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Abstract

I have measured ultracold collision rates for ¥ Rb in weak magneto-optical traps. This
work was motivated by an apparent three order of magnitude discrepancy between
two measurements of the ground-state spin exchange collisional loss rate. Standard
MOT measurements gave a value of 2x107!! ¢cm3/s, while a double Bose-condensate
experiment gave a rate of 2.2(9)x107* cm3/s. The low BEC result was explained by a
destructive interference in the singlet and triplet phase shifts, however, the discrepancy
between the two results has never been explained. The key result of this thesis is the
discovery of an intensity dependence of the trap loss collision rates. At low intensity
the collision rate depends linearly on the intensity as opposed to the previously believed
intensity independence. A number of possible explanations are presented and analyzed.
First, the delicate phase balance that suppressed the rate in the BEC could be disrupted
by the presence of the light. Second, the collision could take place as an excited state

process. Finally, a flux enhancement process could increase the collision rate.
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Chapter 1

Introduction

1.1 Overview

In this dissertation I describe ultracold collision experiments that demonstrate an un-
expected intensity-dependence of trap loss collisions in weak magneto-optical traps
(MOT’s). Chapter 2 describes the motivation and background for these experiments.
Because typical MOT temperatures are on the order of 100 uK, long-range interac-
tions dominate the collision dynamics. Ultracold collisions are typically measured as a
loss of atoms from the trap. Collisions, therefore, are observed only when the energy
imparted to the atoms exceeds the trap depth. For moderate trap laser intensity the
trap depth is on the order of 1 K. In this intensity regime, the collisions that result in
trap loss are excited-state collisions. The two principal mechanisms involving excited
state atoms are fine structure changing collisions, whose characteristic energy is equal
to the fine structure splitting of ~170K, and radiative redistribution, which provides a
continuous range of energies. The trap loss rate due to these excited processes increases
with increasing trap laser intensity.

At low trap laser intensity the trap depth can become shallow enough to allow
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ground state spin-exchange collisions to escape. Spin exchange collisions occur when
two atoms, beginning in the upper hyperfine level of the ground state, interact through
the exchange interaction. The exchange interaction becomes important at an inter-
atomic separation of ~ 12 A, thus spin exchange occurs only at very close range.
Through this interaction, one or both of the atoms may change to the lower hyper-
fine level. Collisions which proceed through this interaction are sometimes referred
to as hyperfine-changing collisions. Their characteristic energy is equal to the ground
state hyperfine splitting and is approximately 150 mK. A rapid increase in trap loss
rate with decreasing intensity in this regime has been attributed to these ground state
collisions. [Sesko 89]

Interest in low intensity ultracold collision measurements was motivated by a three
order of magnitude discrepancy between ®’Rb spin exchange loss rates measured in
two different experiments. In 1992, Wallace et al. reported trap loss rates in rubidium
as a function of trap laser intensity.[Wallace 92] For sufficiently low intensity the trap
should become weak enough for all atoms undergoing spin-exchange to escape. Below
that point the loss i‘a.te was assumed to be independent of intensity. The Wallace data
appeared to plateau at a loss rate of 2 x 107! cm?/s

The second measurement of the spin exchange rate was performed using a Bose
condensate (BEC). In 1997, Myatt et al. successfully condensed two different spin
states of 87Rb simultaneously.[Myatt 97] In order to create the double condensate,
the elastic collision rate must be much larger than the loss-producing inelastic rate.
The inelastic loss process in this case is also spin-exchange collisions. From the MOT
measurements as well as theoretical calculations [Tiesinga 91], the spin-exchange rate
was assumed to be on the order of 107! cm?®/s. Under those conditions the double
condensate should not be possible. Their experiment was successful, however, and they

measured the spin exchange rate to be 2.2(9) x 107'* cm?/s, nearly three orders of




magnitude smaller than the MOT case.

The very low double condensate spin exchange result was explained theoretically
as a destructive interference between the singlet and triplet phase shifts, suppressing
the spin exchange mechanism. The destructive interference occurs because the sin-
glet and triplet scattering lengths in 8Rb are nearly identical.[Julienne 97, Burke 97,
Kokkelmans 97] Why this suppression does not occur in a MOT was a mystery.

It is not entirely unexpected that the spin-exchange rate for the BEC is smaller
than the rate measured with the traditional MOT. An obvious difference between the
two measurements is the temperature. The temperature of the BEC was below the 500
nK transition temperature, while MOT temperatures are typically on the order of 100
pK. Williams has theoretically extrapolated the temperature dependence of the spin
exchange rate to MOT temperatures. [Williams 98] The maximum rate predicted with
these calculations is still a factor of 30 lower than the MOT result.

Because the temperature dependence alone does not adequately account for the
difference in loss rates, I have looked at the effect of the presence of the light. BEC
experiments are performed in magnetic traps for which there is no light present. In
contrast, near resonant laser light is used to create the MOT and is present during
the trap loss measurements. Although the ground state collisions would seem to be
unaffected by the presence of light, it is possible that light could alter the collision
dynamics. For example, interaction with the trapping laser at large interatomic sep-
arations could modify the trajectories at close raI{ge. To explore the effect that the
light has on the collisions, I have measured the trap loss rate as a function of trap laser
intensity especially for very weak traps.

Chapter 3 provides a description of the apparatus and the procedure used for taking
and analyzing the data. Although the apparatus used for performing these measure-

ments is a standard vapor-loaded magneto-optical trap, there are a few features of the
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apparatus that are unique to this experiment. In particular, the background pressure

of rubidium must be quite low. To achieve very low background pressure, the vacuum
chamber was carefully prepared prior to assembly. In addition to a standard ion pump,
a titanium sublimation pump was used to provide increased pumping speed. The pres-
sure in the chamber was below 10~!! Torr which allowed trap lifetimes of as long as
1000 seconds. In addition I have improved trap alignment techniques that allow the
trap to be operated at much lower intensities than were previously accessible.

To measure the trap loss rate, the MOT was first loaded at high trap laser inten-
sity. Once the trap was loaded, the intensity was reduced to some lower value. The
fluorescence from the trapped atoms was recorded as a function of time, and the trap
density was measured using a liquid-nitrogen cooled CCD camera. The data were then

fit to the analytic solution of the rate equation

dN 2
—=L-TN ﬁ/ndr, (1.1)

where 8 is the ultracold collision loss rate coefficient, I is the loss rate due to collisions
with hot background gas atoms and L is the loading rate.

At moderate to high intensities the trap loss rates showed the same trends as those
measured in previous experiments. At very low intensity I discovered the remarkable
result that the loss rate increases linearly with intensity rather than becoming intensity-
independent as was previously predicted. Sample trap loss data is shown in figure 1.1
for a laser detuning of one linewidth and a magnetic field gradient of 18 G/cm.

Chapter 5 provides interpretation and discussion of the results. There are several
mechanisms that could provide the observed intensity dependence. One explanation
is related to the theoretical work from the double BEC experiment. The basis for the
very low spin-exchange rate was a cancellation between the singlet and triplet phase

shifts. The presence of the trapping light could mix some of the 1/R3? excited state
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Figure 1.1: Trap loss rate as a function of intensity for A = —1I' and a magnetic field
gradient of 18 G/cm. After the increase in loss rate with decreasing intensity, it was
previously believed that the loss rate would reach a plateau. Instead the data shows a
decrease in loss rate below ~1 mW /cm?.
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potential in with the 1/R® potential. If the singlet and triplet phase shifts are affected

differently by the presence of the light, the balance would be disrupted.

Another possible mechanism is an excited state process similar to a fine structure
changing collision. The pair could absorb a photon, transferring to an excited potential.
Mixing of the potentials could allow a curve crossing to a potential for which the ground
state atom changed hyperfine level. Upon radiating to the ground state, the pair would
have gained one unit of ground state hyperfine splitting. One characteristic of such a
mechanism is that only one atom would change hyperfine levels. A repulsive collision
experiment, however, measured the trap depth under conditions comparable to the
previous Rb MOT trap loss experiments.[Hoffmann 96] Their measurements indicated
that the trap was sufficiently deep that both atoms would have to change hyperfine
level in order to escape. Thus an excited state hyperfine changing process is unlikely
to be responsible for the measured intensity dependence.

A final mechanism is a flux enhancement process. This process was studied for
excited-state collisions and was shown to increase the excited state collisional trap
loss rates by a factor of 3.[Sanchez-Villicana 96] The increase is attributed to the fact
that the trap laser excites pairs of atoms which are then accelerated on an attractive
potential, increasing the flux of atoms reaching close range. I have examined this
process classically using a Langevin analysis, for which the loss rate increases by a
factor of 2. In terms of angular momentum, the effect of flux enhancement is to allow
higher partial waves to overcome the centrifugal barrier. I have examined the effect of
additional partial waves on the loss rate. In addition, because the atoms are accelerated,
the velocity distributions are modified, and, in particular, the mean velocity is shifted
to a larger value. Using the modifed velocity distribution I found an increase in the
loss rate by a factor of 2. Furthermore, considering the contributions of higher partial

waves I obtained a loss rate of 3.4 x 107! cm®/s. This value is quite close to the peak
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observed loss rate of ~5 x 107! cm?/s. The inclusion of higher partial waves appears
to account for the discrepancy between the MOT measurements and the theoretical
rate coefficient including temperature dependence, however, the analysis assumed that
all of the atoms were affected by the flux enhancement.

Finally, chapter 6 describes a technique for measuring the excited state fraction
for low to moderate intensity traps. This technique was originally developed in order
to determine the minimum trap laser intensity required for reliable trap operation.
Knowledge of the excited state fraction is important for many experiments involving
trapped atoms, however prior to this method the only direct measurement used pho-
toionization out of the excited state.[Dineen 92] The new technique provides a method
for determining the saturation intensity which then allows the excited state fraction to

be calculated.

1.2 Summary of achievements

I spent the first four years here working on the evanescent project. As a part of that
I worked on the design of a multi-layer dielectric structure for enhancing evanescent
waves.[Nesnidal 96] The proposed experiment was to drop a sample of trapped atoms
onto an evanescent wave and study the ultracold collision dynamics of an atom with
its image. One of the novel features of this experiment was that the excited state
potential could be tuned because it involved the detuning and strength of the evanescent
wave. Thus we could study excited state collisions in which we chose the excited state
potential. I also wrote a Monte Carlo simulation for that experiment which was meant
to model the distribution of energy that we would see from the atoms after bouncing
on the evanescent wave.

After the evanescent wave project, interest turned toward Bose-Einstein conden-
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sation. With a BEC experiment in mind, I built and demonstrated loading into a

magnetic trap. During that time we were considering possible collision mechanisms to
study in the magnetic trap, when we found the interesting discrepancy between the
spin exchange rates in BEC as compared to MOT’s.

At that point my research turned back to magneto-optical trapping. While attempt-
ing to measure trap loss from very weak traps I developed techniques for aligning the
lasers and magnetic fields to the tolerances required for very weak traps. In addition
I developed a method for measuring the excited state fraction for trapped atoms at
moderate laser intensities. While measuring trap loss rates at low trapping intensities,

I discovered a new intensity-dependence in the trap loss rate for weak traps.




Chapter 2

Motivation

2.1 Overview

This work has been motivated by two sets of experiments. Section 2.2 describes the
standard ultracold collision measurements in magneto-optical traps that first laid the
groundwork for the understanding of low-intensity traploss experiments. The following
section describes work involving Bose-Einstein condensed atoms. Although the ex-
perimental conditions for condensed atoms are different for magneto-optically trapped
atoms, in principle the collisional processes are similar. The loss rate due to spin-
exchange collisions measured in BEC was three orders of magnitude smaller than the
MOT rates, which caused us to speculate on the possible reasons for the difference.
The final section considers the differences between the two sets of experiments, tem-
perature and the presence of light. Theoretical calculations showing the temperature
dependence do not adequately account for the large discrepancy between the two ex-

periments. Thus we chose to look at the effect of the light on the collision process.
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2.2 Ultracold Collision Experiments

Since the demonstration of the first magneto-optical traps [Raab 87], one of the pri-
mary research interests has been the study of ultracold collisions. Because of the very
low temperatures achieved in MOT’s, they provide an interesting arena for studying
previously inaccessible physics. Atomic collisions in this regime are unique because
of the long interaction times as compared to standard room temperature collisions.
The collision time can be much longer than the spontaneous lifetime of the excited
state, allowing an atom to absorb and emit photons during the collision. Because the
interatomic forces are orders of magnitude different for the ground and excited states,
the interaction with photons dominates the collision dynamics. In addition, the role
played by long range forces is much larger in ultracold collisions as compared to room
temperature collisions.

A common method used for measuring collisions between trapped atoms is to mon-
itor the number of atoms in the trap as a function of time. Ultracold collisions for
which the kinetic energy transferred to the atoms is greater than the trap depth are
observed as a loss of atoms from the trap. The rate equation describing the density of

trapped atoms is given by

dN ) s
—~=L-TN B/ndr, (2.1)

where n is the trapped atom density, L is the loading rate in atoms/s, I' is the loss rate
due to collisions with background gas atoms in s~ and 8 is the loss rate coefficient
due to ultracold collisions in cm3/s. In the absence of loading, a typical decay is shown
in Figure 2.1. The contributions from background collisions and ultracold collisions
can be resolved as the density changes in time. The loss rate is first dominated by

ultracold collisions, and then at longer times, when the density is significantly smaller,
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Figure 2.1: Time-dependence of traploss rate without loading. The traploss rate is
dominated at first by ultracold collisions when the density is high, after the number of
atoms has decreased significantly, the loss due to background collisions dominates.

the loss is dominated by background collisions. On a logarithmic scale, the curvature
is due to ultracold collisions while the straight portion is due to background collisions.
Ultracold collisions can be broken down into two basic types: ground state collisions
in which both atoms remain in the ground state during the collision, and excited state
collisions, in which the atoms absorb a photon during the collision process.
As two ground state atoms collide, at very close range, the exchange interaction,
Vezeh(S1 - S2), becomes important. Under the influence of the exchange interaction,

one or both of the atoms may change hyperfine level:

5251 /2(F = 2) +5°S12(F =2) — 5%S1p(F=1)+5S12(F=2) (22)

or
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Figure 2.2: Two colliding atoms that both start in the upper hyperfine level can undergo
a spin exchange collision in which one or both of the atoms leaves the collision in the
lower hyperfine level. The energy gained in such a collision is equal to the ground state
hyperfine splitting, 6.83 GHz for 8’Rb, for one atom changing hyperfine level or 13.66
GHz if both change.

— 5281/5(F = 1) +52S12(F = 1) (2.3)

As shown in figure 2.2, the kinetic energy acquired by the atoms in the first case is
equal to the ground state hyperfine splitting, and in the second case the kinetic energy
is twice the hyperfine splitting. The ground state hyperfine splitting for *'Rb is 6.83
GHz which corresponds to a temperature of approximately 150mK. Because of the
small energy acquired, atoms undergoing hyperfine changing collisions can only escape
very weak traps.

On the other hand, excited state trap loss collisions are believed to occur via two
main mechanisms, fine-structure changing collisions and radiative escape. Both mecha-
nisms are illustrated in Figure 2.3. In a fine structure changing collision, after absorbing
a photon tuned near the 5S;/; — 5P3/2 state, the atoms are accelerated toward one an-
other on the 5S;/2 + 5P3/2 molecular potential. Due to mixing of the 5P3/ and 5P1/2
potentials, if the atoms survive on the excited state potential to very small interatomic

separation they can undergo a fine-structure changing collision:

52S1/2 + 52 Psja — 52S1/2 + 5°Pyja (2.4)
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? (L. 581/2 + 5P3,2
=
B\ e G 581/2 + 5Pw
1
R1 581/2 + 581/2

Figure 2.3: Mechanisms for excited state collisional trap loss. In both processes, one
atom absorbs a photon at separation R;. The atoms are accelerated toward each other
on the 5S;/2 +5P3/2 molecular potential. Radiative escape occurs when a less energetic
photon is emitted when the atoms are a fairly close range. A fine-structure changing
collision occurs when the atoms get close enough to undergo a curve crossing with the
5S1/2 + 5Py /2, acquiring kinetic energy equal to the fine structure splitting.
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Under this circumstance the atoms gain kinetic energy equal to the fine structure

splitting. For 8’Rb this splitting is on the order of 170K,which greatly exceeds the trap
depth.

The second type of excited-state collision is radiative escape, also called radiative
redistribution. Again, during the collision an atom absorbs a photon and the collision
proceeds on the excited molecular potential. After the atoms acquire an energy greater
than the trap depth, they radiate to the ground state. Due to the attractive nature of
the potential, the photon emitted by the colliding pair is less energetic than the initially
absorbed photon. Because the atoms tend to radiate to unbound states, radiative
escape provides a continuous range of energies to the atoms in contrast to fine-structure
changing collisions in which a discrete amount of energy is imparted.

The first set of experiments that motivated our work were studies of the intensity
dependence of traploss rates in alkali MOT’s. In 1989, Sesko et al measured the
intensity dependence of traploss for cesium.[Sesko 89] Their measured loss rate as a
function of intensity is shown in figure 2.4. In their work, they identified two different
regimes for traploss due to ultracold collisions. At high intensity the trap loss rate
increases with increasing intensity. In that regime the trap loss mechanism is domi-
nated by excited state collisions. As the trap laser intensity is decreased, the loss rate
decreases until it reaches a minimum whereupon the loss rate increases sharply. The
rapid increase at low intensity was interpreted as an indication that the trap depth had
become too weak to confine atoms that had acquired the ~ 0.1 K energy imparted in
spin exchange collisions.

In 1992, Wallace et al. at the University of Connecticut extended the ultracold
collision studies to rubidium. The traploss rates as a function of intensity showed the
same shape as the data of Sesko et al. In addition, they observed significantly different

behavior between the two isotopes, 3°Rb and 87Rb. At high intensities they found that
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Figure 2.4: Traploss as a function of trap laser intensity for Cs. The rapid increase in
loss rate with decreasing intensity has been interpreted as an indication that ground
state spin exchange collisions could escape the trap.[Sesko 89]
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the loss rate for 85Rb was consistently a factor of 3.3 larger than for ' Rb, which they

attributed to differences in the ground and excited state hyperfine structure between
the two isotopes. In addition the loss rate at low intensities began to increase with
decreasing intensity at a higher intensity for ¥ Rb than 3*Rb. Again, because the ground
state hyperfine splitting is approximately twice as large in "Rb as compared to 8Rb,
the energy released in a spin-exchange collision will be twice as large for *’Rb. Thus
a larger trap depth is required to confine spin-exchange products in *’Rb. Although
the two isotopes showed different behaviors, they found that 3 leveled off at roughly
the same value for both isotopes, 2 x 10~ cm®/s. They noted that the turn on of
the hyperfine changing collision channel was sloped because the trap was not perfectly
isotropic. As the rate begins to increase, loss is allowed only in the least damped
direction, and the leveling off was interpreted as the point at which escape was allowed
in all directions.

In 1997 the Connecticut group published a more complete study of the intensity de-
pendence for both isotopes of rubidium over a range of trap laser detunings.[Gensemer 97]
Their results were consistent with the 1992 data, and the 57Rb results are shown in
figure 2.5. In addition they provided further evidence that the sharp increase in the loss
rate is due to hyperfine changing collisions. To show that the effect was due to atoms
leaving the collision in the lower ground state, they attenuated the hyperfine pumping
laser. Attenuation of the repumping laser allows atoms in the lower, untrapped hyper-
fine level to travel farther before being repumped into the trapped level. They were
able to attenuate the hyperfine pumping intensity by a factor of four without seeing
any change in the traploss rate, however, for increased attenuation they observed a
sudden increase in the loss rate. The properties of the trap such as volume and excited
state fraction were unaffected by attenuations up to a factor of 10. Thus at least one

of the atoms undergoing this collision process must find itself in the lower hyperfine
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Figure 2.5: Traploss as a function of trap laser intensity for *’Rb measured by
[Gensemer 97]. Again the increase in loss rate with decreasing intensity has been
attributed to spin exchange collisions. In addition, the apparent plateau at the lowest
intensities was interpreted as an indication that the loss rate due to spin exchange was
intensity independent.
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level.

The low intensity behavior of the trap loss rate is quite suggestive of spin exchange
collisions. The intensity for which loss rate begins to increase with decreasing intensity
is consistent with the trap depth becoming shallow enough for spin exchange products
to escape the trap. Furthermore, the measurements of trap loss as a function of hyper-
fine pumping intensity show that the atoms are in fact ending up in the lower hyperfine
level. The apparent leveling off of the trap loss rate at very low intensities also suggests
that the trap can no longer recapture spin exchange products, indicating that the spin

exchange rate is 2x107!! cm?/s.

2.3 Double Bose Condensate

A more recent advance in atomic physics was the experimental observation of Bose-
Einstein condensation (BEC) in dilute gases. [Anderson 95, Bradley 95, Davis 95| BEC
has provided yet another arena for studying ultracold atoms. The procedure for achiev-
ing a sample of condensed atoms begins with a MOT. The atoms are then transferred
to a magnetic trap and are cooled through evaporative cooling. In that process the con-
fining potential is lowered to allow the most energetic atoms to leave the sample. The
remaining atoms then rethermalize to a lower temperature. This process is continued
.until the atoms reach the transition temperature to condense.

In 1997 the group at Colorado successfully created a double Bose condensate, con-
sisting of two different spin states of ’Rb, [F=1, m=-1) and |[F=2, m=2).[Myatt 97]
The [F=1,m=-1) atoms were evaporatively cooled as in a standard Bose condensation
experiments. The other state, however, was cooled sympathetically through elastic
collisions with the evaporatively cooled atoms. Sympathetic cooling has the advantage

that it produces much lower loss rates as compared with the inherently high loss asso-
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ciated with evaporative cooling. One potential application for sympathetic cooling ig,
the production of degenerate Fermi gases.

In order for the sympathetic cooling to take place efficiently, the elastic collision
rate must be large compared to the inelastic rate. The MOT measurement of 2 x 1071
cm?/s suggested that the dominant inelastic loss mechanism, spin exchange collisions
should be prohibitively large. In addition, the theoretical predictions at the time of
the experiment also predicted the rate to be on the order of 10~ cm?®/s.[Tiesinga 91]
Despite predictions, the double condensate was achieved. Measurement of the densities
of the two species as well as the loss rates gave a total rate constant of 2.2(9) x
10~“cm3/s, some three orders of magnitude smaller than the measurements made
with MOT’s.

The theoretical basis for the low spin-exchange rate was found to be caused by a for-
tuitous matching of the singlet and triplet scattering lengths in 3’Rb.[Kokkelmans 97,
Julienne 97, Burke 97] Large uncertainty in the rubidium scattering lengths had made
previous theoretical predictions of the rate coefficients very difficult. The extremely low
observed rate provided the necessary limitations on the scattering lengths to improve
the theoretical understanding. The cross-section for spin-exchange collisions is propor-
tional to sin?(¢s — ¢:), where @, are the singlet and triplet phase shifts. The phase
shifts are related to the scattering lengths by ¢,: = —J_—:;—;'E‘—t.‘ The close matching of
the scattering lengths provides destructive interference between those terms, suppress-
ing the spin-exchange collisions. Prior to the double condensate result, the possibility
of a cancellation between the singlet and triplet phases had not been considered. The
fortuitous matching of scattering lengths appears to exist only for rubidium, and thus

this cancellation is not expected to be observed in the other alkalis.

*This formula should not be taken too seriously as it predicts a cancellation in the cross-section at
190uK.
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Prior to creation of the double condensate, rubidium scattering length measure-
ments had very large uncertainty. The measured spin exchange rate of 2.2(9)x10~™
cm?/s has led to an improved theoretical understanding of the scattering length for
87Rb. In addition, the three order of magnitude discrepancy as compared to the MOT
measurements has led us to believe that there must be more to understand about the

spin exchange collisions.

2.4 Connecting the MOT and BEC Results

This three order of magnitude discrepancy between the MOT and BEC measurements
of the spin exchange rate seemed to be indicative of interesting physics. Although the
two experiments are quite different, the loss process is supposedly identical. The obvi-
ous differences between the experiments are the large difference in temperature,100uK
for MOT’s and 500nK for BEC, and the presence of near-resonant light in the MOT.
Carl Williams has theoretically modelled the temperature dependence of the spin-
exchange process using a full configuration interaction calculation using the best avail-
able potentials.[Williams 98] The double condensate experiment imposed tight restric-
tions on the singlet and triplet scattering lengths. These improved scattering length
values were then used to further impose stringent limitations on the boundary condi-
tions for calculating the spin-exchange cross sections. The results of these calculations
are shown in Figure 2.6. In addition to the theoretical predictions, the experimentally
determined rate coefficients for the MOT and the double BEC experiments are shown
at the appropriate temperatures. Even allowing the MOT temperature to be at the po-
sition of the maximum predicted rate, the measured rate would still be approximately
a factor of 30 too high. Clearly the temperature dependence alone does not account

for the difference between the two rates.
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Figure 2.6: Spin-exchange rate as a function of temperature as calculated by
[Williams 98]. The loss rate for the MOT of 2 x 107! cm®/s as reported in
[Gensemer 97] is shown at a typical MOT temperature of 150 uK. The double BEC
result 2.2 x 107 cm3/s [Myatt 97] is similarly shown at the 500 nK.
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A second fundamental difference between the two experiments is the presence of
light in the MOT case. Bose-Einstein condensation is achieved in a magnetic trap, us-
ing a standard MOT only as a starting point. Once the atoms are actually condensed,
however, aside from imaging, there is no light present. On the other hand, the mea-
surements in the MOT are made in the presence of the near-resonant trap laser. Thus
it seems probable that the presence of the trap laser may affect the spin-exchange pro-
cess in some way. Intensity dependent measurements have been studied in the previous
MOT experiments, and careful examination of the lowest intensity points in figure 2.5
does show a possible decrease for intensities below 2mW/ cm?. If the lowest data point
is not considered, the decrease seems quite plausible. The data is plotted on a log scale
which tends to hide any possible decrease. At the time of those experiments, there was
no basis for believing that the rates should go down at low intensity. In contrast to
previous work on this subject, we have measured these rates at much lower trapping

intensities.
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Chapter 3

Apparatus and Experiment

3.1 Introduction

The discovery of intensity-dependent trap loss in weak magneto-optical traps was made
using trap loss measurement techniques in a standard MOT. A general introduction to
laser cooling and trapping is given in [Foot 91], and a list of references for various atom
trapping experiments is presented in [Newbury 96]. This chapter describes the basic
MOT apparatus making particular note of the aspects that are unique for low-intensity
traps as well as the techniques used to measure trap loss in low intensity MOT’s.

In order to measure ultracold collisions the loss rate due to background collisions
must be kept quite small, requiring very low background pressure. Low background
pressure is especially important for low-intensity trap loss measurements and is below
107! Torr in these experiments. A description of the preparation of the ultrahigh
vacuum chamber is presented in section 3.2. The optical system, consisting of three
external-cavity diode lasers and associated optics and spectrometers, is described in the
following section. The vacuum chamber and optical system are pictured in figure 3.1.

Trap loss is measured by monitoring the trap density as a function of time. The
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fourth section details the various detection methods for determining the density and
outlines the equipment used in the detection process. Low intensity traps are much
more sensitive to the alignment of the trapping lasers and positioning of the magnetic
field zero than ordinary MOT’s. The fifth section describes the methods used for trap
alignment. Finally, the last section describes the procedure for measuring trap loss
rates, including methods for data analysis, important experimental considerations in

this regime and sources of systematic errors.

3.2 Vacuum Chamber

Loss of atoms from the trap due to collisions with hot background gas atoms can easily
overwhelm the ultracold collision loss especially for weak traps. Thus the quality of
the vacuum is extremely important in these experiments. To minimize the background
pressure, the vacuum chamber was carefully cleaned following a thorough ultrahigh
vacuum cleaning procedure prior to assembly. A detailed set of instructions for this
procedure is given in Appendix A as well as the procedure for cleaning copper for use
in ultrahigh vacuum environments. After assembling the chamber, we baked it at a
temperature of ~220°C over eight days while it was connected to a turbo pump. The
heating and cooling were done slowly — over 2-3 days — in order to prevent damage
to the windows. Once the chamber reached 220°C we maintained that temperature
until the pressure came down by a factor of five.

After initially pumping down the chamber with a turbo-pump, the pressure in the
chamber was improved and maintained with two pumps. The first was an 11 L/s Perkin
Elmer ion pump. In addition, a Varian mini Ti-ball titanium sublimation pump was
used. The combination of careful cleaning and baking as well as high pumping speed

resulted in pressures below 10~!! Torr. Trap lifetimes as long as 1000 seconds have
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Figure 3.1: Picture of the optical table showing the vacuum chamber (left), lasers
(right), and the optics required for the experiement.
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Figure 3.2: Typical trap decay curve showing the extremely long trap lifetime. A fit
to the decay gives a background loss rate of .00124s™! corresponding to a trap lifetime
of just over 800 seconds. The contribution to ultracold collisions is observed as non-
exponential decay. This decay curve was taken at an intensity for which the loss rate
due to ultracold collisions is a minimum.

been measured. A typical trap decay curve showing the extremely long trap lifetime
is shown in Figure 3.2. A fit to the decay gives a background loss rate of 0.00124s71,
corresponding to a trap lifetime of just over 800 seconds. Longer lifetimes have been
observed when the background rubidium pressure was lower.

Rubidium is introduced into the chamber through an atomic beam valve every
couple of months. The beam valve consists of a rotary motion feedthrough, with a hole
drilled through its shaft, inserted radially into a blank flange. The blank flange has a
drilled though its center such that rotation of the feedthrough can align the holes in
the feedthrough and flange allowing atoms to stream out of the oven, or misalign the

apertures by 90 degrees blocking the flow of atoms. A second aperture was originally



27

included to collimate the atomic beam. The beam valve was designed to create a beam-
loaded trap, allowing the loading to be stopped by rotation of the feedthrough. After
many months of use, however, we determined that the source of atoms did not turn off
when the beam valve was closed. The chamber wall opposite the beam valve as well as
parts of the beam valve itself were presumably coated with rubidium, and thus the trap
could be operated for several weeks with the beam valve closed. The trap was therefore
not beam loaded, but rather was primarily loaded from a background vapor. Opening
the beam valve was simply increasing the background of rubidium vapor available for
trapping. After realizing the importance of low rubidium background pressure for our
experiments, the beam valve was kept closed during data taking, and extra rubidium
was loaded into the chamber by heating the oven behind the valve and then opening
the valve for several minutes to an hour only every few months.

An additional feature of the vacuum chamber is the 10” recessed flange. The recess
allows magnetic field coils to be much closer together than otherwise possible. The coils
used for this work were wound with three layers of copper tubing for water cooling if
necessary. Each coil consists of 102 turns with the inner radius of each coil equal to 4.27

cm and a separation of 6 cm, giving an axial magnetic field gradient of 3.8 G/cm/A.

3.3 Lasers and Optical System

Three lasers were used for this experiment, the trap laser, hyperfine pumping laser, and
an additional trapping laser. All three lasers were external cavity, grating-stabilized
tunable diode lasers operating at the 780nm 5S;/2 to 5P3/2 transition of *’Rb. The
external cavity is produced using a diffraction grating in the Littrow configuration to
couple the light back into the laser diode. The zeroth order of the grating is used

to couple the light out of the laser. The trapping lasers were constructed using the
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design of [Arnold 98], which involves mounting the laser diode and collimating lens

to the stationary portion of a standard mirror mount. The diffraction grating is then
attached to an extension of the movable part of the mount. A piezoelectric transducer
is inserted in the path of one of the adjustment screws of the mirror mount to allow
the position of the grating to be swept, thereby sweeping the frequency of the laser.
The hyperfine laser was constructed using a similar design.

An energy level diagram for 8Rb is shown in figure 3.3 with the trap laser and
hyperfine pumping transitions noted. All three lasers were locked using saturated
absorption spectrometers.[Preston 96] The frequencies of the various transitions in the
saturated absorption spectrum as the laser frequency is swept are shown in figure 3.4.
A sample saturated absorption spectrum is then shown in figure 3.5. The hyperfine
laser was locked on resonance to the F=1 to F'=2 transition. The trap lasers were each
offset locked to the F'=2,3 crossover peak using a 140 MHz acousto-optic modulator
in the saturated absorption spectrometer. A voltage controlled oscillator was used to
set the frequency of the AOM. The crossover peak is 133.6 MHz from the trapping
transition, thus by setting the AOM frequency to 127.7 MHz, the trap laser would be
set to 5.9 MHz, equal to one natural linewidth, I. The primary trap laser detuning
was varied between -1I" and -2T", while the additional trap laser detuning was always
-1

A schematic of the essential optical eleme:nts is shown in Figure 3.6. The primary
trap laser and the hyperfine laser were coupled into a polarization-maintaining fiber
using a polarizing beam splitter. Coupling through the same fiber ensured that the
two lasers were perfectly spatially aligned. The fiber also eliminated the need for
realignment of all of the trapping optics when adjustments were made to either laser.
One disadvantage of the polarization-maintaining fiber was the need for extremely

precise polarization mode matching. If the polarizations were slightly misaligned, cross-
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Figure 3.4: Hyperfine levels and F=2 — F'=1,2,3 transitions for *’Rb. The numbers

indicate the separation of the various transitions in MHz. The dashed lines indicate
the frequencies of cross-overs in the saturated absorption spectrum.
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Figure 3.5: Sample saturated absorption spectrum for *’Rb. The letters correspond to
the transitions shown in figure 3.4.
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talk between the polarization modes of the fiber would result in fluctuations of the
output polarization. In our experiment that polarization fluctuation translated into
fluctuations in the relative trapping beam intensities, dramatically disrupting the trap
performance. Careful alignment of the polarizations was achieved by rotating a half-
waveplate immediately before the fiber in .1° increments to minimize the intensity
fluctuations over several minutes at each waveplate position.

In the paths of the trap and hyperfine pumping lasers was a liquid crystal variable
attenuator. The attenuators (Thorlabs, model CR-100) were used as variable wave-
plates whose retardance was determined by an applied voltage. Because the lasers were
coupled into the fiber through a polarizing beamsplitter, rotation of the polarization
also changed the amount of light coupled into the fiber, allowing adjustment of both
laser intensities. The maximum intensities of the trap and hyperfine pumping lasers
were 14 mW/cm? and 2 mW/cm? respectively.

The polarizations of the each of the trapping beams were set using “Natalie’s
theorem” .[Vansteenkiste, 93] Natalie’s theorem provides tests such that the polariza-
tion at a retroreflection can be determined by setting the initial polarization and adjust-
ing a quarter-waveplate and half-waveplate while monitoring the return polarization.
The benefit to this method is that the circular polarization can be set at the trap
independent of any birefringent effects of the mirrors.

The third laser, used as an additional trapping laser, was coupled into the trapping
optics through the first beam splitter after the fiber. The diode was a high power
Sanyo diode, and provided about 50 mW of power for trapping. This laser was used
solely to aid in loading of the trap in order to increase the number of atoms as well
as to decrease the time it took to fully load the trap. The laser was blocked using a

mechanical shutter during actual data collection.
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3.4 Detection

The number of atoms in the trap was measured by imaging the trap fluorescence onto

a photodiode. To convert the photocurrent into the number of atoms we first need the

scattering rate per atom, R, which is given by
A

- L (3.1)
21+ L +48°

where A is the laser detuning from resonance, I is the total laser intensity, I, is the
saturation intensity, and I is the natural linewidth. By taking into account the solid
angle, €0, subtended by the imaging system and comparing the number of photons per
second scattered from the trap to the scattering rate of a single atom, we can determine

the number of atoms in the trap:

Ioan.
Number of atoms = (3.2)
he RO

where L4 is the photocurrent, 7. is the photodiode efficiency and bf is the energy per

photon for A = 780nm.

For measuring ultracold collisions we need to know how the trap density changes in
time, so in addition to the number of trapped atoms we also need to know the spatial
extent of the trap. To determine the density the trap was imaged onto a a Princeton
Instruments model LN/CCD-512-TKB/4 liquid-nitrogen cooled CCD camera. The
program IPLab Spectrum was used to control the camera shuttering as well as to
analyze the trap images. The trap density was determined from the two dimensional
image by measuring the mean and root-mean-square pixel brightness. From the rate
equation ( 2.1) we can define a reduced volume, the number of atoms divided by the
density, as

(f nd3r)?

V=@ (33)
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The modified rate equation including the reduced volume is discussed in section 3.6.
Assuming that the density can be written as n(r) = X(z)Y (y)Z(z) then the reduced
volume can be written as three separate integrals. Further assuming that the trap is
isotropic, so that the density distribution in each direction is equal, the reduced volume

can be written as
(f Xdz)?

V' =Prxeg 1

(3.4)

The numerator is simply the square of the mean of X, and the denominator is the
square of the root mean square of X. We can then relate that expression to the two

dimensional image in terms of the average and rms pixel brightness by

_ (f nda:dy) 2K3‘izel

V/ — N 2ﬁ2K3i:zel
[ n?dzdy

2
N Nrms

P2 = 12 (3.5)

where N is the total number of pixels and K« is the conversion factor between pixels
and centimeters. Up to two additional inexpensive CCD security television cameras
were used to monitor the trap for diagnostic purposes.

Finally, the timing of the entire experiment is controlled using a National Instru-
ments data acquisition (NIDAQ) board with a Power Macintosh 7100. The NIDAQ
board controls the voltages for setting the variable attenuators, changing the magnetic
field gradient, opening and closing the shutter, and taking images of the trap. In ad-
dition, the trap fluorescence data from the photodiode were collected and stored with

the NIDAQ board.

3.5 Trap Alignment

Over the course of developing the experiment, it became clear that the alignment of
the trap was critical to the operation of very low intensity traps, especially below 1

mW/cm?. The two indications used for setting the alignment were the slow, uniform
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dissipation of the optical molasses as the magnetic field gradient was turned off and

the spatial stability of the trap as the laser intensity was modulated. After using those
two as diagnostics for aligning the trap, the minimum intensity feasible for operating
the trap was measured by modulating the trap intensity between the maximum and
minimum and requiring the number of trapped atoms remained constant.

Optical molasses describes the atoms in the six trapping beams in the absence of
a magnetic field gradient.[Chu 85] In this configuration the atoms undergo a random
walk and eventually leave the intersection region of the trapping beams. If the trapped
atoms begin in the center of the intersection region and the intensities of the six beams
are well balanced, the optical molasses will dissipate slowly and uniformly. If, on the
other hand the atoms start on the edge of the intersection region, the force on the
atoms will not be balanced and the cloud of atoms will expand much more quickly
in one direction than the others. Thus if the zero of the magnetic field gradient is
well centered in the intersection of the six beams, when the gradient is turned off,
the molasses will be slow and uniform. To monitor the molasses in three dimensions,
two CCD cameras were used looking along two different axes of the trap, while the
magnetic field was switched on and off. The duty cycle was adjusted to maximze the
number of atoms loaded into the trap thus maximizing the fluorescence. In addition
to the standard anti-Helmholtz coils there were three sets of shim coils used to cancel
the effects of stray field. These shim coils were used to center the zero of the field on
the beams.

The spatial stability of the trap was also monitored with the two CCD cameras.
In this case the trap intensity was modulated between the maximum intensity (10-15
mW /cm?) and some lower value. The retroreflecting mirrors were adjusted so that
the trap position did not change as the intensity changed. The low intensity value

was decreased as the alignment approached an equilibrium to make the procedure
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as sensitive as possible. The retroreflection positions were further restricted by the
requirement that any intereference lines in the trap be eliminated.

These two alignment procedures were complicated by the fact that the two adjust-
ments were coupled. Thus the alignment was an iterative process. In addition, the
separate procedures were not easy as each involved three different axes of adjustment.
Once the two procedures seemed to converge, the trap operation at low intensity was
checked by switching the trap intensity from the maximum value down to very low val-
ues — below 1 mW/cm? for 0.5 sec. and then switching the intensity back to the original
value. For a well-aligned trap, the number of atoms should remain constant during this
process. The low intensity was decreased until the number of atoms showed a decrease,
thus determining the lowest intensity used for taking loss rate measurements. This
check also served as a diagnostic for ensuring that the two alignment procedures had
converged. We have also used a slight variation of this diagnostic as a method for
measuring the excited state fraction in the trap. Details of this new technique are

described in chapter 6.

3.6 Experiment

We are interested in measuring the loss rate due to ultracold collisions as a function
of the trap laser intensity. To perform the basic experiment the trap was loaded with
both trap lasers at their maximum intensities. The trap was loaded for 15 seconds
to 2 minutes, depending on experimental parameters such as laser detuning. The
loading time is related to the trap density which is discussed following the outline
of the experimental procedure. Once the trap was sufficiently loaded, the trap laser
intensity was switched to a lower value using a variable attenuator as described in

section 3.3. The atoms were then allowed to decay from the trap for up to 15 minutes.
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During the loading and decay processes the fluorescence signal from the trapped atoms
was recorded. An image of the trap was taken with the liquid-nitrogen cooled CCD
camera 5 seconds after the intensity was changed for measuring the density. We were
operating the trap in a low-density regime, for which the volume of the trap does not
change as the number of atoms changes. A second image was taken at the end of the
decay with the magnetic field gradient turned off to allow for background subtraction.
A typical data set is shown in Figure 3.7.
To determine the ultracold collision loss rate, the decay portion of the data was fit

to the solution of the rate equation

dN -
= L—I‘N—ﬁ/ndr

_ [ n2d®r

= L—TN N (3.6)

where N is the number of trapped atoms, n is their density in atoms/ cm?, L is the

loading rate in atoms/s, T is the loss rate due to collisions with background gas in s7L,
and @ is the ultracold collision loss rate coefficient in cm?3/s. Using the reduced volume,

V', defined in equation 3.3, the loading equation then becomes

dN B,
- =L-TN- =N (3.7)

whose solution can be written as:

1 _ BV 2NV ___ BIV
N, —No ' T+ 2NB/V' T +2N..3/V'
(3-8)

-1

N= NOff+Ar°+ [(

where N,fs accounts for the offset in the fluorescence signal due to scattered light and
N, is the initial number of atoms. N, represents the equilibrium number of atoms and

includes the effects of loading. The relationship between N, and the loading rate, L,
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Figure 3.7: Sample data for measuring 3. (a) The trap was loaded for 2 minutes at
high intensity. (b) In this case the intensity was then decreased to 0.5 mW/cm? and
was then allowed to decay for 13 minutes. 3 is determined by fitting the data in (b) to
the analytic solution of the trap loading rate equation.
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is given by
BN,

L=TNy+ ~ (3.9)
Without loading, N, would be equal to zero.

To further account for loading in our experiments a loading transient was measured
at each intensity. The loading curves were taken by setting the trap intensity to the
value of interest. The magnetic field gradient was set to zero for 10-20 seconds in order
to account for scattered light and then was set back to 10-20 G/cm. The trap was then
allowed to load atoms at the reduced intensity for 15 minutes. The loading curves are
similar to the one shown in figure 3.7. As in the decay curves, the fluorescence was
monitored during the loading, however no CCD image was taken. Each loading curve
was then fit to Equation 3.8 to get an estimate of N. The fit also gave values for [’ and
B/V’, however, the signal to noise, especially at very low intensities, was particularly
poor. The value for N, obtained was then used as the starting point in fitting the
corresponding decay data. Many low intensity points did not show any loading after
15 minutes. For those points N, was started with a value of zero.

Before fitting the decay, the data were first filtered with a time constant of 1 second
to reduce noise. The data were then fit to equation 3.8 using a least squares fit in the
commercial data analysis program IGOR. The filtering and fitting functions for [IGOR
are given in Appendix B. A sample of the filtered data and the corresponding fit is
shown in figure 3.8.

The offset and initial numbers of atoms were fixed during the fit, while the remaining
three fitting parameters,I’, 3/V’, and N, were variable. The long decay time allowed
for a more accurate determination of the contribution from background collisions. On
the some of the lowest intensity points, the fit resulted in a negative value for N, that

was not within statistical error of zero. In those cases, the final number of atoms was

fixed at zero. The reduced volume, V’, was obtained by analyzing the trap image as
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Figure 3.8: Same data as in Fig. 3.7 after filtering and the fit to the data.
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described in section 3.4. Combining that volume with the results of the fit gave a value

for S.

One of the primary figures of merit for the experiment was the parameter gré‘%
This parameter gives an indication of the relative importance of ultracold collisions
compared to background collisions for a given density. In order for the ultracold loss
rate to be clearly distinguishable from the background loss, this parameter must be
larger than 1, however it is preferable for the parameter to be on the order of 10 or
more. The only experimental control of the figure of merit is the initial trap density.
To improve the figure of merit, we wanted to load as many atoms as possible before
changing the intensity. Installation of the additional, high-power trap laser provided
nearly an order of magnitude increase in the initial number of atoms over our first
attempts, dramatically improving the signal to noise.

In these experiments the typical number of trapped atoms was on the order of 10°
atoms. This number is much smaller than in a typical MOT. The primary limitation
to the number of trapped atoms was the very low background pressure. In order to
keep the loss rate due to background atom collisions low, the background rubidium
vapor-pressure was necessarily kept quite low. Since the trap was loaded from the
low-velocity background rubidium atoms in the chamber, the low background resulted
in fewer trapped atoms. Thus, we improved our loss rate due to background collisions
at the expense of the trap loading.

In contrast to the need for large initial numbers of atoms, there is also a limitation
on the initial number. For large numbers of atoms the density can become quite
high especially at larger detunings for which the trap volume is small. As a result,
the density can easily reach a few times 10° atoms/cm® or more. As the density
increases, the distribution of atoms in the trap changes from the low density Gaussian

distribution to a hard sphere distribution. The hard sphere distribution is created by




43
radiation trapping among the trapped atoms.[Walker 90] Radiation trapping provides
a repulsive force between the atoms when a photon emitted from one atom is absorbed
by another atom in the trap. Under these conditions the volume of the trap does
not remain constant as the number of atoms changes — a critical assumption in our
measurements. Thus although large numbers of atoms are important to the figure
of merit, care must be taken to keep the density below 10° atoms/ cm?. In order to
maintain reasonable densities, the loading time was adjusted for each intensity.

The possibility of radiation trapping causing the size of the trap to change as the
number of atoms changes is a potential source of error. Care has been taken to keep
the density low enough to prevent radiation trapping. Another source of error that
is probably the most significant is the trap imaging and subsequent calculation of the
reduced volume. The depth of field on the CCD camera was quite small, and thus
small movements in the trap position could change the image properties. Furthermore,
if the spatial extent of the trap is larger than the depth of field, the image will be
smeared out, increasing the measured reduced volume. This effect is most important
for weak, low-intensity traps. We estimate that the measured reduced volume could
be as much as a factor of 2 larger than the actual volume. The fit parameter for the
ultracold collision loss rate is multiplied by the reduced volume in order to obtain the
actual loss rate. If the measured reduced volume is too large, the error will make the
intensity-dependence less significant rather than creating a false intensity dependence.

Another source of error is the laser stability. When locked the laser frequency noise
was as large as 1 MHz, creating a variation in the trap laser detuning. Because a
single data point required laser stability over 15 minutes, the stability of the laser was
important. For large laser fluctuations the decay of the trap fluorescence was noticeably
affected. Data for which serious fluctuations appeared to have occurred was not used.

Data taken at larger detunings was most dramatically affected by laser noise. For 2
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linewidths detuning, the detuning which suffered most from this noise, data was taken

several times at one intensity. The variation in 3 was no larger than a factor of 2.5.
The trap laser was particularly noisy at that time in addition to the trap being more
sensitive to the fluctuations. For the majority of the data I estimate that frequency
noise introduced a much smaller error, on the order of ~50 percent.

The depth of field issue with the imaging and the reproducibility due to frequency
noise are the two largest sources of error. Between these two contributions the accuracy
of the data is estimated to be within a factor of 2. Additional sources of systematic
errors are polarization fluctuations caused by the optical fiber, which varied by 3 percent
and errors in determining the fixed offset parameter in the fit, allowing a potential error
of a few percent. Statistical errors in the fit parameters are quite small, and are on
the order of 5-10 percent. The overall confidence in the measured loss rates is thus

approximately a factor of 2.
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Chapter 4

Low Intensity Collision Experiment

Results

4.1 Overview

The basic method for measuring the trap loss rates and analyzing the acquired data
were described in Chapter 3. In this section the results of the ultracold collision loss
rates as a function of trap intensity are presented for a variety of trap parameters. Trap
loss rates were measured for three different trap laser detunings: —I", —1.5I", and —2T.
For a laser detuning of A = —I' two magnetic field gradients were examined. Finally,
the dependence of the trap loss rate on the intensity of the hyperfine pumping laser

was also measured.

4.2 A =-1T

The original experiment was to look at the intensity dependence of the ultracold colli-

sion loss rate with a laser detuning of A = —1I'. One linewidth detuning is a standard
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Figure 4.1: Loss rate as a function of intensity for A = —1I" and the magnetic field
gradient set at 10 G/cm over entire range of intensities. The rate shows the same
behavior as was previously measured by [Gensemer 97]
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detuning for MOT’s, and the number of atoms that could be loaded into the trap was a
maxmimum at this detuning. Initially the magnetic field gradient was set to 10 G/cm.
The ultracold collision loss rate, 8, was measured over a wide range of intensities to
ensure that we observed a similar dependence of 3 on intensity as was reported by the
Connecticut group.[Gensemer 97]. This data shows a factor of two smaller loss rate
at high intensities as compared with the Connecticut data. The accuracy of our data
is approximately a factor of two, and refinements to the experiment were made after
these measurements were taken, thus the difference in high intensity loss rates is not a
concern.

After confirming a rapid increase in the loss rate below 4 mW /cm? as shown in
figure 4.1, attention was focused on intensities below that point. This data compares
quite well with the data from the Connecticut group, shown in figure 2.5. The minimum
in the trap loss rate occurs at approximately 4 mW/ cm?. Furthermore, the maximum
low intensity rate of 3 x 107! cm3/s is comparable to their value of 2 x 107 cm3/s.
The low intensity data is shown in figure 4.2. The loss rate increases with decreasing
intensity until about 0.8 mW/cm?. Below that point the loss rate clearly decreases
with decreasing intensity.

The trap could effectively trap atoms below the intensity 0.3 mW /cm? for which
the data ends. Below that point, however, the size of the trap became an issue. As
the trap intensity is decreased, the effective volume of the trap increases as the trap
becomes weaker. The reduced volume is plotted as a function of intensity in figure 4.3.
Recall that the figure of merit for these measurements is gr’ﬂ,l," where [ is the ultracold
collision rate coefficient, N, is the initial number of trapped atoms, I is the loss rate
due to collisions with background atoms, and V' is the reduced volume. The figure

of merit provides an indication of whether the ultracold collision contribution is larger

than the background collision contribution. At low intensities the figure of merit suffers
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Figure 4.2: Loss rate as a function of intensity at low intensity for A = —1I' and the
magnetic field gradient set at 10 G/cm. As the intensity is decreased the loss rate
reaches a maximum and then decreases. The intensity dependence at low intensities
was previously unexpected. The solid line is there to guide the eye.
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Figure 4.3: Reduced volume as a function of intensity for A = —1I' and the magnetic
field gradient set at 10 G/cm. At low intensities the volume becomes prohibitively
large, such that the initial density is too low to distinguish the contribution of ultracold.
collisions from background collisions.

due to the increase in volume.

In order to extend the data reliably to lower intensity it is necessary to start with
higher initial densities. Increasing the magnetic field gradient decreases the trap vol-
ume, thus the trap loss rates were investigated with a higher magnetic field gradient.
The data shown in Figure 4.4 were taken at A = —1I" with the magnetic field gradient
increased to 18 G/cm as the trap laser intensity was turned down. The loss transients
for data near the peak and and at an intensity below the peak are shown in figure 4.5.
In addition to reaching lower intensities, the peak loss rate is higher and occurs at
higher intensity. Changing the magnetic field gradient not only affects the density but

also alters the trap depth.
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Figure 4.4: Loss rate as a function of intensity for A = —I1I" and the magnetic field
gradient at 20 G/cm. The shape is similar to the 10 G/cm data, however the peak loss
rate is larger and the position of the peak has shifted to higher intensity. The solid line

is there to guide the eye.
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Figure 4.5: Decay transients for .2 and 1.1 mW/cm? with the magnetic field gradient
at 18 G/cm. The time scale has been shifted to match the inital trap density between
the two curves. The loss rate for .2 mW/cm? is 1.6 x 107!! cm3/s and is 5 x 107!

cm3/s for 1.1 mW/cm?.
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Figure 4.6: One-dimensional trap depth calculations for 10 and 18 G/cm using the
algorithm developed by [Gensemer 97]. The trap depth calculations show that at 18
G/cm the trap depth is smaller than at 10 G/cm. The intensity for which the trap loss
rate is a minimum depends on the trap depth.

The Connecticut group has developed a computer model to calculate the trap depth
in one-dimension for arbitrary trap intensity, trap laser detuning and magnetic field
gradient.Gensemer 97] A comparison of the trap depths using this code for 10 G/cm
and 18 G/cm is found in figure 4.6, showing that the trap depth is smaller for the 18
G/cm trap for our intensity range. That means that the point at which the trap cannot
recapture atoms that have gained energy equal to the hyperfine splitting will move to
higher intensity as the magnetic field gradient is increased. These one-dimensional trap
depth calculations serve to give an idea of the dependence on magnetic field gradient,
however they are not meant to give absolute value for the trap depth.

The two sets of data at different magnetic field gradients are overlayed in Figure 4.7.
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Figure 4.7: Loss rate as a function of intensity for A = —1I" for both magnetic field
gradients. The cirles indicate 10 G/cm data, and the squares indicate 18 G/cm data.
The low intensity for which the trap loss rate begins to increase is clearly shifted to
higher intensities for the larger magnetic field gradient. The solid lines are to guide the

eye.
At low intensities, the trap loss rates for the two gradients lie on top of each other. The
slopes at low intensity are 3.3x10™!! cm®/s/mW/cm? and 3.6x107!! cm3/s/mW/cm?
for the 10 G/cm data and 18 G/cm data respectively. It isinteresting that the data
taken with the higher gradient continues to increase for larger intensities than the lower
gradient data. The intensity for which the loss rate increases has also shifted to larger

intensities for the higher magnetic field gradient.
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4.3 Higher Detunings

In addition to the one linewidth detuning, loss rates were also measured at A = —1.5
and —2.0T". As in the A = —1T data, the loss rate is seen to decrease at low intensities
rather than reaching a plateau. The data at those detunings is shown in Figure 4.8.

The trap volumes are an order of magnitude smaller at these detunings as compared
with —1T volumes. The smaller volumes would seem beneficial for improving the figure
of merit, however the high densities mean that radiation trapping is a larger concern. It
was primarily for these detunings that very short loading times, as short as 15 seconds,
were used to limit the initial density. Because the fluorescence signal is smaller for
larger detunings, starting with a smaller number of atoms dramatically affected the
raw voltages from the fluorescence. As a result the effect of laser noise was a much
larger problem in the higher detuning data. The data at -2I" was most seriously affected
by poor signal to noise.

Although the data is noisier than for A = —1T, it should be noted that the peaks for
both -1.5T" and -2I" detunings shift out to higher intensities. At these large detunings,
trap operation was not reliable at intensities much below 1 mW/cm? and 2 mW/ cm?
for -1.5T" and -2T respectively. Decreasing the magnetic field gradient in order to
alleviate the density problems would not have provided additional information because
the peak would shift to lower intensities, already nearly inaccessible. The slope of the
low intensity portion of the data is more shallow for the higher detunings than for the
A = —1T. For A = —1.5T the slope is 1.6x10™'! cm®/s/mW/cm?, and for A = —2T
the slope is approximately 1.4x107!! cm3/s/mW/cm?. Especially in the -2T" case, the
poor signal to noise creates large uncertainty in the slope. It is clear, however, that

the slope of the loss rate as a function of intensity depends on the detuning.
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Figure 4.8: Loss rates taken at larger detunings. The +’s indicate the data at -1.5I'
detuning and circles indicate the data at -2I" detuning. The larger detuning data show
an intensity dependence for low intensities similar to the A = —1I" data.



4.4 Hyperfine Pumping Results

In addition to measuring the loss rates as a function of trap laser intensity, the loss rates
as a function of hyperfine pumping laser intensity was also measured. The hyperfine
pumping laser repumps atoms that are in the the untrapped F=1 hyperfine level to
the trapped F=2 hyperfine level where they can be recaptured by the trap. Atoms
can be transferred to the lower hyperfine level through collisions and are also slowly
pumped into this level by the trap laser. Decreasing the hyperfine pumping intensity
allows the atoms to spend more time in the untrapped level before they are repumped.
During that time the atoms are moving, and if they move far enough while in the lower
hyperfine level, they can escape the trap.

These trap loss measurements were performed using the same technique used for
the other measurements. The trap was first loaded at high intensity with hyperfine
pumping intensity also set to its maximum. After the trap was fully loaded the both
the trap and hyperfine pumping intensities were changed. Trap loss measurements were
taken at four different values of the trap laser intensity, 0.7 mW/cm?, 1.6 mW/cm?,
4 mW/cm?, and 10 mW/cm?. The laser detuning was kept at one linewidth and
the magnetic field gradient was at 10 G/cm. Prior to taking the trap loss data, the
hyperfine pumping intensity was decreased until the excited state fraction was affected.
This effect was measured by comparing the ratio of the fluorescence for a high intensity
trap to the fluorescence at the low intensity. The minimum intensity for taking data was
chosen so that fluorescence ratio remained constant. While taking the trap loss data
the hyperfine pumping intensity was held above that intensity. The trap performance
was not affected by the decrease in hyperfine pumping, meaning that any observed
effect is caused by collisions and not the slow pumping of the trap laser.

The results of these measurements are shown in figure 4.9. Clearly, the loss rates are
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unaffected for a large reduction in the hyperfine pumping, however, at approximately
.12 mW /cm? the loss rates increase for all but the lowest trap laser intensities. The trap
laser intensity 0.7 mW /cm? corresponds approximately to the peak in the loss rate as a
function of trapping intensity, and thus the loss rates for that intensity are much higher
overall than the other intensities. Similarly, at 4 mW/cm? the trap loss rate is nearly
a minimum, and the measured loss rates are lower than at the other intensities. The
rapid decrease in the loss rate with hyperfine pumping intensity indicates that atoms are
ending up in the lower hyperfine level. A similar measurement was taken in the previous
rubidium trap loss experiment.[Gensemer 97] They interpreted the increase in loss rate
as the hyperfine pumping was decreased as an indication that spin exchange collisions
were occurring. In that experiment, however, the effect of reducing the hyperfine
pumping was considered orly for a single trap laser intensity in the regime where the
trap depth cannot recapture spin exchange collisions.

The data taken at 10 mW/cm? shows the same behavior as the 1.6 and 4 mW/cm?
data. At 10 mW/cm? the trap is quite deep as compared to the lower intensities. If
the increase in loss were demonstrating that spin exchange collisions were occurring,
the 10 mW/cm? data should not show as strong a dependence on hyperfine pumping
intensity. An atom that has gained one unit of ground state hyperfine splitting would
have to travel further to escape the trap at 10 mW/cm? as compared to 1.6 mW/cm?.
That effect would cause the loss rate to increase at lower hyperfine intensity for 10
mW /cm? as compared to 1.6 mW/cm?. In fact, the rates all seem to increase at nearly
the same intensity.

A second interpretation of the data is that a radiative escape process is transferring
atoms to the untrapped hyperfine level. The continuous range of energies imparted
to atoms in this process would allow atoms to gain much more energy than in a spin

exchange process. Reducing the hyperfine pumping intensity allows the atoms to move
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Figure 4.9: Loss rates as a function of hyperfine pumping intensity for 4 different trap
laser intensities. For all data the magnetic field gradient was 10 G/cm and the trap
laser detuning was -1I". The three highest trap laser intensities show a similar decrease
in loss rate with intensity. The 0.7 mW/cm? data is near the peak of the loss rate
as a function of intensity and thus the overall loss rates are higher. The intensity
dependence shows that atoms are ending up in the lower hyperfine level, but does not
imply that spin exchange is responsible for the transfer to that level.

unopposed by the trapping forces for a longer time before being repumped into the
trapped state, and thus the effect can be viewed as decreasing the effective trap depth
once the hyperfine pumping is reduced below some intensity. Atoms that are transferred
to the lower hyperfine level with energy just below the trap depth are thus able to escape
the trap once the hyperfine pumping has been reduced below the point for which the

trap depth is affected.
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4.5 Summary of results

The trap loss measurements as a function of intensity compare quite well with the
previous measurements both in the overall shape of the data as well as the values for
the loss rates. This data has been taken at much lower intensities than the previous
data. At these low intensities the loss rate does not reach a plateau, as was previously
suggested, but rather decreases with decreasing intensity. At one linewidth detuning
the trap loss rate peaks at low intensity at a value of ~ 5 x 107! cm?®/s. For larger
trap laser detunings the data had the same shape, however the signal to noise was not
as good. Further, the effect of the hyperfine pumping intensity on the loss rate does
show that the trap loss is due to collisions for which one or both atoms end up in the
lower hyperfine level. In the next chapter three possible mechanisms that could be
responsible for the intensity dependence at low intensity as well as the high loss rate

as compared to the double BEC result are discussed and analyzed.
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Chapter 5

Discussion and Interpretation

5.1 Introduction

In this section potential processes that could account for the difference between the
MOT and BEC loss rates as well as the intensity dependence of the trap loss rate
for low intensities are described. Any potential process should meet three conditions:
the process should provide an intensity dependence of the loss rate, the peak loss rate
should be on the order of 10~!' cm?®/s, and the energy associated with the process
should be comparable to the ground state hyperfine splitting. The low 87Rb BEC spin
exchange rate is a result of a near cancellation of the singlet and triplet phase shifts.
One explanation for the discrepancy between the MOT and BEC results is that the
light disrupts this balance. Another possible process is an excited-state spin exchange
process. If the change in hyperfine level took place in an excited state process rather
than in a ground state process, the presence of the trapping light would play a role in
the collision. The Connecticut group has also measured an increase in excited state
collisional trap loss caused by a flux enhancement process. Flux enhancement is an

increase in pairs of atoms at close range due to acceleration on an attractive potential.
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5.2 Phase Balance

The very low spin exchange rate measured in the double Bose condensate experiment
was theoretically reconciled as a serendipitous coincidence of the singlet and triplet
scattering lengths.[Julienne 97, Burke 97, Kokkelmans 97] The near-perfect match be-
tween the two scattering lengths led to destructive interference between the accumu-
lated phases, suppressing the spin-exchange rate. One interpretation of an intensity
dependence of the spin exchange process at very low intensity is that the presence of the
light mixes some of the excited 1/R3 potential in with the ground 1/ R® potential. This
mixing could potentially upset the delicate balance between the phases if the singlet
and triplet phases are affected differently.

In order for the phase balance to be disrupted, there must be a resonance between
the ground and excited states at the interatomic separation for which the exchange
interaction becomes important. This separation, where the exchange interaction is
comparable to the hyperfine interaction is 22a, = 11.6 A.[Julienne 97] The excited state
potentials can be determined using the Movre and Pichler equations.[Movre 77] Those
potentials are shown in figure 5.1. In order to determine the existence of a resonance,
the energy of the potentials has been shifted such that the P3/; states asymptotically
go to zero.

Next, the attractive nature of the ground state potential can be included using the
Krauss and Stevens potentials for rubidium.[Krauss 90] The the energy of the pair of
atoms in the interaction region is increased by the attractive potential. At 11.6 A
this energy increase is ~1 meV. The ground state potential has been superimposed on
the excited state potentials in figure 5.2. A resonance exists where the ground state
potential intersects one of the excited potentials. A resonance can be seen at 11.4 A

with the OF level of the 5Py state. Thus it would seem that the phase disruption is
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Figure 5.1: Excited state potentials as calculated by [Movre 77].
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Figure 5.2: Ground and excited potentials in the region where the exchange interaction
is comparable to the hyperfine splitting. The ground state potential is resonant with
the excited state 0] potential at 11.4 A.

possible.

5.3 Excited State Process

Another process that would show intensity dependence is an excited state spin exchange
process similar to fine-structure changing collisions. The process is shown in figure 5.3.
The collision would proceed as a standard excited state collision in which the colliding
pair absorbs a photon and is transferred to an excited state potential. In this case
mixing of potentials would result in the excited pair undergoing a curve crossing to a

potential for which the ground state atom changes its hyperfine level rather than the
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excited atom changing fine structure levels:

5P3/2 + 551/2(F = 2) — 5P3/2 + 551/2(F = 1) (5.1)

After radiating back to the ground state, the atoms would have gained kinetic energy
equal to the ground state hyperfine splitting. Thus, the characteristic energy would
be identical to that of a typical ground-state spin exchange collision, but the loss rate
would have an intensity dependence since it is an excited state process. One of the
most obvious characteristics of this process is that unlike ground-state spin exchange,
only one atom can change hyperfine levels. Thus the energy imparted to the atoms can
only be one unit of hyperfine splitting.

The question of whether one or two atoms changes hyperfine level has been inves-
tigated in terms of the trap depth. In 1996 Hoffmann et al. used repulsive trap loss
collisions to measure the trap depth for the two isotopes of rubidium.[Hoffmann 96]
The ground and excited state potentials are depicted as dressed states in figure 5.4. A
high intensity catalysis laser was tuned above the atomic resonance with detuning A.
This laser was used to excite atoms from the ground state to one of many repulsive
excited state molecular potentials. Once transferred to an excited potential the atoms
repel one another and each gain kinetic energy equal to hA/2. As in other trap loss
experiments, if the kinetic energy gained by the atoms is greater than the trap depth,
the atoms will be lost from the trap. The trap depth can be inferred by observing the
trap loss rate as a function of catalysis laser detuning.

The trap parameters for the MOT were set to be similar to the Connecticut exper-
iment. The catalysis laser detuning was varied from 0 to 100 GHz, and the loss rate
was measured as a function of the catalysis laser detuning. Their results are shown in
figure 5.5. The loss rate increases sharply with detuning until hA > 2E; where E, is

the trap depth. As the detuning is increased further, the loss rate begins to decrease.
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Figure 5.3: Process for excited state hyperfine changing collision. The atoms absorb
a photon at close range and are transferred to an excited state potential. The atoms
then go through a curve crossing for which the ground state atoms changes hyperfine
levels. When the atoms reradiate one of the atoms is inthe lower hyperfine level.
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Figure 5.4: Process for excitation to repulsive states. The energy levels are shown as
dressed states. The atoms approach on the ground state potential until the catalysis
laser is resonant with one of the excited potentials. Once on a repulsive potential the
atoms accelerate away from each other, gaining total kinetic energy equal to hA.

The repulsive trap loss cross section is given by o = mR?f where R is the interatomic
separation for which the catalysis laser is resonant and f is the excitation probability.
As the detuning is increased, the resonant separation, R, becomes smaller, decreasing
the loss rate.

The data show that for both isotopes the detuning must be greater than 15 GHz in
order for appreciable trap loss. Because the atoms share the collision energy, the trap
depth was inferred to be at least 7.5 GHz. The ground state hyperfine splitting in 5’Rb

is 6.8GHz, thus for a spin exchange collision in which only one atom changes hyperfine
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Figure 5.5: Loss rate as a function of catalysis laser detuning for repulsive states. The
detuning must be larger than 15 GHz in order to produce appreciable trap loss.

levels, each atom gains 3.4 GHz in kinetic energy. For a trap depth of 7.5 GHz, those
atoms would not be able to escape the trap. The trap depth measurements indicate
that the spin exchange collisions must result in both atoms changing hyperfine level.
Under those conditions, an excited state process for which only one unit of hyperfine
splitting is released would not result in trap loss. The requirement that both atoms

change hyperfine level argues against an excited state trap loss process.

5.4 Flux Enhancement

A third explanation of the low-intensity behavior of the trap loss is flux enhancement.
This process was first reported by the Connecticut group in 1996.[Sanchez-Villicana 96].
The idea behind flux enhancement is that the presence of the trap laser excites atom

pairs and accelerates them due to the attractive nature of the excited molecular poten-
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tial. The acceleration provides an enhancement in flux of ground state atoms reaching
close range. Although their work explored the effect of flux enhancement on excited

state collisions, it should also play a role in ground state collisions.

5.4.1 Excited State Flux Enhancement Experiment

In the Connecticut experiment a probe laser with a large negative detuning compared
to the trap laser was used in addition to the trap laser to excite the atoms at very close
range, on the order of 35 nm. They measured the loss rate in three different situations:
with the trap laser alone, with the probe laser alone, and with both lasers. The trap
laser intensity was set such that ground-state collisions could not escape. With the
trap laser alone, the number of atoms reaching close range was presumably increased,
however when the atoms reached close range, they were in the ground state and thus
very little trap loss was observed. With the probe laser alone, very few atoms reached
close range, however any that did were excited by the probe and lost from the trap due
to excited state collisions. With both lasers present, they observed a cooperative effect
in that the trap loss was larger than the sum of the loss rates due to the individual
lasers.

Flux enhancement affects the collisions dynamics by allowing atoms with higher
initial angular momentum to be drawn in to close range. Quantum mechanically this
acceleration on the excited state potential allows atoms to overcome the centrifugal
barrier, increasing the number of partial waves that contribute to the collision. In
addition, flux enhancement gives the L=0 contribution more energy, so the phase shifts

have to be evaluated at higher energy.
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5.4.2 Langevin Analysis of Flux Enhancement

The effect of higher angular momentum atoms being drawn in to close range has been
examined classically using a Langevin analysis. To do this, the effect of acceleration
on the velocity and impact parameter were first determined. Then, the collision rate
as a function of time spent on the excited potential could be calculated by requiring
that the modified impact parameter be equal to the Langevin impact parameter.

The interaction is shown in figure 5.6. Consider a pair of atoms with initial velocity
v in the presence of near resonant light with a detuning A = w — w,. For negative
laser detuning the attractive potential U = —Cj3/R? is resonant at the Condon point,
Rc = (—C3/hA)Y3. At Rc the pair is transferred to the attractive excited state
potential, accelerating the pair, which gives a change in the velocity Av, directed
along a line between the two atoms. The velocity increase Av, can be related to the
time, T, spent on the the excited potential using F = —0U/0r = ulAv, /T which gives

Av, = zgi‘r (5.2)

where p is the reduced mass. We have used the values C3; =80 eVA and R, = 1000A.

The new velocity, Vpew = V+ AV, results in a new impact parameter for the collision,

brew-
Figure 5.6 gives the geometry necessary for relating the original impact parameter

b, t0 bpew- We begin by noting from Fig. 5.6a that bp., and b, can be written as
bnew = Rcsin(0 — @), (5.3)

and

b, = Rcsiné. (5.4)
Figure 5.6b shows the sum of the velocities and provides the relation

Av, sin(@ — ¢) =vsing. (5.5)
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b)

Avr

Vnew

Figure 5.6: Geometry for impact parameter calculations showing the effect of excitation
on the velocity and impact parameter. The pair is transferred to the excited potential
at the Condon radius, R¢.
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From this relation we can rewrite Eq.( 5.3) as

Avr bnew
ing = . 5.6
sin g = —on e 5)
In addition, Eq.( 5.5) can be rewritten using a trigonometric identity as
Avr oin §
sing — 2 sin @ cos ¢ 5.7)

1+ A—;’ﬁ cosf
Eq.( 5.7) is linear for small sin# so the cosine dependences can be set to 1. Equating

Egs.( 5.7) and ( 5.6) we find

Avp Av, b
- u —_ T Ynew 5,8
sm0(1+ —LA: ) v Rc (5.8)
Thus
bnew Av,
i — 5.9
sin @ R 1+ . ), (5.9)
and
bo = brew(l + A:’). (5.10)

The effect of atoms being drawn in is described by the Langevin impact parameter.
This impact parameter is defined as the interatomic separation for which the incident
kinetic energy is equal to the 1/ RS potential energy. This definition essentially requires
that the atoms have less energy than the 1/R® potential in order to be affected by that

potential. The Langevin impact parameter is given by

2Cs
BLane = 1/6 5.11
Lang [lwt20t] ( )

where Cg is the coefficient for the 1/R® potential. Combining the Langevin effect and
the increase in velocity, a spin exchange collision can occur if b, is less than or equal to
the Langevin impact parameter. Thus the maximum initial impact parameter, before
excitation, for which the atoms will reach close range can be found by replacing bpew
by breng in Eq. 5.10:

brmaz = bLang(1 + Av,[/v). (5.12)
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The collision rate can then be found as

B = /0 = vp(v)dv /0 pras(®) 27b,db,

=7 /o = vp(v)duvb? . (v) (5.13)

where b, is the initial impact parameter and p(v) is a Maxwell-Boltzmann distribution.
Calculating this integral as a function of time spent on the excited potential gives
an estimate of the classical effect of the acceleration on increasing the collision rate.
For 7 = 0, we find a value for 8 of 4.3 x 107! cm?/s , corresponding to the case of no
excitation. For 7 = 1 natural lifetime we get 8 = 9.2 x 107! cm3/s. Thus classically
we see a factor of 2 increase in the collision rate as a result of this effect. Using the
Langevin impact parameter we can calculate the angular momentum for a collision at
100 pK:
RL = pubrang = 1.1A. (5.14)

This results suggests that we should treat the problem quantum mechanically, and

consider the effect of flux enhancement on the different partial waves.

5.4.3 Quantum Mechanical Treatment

In terms of angular momentum, the effect of flux enhancement is to make it easier for
higher partial waves to overcome the centrifugal barrier. Acceleration on the excited
state potential alters the velocity distribution. To explore the effect this has on the
collision rate we first must determine the velocity distributions as a function of time
spent on the excited potential.

The final velocity, after acceleration, can written as vy = v, +at where t is the time

spent on the excited state potential, and a is the acceleration, given by

a=-— (5.15)
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where R is the interatomic separation for which the trap laser is resonant with the

excited potential. The time on the excited potential has a distribution
1 —t/T
p(t) = ~e (5.16)

where T =27 ns, the excited state natural lifetime. Because the time spent in the excited

state has a distribution, the final velocity, due to acceleration also has a distribution:

_l_e-(v_UO)/a'r US> U,
p(v) = (5.17)
0 v < U,

In addition we have to allow for the Maxwell-Boltzmann distribution of initial ve-

locities, so the total velocity distribution is

P(vy) = [ duop(vo)p(vy) (5.18)

3\ 1/2
_ 1 (2/;1) ["f dvoe_yvg/ﬂvge—(uf—vo)/ar (5_19)
T 0

The modified distributions are shown for various times, expressed in terms of the
natural lifetime, in figure 5.7. The initial temperature used in the Maxwell-Boltzmann
distribution was 100 uK in each case. The 7 = 1 distribution has been used in the
remaining calculations because it corresponds to the natural lifetime of the excited
state. The mean velocity is 22.2 cm/s for the unmodified case as compared to 36.4
cm/s for one natural lifetime.

To estimate the effect that the modified velocity distribution would have on the
higher partial waves, the velocity associated with the centrifugal barrier for each of the
partial waves is needed. The position and velocity of the barriers were found using
Krauss and Stevens potentials [Krauss 90] and adding centrifugal potential %&%‘”}l for
each partial wave. The values for the barrier velocity, Vi.r, are given in the table in

figure 5.8. The effect of the enhancement is then found by integrating the modified
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—_—1 =0
aox10> 4 N 000000 = 1 natural lifetimt_e
--— T = 2 natural lifetimes
—--— T = 5 natural lifetimes
30 — — -1 = 10 natural lifetimes
>
& 20 -
10 —
0 S  E— ]
0 100 150 200

velocity (cm/s)

Figure 5.7: Modified velocity distributions. The initial (7 = 0) distribution is a
Maxwell-Boltzmann distribution at 100 uK. The other distributions include the effect
of acceleration for various times 7 on the excited potential.
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=0 T= T= T= T =10
L=1

v, = 17.9 cm/s 0.664 0.906 0.948 0.977 0.987
L=2

v, =408 cm/s| 0.0373 0.341 0.556 0.781 0.881
L=3

v, =653 cm/s| 6.08x10° |  0.064 0.239 0.556 0.743

Figure 5.8: Table of values comparing integrated velocity distributions. The distribu-
tions in fig. 5.7 have been integrated from v, to oo for each of the partial waves.

velocity distribution from v, to infinity. We can then compare the integrated distri-
butions for various times, T, on the excited potential to the integrated distribution for
r = 0. The integrated distributions are also shown in the table. From these rough
calculations we see that there is a significant p-wave contribution even without the ac-
celeration. In addition, the acceleration increases the d-wave contribution by an order
of magnitude. Finally, we see that the f~-wave contribution remains quite small because
the barrier velocity is too large to contribute at these temperatures.

To get values for the cross-sections and rate coeflicients for the higher partial waves,
we need to know the phase shifts for the singlet and triplet potentials. The phase shifts
were determined using a program that integrated the Schrédinger equation for a given
kinetic energy using a fit to the Krauss and Stevens potentials for rubidium. In the

asymptotic limit, the wave function can be written as

¥(r) = Asin(kr — l_;r. + &1).- (5.20)
In addition, the derivative is

' = Akcos(kr — %r + &)- (5.21)
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Thus the phase shift can be extracted using

¢ = tan~! (’:_;é) — (kr — 1—275)- (5.22)

Once the phase shifts have been calculated as a function of incident kinetic energy, the

cross section can be determined using
o1 = £5(21 +1) sin(d, — 6v)- (5-23)

Finally the cross-section and the modified velocity distribution can be used to calculate

the rate coefficient:

B = /Ooo vP(v)o(v). (5.24)

The phase shifts can be modified by adjusting the fit parameter that controls the
strength of the repulsive barrier in the exchange potential. The Krauss and Stevens
potentials were recast as direct and exchange potentials so that the strength of the
exchange interaction could be adjusted by modifying only one potential. Both the

direct and exchange potentials were fit to the equation

2742 1—ear\°®
V(T) = —aoe"/“‘ + a4e_(""“6) /a5 as (——r—’ (5.25)

The values for the coefficients a; are given in figure 5.9. The strength of the exchange
potential can be controlled by modifying the parameter a,. We adjusted this parameter
in order to get good cancellation of the s-wave phases, as required by the theoretical
interpretation of the double Bose condensate result.

Calculating the rate coefficient for the s-wave contribution using the 7 = 1 modified
velocity distribution gave a value for 8 of 9.24 x 107'* cm?®/s. This number is in
fairly good agreement with the value obtained using Williams’ calculations of 2.9 x
1013 cm?/s.[Williams 98] Williams’ rate coefficients shown as a function of energy in

figure 2.6 were not averaged over a thermal distribution. To do this averaging, his
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a0 al a2 a3 a4 a5 a6
Direct 7.4043 1.2768 2691 0.1416 | 8.8056 2.2505 0
Exchange | 2.0444 | 0.95583 0 0.11846 | 1.0445 | -2.4808 | 2.5714

Figure 5.9: Table of coefficients for the exchange and direct potentials. The equation
for the potentials is given in Eq. ( 5.25).

data was multiplied by the modified velocity distribution and then integrated. All of
the rate coefficients, including higher partial waves, are shown in figure 5.10 for both
the case of flux enhancement (7 = 1) and no flux enhancement (7 = 0). The total
rate coefficient, found by summing each of the contributions from the partial waves, is
then 1.70 x 10~ cm?3/s, for the case of flux enhancement, as compared to 9.0 x 10712
cm?/s without enhancement. Thus flux enhancement provides at least a factor of two
increase in the rate.

To compare this result to the experimental data, the calculated rate coefficient
must be multiplied by two to account for both atoms leaving the trap. The loss rate
is then 3.4 x 10~ cm®/s which compares quite well with the peak observed loss rate
of ~5 x 10~ cm?/s for one linewidth detuning. This treatment of flux enhancement
assumes that all of the atoms are affected by the trap laser. Therefore, although the

absolute numbers are in good agreement with the measured values, they should only

be considered an estimate.

5.5 Summary

I have examined three mechanisms that could bridge the gap between the measured loss
rates and the much lower theoretically predicted values. In addition each of the three
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=1 =0
Williams’ s-wave 291 x 10-“ cm’/s 2.13 x 10-® cm’/s
s-wave 9.24 x 10-"* cm’/s 8.19 x 10-'*cm’/s
p-wave 2.46 x 10-" cm’/s 1.51 x 10-"* cm’/s
d-wave 1.65 x 10-' cm’/s 9.09 x 10-?>cm’/s
f-wave 3.59 x 10-" cm’/s 4.83 x 10-" cm’/s
total 1.70 x 10-'! cm’/s 0.90 x 10-!* cm?/s

Figure 5.10: Table of values for 8 calculations with flux enhancement (7 = 1) and
without (7 = 0).
processes depends on the presence of light which would further explain the intensity
dependence observed at very low intensity. The process that appears least likely to be
responsible for the discrepancy between the measured loss rates and those predicted
theoretically is an excited state hyperfine changing collision process. Because that
process would only result in one atom changing hyperfine levels, the trap depth would
have to be weak enough for atoms with only one-half a unit of ground state hyperfine
splitting to leave the trap. The trap depth measurements performed using the repulsive
potentials show that the trap is too deep for such a collision to cause trap loss. Thus
the excited state process is not likely to affect the trap loss measurements.

The other two processes, disruption of the phase balance and flux enhancement,
appear to likely play in role in the collision dynamics for these low-intensity traps. The
existence of a resonance between the ground state and a 5P;/2 hyperfine level at the

interatomic separation for which the exchange interaction becomes important could
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distupt the delicate balance of the singlet and triplet phases that suppressed spin-
exchange in the double BEC experiment. Thus the collision cross section, which goes
as sin®(¢s — @:), will not show the strong destructive interference in the presence of the
near-resonant laser light. Although the velocity and slope of the curve are such that
excitation to this level is extremely rare, the resonance may allow for phase disruption.

Finally I have considered classical and quantum mechanical interpretations of flux
enhancement. The presence of the laser light acts to accelerate atoms that are relatively
far apart to closer range, increasing the flux available for spin-exchange collisions. In
addition to increasing the available flux, the acceleration modifies the velocity distribu-
tions. Quantum mechanically the shift in the velocity distribution allows higher partial
waves to overcome the centrifugal barrier. I have shown that the addition of higher
partial waves in the loss rates increases the predicted loss rates to bring the predictions

into close agreement with the measured values.
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Chapter 6

Excited State Fraction

6.1 Introduction

In order to determine the minimum trap laser intensity for which the trap operation
was not affected, the trap intensity was decreased to the minimum and then turned
back up to the maximum to ensure that the number of atoms remained constant. This
diagnostic for trap alignment was discussed in section 3.5. It was then determined
that a similar technique could be used to measure the excited state fraction of the trap
for arbitrary intensity. The excited state fraction is an important parameter in many
MOT experiments. For trap loss experiments, knowledge of the excited state fraction
is required to convert the trap fluorescence signal into a number of atoms. Recently
ground state electron scattering cross-sections have been measured using a MOT as the
target.[Schappe 95] To extend this technique to excited-state cross-sections, accurate
determination of the excited state fraction is also required.

The excited state fraction, f., is given by
I

2I
e — = 6.1
S, 1+£+4%§ 6.1)

in which I is the total trap laser intensity, I, is the saturation intensity, A is the laser
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detuning, and T is the natural linewidth. For high intensities f. saturates at a value of

1/2, thus for experiments in this regime the excited state fraction is known. For low to
moderate laser intensities, however, the parameter must be experimentally determined.
Previously, the only direct method for measuring the excited state fraction was to
use photoionization out of the excited state.[Dineen 92| In the process of creating a
diagnostic to verify trap alignment at very low intensities, we developed a new method

for easily measuring the excited state fraction.

6.2 Measurements

Aside from photoionization measurements, the standard technique for obtaining the
excited state fraction for trapping experiments is to calculate it from equation( 6.1)
using measured values for the trap laser intensity and detuning. The problem with
calculating the excited state fraction is in choosing an appropriate value for I,. The
saturation intensity is affected by the details of the trap. For example, the atoms
experience polarization gradients and optical standing wave patterns. In addition,
the atoms can arrange themselves in optical lattices under the right conditions. Our
method provides a means to experimentally determine I, which allows the excited
state fraction to be calculated using equation( 6.1) without requiring knowledge of the
details of the trapping region.

The measurements used to determine I, were based on the technique used for ver-
ifying trap operation at low intensities. The trap was first loaded with the trap laser
at a maximum intensity, Imez, With the maximum intensity equal to 14-15 mW/cm?.
After the trap was loaded, the trap laser intensity was rapidly changed to some lower
value, I. Switching the intensity was done using a liquid crystal variable attenuator,

described in chapter 3. During the switching time, the number of atoms in the trap
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remained the same, however the level of fluorescence changed. The trap fluorescence
was monitored with a photodiode, allowing us to measure the ratio P /P, where Proz
is the photocurrent for the full trap laser intensity and P is the photocurrent at the
lower intensity. Because of saturation effects this ratio is not equal to the ratio of the
laser intensities, I/L,42-

We measured the ratio P/P,,.. over a wide range of trapping intensities. As in
the trap loss data, the intensity was not decreased below the point where the trap

performance degraded. To determine I, the ratio R:

P
i
I (14 Lpeo/I, +4A2/T? 6.2)
" Imez \ 1+ I/I,+4A2/T2 |~ |

was plotted as a function of I/I,.- The data was fit with I; and A as free parameters.
Using the measured frequency would allow A to be held constant, meaning the fit has
only one free parameter, however allowing A to vary provides additional confidence in
the values for I,.

Sample data with L., = 14.2 mW/cm? and A = —1I" and A = —1.5T are shown
in figure 6.1. A least squares fit to these data gives the values I; = 3.056 mW/ cm? and
A = -1.02T, and I, = 3.23 mW/cm? and A = -1.65T". The detunings agree quite well
with the measured values, and the saturation intensity values are also very reasonable.
For unpolarized rubidium atoms a rate equation analysis gives I, = 3.6 mW/ cm?, while
for fully optically pumped rubidium I, = 3.0 mW/cm?.

Once the saturation intensity has been determined, the excited state fraction can be
calculated from equation 6.1. This method is much more straightforward to implement
than a photoionization method. In addition, because Eq.( 6.2) is written in terms of

ratios of intensities, this method does not require absolute measurement of the intensity.
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Figure 6.1: Excited state fraction data at two different laser detunings. The data was
fit using two parameters, A and I;. The values for A compare well with the measured
values, and the values for I, are also quite reasonable.
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Appendix A

Cleaning Procedure for Ultrahigh

Vacuum Parts

Stainless Steel UHV Cleaning Procedure

Procedure for thoroughly cleaning stainless steel after being machined, etc. (from
a very dirty state). Absolutely nothing comes from the factory clean. Nothing! Even
for electropolished parts it is a good idea to go through the Less-Anal procedure.

Anal procedure for filthy parts or extreme vacuum requirements:

1. Remove all obvious oil and grease from surface and holes in part. Vapor degrease
only if part is in very oily/greasy condition. You can wipe with trichlorethane or even
a shop solvent.

2. Use 1,1,1-trichlorethane (or accepted substitute) in ultrasonic cleaner for 3-5
minutes, or wipe it down carefully. Be sure holes are wetted/cleaned. Trichlorethane
is a very good general organic solvent and dissolves most anything.

3. Prepare a solution of 25

4. Run the part under clean (preferably filtered if available) hot tap water, with a

bowl underneath to catch and clean the part. Qakite is an alkaline soap solution, and



85

can be rather tenacious, so it much be rinsed very thoroughly.

5. Rinse part by pouring distilled water over it. Removes ions present in tap water.

6. If the part is small enough, let it sit or hang in boiling distilled water (over a
heating plate) for 5-10 minutes.

7. Remove part and allow to dry; if part is intricate or has holes, assist with a
pressure jet of dry bottled nitrogen. The hot metal evaporates the boiling distilled
water and leaves very little residue, provided the part was throughly rinsed and the
distilled water is pure.

8. You can end here with a final acetone wipe, then ethanol wipe. For viewports,
end with an additional final acetone wipe. The ethanol evaporates slowly and tends
to leave a bit of residue, possibly dust from the air. After wiping, blow off with dry
nitrogen. Windows are really finicky, especially since you can see all the dust and
particles, so assemble these to the chamber immediately after cleaning.

Less-anal procedure for cleaner or electropolished parts. Use on windows and on
“lesser” UHV systems (10~° torr or so):

1. Wipe with 1,1,1-trichlorethane and TX 304 natural wipes. These are pure cotton
wipers and have no chemical residue, and claim to be lintless (they still leave a little
lint, especially when used on sharp metal surfaces). From the factory, lots of black
specks and dirt will come off with this solvent. Repeat wiping with new wipes until
clean.

2. Now wipe with acetone. This can be a single or double wipe all over the surface.
At this point, little or no visible residue should be on the wipe.

3. Wipe with methanol. This can be a single wipe, motly to remove residues which
acetone does not work well on. For most stainless parts, you may end here by blowing
off dust with dry nitrogen.

4. For windows, wipe once more with acetone, just like you would an optic. Best
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bet is to use spectroscopic grade acetone, optical cloths, and forceps. Blow off with
dry nitrogen (those optical cloths are really linty).

Copper UHV Cleaning Procedure

Procedure for thoroughly cleaning copper after being machined, etc. (from a very
dirty state)

1. Remove all obvious oil and grease from surface and holes in part. Vapor degrease
only if part is in very oily/greasy condition.

2. Use 1,1,1-trichlorethane (or accepted substitute) in ultrasonic cleaner for 3-5
minutes. Be sure holes are wetted. Change solution regularly if soiled (turns yellow,
typically). Trichlorethane is a very good general organic solvent and dissolves most
anything.

3. Prepare a solution of 25

4. Run the part under clean (preferably filtered if available) hot tap water, with a
bowl underneath to catch and clean the part. Qakite is an alkaline soap solution, and
can be rather tenacious, so it much be rinsed pretty thoroughly.

5. Rinse part by pouring distilled water over it. Removes ions present in tap water.

6. Let sit or hang in boiling distilled water (over a heating plate) for 30-seconds to
1 minute.

7. Allow to dry; if part is intricate, assist with a pressure jet of dry bottled nitrogen.
For many applications, you can end here with a final acetone, then ethanol rinse.

8. Prepare an ”assembly line” of solutions in beakers: 50

9. Soak the part in the HCI for 3-4 minutes. Allow to drip for 10 seconds, then
soak in distilled water in ultrasonic cleaner for 1-2 minutes. Change this distilled water
each time you dip a new part from the HCI into it. The HCl is a ”pickling” solution
which removes all the oxides and presents a fresh, clean Cu surface. The water dilutes

and removes the HCl.
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10. Using the ultrasonic cleaner, dip the part in acetone next for 1-2 minutes,
then into the methanol for 1-2 minutes. The acetone removes the water and any final
organics from from the water or acid. The methanol removes the acetone, which often
contains long-chain organics which are hard to pump. Methanol is very clean and easy
to pump away.

11. Package the part, put into a dessicator, or stored under nitrogen. This is a
clean surface and should not oxidize very quickly.

12. If the part has small holes, it is often a good idea to blow dry nitrogen into
them each time you change solutions (except after the HCl). Even the ultrasonic
cleaner doesn’t mix the old solution and the new solutions very well each time with a

small hole blocking the flow.




Appendix B

Data Analysis Functions for IGOR

#pragma rtGlobals=1 // Use modern global access method.

Function /D Thadexp3(w,p)

Wave /D w; Variable /D p

if (w[2] < 0)
return -99999
endif

if (w[3] <0)
return -99999

endif

return wl[0]+w[4]+1/((1/(w(1]-w[4])+w[2]/ (w[3]+2*w[2]*w[4]))
*xexp ((w[3]+2*w [2] *w[4]) *p)-w[2] / (w[3] +2*w[2] *w[4]))
End;

88
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Function /D Thadconvert(int,delt)

variable /D int,delt

variable ans

ans = 1/(int*pi*5.9e6/(3.1*(1+int/3.1 + 4*delt~2)))
ans =ans/3.48e-22/1.1e9

print "conversion factor =", ans

return ans

end;

function ThadFiltermod(in,t,out,tau)

|[filters wave in using time constant tau for all t>tau
wave in,out,t

variable tau

variable i=xcsr(B)

out=exp((t-t[xcsr(A)])/tau) *(in*(1+sign(t-t[xcsr(A)1))/2+in[xcsr(A)]
*(1-sign(t-tlxcsr(A)]))/2);

integrate/t out

| out-=out [0]

out*=t [1]-t [0]

out*=exp (- (t-t [xcsr(A)])/tau)/tau

do

out[i] = inf[i]

i+=1
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while (i<numpnts(in))

return O;

end;
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