero) during a typical dwell time
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Formation Mechanism strong weak, A weak, B
I. K +K +K +B ! K3 +B [K]2[B] [B] [K]2=[B]
II. K2 +K +B ! K3 +B [K2][B] [K2][B]=[K]2 [K2]=[B]
III. K3 +K ! K3 +K [K3] [K3]=[K]2 [K3]=[B]

2

IV. K2 +K2 ! K3 +K [K2]
2=[K] [K2]

2=[K]3 [K2]
2=[K]=[B]2

Table 7.1: Predicted potassium ([K]) and bu�er gas ([B]) density dependence of relax-
ation in stable trimers.

in a trimer. The relaxation rate is then simply proportional to the rate that

an alkali atom enters trimers.

weak, A. If the interaction causing relaxation is weak, relaxation is not

complete during the typical dwell time in a trimer. If, further, the end

of coherent relaxation is caused by an interaction with an alkali atom, the

relaxation rate should vary as the ratio of the rate that an alkali atom enters

trimers to the square of the alkali density.

weak, B. Similarly, if the interaction causing relaxation is weak and coher-

ent relaxation is brought to an end by an interaction with the bu�er gas,

the relaxation rate should vary as the ratio of the rate that an alkali atom

enters trimers to the square of the bu�er gas density.

I have listed all of the possible combinations in table 7.1, and the predicted depen-

dences of the relaxation rate in each case. Note that if the relaxation rate is to be

independent of bu�er gas pressure, the dominant route for alkali atoms to enter trimers

must be either III or IV. Additionally, the relaxation must either be strong, or immune

to decoherence from collisions with the bu�er gas.

Next, we can examine the [K] dependence of each table entry more closely. Be-

cause the chemical equilibrium coeÆcients are strongly temperature dependent, it is

convenient to use the following rules of thumb; for temperatures near 500 K,

[K2] = 1kchem[K]2 � [K]1:33

[K3] = kchem[K]3 � [K]1:80: (7.14)

Using these approximate relationships, we see that the relaxation rate's nearly linear

dependence on alkali density can be explained only if the dominant trimer formation
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mechanism is II.

It therefore seems that there is no model of relaxation in alkali trimers that is con-

sistent with all of the observations of alkali-alkali relaxation. Of course, this conclusion

is based on relatively poor knowledge of the trimer potential energy surface and eigen-

states. Thus, if the energy surface turns out to be signi�cantly in error, or if trimer

dynamics are suÆciently exotic to invalidate one of the core assumptions made above,

this notion may have to be revisited. In principle, it is also possible several di�erent

trimer formation mechanisms conspire to mimic pressure independence and linear alkali

density dependence, although given the range of alkali species, densities and bu�er gas

pressure covered experimentally, this seems highly unlikely.

7.4 Relaxation in Metastable Trimers

Just as metastable triplet dimers can form without the presence of a third body (section

6.6), metastable trimers can form without the presence of a fourth body. The two

processes are quite di�erent, however. While we need quantum mechanics to understand

metastability in dimers, it can be thought of classically in a trimer as follows; during a

collision between a singlet dimer and an atom, the incident atom may give up enough

energy to the dimer's ro-vibrational motion that it is energetically unable to leave.

It will then return and collide again until, by chance, the dimer is returned to a low

enough energy state to allow the atom to escape. Alternatively, the initially free atom

may capture one of the dimer's atoms into a suÆciently low energy molecular state to

allow the other atom to escape. This is a chemical exchange collision as measured in

the context of singlet molecule relaxation (chapter 3).

7.4.1 Classical Trajectory Simulation

To assess the possibility of relaxation in metastable trimers, I used the classical trajec-

tory simulation described in appendix D. This allowed me to get a rough idea of the

frequency of metastable trimer formation and the distribution of dwell times once a

trimer is formed. The results for K-1K2 collisions can be summarized as follows:

1 The cross-section for K - 1K2 exchange collisions (�ex) is about 180�A
2 at 500

K.
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2 The average amount of time that the atoms spend within a 10�A diameter

circle (the dwell time) is about 100 ps.

3 Long duration collisions are suprisingly common{ the distribution of dwell

times �dwell �ts reasonably well to

P (�dwell) / e�20[(�dwell=ps)+10]1=15 : (7.15)

Since they are based on limited knowledge of the potential energy surface and a

classical approach, the above observations are certainly tentative. Nonetheless, they

suggest that the fraction of time that each atom spends in a metastable trimer at 500

K is 3 1kchem[K]2h�exvK�K2
ih�dwelli � 5 � 10�6, which is comparable to the fraction of

time it spends in a stable trimer. In addition, each atom passes through thousands of

metastable trimers per second. This is much faster than the corresponding formation

rate for stable trimers and, depending on the details of the relaxing interaction, may

lead to a correspondingly larger relaxation rate.

We would expect the relaxation rate in metastable trimers to be independent of

bu�er gas pressure and to scale roughly as the density of singlet dimers (possibly modi-

�ed for a temperature-dependent chemical exchange cross-section and dwell time). This

is suÆciently close to the measured alkali-alkali relaxation scaling (see �g. 4.11) to make

metastable trimers a strong candidate explanation.

7.4.2 Tentative Relaxation Rate Estimates

I have made further tentative estimates of this relaxation process by postulating a

spin-rotation interaction in metastable trimers of the form

VSR;trimer = �h
trimerS � J (7.16)

where J is the trimer rotational angular momentum and S is the total electron spin

coupled into a spin 1/2 manifold. I have postulated this form because it the simplest

spin-rotation coupling possible, and other interactions, such as the rank 2 S(3ĴĴ� 1)S,

do not cause relaxation in a spin 1/2 manifold. Spin-rotation couplings of this type are

not uncommon (see refs. [Huber80, VanEsbroeck85], for instance), but I do not know
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how large it would be in an alkali trimer.

Nonetheless, I have tried several values of 
trimer and calculated the implied relax-

ation rate in metastable trimers for each by diagonalizing the interaction Hamiltonian

HI = VSR;trimer +
A

3
(I1 + I2 + I3) � S+ gS�BB=�hSz (7.17)

numerically (as described in appendix C). I �nd that by choosing 
trimer � 2�(3 MHz),

the predicted zero �eld relaxation rate is in good agreement with the measured alkali-

alkali relaxation rate. Figure 7.2 shows the predicted relaxation rate in metastable K3

trimers at 500 K ([K] = 4.6�1014cm�3) as a function of magnetic �eld. For comparison,

the �gure also includes measured alkali-alkali relaxation rate at the same temperature.

Note that the predicted magnetic decoupling for small �elds is similar to that observed

for alkali-alkali relaxation, although the partial decoupling is not very well reproduced.

It is not yet clear whether this discrepancy is due the approximate nature of this model

or is a fundamental problem with all models of relaxation in metastable trimers, but it

certainly premature to identify this mechanism as the source of alkali-alkali relaxation.

Nonetheless, I believe it to be a plausible explanation that should be revisited when

more about the heavy alkali trimers is known.
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Chapter 8

Summary and Future Outlook

In this dissertation, I have described a series of experimental and theoretical studies di-

rected toward the understanding of spin-relaxation mechanisms in an alkali vapor. This

�nal chapter summarizes the progress we have made, suggests an immediate application

of this work, and explores possible directions for further research.

8.1 Summary

I have shown that relaxation of a polarized sample of ground-state alkali atoms arises

from at least four di�erent mechanisms. Two of these, relaxation on the cell walls

and relaxation through alkali-bu�er gas collisions, appear to be fairly well understood.

I have made some new measurements of alkali-bu�er gas relaxation cross-sections, in

particular at high temperature, but the work presented in this here is entirely consistent

with existing theories.

The third mechanism, relaxation in alkali singlet dimers, had not been directly

measured before, although its existence could certainly have been guessed based on

previous measurements of the electric quadrupole interaction. I have demonstrated

that this mechanism becomes quite important at low bu�er gas pressure{ in fact it

is larger than might have been supposed from existing data. This suggests that the

quadrupole interaction depends strongly on the molecular ro-vibrational state and is

larger than had previously been thought. In addition, I have shown how we can use

measurements of relaxation in singlet dimers to learn about the dynamics of atom-dimer
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chemical exchange collisions and dimer reorientation in the vapor.

The �nal relaxation mechanism, alkali-alkali relaxation, does not yet have a complete

explanation. Alkali-alkali relaxation was previously thought to occur in short-duration

binary alkali collisions, but I have shown that it is largely decoupled by a� kGmagnetic

�eld and explained why this observation is inconsistent with the previously held belief.

In subsequent chapters, I have demonstrated why it appears to be impossible to explain

alkali-alkali relaxation with a model based on relaxation in alkali triplet dimers or stable

alkali trimers. Finally, I have put forth the tentative suggestion that a spin-rotation

interaction in metastable trimers formed during atom-singlet dimer collisions may be

the relaxation mechanism.

8.2 Implications

Even lacking a consistent explanation for the magnetic decoupling of alkali-alkali relax-

ation, this discovery may have important implications for the production of polarized

noble gases and their subsequent use in MRI, spin-polarized targets, and other appli-

cations. Since alkali-alkali relaxation can be mostly eliminated, we estimate that the
3He production rate in a typical Spin-Exchange Optical Pumping apparatus can be

increased by at least a factor of two simply by putting the optical pumping cell in a few

kG magnet. Hopefully, this will help bring the production cost of polarized gases down

and make them more readily available for their many scienti�c and medical applications.

8.3 Continuations of This Work

The obvious direction for furture research is toward a more thorough understanding of

alkali-alkali relaxation. Unfortunately, it is not as clear how to design an experiment

that will get us there. We are currently exploring a few remaining options but, having

varied the magnetic �eld, alkali density and bu�er gas over all of the easily accessible

values, future experimental work will almost certainly require a substantial redesign of

the apparatus. Below, I discuss two ideas that are currently being pursued, and I have

listed a few possible areas of future work as well.

1 We are currently pursuing studies of relaxation at high polarization fraction.
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If, as suggested in chapter 7, relaxation is taking place during alkali atom-

singlet dimer collisions, we should see a lower relaxation rate at suÆciently

high polarization because the number of singlet molecules is diminished

(two polarized atoms cannot form a singlet molecule). Unfortunately, it

is somewhat diÆcult to interpret the relaxation rate at high polarization

because of the changing nuclear slowing down factor (see appendix B). In

addition, we must work at large alkali number density so that alkali-alkali

relaxation is the dominant spin-relaxation mechanism. Since our optical

pumping power is limited, we have not thus far been successful in achieving

the required polarization fraction.

2 Christopher Erickson and William Happer at Princeton University are cur-

rently working to measure alkali-alkali relaxation in separated Rb isotopes.

3 The tentative calculations of alkali trimer chemical equilibria and the sim-

ulations of metastable trimer dynamics could be improved with a better

estimate of the trimer Born-Oppenheimer potential energy surface.

4 Future experiments might be designed so that the vapor temperature and

alkali number density could be varied independently. We have implicitly

assumed that the rapid variation of alkali-alkali relaxation rate with tem-

perature is almost entirely due to changes in the alkali vapor pressure, and

it might be important to check that assumption. In addition, a strong tem-

perature dependence that is independent of alkali number density would be

a clue about the binding energy of the relaxing system. Such an appara-

tus would require large temperature gradients, however, and achieving the

stability necessary for this work might be a considerable technical challenge.
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Appendix A

Physical and Optical Properties of the

Alkalis

This appendix summarizes important physical characteristics of the alkalis K, Rb and

Cs, and their interaction with light. Section A.1 gives some thermodynamic properties

of alkali metals, followed by a description of the relevant atomic energy levels in section

A.2. This leads to a brief treatment of the interaction between a free alkali atom and

near-resonant light, including Optical Pumping, Faraday Rotation and pressure e�ects

in section A.3.

A.1 Physical Characteristics of the Alkalis

In pure form, the alkalis are metallic and are solid at room temperature. The three

heaviest alkalis, K, Rb and Cs, are commonly used for Spin-Exchange Optical Pumping

because of their relatively low melting point and high vapor pressure (given in �g A.1

and because their �rst resonance is reachable by solid state lasers. All of the alkalis

are very reactive, particularly with water and oxygen, but to a lesser extent with many

substances.

Spin-Exchange Optical Pumping is usually performed at alkali vapor pressures be-

tween 1013 and 1015 cm�3, so we are particularly interested in understanding relaxation
processes in that range. This requires the alkali to be enclosed in a cell and heated to

450-550 K. For various technical reasons (see chapter 2), it is necessary to have a bu�er
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gas in the cell as well, so we choose gases with which the alkalis are non-reactive (He,

Ne, Ar, Kr, Xe, CH4) or minimally reactive such as N2 and H2 (see ref. [Happer76]).

A vapor of heavy alkalis is composed of about 99% free atoms, 1% singlet dimers, and

a smaller fraction of stable trimers ( 10�5), triplet dimers ( 10�6), metastable trimers

( 10�7). Tetramers and all other molecular forms have fraction < 10�9. The dynamics

in the vapor are therefore complicated and interesting, as each of the free atoms is

cycled through many dimers and timers each second. These processes are discussed in

detail in chapters 3 and 7.

A.2 Atomic Energy Levels

A.2.1 Fine Structure

To summarize the gross features of the energy levels for a free alkali atom, we �rst look

at the �ne structure, which ignores nuclear orientation. Because alkali atoms can be

treated by looking at their single valence electron, excited states with electron orbital

angular momentum L 6= 0 may have total electron angular momentum J = L + 1/2 or L

- 1/2. The energy di�erence between the two is fairly small, and the states are referred

to as an excited state doublet. Figure A.2 shows the energies of the excited states of

interest in this experiment for K, Rb and Cs and their natural linewidths. The addition

of a magnetic �eld splits each of the �ne structure states into 2J + 1 Zeeman levels

corresponding to values of the quantum number mJ . For the B � 1T �elds achievable

in our laboratory, however, the splitting is not visible at the level of detail in �g. A.2

and J remains a good quantum number.

A.2.2 Hyper�ne Structure

Each of the �ne structure states is further split into a hyper�ne manifold by interaction

with the nuclear magnetic moment. This splitting is also not visible at the level of

�g. A.2, and under the conditions used in this experiment, does not signi�cantly e�ect

the interaction between the atom and light, as I will show in the next section.

The hyper�ne structure does play a role in the free evolution of the atom, however.

Appendix B shows how its in
uence can be characterized as a nuclear slowing down
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factor.

A.3 Semi-Classical Interaction with Light

We use near resonance laser light to polarize the atoms, measure the atomic polariza-

tion and to measure the alkali vapor pressure. This section provides the theoretical

tools necessary to calculate all of these e�ects. The treatment is a generalization of

ref. [Wu86].

In the absense of light, the Hamiltonian for an alkali atom is

HA = �h!nJmJ
jnJmJihnJmJ j+ gJ�BJzB + AI � J+ : : : (A.1)

in which jnJmJi is a �ne structure coupled state and the ellipsis denotes higher order

terms such as the nuclear magnetic dipole, electric quadrupole, etc. Atomic center of

mass motion is not included explicitly, but it leads to Doppler broadening (see section

A.3.2).

We write the most general atomic state j i in the interaction picture as

j i =X
�

c�j�iei!�t +
X
�

c�j�iei!�t (A.2)

where fj�ig is a set of ground states and fj�ig is a set of excited states that together

diagonalize HA.

If we now add the interaction with a classical light �eld,

H = HA � ~E � ~D (A.3)

where ~E = ~Ee�i!t+c:c: is the applied electric �eld and ~D = �e~r is the induced atomic

dipole moment, we may solve for the polarizability dyadic
$
�

~D =
$
� ~E: (A.4)

We therefore calculate ~D in order to solve for
$
�, which completely characterizes the

light-atom interaction.
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The amplitudes c� and c� obey the Schr�odinger equation

_c� =
1

i�h
e
X
�

c�E � h�j~rj�iei���t

_c� =
1

i�h
e
X
�

c�E � h�j~rj�ie�i���t � 
�
2
c� (A.5)

where I have introduced the phenominological damping rate 
� to represent spontaneous

decay and the e�ect of bu�er gas collisions. The detuning from resonance is ��� =

! � (!� � !�). Solving this for the excited state amplitude gives

c� = e
X
�

~E � h�j~rj�ie�i���tc�

�h(��� + i
�=2)
: (A.6)

Using this result, and recognizing that coherences such as c?�c�0 vanish when averaged

over the ensemble, we may calculate

h~Di = �eh j~rj i

= e2
X
��

h�j~rj�i~E � h�j~rj�ie�i!t
��h(��� + i
�=2)

P� (A.7)

in which P� = jc�j2 is the probability to be in ground state �. Combinbing eq. A.4 and

A.7 gives
$
�= e2

X
��

h�j~rj�ih�j~rj�i
��h(��� + i
�=2)

P�: (A.8)

Because the states fj�i; j�ig have a de�nate angular momentum projection, the

tensor structure of A.8 simpli�es considerably in the spherical basis r�; r0 = (x �
iy)=

p
2; z:

$
�= e2

X
���

h�jr��j�ih�jr�j�i
��h(��� + i
�=2)

P�r̂�r̂��: (A.9)

The interaction can therefore be described by two (complex) polarizabilities:

D� = �er� = ��E�; where

�� = �e2X
��

jh�jr�j�ij2
�h(��� + i
�=2)

P�: (A.10)
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In principle, the atom-light interaction can be calculated under all conditions by diag-

onalizing A.1. For our work, however, that amount of e�ort is not necessary because

the high bu�er gas pressure suitable for optical pumping causes unresolved hyper�ne

structure. In addition, we work at detunings many times greater than the hyper�ne

splitting, and the e�ect of hyper�ne structure on both � and �+ � �� (the quantity

used to calculate Faraday Rotation) decreases as (splitting/detuning)2. We therefore

�nd that we can ignore the hyper�ne interaction and all higher order terms while in-

troducing negligible error for any of our calculations, and write � as

�� = �e2 X
J 0mJ

jhJ 0mJ � 1jr�j12mJij2
�h(�1=2;mJ$J 0;mJ�1 + i
J 0=2)

P� (A.11)

Using standard atomic theory (for instance, see ref. [Woodgate], p. 76), it is straight-

forward to calculate the detunings and to reduce the matrix elements in the usual way:

jhJ 0mJ � 1jr�jJmJij2 = 1

2J 0 + 1
jhJ 0mJ � 1jJmJ ; 1� 1ij2jhJ 0jj~rjjJij2

=
3�he2fJJ 0

2m!

2J + 1

2J 0 + 1
jhJ 0mJ � 1jJmJ ; 1� 1ij2 (A.12)

Thus,

�� = � e2

4m!

 
P�1=2f3=2

�3=2 � 5
3

 + i
3=2=2

+ 3
P�1=2f3=2

�3=2 � 
 + i
3=2=2

+ 4
P�1=2f1=2

�1=2 � 4
3

 + i
1=2=2

!
(A.13)

in which 
 = �BB=�h is the electron spin precession frequency in magnetic �eld B, �J 0

is the detuning to the J 0 excited state at B = 0 (but including the pressure shift{ see

below) and fJ 0 is the ground $ J 0 oscillator strength. The excited state doublet most

nearly in resonance is assumed.

A.3.1 Pressure Shifts/Line Broadening

In the above formalism, the e�ect of bu�er gas collisions is introduced through the line

broadening(
�) and a shift of the resonance frequency (!��). Such collisions have no

preferred orientation and are Poisson distributed in time, so all Zeeman and hyper�ne



124

Table A.1: Collisional broadening and resonance shift, taken from ref.[Allard82]. Blank
entries habe not been measured to date. All broadenings and shifts are in GHz/amagat
(1 amagat = 2.69�1019 cm�3 = number density at STP)

He N2

Transition Æ!J 0=2� 
J 0=2� Æ!J 0=2� 
J 0=2�
K 4P1=2 1.01 0.295 1.60 -0.971
K 4P3=2 1.34 0.160 1.60 -0.861
K 5P1=2 2.35 0.910
K 5P3=2 3.32 1.30
Rb 5P1=2 1.25
Rb 5P3=2 1.25 -0.100
Rb 6P1=2

Rb 6P3=2

Cs 6P1=2 1.20 0.823 1.91 0.910
Cs 6P3=2 1.67 0.480 2.42 0.898
Cs 7P1=2 5.04
Cs 7P3=2 3.65

levels in a given J ! J 0 transition are shifted and Lorentzian broadened together.

Table A.3.1 gives measured pressure broadening and shifts for the alkali transition /

bu�er gas combinations used in this experiment.

Collisional broadening dominates at bu�er gas pressures above a few Torr. At lower

pressures, the dominant broadening mechanism at the high number densities used in this

experiment is resonance broadening (see [Kantor85] for measurements and a detailed

description of resonance broadening). Natural broadening can always be ignored in

these calculations, as can Doppler broadening, because of its relatively narrow width

and Gaussian shape.

I have also noted other broadening mechanisms that produce asymmetry in the far

wings. Such e�ects are supposed to arise from quasi-static alkali-bu�er gas interactions

or, at high alkali densities, alkali-alkali interactions. At present, too little is known

about these mechanisms to discuss them qualitatively.
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A.3.2 Absorption

As �� light propagates in the z direction through the alkali vapor, it is attenuated as

dI�
dz

= �I� 4�N
!

c
Im(��) (A.14)

To simplify this, we note that absorption is only used in this experiment under two

circumstances; to measure the vapor pressure, which is done at zero magnetic �eld, and

for optical pumping, which is done with circularly polarized light at large detuning.

In either case, the Zeeman e�ect can be ignored while introducing negligible error.

Therefore, we may write eq. A.14 as

dI�
dz

= �I� �e2N

mc

2
4 f1=2
1=2
�2

1=2 + 
21=2=4
(1� P ) +

f3=2
3=2
�2

3=2 + 
23=2=4
(1� P

2
)

3
5 (A.15)

where I have replaced P�1=2 by the polarization P = (P1=2 � P�1=2)=2.

A.3.3 Optical Pumping

Since each circularly polarized photon absorption corresponds to a change in atomic

polarization P , we see how one may control the ground state populations with light.

This is known as optical pumping, and many excellent reviews have been written on

the subject (for example, [Happer72, Happer87]). I will therefore not dwell on the

subtleties, but brie
y describe the case most often used for this experiment{ pumping

using the P1=2 transition in the �rst excited doublet.

In this case, the laser frequency is kept much nearer the J 0 = 1=2 resonance than the

J 0 = 3=2 (but still at large detuning compared to broadening or splittings of the J 0 = 1=2

line). We may therefore ignore the second term in eq. A.15. We use suÆcient molecular

bu�er gas to randomize the excited state population after a photon absorption, thus

avoiding radiation trapping. This has the e�ect of returning the atom to either ground

state with equal probability. Therefore, a photon absorption transfers (on average) 1/2

unit of angular momentum. Thus,

dP

dt
=

1

2N�h!

dI+
dz
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=
�e2

6mc

I+
�h!


1=2
�2

1=2 + 
21=2=4
(1� P ) (A.16)

where I have replaced f1=2 by its approximate value of 1/3. Note that eq. A.16 only

takes into account changes in polarization due to the light.

A.3.4 Faraday Rotation

In addition to the absorption e�ects described above, the real part of the polarizability

leads to an index of refraction that di�ers between the two helicies of light. The dif-

ference depends on both the alkali number density and its polarization, which makes it

useful for measuring either quantity. We measure this di�erent by the rotation of the

polarization vector of linearly polarized light, known as Faraday Rotation.

Linearly polarized light can be decomposed into circular components, and the phase

relationship between the circular components determines the angle of polarization. The

di�erence between indices for the two circular polarization components,

n� � n+ =
q
1 + 4�NRe(��)�

q
1 + 4�NRe(�+) � 2�N(�� � �+) (A.17)

corresponds to a rotation of

� =
�Nl!

c
(�� � �+): (A.18)

Depending on the detuning, the two helicities of light may be attenuated by di�erent

amounts as well, although that does not change the validity of eq. A.18. Such an e�ect

introduces ellipticity to the originally linearly polarized beam, and � then refers to the

angle between the incident linear polarization and the major axis of the ellipse.

Substituting eq. into eq. and expanding in 
 = �BB=�h gives

� =
�Nle2

3mc

2
4
0
@ �3=2

�2
3=2 + 
23=2=4

� �1=2

�2
3=2 + 
21=2=4

1
AP + (A.19)

0
@7 �2

3=2 � 
23=2=4

(�2
3=2 + 
23=2=4)

2
+ 4

�2
1=2 � 
21=2=4

(�2
1=2 + 
21=2=4)

2

1
A 


3
+O(
2)

3
5
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and therefore

d�

dP
=

�Nle2

3mc

0
@ �3=2

�2
3=2+


2
3=2=4

� �1=2

�2
3=2+


2
1=2=4

1
A (A.20)

d�

dB
=

�Nle2

9mc

�B
�h

0
@7 �2

3=2�
23=2=4
(�2

3=2+

2
3=2=4)

2
+ 4

�2
1=2�
21=2=4

(�2
1=2+


2
1=2=4)

2

1
A : (A.21)

For conditions of large ( 500 GHz) detuning and B < 1T used in this experiment,

ignoring the the O(
2) and higher terms introduces error of about 1%.

We can therefore use Faraday rotation to make two independent measurements. By

�rst measuring d�=dB for an unpolarized vapor, we solve for the alkali number density

N using eq. A.21. Then we �x B, measure �(t) and convert to P (t) using eq. A.20. I

discuss both techniques in more detail in chapter 2.
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Appendix B

Spin Exchange and Spin Temperature

This appendix summarizes how my measured relaxation rates are a�ected by alkali-

alkali spin exchange collisions and the alkali hyper�ne interaction. The explanations

and derivations found here are mostly minor variations of work in refs. [Happer72,

Anderson60].

B.1 Electron-Electron Spin Exchange

A spin-exchange collision between two alkali atoms A and B can be represented as

A(") +B(#)! A(#) +B(") (B.1)

in which the arrows refer to the orientation of valence electron spin. Conceptually, we

may think of this as the precession of each individual electron spin around the singlet

coupled state. We therefore expect spin exchange whenever

Z dt

�h
VS(r(t))� 1 (B.2)

where the integral is over collision trajectory and VS is the singlet potential.

This simple picture gives an exchange cross-section very close to the experimentally

observed value of ~200�A2 for K, Rb and Cs ([Happer72]). In addition, since the precession

can be much faster than the precession around any laboratory magnetic �eld, we do

not expect this process to be decoupled.
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Therefore, in a typical alkali vapor with 1015 atoms/cm3, each alkali atom exchanges

with its neighbors roughly 105 times each second. This is much faster than any optical

pumping or relaxation rate in this experiment.

The e�ect of electron spin-exchange is to cause atomic coherences, such as hyper�ne

precession, to decay. A mathematical treatment, including the e�ect of spin-exchange

collisions on the atomic density matrix, can be found in [Appelt98, Happer72].

B.2 The Hyper�ne Interaction

Just as electron-electron spin exchange rapidly distributes polarization among alkali

valence electrons, the hyper�ne interaction distributes spin between the alkali valence

electrons and nuclei. This process can also be very rapid. However, noting that the

alkali hyper�ne interaction is decoupled by a �kG magnetic �eld, Walker and An-

derson (refs. [Walker93, Anderson95]) have shown that the rate of polarization ex-

change between electrons and nuclei is slowed down approximately as 1=(1 + x2) where

x = gS�BB=�Ehyp is the Breit-Rabi parameter.

B.3 Spin Temperature

If the previous two processes proceed at rates much larger than any spin relaxation or

optical pumping rate, the system remains in equilibrium with respect to spin exchange

even while it is taken out of its global equilibrium with respect to relaxation. Such a

system is said to be in spin temperature [Anderson60]. This characterization simpli�es

the analysis considerably, because the populations of all electron and nuclear Zeeman

levels can be written in terms of one parameter, the inverse spin temperature �. For

the case of a homonuclear alkali vapor, the spin temperature characterization can be

understood quite intuitively. The following is a special case of the more general work

in [Anderson60].

In spin temperature, the electron and nuclear Zeeman populations are in equilibrium

with respect an exchange process

(mS + 1; mI)$ (mS ; mI + 1) (B.3)
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In order for the forward and backward processes to proceed at the same rate, we must

have the probabilities to be in mS , mI related by

P (mS + 1)P (mI) = P (mS)P (mI + 1) (B.4)

for each mI = -I : : : I-1. These 2I equations, along with
P
P (mS) =

P
P (mI) = 1, allow

us to eliminate all but one of the probabilities, although it is convenient to parameterize

them all in terms of the inverse spin temperature parameter

e�� = P (m1=2)=P (m�1=2) (B.5)

This use of � is analagous to the more familiar � = 1=kT in that � = 0 corresponds

to the maximally disordered (unpolarized) state and � = �1 corresponds to the most

ordered (polarized) states. In terms of �, the solutions to eq. B.4 are:

P (mS) = e�mS
2

cosh(�=2)

P (mI) = e�mI
sinh(�=2

sinh(�(I + 1=2))
: (B.6)

Note that the probability of being in a spin state with z projection mF is is pro-

portional to exp(�mF ). This is a general feature of a system in spin temperature

equilibrium.

B.3.1 Nuclear Slowing Down Factors

From eq. B.6, we may calculate the expectation values of electron and nuclear spin.

hSZi =
X

P (mS)mS = (1=2)tanh(�=2)

hIZi =
X

P (mI)mI = ([I]=2)ctnh([I]�=2)� (1=2)ctnh(�=2) (B.7)

in which [I] = 2I + 1.

In general, the fraction of polarization stored in the electrons is a nonlinear in �,

which makes analysis of relaxation processes diÆcult. For instance, when measuring a
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Table B.1: Slowing down factors appropriate for electron relaxation. The observed
relaxation rate is the true electron relaxation rate multiplied by 1=(1 + �).

1=(1 + �)
K 1/6
85Rb 3/38
87Rb 1/6
Rb (nat.) 1/10.8
Cs 1/22

relaxation process acting on the electron spin, the measured relaxation rate is slower

than the true electron relaxation rate by a factor 1+ hIZi=hSZi due to the polarization
transferred from the nucleus. Likewise, the measured rate for a nuclear relaxation

process is slower than the true rate by 1 + hSZi=hIZi.
We minimize this problem by keeping the polarization fraction low when making

relaxation measurements. In the limit of low polarization,

hIZi=hSZi ! �

where � =
4

3
I(I + 1) (B.8)

so the measured and true relaxation rates are related by a constant 'slowing down

factor' of 1=(1+ �) for processes acting on the electron and �=(1+ �) for processes acting

on the nucleus. I �nd that this approximation leads to negligible error as long as the

polarization fraction is kept below about 5%. The slowing down factors appropriate for

electron relaxation are given in ref. [Happer72]. The slowing down factors for nuclear

relaxation are given in table 3.3.

B.3.2 Departure From Spin Temperature

The results of the previous section depend on the assumption that the rate for electron

$ nuclear spin exchange greatly exceeds that of any optical pumping or relaxation

rate. If we wish to measure relaxation rates under circumstances where this is not

the case, a correction must be made for the departure from spin temperature. This

e�ect can be analyzed more rigorously by coupling the electron and nuclear spin into

'eigenobservables' (independently decaying modes of the density matrix) as has been
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done in ref. [Erickson99], but a simpler, rate equation model is suÆcient for my purposes

and provides some physical insight. Note that this model is only applicable to small

deviations from spin temperature and relaxation processes acting on the alkali valence

electron.

The return to spin temperature in the presence of electron relaxation at rate �S can

be described by rate equations governing electron and nuclear polarization (Sz and Iz)

dIz
dt

= �
x(Iz � �Sz)

dSz
dt

= �
x(�Sz � Iz)� �SSz (B.9)

where 
x is the rate of polarization exchange between the alkali electrons and nuclei.

As mentioned in section B.2,


x =

x(B=0)

1 + (B=B0)2
;

with B0 =
�Ehyp

gS�B
: (B.10)

As long as 
x � �S, the system will approach quasi-steady state at long times such

that both electron and nuclear spin are relaxing as

Sz / e��t; Iz / e��t (B.11)

where � is the measured relaxation rate. Substituting eq. B.11 into B.9 and expanding

in powers of �S=
x gives

� = �S
1

1 + �

"
1� �S


x

4�

(1 + �)2
+ � � �

#

= �S
1

1 + �

"
1� �S


x(B=0)

4�

(1 + �)2

�
1 + (B=B0)

2
�
+ � � �

#
(B.12)

Note the appearence of the slowing down factor 1=(1 + �). In addition, for �S=
x 6= 0,

the measured relaxation rate decreases quadratically with the application of a magnetic

�eld. This e�ect is particularly pronounced in K because of the small ground state

hyper�ne splitting, and can be clearly seen in �g. 4.6. The �ts to measured relaxation
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rate therefore contain an extra term quadratic in magnetic �eld.
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Appendix C

Numerical Techniques

In several sections of this thesis, I refer to relaxation rate calculations performed by

numerically diagonalizing the relaxing interaction. This appendix serves as a short

description of how that process works.

I represent the state of a system at time t0 with the density matrix �0. For t >

t0, � evolves under the in
uence of a time-independent interaction Hamiltonian HI .

Typically, we are interested in the average fractional polarization loss after a period of

coherent evolution. All periods of coherent evolution do not have the same length, but

are distributed as F(�).

This problem can be approached numerically as follows:

1 Solve for the unitary matrix E such that H 0
I = EyHIE is diagonal. I used

the routine 'jacobi' in Numerical Recipies ([Press]).

2 Rotate �0 to the primed basis set as �00 = Ey�0E

3 Subsequent time evolution in the primed basis set

i�h
d�0

dt
= �[�;H 0

I ] (C.1)

can now be simplifed as

�0mn(t) = �00 mne
�i!mnt (C.2)

where !mn = (H 0
I mm � H 0

I nn)=�h. Because the �nal answer is real, we may
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replace e�i!mnt by cos(!mnt) without a�ecting the result. Averaged over the

distribution of coherence times, we have

�0F mn =
Z 1

0
dt F (t)�00 mn cos(!mnt) (C.3)

For the common situation

F (�) =
1

�c
e��=�c (C.4)

this further simpli�es to

�0F mn = �00 mn

!2
mn�

2
c

1 + !2
mn�

2
c

(C.5)

4 Finally, transform back to the original basis set as �F = E�0FE
y and compute

the fractional polarization loss as

F =

P
m �F mmFz(m)P
m �0 mmFz(m)

(C.6)

where Fz(m) is the z projection of the total spin of state m.
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Appendix D

Classical Trajectory Simulations

In this appendix, I brie
y describe my classical-trajectory, Monte Carlo simulations

of molecular dynamics. I have used these simulations to estimate the breakup and

reorientation cross-sections for alkali dimers in a bu�er gas, and to estimate the chemical

exchange cross-section in alkali atom-dimer collisions. In addition, by simulating the

full duration of a chemical exchange collision, I have estimated the density and lifetime

of metastable trimers in the vapor.

All of these applications are similar in that a third body (alkali atom or bu�er gas)

is incident on a bound alkali dimer. For simulating chemical exchange and metastable

K trimers, I used the three-body K potential surface of ref. [Martins83] to determine

particle accelerations. This potential reduces to a singlet dimer potential when one of

the atoms is at large distance. For simulating dimer breakup and reorientation, I used

the singlet dimer potential as described in section 3.1 and treated collisions as classical

hard-sphere interactions when one of the alkali atoms and the bu�er gas approached

to within 2R0 (R0 is the hard-sphere radius). I chose R0 = 1:22�A to reproduce the

measured value of the cross-section for Rb reorientation in N2 (section 3.5).

Each simulation then proceeded according to the following steps:

1 Choose the initial dimer rotational and vibrational energies from a thermal

distribution. Pick the initial direction of the dimer's angular momentum

from a uniform distribution on the unit sphere. Pick the initial phases of

rotational and vibrational motion randomly. The dimer initially has no

center-of-mass motion.
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2 Choose the initial velocity of the third body from a thermal distribution

using the reduced mass of the third body-dimer system and pick its impact

parameter is from the distribution P (b) = 2b=b2max. bmax should be bigger

than the largest impact parameter for which the atom and dimer are likely

to interact{ I �nd bmax = 13�A works well in all cases. The initial third body

position is 25�A from the dimer in a random direction.

3 Solve for the classical particle motions numerically until they are no longer

contained in circle 40�A in diameter.

4 For simulations of dimer reorientation and breakup, go back to step 2 unless

one of the dimer atoms has escaped.

During each simulation, I kept track of constants of the motion to verify that nu-

merical errors were not a problem. Under no circumstances did the total energy change

by more than 10�6eV or the total angular momentum change by more than one part in

105.

For simulations of chemical exchange and metastable trimers, I also added up the

total amount of time that all three atoms were contained within a circle of 10�A, which I

will refer to as �dwell, and recorded which atom escaped at the end of each simulation. For

simulations of dimer reorientation, I kept track of the value ofQ = 3=2 cos2(�)�1=2 after
each collision, where � is the total angle through which the dimer angular momentum

has been rotated by collisions. The randomization rate of Q is a measure of the rate at

which the interactions 3.5 and 5.7 are subject to decoherence.

I repeated each simulation at least 5000 times and averaged the above quantities as

follows:

1 The dimer breakup cross-section (�b) is �b
2
max divided by the average number

of bu�er gas collisions required to break up a dimer.

2 The dimer reorientation cross-section (�J) is �b
2
max divided by the average

number of bu�er gas collisions required for Q to fall to 1/e.

3 The chemical exchange cross-section (�ex) is the �b
2
max times the fraction of

collisions for which the incident and escaping atom are di�erent.
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4 The distribution of metastable K3 dwell times is displayed in �gure D.1,

along with the approximate �t I used in eq. C.3 and 7.17 to estimate the

relaxation rate in metastable trimers. Note the surprisingly long lifetimes

possible in a metastable trimer{ if the atom and dimer interact at all, they

stay together for an average of about 100 ps, and lifetimes of a nanosecond

or longer are not uncommon. This result may help explain alkali-alkali

relaxation, as discussed in chapter 7.
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Figure D.1: Probability density for a simulated exchange complex K + K2 ! K3 !
K + K2 to remain in the metastable K3 state for a time �dwell. The �t shown is
P(�dwell) / exp(�20[(�dwell=ps) + 10ps]1=15). The leftmost point is abnormally high
because a signi�cant fraction of simulated atoms and dimers never interact at all, and
therefore have an interaction time of zero. I have eliminated these when calculating
both the exchange cross-section and average dwell time.
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Appendix E

Knife-Edge Gaskets and Windows

This appendix describes our method for sealing windows with a knife-edge copper gas-

ket. Our technique is a slight modi�cation of the procedure developed by Noble and

Kasevich for UHV work (described in ref. [Noble94]).

We have used this technique to successfully seal windows on 2 3/4" and 4 1/2"

Con
at ports. Our attempts to seal windows on Con
at mini-
ange (1 3/8") were not

very successful as the windows broke frequently.

The seals held pressure from 10�9 Torr to 20 atmospheres, withstood temperatures

up to 600 K and were not signi�cantly a�ected by the presence of a dense (up to 1018

cm�3) alkali vapor.

The window to be sealed in this manner should be at least as large as the Con
at

gasket O.D. (2" diameter for 2 3/4" Con
at, 3 3/8" diamter for 4 1/2" Con
at). We

used 3/8" thick Pyrex circles, although coated windows and windows made of other

materials should work equally well.

First, we machine a knife-edge into a standard Con
at gasket as follows:

1 Mount a standard Con
at gasket on the jig shown in �g. E.1 using the bolts

labeled A1-A3. Secure the jig in a lathe set to turn at about 250 rpm.

2 Use a tool bit with a 60 deg. included angle pointing at the gasket. For

the �rst cut, put the tip of the tool bit 3 mils (1 mil = 1/1000 in.) farther

from the axis of rotation than the middle of the gasket (see �g. E.2). Cut

5 mils deep and feed the tool bit outward to the edge of the gasket. (Note
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that most lathes show the diameter of the circle being cut, so the reading

will show 6 mils rather than 3).

3 Make 5 more cuts, starting 3 mils farther from the axis of rotation and 5

mils deeper each time.

4 leaving the jig in the lathe and bolts A1-A3 in place, tighten bolts B1-B3.

Now, remove bolts A1-A3.

5 Put the tip of the tool bit 3 mils closer to the axis of rotation than the

middle of the gasket. Cut 5 mils deep and feed the tool bit inward to the

edge of the gasket. Make 5 more cuts, starting 3 mils closer to the axis of

rotation and 5 mils deeper each time.
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6 Remove the gasket from the jig and deburr it.

The completed gasket is shown in �g. E.3. Check the knife edge for damage or

burrs. If any damage to the knife edge is visible, the gasket will almost de�nately leak

and should not be used.

The tool bit typically needs to be sharpened after making 2 gaskets.

Next, we seal the windows as follows:

1 Machine the window retaining ring shown in �g. E.4. This ring should

be made from stainless steel. It is simplest to start from a Con
at blank

or other used Con
at piece. The retaining ring dimensions shown in �g.

E.4 are appropriate for a 2" window sealed onto a 2 3/4" Con
at port. In

general, the window should �t into a hole with diameter 20 mils greater

than that of the window.

2 Cut 30 circles of aluminum foil with the same diameter as the window to be

sealed. Place them in the retaining ring.

3 Place the (cleaned) window on top of the aluminum foil so that it sits inside

the retaining ring.

4 Place the knife-edge gasket on top of the window, with the knife edge point-

ing toward the window.

5 Attach (but do not tighten) the whole assemly onto the Con
at port using

standard bolts and plate nuts. The bolts may need to be longer than usual

due to the thickness of the window. The Con
at knife edge seals against

the other side of the knife-edge gasket.
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6 Tighten the bolts slowly and evenly to 20 in-lb. Above 20 in-lb, use a torque

wrench and tighten the bolts in a star pattern, increasing the torque by no

more than 1 in-lb each time. We �nd it best to tighten the bolts to 45 in-lb,

let it sit for a few hours, and continue a �nal torque of 55-60 in-lb.

7 Carefully remove the aluminum foil from the outside of the window with an

Exacto knife or sharp screwdriver.

The sealed window is shown in �gs. 2.2a and 2.2d.

A window sealed in the above manner may be heated and cooled quite quickly,

although the bolts tend to loosen over time and temperature cycling. Periodically

retightening the bolts to the original torque helps prevent leaks.
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