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Chapter 1

Introduction

Hyperpolarized noble gases are gases in which the nuclear polarization has been in-

creased through spin exchange with an alkali metal vapor, which has in turn been

polarized through the absorption of light. Through the use of inexpensive optics and

gas handling equipment, one can produce gas samples with nuclear polarization orders

of magnitude beyond the thermal Boltzmann polarization in the highest attainable

magnetic ¯elds. These highly nonequilibrium systems have found applications in many

very di®erent ¯elds.

Hyperpolarized 3He has become a widely used target for nuclear physics, and it

was such a target that was used in the discovery of the neutron spin-structure function

[Anthony93]. The enhanced signals from hyperpolarized gases have made the nuclear

magnetic resonance (NMR) study of many surface e®ects possible [Wu90][Raftery91].

Hyperpolarized 3He and 129Xe are being used together in the search for an atomic

electric dipole moment [Chupp94]. However, the biggest impact of hyperpolarized

noble gases is likely to be felt in medical imaging [Albert94].

Gas-phase densities (2.69£1019 atoms/cm3 at S.T.P.) are typically 3 orders of mag-

nitude lower than those of liquids, making gas-phase conventional NMR signals too

1
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small to permit rapid magnetic resonance imaging (MRI). Conventional MRI tech-

niques therefore image the protons of the water molecules in biological tissues. Hyper-

polarized gases, however, may have polarizations 100,000 times higher than the thermal

Boltzmann polarization in typical MRI magnets, more than making up for the low den-

sity [Albert94]. Early images of the lung cavities [MacFall96] have lead the way toward

techniques taking advantage of di®usion, solubility, and transport of hyperpolarized

noble gas atoms, including functional MRI (fMRI) of the brain [Swanson97].

For any of these applications, it is desirable to produce highly polarized (¸50%)

gases at high rates (»liters per hour). With this in mind, we have addressed three

of the most important issues limiting current hyperpolarized gas production and use:

light sources, storage times, and fundamental rate measurements.

1.1 Spin Exchange Optical Pumping Overview

This section is meant only as a way to highlight the important practical issues of spin

exchange optical pumping. For a more complete overview, the reader is pointed to

reference [Walker97]. For a thorough theoretical treatment of spin exchange optical

pumping, see reference [Appelt98].

The ¯rst step in spin exchange optical pumping is the transfer of angular momen-

tum from photons to alkali atoms. Figure 1.1 illustrates how this may be done using

circularly polarized light resonant with the 2S1=2 !2 P1=2 transition in an alkali metal

atom. It is assumed in ¯gure 1.1 that the absorption line is pressure broadened su±-

ciently in order that the hyper¯ne levels are unresolved. This is almost always true in

practice, where typical gas densities are 3-10 amagats, as the pressure broadening for

alkalis in noble gases is 10 GHz per amagat or more, while all alkali hyper¯ne splittings

are <10 GHz. (This picture works even at low pressures, provided that the linewidth
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Figure 1.1: Optically pumping alkali atoms into the mj = +1=2 state via circularly

polarized light.

of the pumping source is much wider than the hyper¯ne splitting, such that all of the

hyper¯ne levels are pumped equally.) The photon is absorbed by the atom, adding one

unit of angular momentum, ¹h. Collisions with gas atoms in the cell mix the excited

state levels. A fraction of an atmosphere of \bu®er gas", typically N2, is added to the

cell in order to nonradiatively quench the excited alkali atom. The end result is that

the atom is equally likely to be de-excited to either ground state level. On average,

then, ¹h=2 units of angular momentum are deposited in the vapor with each photon

absorption.

The average photon absorption rate per alkali atom is given by [Walker97]

h±¡i = (1¡ 2hSzi)Rp; (1.1)

where Rp is the photon absorption rate for unpolarized atoms. Rp depends upon the

intensity of the incident light, I, which falls within the frequency-dependent alkali metal
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absorption cross section, ¾(º):

Rp =
Z 1

0
I(º)¾(º)dº; (1.2)

where the units of I have been chosen for convenience to be photons per time per area

per unit frequency.

The equation which governs the rate of change of the alkali electron spin, hSzi, is

dhSzi
dt

=
1

2
(1¡ 2hSzi)Rp ¡ ¡ahSzi; (1.3)

where (1 ¡ 2hSzi)Rp is the rate at which photons are absorbed, and each absorption

event deposits on average 1
2

unit of angular momentum. ¡a is the rate at which the

alkali spin is lost through collisions with other atoms in the spin exchange cell or with

the walls of the cell itself. In steady state, the polarization, 2hSzi, is then

Pa =
Rp

Rp + ¡a
: (1.4)

To produce high alkali polarization, it is necessary to make Rp larger than ¡a. The

processes which contribute to ¡a include spin exchange and spin destruction interac-

tions involving binary collisions, molecular processes, and di®usion of the alkali atoms

to the walls of the optical pumping cell.

Some fraction of the alkali electron spin hSzi is transferred to the nuclear spin

hKzi of the noble gas atoms in the cell via the spin exchange interaction ®K ¢ S. The

exchange can in general occur during binary collisions or while the alkali and noble gas

atoms are in short-lived van der Waals molecules.

The rate equation which governs the noble gas nuclear spin is

dhKzi
dt

= ¡SE(hSzi ¡ hKzi)¡ 1=T1hKzi (1.5)

High noble gas nuclear polarization PK = 2hKzi requires that the spin exchange rate,

¡SE, is at least as large as the noble gas relaxation rate, 1=T1:

PK = Pa
¡SE

¡SE + 1=T1
: (1.6)
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1=T1 depends in general upon magnetic ¯eld gradients [Cates88], oscillating magnetic

¯eld noise [Cates88b], and collisions with other atoms (including noble gas self relax-

ation [Hunt63]). However, the limiting factor in practical spin exchange systems is

nearly always collisions with the walls of the cell (or storage container).

From the above discussion, it is clear that there are three main problems limiting

the noble gas polarization in current practical spin exchange optical pumping systems.

First, 1=T1 must be made small in order to acquire and store polarized gas (see equation

1.6). However, with the exception of polymer surfaces [Driehuys95], little is known

about the mechanisms by which noble gases relax on storage container walls. We have

done theoretical estimates and experimental measurements of noble gas relaxation on

metal walls via a \surface Korringa" mechanism. This work has already had impact

on the commercial polarized gas production ¯eld.

Second, to produced highly polarized alkali vapor, Rp must be made much larger

than ¡a (see equation 1.4). Most current hyperpolarization production systems use

broadband diode arrays for the optical pumping. These arrays, typically with 60 Watts

at 1-2 nm linewidth, necessitate the use of high pressures and temperatures to make use

of a signi¯cant portion of their output power (i.e. to make the frequency width of ¾(º)

a signi¯cant fraction of the width of I(º)) [Driehuys96]. We have developed a novel

external cavity diode laser array (ECDLA) in order to increase Rp by decreasing the

width of the laser intensity distribution rather than simply increasing the integrated

intensity.

Finally, we seek to make ¡SE as large and ¡a as small as possible; however, though

these rates have received some attention in the literature [Cates92][Zeng85][Ramsey83],

there does not seem to be enough understanding of the fundamental processes at work

in optical pumping (particularly at high pressures) to accurately predict their values.

This has motivated our measurements of ¡a and ¡SE over a wider range of pressures
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than has previously been done. In addition, our work represents the ¯rst measurements

of the temperature dependences of these fundamental rates. These rate measurements

will also allow us to measure noble gas polarizations in situ via all optical methods,

eliminating noble gas NMR losses and the need for NMR calibrations.

1.2 Summary of results

Chapter 2 contains the main details of the apparatus used for this work, with the

exception of a cell specially constructed for measuring surface relaxation. Our cell

preparation techniques, low ¯eld home-built NMR system, and optical Rb polarization

and number density measurement techniques are all described in turn.

Chapter 3 outlines our theoretical estimates of a possible mechanism by which 129Xe

atoms relax on metal surfaces. Our estimates and our measured relaxivities of Au, Ag,

and In metal ¯lms are presented in table 3.1. We have also measured the relaxivity

of a gold surface as a function of temperature (¯gure 3.3). A full table of estimated

Korringa relaxivities of 129Xe and 3He appears in Appendix C.

Chapter 4 describes our work applying external cavities to broad area lasers (BAL's)

and diode laser arrays. We have produced 16.5 Watts of output power with a 90

GHz bandwidth using only a stock diode array and optical components, and we have

compared its performance to that of an unnarrowed diode laser array. The 129Xe

polarization produced in a spin-exchange cell by this laser is 3 times that produced by

a commercially available 15 Watt ¯ber-coupled diode array.

Chapter 5 details our measurements of spin exchange and spin destruction rates

for the Rb-129Xe system. At the time of this writing, this work represents the most

complete study of these rates, covering a wide range of pressures and temperatures

relevant to the e±cient production of hyperpolarized 129Xe gas. The results from the
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Rb spin loss measurements are summarized in table 1.1. From our spin exchange data,

80±C 150±C

h¾vi (s¡1 amagats¡1) (2.28 § 0.07) £ 105 (2.44 § 0.16) £ 105

¡vdW (s¡1) 3240 § 100 2049 § 120

[G]1 (amagats) 2.8 § 0.6 1.95 § 0.7

[G]0 (amagats) 0.100 § 0.010 |

D0 (cm2/s) 0.35 § 0.03 |

Table 1.1: Rubidium spin loss parameters obtained from Rb polarization decay curves

(section 5.1).

we obtain the values of the characteristic density [G]1 shown in table 1.2. In addition,

we measure

°SE

¯̄
¯̄
20±C

=
K®
2¹hx

[G]0
[G]1

¯̄
¯̄
20±C

= (1:16§ 0:16)£ 10¡15cm3=s

h¾SEvi
¯̄
¯̄
20±C

= (2:2§ 2:5)£ 10¡17cm3=s:

Finally, combining one or more measured values from the spin loss and spin exchange

data, we calculate the RbXe van der Waals molecule parameters summarized in table

1.3.

As a result of these measurements we have gained a greater understanding of the

processes a®ecting the production of hyperpolarized 129Xe gas. Chapter 6 summarizes

our results as they pertain to practical 129Xe spin exchange optical pumping systems.

Our results suggest utilizing larger spin exchange cells, lower temperatures, lower pres-

sures, and narrower bandwidth light sources than are currently in general use [Shah00]

[Baranga98b].
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120±C 130±C 140±C 150±C

[G]1 (amagats) 2.42 § 0.35 2.36 § 0.34 1.96 § 0.28 1.57 § 0.22

Table 1.2: Characteristic density [G]1 obtained from Rb-129Xe spin exchange data

(section 5.2).

Parameter Value calculated from

¿ 0:103 ns¢amagats
³
T+273

413

´¡2:64§0:6
[G]1

°N
h

109 MHz [G]1, [G]0

x 2:0§ 0:2 [G]1, ¡vdW , °SE

®
h

57 MHz [G]1, [G]0, ¡vdW , °SE

K(80±C) 2:51£ 10¡22 cm3 [G]1, [G]0, ¡vdW , °SE

Table 1.3: RbXe van der Waals molecule parameters calculated from the measurements

of sections 5.1 and 5.2. See those sections for de¯nitions of parameters.



Chapter 2

General Apparatus

In most ways, our 129Xe spin-exchange optical pumping apparatus resembles those used

previously by other groups. We make use of siliconizing agents to coat Pyrex cells for

long 129Xe relaxation times, we utilize forced air to heat our cells to create signi¯cant

rubidium vapor pressure, and we use either 15 Watt ¯ber-coupled laser diode arrays

or our frequency-narrowed diode arrays (see Chapter 4) as pumping light sources. Our

low-¯eld pulsed 129Xe NMR system is based upon a design given to us by Bastiaan

Driehuys of Magnetic Imaging Technologies, Incorporated. We also measure rubidium

polarization and number density by optical means, using a low power diode probe laser.

These general features of our experiments are each described in detail below.

2.1 Spin-Exchange Cell

All of the rubidium spin-loss and spin-exchange measurements were made using a

custom constructed cylindrical Pyrex cell (¯gure 2.1). The cell measures 4 cm in

diameter by 8 cm length. The cell ends are °at, for good optical access. Two 1/4"

Pyrex high vacuum O-ring sealed valves provide access to the cell for purposes of gas

9
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¯lling and removal. One of these valves mates via a glass-to-metal seal to a 1.33"

con°at °ange for connection to the gas manifold.

The cell was initially attached to a glass vacuum manifold via a tip-o® and an-

nealed. We then cleaned the cell and the Pyrex valve stems in an ultrasonic cleaner

with acetone and then with ethanol. We prepared a weak solution of SurfaSil (Pierce

Chemical Company part #42800) in cyclohexane (several drops of SurfaSil to 10 ml

of cyclohexane), and swished the solution around the cell interior to produce a full

coating. A ¯nal rinse with ethanol removed any excess SurfaSil and cyclohexane. We

then attached the manifold to a 60 l/s turbomolecular pump (Leybold Hy.Cone 60),

and pumped on it while baking at 120±C for approximately one week. We chased a

large droplet of natural abundance rubidium metal into the cell through the tipo® with

a cool torch, and then pulled the cell o® of the manifold under vacuum, using a small

hot °ame but being careful not to heat the cell more than necessary.

Figure 2.1: Spin-exchange cell used for spin-exchange and spin-loss measurements.

We then attached the cell to a gas manifold constructed from copper tubing via
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the cell's con°at °ange. A heat-activated gas puri¯er (UltraPure Minipuri¯er) serves

to minimize impurities introduced to the cell with the gases. We purged and pumped

out the manifold and regulators using a rotary vane pump with a foreline trap before

the initial puri¯er activation. Because we found that the rubidium number density in

the heated cell would temporarily decrease after we added gas which had been in the

manifold for some time (presumably due to some impurities entering the gas, perhaps

outgassing from the copper manifold itself), we also pumped the manifold out before

each new gas addition. This extra step largely alleviates this problem.

2.2 Forced-Air Oven

We placed the cell in an oven specially constructed of 1/2" thick Te°on sheet assembled

with brass hardware (care was taken throughout this work to avoid the use of even

weakly ferromagnetic items in and around the spin-exchange oven, as magnetic ¯eld

gradients are associated with spin relaxation (see equation 2.6). 50.8 mm diameter

windows provide optical access from the front to the rear of the oven. The cell's inlet

and outlet valves protrude through holes in the oven wall (¯gure 2.2).

Heat is provided via air forced through a process air heater (Omega part#AHP

5051) and delivered to the oven through insulated copper tubing. A resistive thermal

device (RTD) taped directly on the cell between the two arms provides temperature

measurements and feedback to a PID temperature controller (Omega part# CN77000),

which in turn provides 110 Volts to the process air heater as needed via a zero-switching

solid state relay (Omega part# SSR240DC25).

The oven is mounted on an XY-translation stage which in turn is mounted on a

(nonmagnetic) optical lab jack, which allows us to carefully center the cell in a 1 meter

diameter Helmholtz pair. We use the width of the frequency-domain 129Xe NMR signal
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(see section 2.4) to position the oven as well as to adjust the positions of the coils

themselves. The translation stage and lab jack provide a means to make millimeter-

scale movements of the oven, and we use cardboard shims to make millimeter-scale

adjustments to the coil positions. We measure the width of the 129Xe NMR signal

before and after each adjustment, and minimize that width with respect to oven and

coil positions. Several extra turns on one of the Helmholtz coil forms and a second power

supply allow us to shim any residual longitudinal ¯eld gradients, and we minimize the

NMR signal width with respect to current through those extra turns as well. In this

way, we provide a longitudinal magnetic ¯eld at the cell of up to 30 Gauss with gradients

on the order of 1 mG/cm or less (see section 2.4).

2.3 Broadband pumping source

Commercially available 15 Watt ¯ber-coupled diode arrays (Optopower Corporation

OPC-A015-FCPS) provide the optical pumping light for much of this work. Because

the ¯ber output is unpolarized, we approximately collimate it using a 50 mm focal

length lens, and then pass the resulting beam through a polarizing beam splitter cube.

The two resulting linearly polarized beams may then be directed toward the cell and

circularly polarized via separate ¸=4 plates. We have felt the need to check that

each \polarizing" beam-splitter cube is indeed polarizing (by simply observing the

transmission of each output beam through a sheet of polarizer material), as we have

come across several in our laboratory which do not properly polarize both output

beams.

Care must be taken to avoid imaging the end of the ¯ber bundle onto the spin

exchange cell, as the resulting inhomogeneous light ¯eld would lead to reduced Rb

polarization (though Rp scales linearly with light intensity, the polarization of the Rb
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Figure 2.2: Forced air oven, showing inlet and outlet arms of spin-exchange cell.
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does not). In practice, we have imaged the collimating lens onto the cell with the

desired magni¯cation (the same technique is employed in overhead projectors to avoid

an image of the light bulb on the screen).

2.4 NMR

We detect xenon polarization using a custom-built LabView-controlled low ¯eld NMR

system (¯gure 2.3). A single tuned 200-turn coil wound from 34 gauge magnet wire

around a 9 mm diameter Te°on form (Q = !L=R ¼ 18 at 25 kHz, L = 1:0 mH) serves

as both the pulse coil and the sense coil. Silicone RTV secures the coil to the top of the

spin-exchange cell, its axis perpendicular to the longitudinal DC ¯eld. We ¯rst send

a short resonant 25 kHz pulse (generated by a National Instruments 500 kHz DAQ

card) through the coil with the analog switch open. We then close the analog switch in

order that electronic noise from the DAQ card is attenuated rather than ampli¯ed (the

\diode gate" pictured also serves to block noise from the DAQ card). After allowing

1-3 ms for the coil to ring down, the voltage induced in the coil by the precessing 129Xe

magnetization may be measured.

This free induction decay (FID) signal is ampli¯ed and then sent to a Stanford

Research Systems 830 lock-in ampli¯er. The lock-in phase-sensitive detector (PSD)

multiplies the atoms' signal, Vsig sin(!sigt+Ásig) by the reference Vref sin(!ref t+Áref),

generating di®erence and sum frequencies:

VPSD =
1

2
VsigVref sin((!sig ¡ !ref)t+ (Ásig ¡ Áref)) + (2.1)

+
1

2
VsigVref sin(!sig + !ref)t+ (Ásig + Áref ))

If the result is low pass ¯ltered with su±cient bandwidth ((!sig¡!ref)¿bandwidth¿
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!ref ; !sig) the lock-in output is

Vout =
1

2
VsigVref sin((!sig ¡ !ref)t+ (Ásig ¡ Áref)): (2.2)

In practice, we set the internal reference of the lock-in 50-100 Hz from the 129Xe resonant

frequency. Our 50-100 Hz mixed down FID signal is then read by the DAQ card (¯gure

2.3).

Figure 2.3: Pulsed NMR detection circuit.

The FID signal (¯gure 2.4) can be analyzed in either the time or frequency domain.

The analysis is straightforward in the time domain, where we assume the form

V (t) = VFID sin (2¼f0t+ Á) e¡t=T
¤
2 ; (2.3)

and perform a least-squares ¯t to the raw data using VFID, f0, Á, and T ¤2 as free

parameters. The initial induced voltage, VFID, is proportional to 129Xe magnetization.
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Figure 2.4: Typical free induction decay following NMR pulse. The frequency do-

main signal is the square of the magnitude of the FFT of the time domain signal. A

Lorentzian ¯t is superimposed on the data.

T ¤2 is the coherence time of the 129Xe spins in the transverse plane, which in very high

pressure (i.e. very low di®usion) experiments is dominated by longitudinal magnetic

¯eld inhomogeneities [CSH]:

1

T ¤2
¼ 2¼°jrzBjl: (2.4)

For 129Xe , ° = gXe¹B=h = 1:178 kHz / Gauss, and l is a characteristic length of the

system; we take l to be approximately equal to the sense coil diameter, 1 cm.

In the frequency domain, we square the magnitude of the FFT of equation 2.3 to

obtain a Lorentzian:

jF(V (t))j2 =
(VFID=2¼)2

(f ¡ f0)2 + (1=2¼T ¤2 )2
: (2.5)

We can ¯t this Lorentzian to the squared Fourier transformed data using VFID, f0, and

T ¤2 as free parameters.

A typical FID signal (¯gure 2.4) yields T ¤2 ¼ 300 ms, for a longitudinal ¯eld gradient

jrzBj < 1 mG/cm from equation 2.4. Monitoring T ¤2 , then, allows us to estimate

the 129Xe relaxation rate due to magnetic ¯eld inhomogeneities [GamblinCarver65]
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[SchearerWalters65]:

1

T1

= D
¯̄
¯̄rTB
B0

¯̄
¯̄
2

; (2.6)

where D is the di®usion constant for the 129Xe spins (D = 0:791 § :032 cm2/s for

Xe in one atmosphere of He [Hasson90]), and rTB is the transverse gradient of the

longitudinal (z-oriented) magnetic ¯eld B0. Applying equation 2.6 along with the

relation rTB ¼ rzB=2 to our system yields 1=T1 < 1 £ 10¡9 s¡1, much slower than

the 129Xe relaxation due to surface interactions.

2.5 Rb polarization

We detect rubidium polarization optically, using both Faraday rotation and circular

dichroism. For this purpose, we have constructed a low power probe laser using a 40

mW single mode diode (Sharp LT025MD) in a Littman-Metcalf cavity, with output

tunable »10 nm on either side of the Rb D2 line (780.23 nm). Either neutral density

¯lters or a ¸=2 plate and polarizing beam splitter cube allow us to cut probe laser

intensity su±ciently to produce no detectable perturbation on the Rb polarization.

Our Rb spin-loss measurements were done using this probe laser along with an

analyzer designed to detect the Faraday rotation of the linearly polarized probe beam.

Located behind the cell, it consists of a ¸=2 plate, a polarizing beam splitter cube, and

two photodiodes (one at each output of the cube) wired such that their photocurrents

subtract from each other (see ¯gure 2.6). With no optical pumping, the ¸=2 plate is

set such that the photodiodes together give zero output current (i.e. equal light to

each arm of the analyzer). When the Rb vapor has polarization P (¡1 < P < +1), it

induces a Faraday rotation angle Á on the linear probe beam polarization [Wu86]:

dÁ

dP
=
¼[Rb]le2c

3mc2

0
@ ¢3=2

¢2
3=2 + °2

3=2=4
¡ ¢1=2

¢2
1=2 + °2

1=2=4

1
A ; (2.7)
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where ¢3=2 is the probe beam detuning from the Rb D2 line (angular frequency) and

¢1=2 is the probe beam detuning from the Rb D1 line. For ¢À °, equation 2.7 reduces

to

dÁ

dP
¼ ¼[Rb]le2c

3mc2
(

1

¢3=2

¡ 1

¢1=2

): (2.8)

The photodiodes put out a current proportional to sin(Á), which for small Á is propor-

tional to Rb polarization. The resulting current is ampli¯ed and converted to a voltage

which can be displayed on an oscilloscope. By chopping the optical pumping beam, we

can monitor both the buildup and decay of the Rb polarization (¯gure 2.5).

Figure 2.5: Rb polarization decays and then is repumped as the pump beam is chopped

(1000 averages).

2.6 Rb polarization and number density

Our Rb spin-exchange and polarization calibration measurements made use of the same

analyzer. However, we added a photoelastic modulator (PEM) and a ¸=4 plate to the

probe beam path in front of the cell, and a switch to one of the photodiodes which

allowed us to either add or subtract photodiode currents. We used a lock-in ampli¯er

(SRS 810) to analyze the ampli¯ed photodiodes' output. These extra features allow us
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to monitor circular dichroism as well as Faraday rotation, enabling us to measure Rb

number density as well as to make absolute Rb polarization measurements.

Figure 2.6: Photoelastic modulator and associated polarization analyzer optics. Upper

/ lower settings for measuring circular dichroism / Faraday rotation. The ¸=2 plate is

set such that it forms a +/- 45± polarizer in combination with PD1 / PD2.

2.6.1 PEM circular dichroism measurement

Circular dichroism (di®erential absorption between left and right circularly polarized

light) is a direct consequence of Rb polarization. For light resonant with the Rb D2

line (5S1=2 ! 5P3=2),

¾+ =
1

2
¾±(2 + P ) (2.9)

¾¡ =
1

2
¾±(2¡ P ); (2.10)

where ¾+=¡ is the absorption cross section for light circularly polarized along / against

the Rb polarization. ¾± is the absorption cross section for unpolarized atoms.
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The probe beam is initially linearly polarized with its electric ¯eld vector, ~", along

x̂ (90± in the notation of ¯gure 2.6). With the optics in the upper con¯guration (for

circular dichroism), the ¸=4 plate does not alter the probe polarization. The probe

polarization vector before entering the PEM can then be resolved into components

along the PEM fast axis, f̂ , and slow axis, ŝ, (at §45± to x̂). The e®ect of the PEM

can then be written as modulations on both the f̂ and ŝ components:

~"(t) =
f̂e

iµ(t)
2 + ŝe¡

iµ(t)
2p

2
; (2.11)

where µ(t) = ¯ sin(!t) (¯ is the PEM retardation and ! is the PEM modulation

frequency, 2¼£50 kHz). More algebra allows us to resolve the (modulated) polarization

vector into left- and right-handed circularly polarized components, r̂§ = 1p
2
(x̂§ iŷ):

~"(t) =
r̂+p

2

Ã
cos

µ(t)

2
+ sin

µ(t)

2

!
+
r̂¡p

2

Ã
cos

µ(t)

2
¡ sin

µ(t)

2

!
: (2.12)

Now each circularly polarized component is absorbed by the cell as per its own absorp-

tion cross section (¾§), leaving a total transmitted intensity, I(t):

I(t) = e¡
1
2
n(¾++¾¡)l

µ
cosh

µ
1

2
n (¾+ ¡ ¾¡) l

¶
+ sin µ sinh

µ
1

2
n (¾+ ¡ ¾¡) l

¶¶
: (2.13)

Using equations 2.9 and 2.10 as well as the relation [Abramowitz]

sin (¯ sin!t) = 2
1X

k=0

J2k+1(¯) sin (2k + 1)!t (2.14)

leads us to the following form for the transmitted probe intensity:

I(t) = e¡n¾±l
µ

cosh
µ

1

2
n¾±lP

¶
+ 2J1(¯) sin!t sinh

µ
1

2
n¾±lP

¶¶
; (2.15)

where, because we will observe only the DC photodiode signal and the fundamental

frequency (via lock-in ampli¯er), we have included only the ¯rst term from the sum

in equation 2.14. The beam-splitter cube splits the light, but the two photodiodes'

outputs are summed, yielding

V (t) = VDC

µ
cosh

µ
1

2
n¾±lP

¶
+ 2J1(¯) sin!t sinh

µ
1

2
n¾±lP

¶¶
; (2.16)
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where VDC is the DC photodiode signal (both channels summed together) with no

pump beam (P = 0), and sent to the lock-in. The lock-in returns the rms voltage at

frequency !,Vcd, given by

Vcd =
p

2VDCJ1(¯) sinh(
1

2
n¾±lP ): (2.17)

2.6.2 PEM Faraday rotation measurement

Switching the optics to the lower con¯guration of ¯gure 2.6 allows us to monitor the

Faraday rotation of the probe beam. In this con¯guration, the light entering the PEM

is circularly polarized:

~" =
f̂ + iŝp

2
(2.18)

Again we apply modulation to each component, but now we consider the rotation angle,

Á, of the polarization vector induced by the cell:

~"(t) =
1p
2
e¡

1
2
n¾±l

µ³
f̂ cosÁ+ ŝ sinÁ

´
e
iµ(t)

2 + i
³
ŝ cosÁ¡ f̂ sinÁ

´
e
¡iµ(t)

2

¶
: (2.19)

The ¸=2 plate angle is set such that the beam splitter cube acts as a polarizer with its

axis aligned with either f̂ or ŝ, depending upon which photodiode is being monitored.

If we allow only the f̂ component of the probe to pass, we see a transmitted intensity

I1 at one photodiode given by

I1(t) =
1

2
e¡n¾±l ¡ 1

2
e¡n¾±l2J1(¯) sin!t sin 2Á: (2.20)

Similarly, the intensity at the second photodiode is given by

I2(t) =
1

2
e¡n¾±l +

1

2
e¡n¾±l2J1(¯) sin!t sin 2Á: (2.21)

The two channels are subtracted and sent to the lock-in, which returns

Vfr =
p

2VDCJ1(¯) sin 2Á: (2.22)
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2.6.3 Rb number density

Measuring VDC , Vcd, Vfr, and n¾±l (simple absorption of the probe beam) allows us to

calculate n and P . The Rb number densities, n, obtained in this way tend to be »

20% lower than one would expect from measured temperatures and published vapor

pressure curves, e.g. those measured by Killian [Killian26]:

n = 10(3:55¡4132=T )=kT: (2.23)

(The units of T are ±K, n is given in number per cm3). This is, however, consistent with

observations of laser absorption in our laboratory in this and similar optical pumping

cells.

We note that though we have not checked that the pumping light is not generating

a coherence between the Rb Zeeman levels (mJ = §1), we feel that this is a highly

unlikely source of systematic error. High photon absorption and Rb loss rates both

tend to destroy any such coherence, as does the large Rb electron precession frequency

in our magnetic ¯eld (0.467 MHz/G).



Chapter 3

Relaxation on Metal Surfaces

As pointed out in the introduction (equation 1.6), acquiring and storing polarized gas

requires a system with a long noble gas relaxation time. Magnetic ¯eld gradient induced

relaxation [Cates88]

¡ = D
¯̄
¯̄rTB
B

¯̄
¯̄
2

(3.1)

can be minimized through the use of fairly uniform holding ¯elds (see section 2.4,

for example). Relaxation due to magnetic ¯eld noise at the 129Xe resonant frequency

[Cates88b] can be minimized by using moderate holding ¯elds (to increase the 129Xe

resonant frequency above prevalent low frequency noise), and by surrounding the gas

with metal shielding over a skin depth thick. Xe-Xe spin-rotation induced relaxation

limits storage times to 56/[Xe] hrs¢amagats [Hunt63] [Torrey63], but even this is long

compared to relaxation times in most systems. Hyperpolarized 129Xe gas storage times

are currently limited chie°y by relaxation on the walls of the container used to store

it. With the exception of relaxation on polymer surfaces [Driehuys95], very little is

known about xenon surface relaxation mechanisms. Extending theoretical estimates of

129Xe and 3He relaxation on alkali surfaces by Driehuys, Cates, and Happer (private

communication), we have explored 129Xe relaxation on select metal surfaces.

23



24

Throughout this work, \relaxivity", %, is de¯ned as the relaxation rate, ¡, experi-

enced by a volume V of gas enclosed in a container with surface area S multiplied by

the ratio V=S:

% = ¡V=S (3.2)

Relaxivity (with units length/time) is then a property of a surface, and is independent

of container geometry.

3.1 Surface Korringa Relaxation

Following Driehuys, Cates, and Happer, we postulate that the mechanism by which

noble gas atoms relax on metal surfaces is an extension of the theory put forth by

Korringa [Korringa50] for relaxation of nuclei in metallic solids. An excellent derivation

of this theory appears in [Slichter]. According to that theory, a nuclear spin relaxes

when, during an electron scattering event, the spin state of the nucleus is changed. It

is important to note that this nuclear spin state change must be accompanied by a

corresponding °ip of the scattering electron's spin. This is only allowed by the Pauli

exclusion principle if the ¯nal electron state is initially unoccupied. Therefore Fermi

statistics dictate that only those electrons with energy within approximately kT of the

metal's Fermi energy contribute to the nuclear relaxation. The resulting relaxation

rate for nuclei in metals is given by [Slichter]

1

TK
=

(4¼)6

9h7
(gs¹B

¹K
K

)2´4m3²FkT; (3.3)

where the linear temperature dependence is from the Fermi statistics and is considered

the signature of Korringa relaxation.

Again following Driehuys et al., we modify this theory to treat noble gas atoms

adsorbing and subsequently relaxing upon metal surfaces. We assume that a noble gas
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atom, interacting with the metal surface via an attractive atom-surface potential, ex-

periences some reduced conduction electron density at its position due to the electrons'

wave functions penetrating outside the metal (the evanescent wave). It is the electrons

in this exponentially decreasing Fermi sea which we assume contribute to the noble gas

nuclear polarization.

Assuming low surface coverage, the noble gas atoms in the bulk are free to sample

the atom-surface potential U(l) (where l = 0 is the \edge" of the metal). The Boltz-

mann factor e¡U(l)=kT gives us the ratio of the density of atoms at distance l to the

density of atoms in the bulk, N=V . The number dN of noble gas atoms found between

distance l and l + dl of the surface is then

dN =
N

V
Se¡U(l)=kTdl; (3.4)

where S is the surface area of the metal.

The Korringa relaxation rate 1=TK experienced by noble gas atoms is a function

of distance, owing to the rapid decrease of the conduction electron density outside the

surface. We de¯ne f(l) to be the fractional density of conduction electrons outside the

surface (referenced to f(l) = 1 inside the metal). Then the contribution d
³

1
T

´
to the

total relaxation rate of the N gas atoms in the cell due to the atoms between l and

l + dl is

d
µ

1

T

¶
=

1

TK(l)

dN

N
(3.5)

=
1

TK
f(l)2 S

V
e¡U(l)=kTdl: (3.6)

Integrating both sides gives us the total surface Korringa relaxation rate for the noble

gas:

1

T
=

1

TK

S

V

Z 1

0
f(l)2e¡U(l)=kTdl (3.7)
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We follow Driehuys, Cates, and Happer in de¯ning a characteristic length parameter,

b:

b =
Z 1

0
f(l)2e¡U(l)=kTdl: (3.8)

Physically, b is a measure of the amount of overlap between the density of electrons

outside the surface and the position of a noble gas atom near the surface. From our

de¯nition of relaxivity, the surface Korringa relaxivity of a metal is

% =
1

TK
b: (3.9)

As will become apparent, we have made many gross simpli¯cations and idealizations

in our atom-surface interaction calculations; we seek only a rough theoretical framework

to describe surface Korringa relaxation. In particular, here we have chosen to treat the

metal surface naÄively as an \edge" at l = 0. With this assumption, f(l) is easily

estimated from the work function Á of the metal:

f(l) = e¡
p

2Ám
¹h
l: (3.10)

In the interest of generating a table of candidates for polarized gas containers, we

have developed a semiempirical algorithm for approximating the atom-surface potential

function and resulting surface Korringa relaxivity from the following parameters: noble

gas polarizability, metal work function, and metal conduction electron density. We ¯rst

assume an atom-surface potential of form

U(l) = ¡c3=l
3 +B=l6: (3.11)

The coe±cient of the van der Waals attraction term, c3, is calculated from the noble

gas polarizability. We take as a starting point the potential energy between the noble

gas atom and its image in the (perfectly conducting) metal [Bruch]:

UvdW = ¡hp
2
zi

4z3
(3.12)
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We relate hp2
zi to the polarizability ®(0) of the noble gas atom [Bonin]:

®(0) =
2e2

3¹h

X

l

jhlj¹rj0ij2
!l0

(3.13)

¼ 2e2

¹h

hljzj0i2
!l0

; (3.14)

where in the last step ¹h!l0 is the energy di®erence between the noble gas atom ground

state and ¯rst excited state. Inserting hp2
zi = e2hljzj0i2 into equation 3.12 yields

c3 ¼
®(0)¹h!l0

8
: (3.15)

From equation 3.15, c3 = 4 ev¢ºA3 for 129Xe and 0:5 eV¢ºA3 for 3He. B is to be determined

by comparison with previously measured adsorption energies.

The repulsive term in U(l) arises due to Fermi overlap between the metal's electrons

and those of the noble gas atom near the surface. We have chosen the functional form

of the repulsion term purely for convenience; with this form we can simply relate c3,

B, the location of the potential minimum l0, and the binding energy U(l0):

B =
c3l

3
0

2
(3.16)

U(l0) = ¡ c3

2l30
(3.17)

Due to the physical origin of the repulsive term, we assume further that B is a

function of the electron density outside the metal surface. In practice, we have made

the observation that accepted potentials for noble gas atoms on metals as di®erent

as rubidium and silver exhibit minima at approximately the same fractional electron

density, f0. From equation 3.10, this corresponds to the statement that l0, the location

of the potential minimum, roughly scales like 1=
p
Á. The constant of proportionality

obviously depends upon the noble gas; we manually adjusted f0(Xe) and f0(He) such

that the binding energies of the two agree with accepted binding energies of the two



28

on silver, and veri¯ed that the agreement with other adatom-metal potentials is fairly

quantitative.

f0(Xe) = 0:00735 (3.18)

f0(He) = 0:000361 (3.19)

We stress that potential functions derived in this manner are only very crude ap-

proximations to actual atom-surface potentials, and that more rigorous theoretical

[Nordlander84] [Chizmeshya92] and semiempirical (e.g. Lennard-Jones (12,6)) meth-

ods of potential function approximation exist. However, our approximations do agree

fairly quantitatively with more rigorous calculations. We note that the trends exhibited

by our approximate potentials hold true under more rigorous study [Bruch], and that

it is those trends which we hope to use to identify possible polarized noble gas storage

materials.

The chief justi¯cation for our approximate method is that while work functions

have been measured and tabulated for all of the elemental metals [HÄolzl79] [Riviere69]

[Michaelson77], potentials are available in the literature for only a few. Appendix C

contains a table of predicted Korringa relaxivities for 129Xe and 3He on the elemental

metals, calculated using our approximations.

Our calculations suggest that 3He surface Korringa relaxivity is not an issue for

polarized gas storage; the relaxivities listed in Appendix C lead to storage times (in a

practical sized container) of many years. 3He surface relaxation must occur through

some other as yet unknown mechanism. Predicted 129Xe surface Korringa relaxivities,

however, are su±ciently high on many elemental metals (with the notable exception of

very reactive metals) to make Korringa relaxation an important issue for polarized 129Xe

storage. In particular, 129Xe surface Korringa relaxation on noble metals is predicted

to be the dominant relaxation mechanism in practical sized containers, allowing for
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Figure 3.1: Potential functions approximated by the method described in the text.

Each graph shows the attractive ¡l¡3 van der Waals term, the repulsive l¡6 Fermi

term, and the total potential function.
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convenient study.

The very di®erent predicted behavior of 129Xe vs. 3He relaxivities arises from their

very di®erent polarizabilities, and deserves comment. The high polarizability of 129Xe

leads to strong van der Waals attractive forces between the adatom and the metal

substrate. This in turn leads to a 129Xe-metal binding energy which (at moderate

temperatures) is large compared to the relevant energy scale, kT . This is particularly

true if the surface in question has tightly bound electrons (high work function), allowing

the 129Xe atom to approach very near to the surface. The integral expression for b then

becomes very nearly equal to

b ¼ f(l±)
2e¡(U(l±)=kT )±l; (3.20)

where ±l » 1 ºAngstrom is the width of the absorption potential well (¯gure 3.1). More

tightly binding surfaces (deeper potential U(l±)) therefore are predicted to be more

highly relaxing to 129Xe.

Calculated 3He surface Korringa relaxivities, by contrast, exhibit the opposite be-

havior. The remarkably low polarizability of 3He leads to binding energies on all

elemental metal surfaces which are much less than kT . We can then approximate b as

b ¼
Z
lcrossf(l)2; (3.21)

where lcross is the distance from the surface at which the 3He-metal potential crosses

from positive (repulsive) to negative (attractive). 3He surface Korringa relaxivity,

therefore, is predicted to be much higher on metals with loosely bound electrons (low

work function), which contribute more to f(l) in the integral.

These considerations also lead to contrasting temperature dependences of the two

species' surface Korringa relaxivities (¯gure 3.2). As we have seen, the characteristic

length, b, for 3He on metal surfaces is nearly independent of temperature. The dominant
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temperature dependence in its predicted relaxivity on a metal surface arises from the

linear temperature dependence of the Korringa rate itself (equation 3.3), leading to cal-

culated relaxivities which increase only slightly faster than linearly with temperature.

The dominant temperature dependence of 129Xe relaxation, however, arises from the

characteristic length, b, which is approximately an exponentially decreasing function

of temperature. We expect 129Xe relaxivities, therefore, to decrease with temperature

nearly like kTe¡U(l±)=kT (slightly slower than exponentially).

It may be conceptually useful to connect the relaxivity of a surface to the picture of

atoms di®using to and bouncing o® of the surface in question. The di®usion equation

must govern the transport of the nuclear spins to the walls of their container:

@hKzi
@t

= Dr2hKzi ¡ ¡hKzi; (3.22)

where D is the di®usion coe±cient and ¡ is the relaxation rate of spins in the bulk.

This equation is often solved for alkali spins in optical pumping cells with the boundary

condition that the polarization goes to zero at the walls (the highly relaxing walls limit).

Here we are interested in the opposite case, the limit of weakly relaxing walls.

The weakly relaxing walls limit is de¯ned as ¿dif ¿ ¿w, where ¿dif is the di®usion

time across the cell and ¿w is equal to 1=¡w, the relaxation time due to the walls of the

cell. (Though ¿w scales like cell length, ¿dif scales like length squared, leading to a cell

size dependence to the weakly relaxing walls limit condition.) In the weakly relaxing

walls limit, hKzi is very nearly uniform throughout the cell. We therefore average

equation 3.22 over the volume of the cell:

@hKzi
@t

= ¡¡hKzi+
D

V

Z
dVr2hKzi; (3.23)

and use Green's theorem to convert the di®usion term to a surface integral:

D

V

Z
dVr2hKzi =

D

V

Z
dSn ¢ rhKzi (3.24)
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Figure 3.2: Predicted 3He (top) and 129Xe (bottom) relaxivities vs temperature on Ag.
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where n is the outward normal to the surface. We next turn to ¯nd an expression for

n ¢ rhKzi.

From kinetic theory [Reif], the °ux of atoms into the wall must be [A]¹v=4; if hKzi

is uniform throughout the cell, the °ux of spins into the wall, j+, must then be

j+ =
[A]¹vhKzi

4
: (3.25)

We de¯ne ® to be the fraction of wall bounces which result in the loss of spin. The

°ux of spin out of the wall in steady state is then

j¡ = (1¡ ®)
[A]¹vhKzi

4
: (3.26)

But by the de¯nition of di®usion,

¡D[A]n ¢ rhKzi = j+ ¡ j¡ (3.27)

= ®[A]v=4: (3.28)

Solving for n ¢ rhKzi and inserting the result into equation 3.24 yields the relaxation

rate of the nuclear spins:

@hKzi
@t

= ¡¡hKzi ¡
®vS

4V
hKzi: (3.29)

From our de¯nition of relaxivity, %, we obtain

% =
®¹v

4
: (3.30)

It is interesting to note that though we started with the di®usion equation, the end

result is independent of the di®usion constant, D. Though it retains the velocity

dependence, the end result is independent of gas density (assuming that ®, the fraction

of bounces which relax a spin, is independent of density). This is the signature of the

\weakly relaxing walls" limit.
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Equation 3.30 connects the relaxivities we have estimated in the previous section

to the number of wall bounces it takes to relax a nuclear spin, 1=®:

% =
1

TK
b =

®¹v

4
: (3.31)

(The interesting temperature dependence of the Korringa relaxivity in this way trans-

lates to an interesting temperature dependence to ®¹v.) For example, the estimated

Korringa relaxivity of Xe on Au at 20±C is 1£ 10¡4 cm/s, which translates to

®(Xe¡ Au) ¼ 10¡8: (3.32)

It takes an estimated 100 million wall bounces to depolarize a Xe nucleus in a gold

container.

3.2 Measured Relaxivities

As a ¯rst test of surface Korringa theory, we chose to study 129Xe relaxivity on gold,

silver, and indium on the basis of these metals' chemical inactivity and availability in

high purity. We prepared thin ¯lms of these three metals on microscope cover slips.

The cover slips were cleaned successively for ten minutes in an ultrasonic cleaner with

trichloroethylene, acetone, and ethanol (all spectroscopic grade), and then blown dry

with clean nitrogen. The coverslips were then placed in a thermal deposition chamber

which we pumped down overnight to » 10¡8 Torr with an oil di®usion pump ¯tted

with a liquid nitrogen cold trap. We then thermally evaporated the particular metal

of interest, depositing it onto cover slips at approximately 10 ºA/s (as measured by a

crystal deposition monitor). By controlling the exposure time of the cover slips, we

were able to produce ¯lms approximately 1200 ºAngstroms thick.

These thin ¯lms have little e®ect on the low ¯eld NMR techniques which we use to

measure 129Xe polarization. Both the tipping pulse from the tuned coil and the atom's
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signal to the coil are attenuated as a function of the metals skin depth, ±(!):

B(!) = B±e
¡¿=±(!); (3.33)

where ¿ is the thickness of the coating and ±(!) is given by [Jackson]:

±(!) = (2=¹!¾)
1
2 : (3.34)

The skin depth of gold at 25 kHz (our 129Xe NMR frequency) is then 0.45 mm, or a

factor of 4000 larger than the thickness of our coatings. It is interesting to note that,

due to the frequency dependence of ±, low ¯eld NMR has an advantage over high ¯eld

NMR for performing measurements of hyperpolarized gases inside metal containers.

For example, the skin depth of gold at 106 MHz, the 129Xe resonant frequency in a 9

Tesla ¯eld, is only 6.9 ¹m, a factor of 60 smaller than the skin depth in our low 25 kHz

¯eld.

The relaxivities of the resulting ¯lms were measured at Magnetic Imaging Tech-

nologies, Inc., now a division of Nycomed Amersham Imaging. There a Pyrex chamber

with walls coated with a siliconizing agent (DMDCS, Pierce Chemical Company) has

been constructed in two sections, such that samples may be placed inside and the

chamber sealed with an elastomer O-ring. The chamber can be pumped out using a

mechanical pump with foreline trap, and polarized 129Xe may be introduced via a high

vacuum Pyrex valve with O-ring seal. A low ¯eld pulsed NMR system such as has been

described in Chapter 2 is used to monitor the 129Xe polarization as a function of time.

The measured relaxation rate of the empty chamber is subtracted from the measured

relaxation rate of the chamber with sample inside to obtain the relaxation rate due to

the sample itself. This relaxation rate is then multiplied by the ratio of the volume of

the chamber to the measured (macroscopic) surface area of the sample to obtain the

relaxivity of the sample itself. The measured and calculated relaxivities of the three

metals appear in Table 3.1.
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Predicted Relaxivity Measured Relaxivity T1cc (min.)

Gold 1:07£ 10¡4cm¢s¡1 8:45£ 10¡5cm¢s¡1 § 30% 41§ 12

Silver 3:76£ 10¡5cm¢s¡1 4:55£ 10¡5cm¢s¡1 § 8% 75:6§ 5:7

Indium 1:13£ 10¡5cm¢s¡1 6:63£ 10¡5cm¢s¡1 § 20% 52§ 11

Table 3.1: Predicted vs. measured relaxivities for thermally deposited metal ¯lms.

Also included is the relaxation time of 129Xe in a 1 cm3 sphere coated with the ¯lm

(calculated from measured relaxivity).

The measured results for 129Xe relaxation on gold and silver surfaces are within 20%

of the predicted values, however the measured relaxivity of the indium surface is » 6£

the predicted value. However, though the gold and silver samples appeared mirror-like

to the eye, the indium surface seemed to sparkle, suggesting a less than atomically

smooth surface. Indeed, upon examination under an atomic force microscope (AFM),

the indium surface can be seen to be made up of many granules, with characteristic

size approximately 1 ¹m (¯gure 3.3).

This observation underscores the possible di±culty associated with assigning a

macroscopic surface area to a surface with microscopic features. Though this di±-

culty is minimized by the use of gold and silver samples (thermal deposition of these

metals produces relatively smooth surfaces), we might expect that the true microscopic

surface area of even these samples is somewhat larger than the macroscopic area of the

cover slip substrate.

Though we cannot properly call this data evidence either for or against surface

Korringa relaxation as the dominant relaxation mechanism, we are encouraged that

the measured relaxivities are even the correct order of magnitude. Though previous

work has suggested long 3He relaxation times in metal coated cells [Heil95], it was

commonly believed that 129Xe would relax much more strongly on metals than our work
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Figure 3.3: AFM images comparing indium and gold surfaces. The height scale for the

indium image is 200 nm, while that for the gold surface is 10 nm. The faint \ripple"

in the gold image is an instrumental artifact.
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has shown to be the case [DriehuysPC]. Indeed, as a result of this work, a commercial

polarized gas production system has been redesigned, with aluminum ¯ttings replacing

the fragile glass ¯ttings previously used to handle polarized 129Xe [DriehuysPC].

3.3 Temperature Dependence

It is the temperature dependence of equation 3.3, due to Fermi statistics, which is

considered evidence for Korringa relaxation in solid state systems. Though we expected

this temperature dependence to be somewhat obscured in surface Korringa relaxation

due to the temperature dependence of the characteristic length, b, we chose to explore

the temperature dependence of 129Xe relaxation on a gold surface. We want a system

in which the metal surface is the dominant source of 129Xe relaxation; of the three

metal surfaces we have examined, gold is the most chemically inert and most relaxing.

For this experiment, we designed a two-chambered Pyrex cell, with a high vacuum

Pyrex valve positioned between the two chambers (¯gure 3.4). The °attened two-piece

spin-down chamber has a 50 cm3 volume (obtained by measuring the volume of water

which ¯t in the chamber prior to the coating process) and an 80 cm2 surface area

(approximated by measuring the linear dimensions of the chamber interior), yielding

S=V = 1:6 cm¡1 (» 1=3 that of a 1 cm3 sphere).

We thermally deposited a thin gold ¯lm on the interior of the spin-down chamber

using the technique detailed above. Owing to the shape of the chamber interior, some

areas received a much thicker coating than others; in order to assure that the coating

was at least several hundred ºAngstroms thick everywhere, some areas were likely coated

microns thick. Therefore we might expect the chamber coating to be less smooth than

our earlier coverslip coatings.

We then attached the cell to a glass vacuum manifold via a tipo® on the spin-up
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Figure 3.4: Surface studies cell.
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chamber, and coated the interior of the spin-up chamber with SurfaSil, as was described

in Chapter 2. We fabricated an aluminum clamp with brass hardware, and used it to

make an O-ring seal between the two halves of the spin-down chamber. At this point,

we pumped the entire cell down to 10¡7 Torr using a turbomolecular pump and baked

at 120±C for approximately one week. We then chased a small amount of Rb metal

into the spin-up chamber and ¯lled the cell with the desired gas composition in the

following manner: we ¯lled the entire manifold and cell with 4 amagats of natural

abundance Xe, closed the valve to isolate the spin-down chamber, and pumped out the

remaining Xe. We then ¯lled the manifold and spin-up cell with 150 Torr of N2 and

pulled the cell o® of the manifold with a small hot °ame.

Because the freezing point of Xe, 161 K, is signi¯cantly higher than the boiling

point of nitrogen, 77.2 K, we were able to freeze the Xe into the spin-up chamber by

simply holding that chamber several inches above liquid nitrogen with the isolation

valve open. We could then close the valve and allow the xenon to thaw, leaving us

with 8 amagats Xe and »50 Torr N2 in the spin-up chamber and »50 Torr of N2 in the

spin-down chamber. We placed the spin-up chamber in a temperature controlled forced

air oven centered in 1 m diameter Helmholtz coils. The oven was designed with a hole

through which the tubing connecting the two chambers could protrude. Anti-re°ection

coated windows provided straight-through optical access to the cell.

We illuminated the spin-up chamber at 80±-100±C with 24 Watts of circularly po-

larized light from two ¯ber-coupled diode arrays, and allowed time for the 129Xe polar-

ization to build up through spin-exchange with the Rb vapor. We then allowed the cell

and oven to cool to 40±-50±C while continuing to optically pump any Rb still in the

vapor. After turning o® the pumping light, we reversed the cell so that the spin-down

chamber was in the oven and brie°y opened the isolation valve to allow polarized 129Xe

to °ow into the spin-down chamber. After allowing the oven and spin-down chamber
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to equilibrate at the desired temperature, we used the low ¯eld NMR detection system

described in Chapter 2 to observe the 129Xe polarization decaying as a function of time

(¯gure 3.5).

Figure 3.5: FID voltage received by NMR coil as a function of time at 60±C, including

¯t.

Because some ¯xed fraction of the total 129Xe magnetization is lost with each pulse,

we avoided using uniform pulse rates, instead staggering the pulses as shown and

including the ¯xed fraction of polarization lost with each pulse as a parameter of the

¯t. For example, the ¯t to the data displayed in ¯gure 3.5 yields a relaxation time T1

of 43.5 minutes §2.5 minutes and 4.6% §0.4% of magnetization lost with each pulse.

This relaxation rate corresponds to a relaxivity of 2.4 £ 10¡4 cm¢s¡1.

We repeated this process at temperatures ranging from -40±C to 120±C. In order to

reach temperatures below room temperature, we directed the oven air through copper

tubing immersed in liquid nitrogen prior to °owing it through the process air heater on

its way to the oven. Our results for 129Xe relaxation rate in the gold-coated spin-down
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chamber as a function of temperature appear in ¯gure 3.6, along with the relaxation

rate predicted by the Korringa theory.

Figure 3.6: Measured 129Xe relaxation rate in gold-coated chamber, including three

theory curves (see text).

The solid theory curve has been plotted using the previously measured S=V = 1:6

cm¡1 and includes no free parameters. This surface area to volume ratio was obtained

by simply measuring the interior dimensions of the gold-coated chamber, and so re°ects

the macroscopic surface area of the gold surface; the actual microscopic surface area of

the gold coating could only be larger, and is most likely much larger, as was discussed

above. It is obvious that the data deviates from the theory by being signi¯cantly °atter

(less dependence upon temperature).

There are two obvious parameters in the theory which we could vary in an attempt

to explain the data: 1) we could increase the surface area to volume ratio, S=V , to

take into account surface roughness; and/or 2) we could add a constant (positive) o®set

to the theory curve to represent other (temperature independent) relaxation processes
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which might be a®ecting the 129Xe (e.g. magnetic ¯eld inhomogeneities and magnetic

¯eld noise). The long dashed theory curve is the solid curve multiplied by a factor of

three, in order to simulate larger surface area (this factor was chosen for agreement

at »20±C). We see that applying a larger surface area to the theory curve results in a

steeper theoretical temperature dependence (and an even poorer ¯t to the data).

Adding 4£10¡3 s¡1 to the solid theory curve to represent other relaxation generates

the short dashed curve (again, this factor was chosen for agreement at »20±C). Once

again, the data is obviously less temperature dependent than the theory. (We note that

relaxation on the O-ring, which likely would be temperature dependent [Driehuys95],

is assumed to be negligible, as the O-ring surface area exposed to the 129Xe is < 1% of

the area of the gold surface.)

A third option is to suppose that the measured relaxation is due to the surface, but

the mechanism is not Korringa relaxation. Assuming a simple exponential temperature

dependence of relaxation rate (as we might expect without the Korringa relaxation

mechanism) results in even stronger temperature dependence.

It is clear that by any of these reasonable analyses, the data is less temperature

dependent than equation 3.9 predicts. This has lead us to question the implicit \low

fractional surface coverage" assumption made in equation 3.9.

A simple argument leads us to conclude that the fraction of ¯lled 129Xe adsorption

sites on the gold surface under our experimental conditions is not negligible. We ¯rst

calculate the 2D 129Xe density on the surface assuming that the surface coverage is low.

Under this assumption, the surface density, s, is related to the 3D gas density ,[Xe],

via the relation

s = [Xe]¸; (3.35)

where ¸ is a characteristic length re°ecting the strength of the atom-surface potential
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compared to kT :

¸ =
Z 1

0
e¡U(l)=kTdl (3.36)

Performing this integration using our Xe-Au potential yields the surface density vs.

temperature curve shown in ¯gure 3.7.

Figure 3.7: Surface density of Xe on Au from equation 3.36 (low fractional coverage

assumption).

We expect that the 2D lattice constant for a Xe monolayer adsorbed on Au is

approximately equal to that in the 3D solid [Bruch], or » 4:4 ºAngstroms. Allowing

19.4 ºA2 per atom yields 0.052 atoms per ºA2, or approximately the surface density

which our low coverage assumption suggests as high as 0±C . Of course, this does not

mean that we should expect a full Xe monolayer on the gold surface, only that our low

coverage adsorption theory is inadequate to predict the actual coverage.

We must modify equation 3.9 to re°ect that there is a ¯nite number of possible

129Xe adsorption sites on the gold surface, corresponding to a surface density smax,

while that equation predicts the relaxivity due to a surface density [Xe]¸. If a fraction
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fs of the smax sites are ¯lled, then the surface Korringa relaxivity equation is

% =
1

TK
b

Ã
fssmax
[Xe]¸

!
: (3.37)

We estimate f by setting the °ux into the surface equal to the °ux leaving the surface:

[Xe]v

4
(1¡ fs) =

fssmax
¿

; (3.38)

where we have assumed that because a fraction (1¡ fs) of sites are un¯lled, a fraction

(1¡ fs) of atoms incident on the surface \stick"; and ¿ is the average time an adatom

stays on the surface. However, v¿=4 is just the characteristic length, ¸, from equation

3.36. We ¯nd, then, that

fs =
[Xe]¸

[Xe]¸+ smax
; (3.39)

yielding the following form for surface Korringa relaxivity:

% =
1

TK
b

Ã
smax

smax + [Xe]¸

!
: (3.40)

In the low coverage limit ([Xe]¸ ¿ smax), equation 3.40 reduces to equation 3.35. In

the high coverage limit ([Xe]¸À smax), equation 3.40 yields the relaxivity due to a full

Xe monolayer:

lim
([Xe]¸=smax!1)

% =
1

TK
b

Ã
smax
[Xe]¸

!
: (3.41)

It is perhaps interesting to note that in the high coverage limit, the coating relaxivity

(and therefore the cell relaxation time) is expected to be inversely proportional to gas

pressure. We concern ourselves only with the ¯rst monolayer for two reasons: ¯rst,

a xenon atom approaching an already occupied adsorption site experiences a much

weaker van der Waals attractive force to the surface, decreasing the odds of \sticking";

and second, 129Xe atoms in the second and higher layers experience less interaction

with the metal's conduction electrons due to the exponential decay of the factor f(l)

in equation 3.8.
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We ¯t the data of ¯gure 3.6 to the following function:

1

T
=

1

TK
b

Ã
smax

smax + [Xe]¸

!
S

V
; (3.42)

allowing 0.052 Xe atoms per ºA2, and with S=V as a free parameter. The results of this

¯t appear in ¯gure 3.3. The value for S=V from the ¯t, 170 § 18 cm¡1, is two orders of

magnitude larger than our measured value. This suggests that the chamber coating is

much rougher than we had hoped. In any case, it is obvious that the e®ect of including

the maximum surface coverage in our theory is to °atten the temperature dependence

of the theoretical relaxation rate (better agreement with experiment). The qualitative

agreement between theory and experiment is encouraging.

Figure 3.8: Fit to data of ¯gure 3.6 using revised theory.

3.4 Surface Conclusions

In light of our new appreciation for Xe monolayer e®ects on metals, we must change

the predicted relaxivities of table 3.1. Appendix C contains columns for estimated
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129Xe surface Korringa relaxation times both with and without the modi¯cations of

equation 3.40. The theoretical estimates for the relaxivity of gold, silver, and indium

¯lms are seen to decrease by up to a factor of three (for gold) at 20±C. We believe that

for the cases of our gold and silver coverslips, this decrease is most likely made up for

by surface roughness | the microscopic surface area is likely a factor of »3 larger than

the macroscopic surface area we measured. For the case of indium, the obvious surface

roughness leads us to believe that the microscopic surface area is easily a factor of 6

(or more) larger than the macroscopic area we measured.

We note that the interiors of Pyrex spin exchange cells are often visibly coated

with alkali metal ¯lms, and yet the relaxivities of these cells are orders of magnitude

smaller than the alkali relaxivities predicted in appendix C. This could perhaps be

due to paramagnetic impurities in the alkali or chemical compounds formed between

the alkali atoms and impurities in the cells | the same loosely bound electrons which

cause noble gases to be so weakly physically bound to alkalis make those alkalis very

chemically reactive.

We are encouraged by the rough agreement between our calculations and mea-

surements, and hope that this work will help lead to not only better hyperpolarized

gas storage and handling techniques, but also a greater understanding of fundamental

surface relaxation mechanisms.



Chapter 4

External Cavity Lasers

Our research group and others have made use of Ar+-pumped titanium::sapphire

lasers [Anthony93] and commercially available high power ¯ber-coupled diode arrays

[Driehuys96] [Rosen99] [Phillips99] to optically pump Rubidium vapor for purposes of

spin-exchange optical pumping. These light sources are not optimal for this applica-

tion; they are either needlessly narrow and underpowered (Ti::Sapph) or too broad to

be e±ciently utilized (arrays). An ideal light source would provide high power (e.g.

tens of Watts) well matched to the pressure broadened Rb linewidth (17 GHz/amagat).

This is the motivation for our work frequency-narrowing high power broad area lasers

(BAL's) and diode laser arrays using novel external cavity designs. We have ultimately

succeeded in obtaining 16.5 Watts of tunable 85 GHz wide output from a commercially

available 40 Watt, 19-element array (Coherent B1-79-40C-19-30-A), and have produced

129Xe polarizations in a 25 ml optical pumping cell roughly 3 times that produced by

a 15 Watt ¯ber-coupled (unnarrowed) array.

49
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4.1 Broad Area Lasers (BALs)

As a ¯rst step toward narrowing a diode array, we applied external cavities to single- and

dual-stripe BAL's. BAL's we have worked with have had either a single rectangular

active region (200 microns by 1 micron) or two such regions separated by a small

isolation region. The signi¯cant astigmatism inherent to these devices makes accurate

collimation by use of noncylindrical lenses (as is customary with lower power devices)

impossible. Instead, we used a 0.68 numerical aperture aspheric lens to collimate the

fast axis (initially exhibiting a 35± divergence angle), leaving the slow axis slightly

divergent. When using a BAL with only one active region, we found it unnecessary

to correct for this remaining divergence. A Littrow or Littman-Metcalf [Littman78]

oriented 1800 lines/mm holographic di®raction grating provided the frequency-selected

feedback to the device. We often added a ¸/2 plate to the cavity, taking advantage

of the polarization dependence of the grating e±ciency to cut back excessive feedback

and maximize narrowed output power [Lotem92].

Applying this design to a Coherent Semiconductor Group 2 W BAL (SS-79-2000C-

150-H) yields 1.4 W output with a 40 GHz bandwidth (as measured by a home-built

parallel plate Fabry Perot cavity with ¯nesse »20). This is a signi¯cant improvement

over the diode's free running bandwidth of 700 GHz. It should be noted that be-

cause the output exhibited an irregular lineshape, the bandwidth that we quote is the

frequency window containing 64% of the output power. The output frequency tuned

smoothly from 792 nm to 798 nm, and though no temperature control and only low-

cost commercial mounts were used, the device ran stably for days. We obtained similar

results with a 4 W Semiconductor Laser International BAL at 808 nm (SLI-CW-SLD-

C1-808-4M-R).

We then turned our attention to a 4W Spectra Diode Labs diode (SDL-2380).
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This diode has a 500 ¹m by 10 ¹m active region which is actually two active regions

separated by an isolation space. The two active regions are indeed isolated, as we

found that we could produce two independently tunable, narrow bandwidth beams in

a manner analogous to reference [Hsu99] (though with less complexity and more output

power at the expense of bandwidth). We collimated the fast axis of the BAL as before

with a 0.68 NA aspheric collimating lens. The laser intensity several centimeters from

the collimating lens exhibited two distinct lobes, corresponding to the two active regions

of the device. We were able to use two 1800/mm holographic di®raction gratings, one

intercepting each of the lobes, to narrow and tune each active region independently

of the other. Each beam contained approximately 1 Watt of power within a 70 GHz

bandwidth. The authors of reference [Wang95] have examined the utility of a lower

power dual-wavelength diode laser source for producing TerraHertz radiation.

Figure 4.1: External cavity we have applied to narrowing dual-stripe BALs.

Inserting a cylindrical lens into the cavity allows us to narrow and tune both active

regions with one grating. The key to this design (see ¯gure 4.1) is the placement of the

cylindrical lens. Rather than collimating the laser light, the lens images the diode onto

the grating. In this way, the ¯rst order di®raction feedback forms an image of the BAL
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back on itself with positive magni¯cation (in contrast to the negative magni¯cation that

occurs in a standard Littrow cavity). The result is that each of the two active regions

is imaged back on itself, rather than on the other. In this way, we have produced a 2.5

Watt output beam with a bandwidth of 70 GHz, tunable over roughly 4 nm (see ¯gure

4.2). The emission of this device is polarized along the fast axis; adding the half-wave

plate to the cavity allows us only to increase the feedback, resulting in lower power

output with only modest gains in narrowing and tunability.

Figure 4.2: Fabry-Perot spectra of frequency-narrowed BALs.

We compared the optical pumping performance of the frequency narrowed 4 Watt

diode to a commercially available 15 Watt diode array (OPC-A015-FCPS, OptoPower

Corporation). The optical pumping cell is a sealed uncoated 4 cm diameter Pyrex

sphere with a small stem. It contains 1.3 amagats of natural abundance xenon, 50 Torr

of nitrogen quenching gas, and a small amount of Rb metal. It is located in a forced

air oven with AR coated windows, and carefully centered in a pair of 1 meter diameter

Helmholtz coils which provide the DC ¯eld.
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We used the custom pulsed NMR method described in Chapter II to measure the

polarization of the 129Xe as a function of the oven temperature. In order to make a valid

comparison, each of the two laser sources was used to illuminate the cell with a uniform

2 cm diameter beam. The irregular beam pro¯le of the narrowed diode necessitated

the use of the beam-shaping optics shown in ¯gure 4.1. Losses at the beam-shaping

optics lead to only 1.4 Watts actually being delivered to the cell. Nevertheless, the

maximum polarization achieved with the 1.4 W narrow band laser is nearly identical

to that achieved with the 15 W array. Removing the beam shaping optics results in

even higher xenon polarizations, as the entire 2.5 Watts is delivered to the cell. The

narrow band 2.5 W device then produces polarizations 40% greater than that of the

15 W array.

Figure 4.3: Relative 129Xe polarization induced using frequency-narrowed BAL as com-

pared to 15 Watt unnarrowed array.
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4.2 Diode Laser Arrays

The arrays we have narrowed consist of multiple BALs arranged in an approximately

straight line along the individual diodes' slow axes. The inactive regions between the

elements are larger than the elements themselves for adequate heat removal, making

the ¯ll factor (ratio of active region to inactive region along the length of the array)

typically only 30%. The output from an array typically has a 10± divergence angle

along the length of the array (slow axis) and a di®raction-limited 40± divergence angle

perpendicular to the array (fast axis). These features, coupled with the 1 cm length

of the array, lead to di±culty collecting output light and providing e±cient feedback

(even leading some to state that it is impossible [Zerger00]). We were the ¯rst group to

overcome these di±culties and realize an external cavity diode laser array (ECDLA).

Our external cavity (¯gure 4.4) uses a fast cylindrical microlens (Doric Lenses) to

collimate the fast axis of the array. An afocal telescope images the slow axis of the array

onto a Littrow-oriented di®raction grating with magni¯cation M while expanding the

collimated fast axis by the same factor M . The frequency-selected ¯rst order feedback

from the grating is then imaged back onto the elements, while the output is taken from

the zeroth order re°ection o® the grating.

The two dominant contributions to the bandwidth of our cavity are slow axis di-

vergence angle and array \smile". \Smile" refers to irregular curvature of the array

induced during the manufacturing process. We have measured the smile of several

arrays in the following manner: We ¯rst collimated the fast axis using a 0.73 mm focal

length cylindrical microlens. We then used a 75.6 mm cylindrical lens to image the

slow axis onto a sheet of 2 mm ruled graph paper at a distance of 58 cm from the

array. We photographed the image with a digital camera (¯gure 4.5). The amount of

array smile is then approximately equal to the amount of smile in the photos times
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Figure 4.4: Afocal imaging cavity for narrowing arrays.

the ratio of collimating lens focal length to image distance. For our optics, this ratio

is 0:73=580 = :00126, yielding an array smile of approximately 8.8 ¹m for the IMC

Silver Bullet and »1 ¹m for the hand-picked IMC Silver Bullet. Array smile (spread in

position xi with respect to the center line of the cavity) is converted by the collimating

microlens (focal length fc) to a spread in angles Ái = xi=fc of the collimated light from

each element i.

For light striking the grating with direction ẑ cos® cosÁ+ ŷ sin®+ x̂ sin® sinÁ with

respect to the optical axis, the Littrow feedback condition can be derived with the aid

of ¯gure 4.6. That ¯gure shows two optical rays incident on a di®raction grating, both

with angle of inclination ®. The ¯rst ray strikes a groove of the grating at point F .

The second ray strikes an adjacent groove of the grating at B. As given by the usual

derivation of the Littrow condition [Hecht], the projection on the xz-plane of the extra

distance the second ray travels to the grating is given by d sin(µ¡ Á), where angle µ is

the angle between the grating normal and the optical axis. Referring to ¯gure 4.6, the
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Figure 4.5: Photographs showing \smile" of (left to right) stock IMC Silver Bullet,

hand picked IMC Silver Bullet, and hand picked Coherent 40 Watt array.

optical path length di®erence, ¢(o:p:l:), is given by

¢(o:p:l:) = DF ¡ 2BC = ¸: (4.1)

Length AB, as mentioned above, is given by reference [Hecht]:

AB = d sin(µ ¡ Á); (4.2)

so we can immediately write

BC =
d sin(µ ¡ Á)

cos®
(4.3)

and

EF = 2AC = 2d sin(µ ¡ Á) tan®: (4.4)

It then follows that

DF = EF sin® = 2d sin(µ ¡ Á)
sin2 ®

cos®
: (4.5)

The Littrow condition is then

¸ = 2d sin(µ ¡ Á) cos®; (4.6)
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or

±¸=¸0 ¼ ¡®2=2¡ Á cot µ (4.7)

where ¸0 = 2d sin µ, ±¸ = ¸ ¡ ¸0, and the angles ® and Á are assumed small. Thus

spreads in ® (from the divergence of the light emitted from the laser) and Á (from

smile) both result in broadening of the laser spectrum.

Figure 4.6: Two optical rays with angles of inclination ® incident on adjacent grooves

of a di®raction grating . (Refer to ¯gure 4.4 for orientation.)

The telescope reduces the angular spread in the ŷ-direction from ®0 at the laser

to ® = ®0=M at the grating. From equation. 4.7, this reduces the broadening by a

factor of M2. More importantly, the afocal nature of the telescope means that the

angular spread of rays at the grating from on- and o®-axis elements is symmetrically

centered around zero. We tried a number of imaging methods with ¯nite focal length
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lens systems, and were unable to reduce the linewidth below 150 GHz.

The telescope also reduces the spread in angles resulting from smile to Á = x=Mfc,

where x represents the amount of smile. From equation 4.7, the resulting laser linewidth

due to smile is

±¸

¸
=
x cot µ

Mfc
: (4.8)

Thus in order to minimize the contribution of smile to the linewidth, it is desirable

to use a long fc, a large magni¯cation, and large di®raction angle. However, because

the slow axis is imaged onto an angled grating, we have found that large magni¯cation

(with correspondingly large depth of focus) is the preferred means to reducing cavity

linewidth. In practice, we have used the largest magni¯cation possible, 5£, being

limited by the size of inexpensive di®raction gratings (5 cm £ 5 cm).

Our best ECDLA results have been achieved using a hand-picked low smile 20

Watt 46-element IMC array (IMC ARR26C020W0795). IMC's manufacturing process

produces an array with output polarized with electric ¯eld vector along the length of the

array. The di®raction grating is less e±cient with this polarization, making it possible

to couple out a greater fraction of narrowed light. In addition, IMC was able to supply

us with the °attest (lowest smile) array we have worked with (see ¯gure 4.5), with smile

less than 1 micron. This array ran freely at 801.2 nm, with a 1.4 nm linewidth. We used

a 0.73 mm focal length cylindrical lens and a 4£ telescope constructed from a 25.4 mm

diameter 50 mm focal length achromat and a 50.8 mm diameter 200mm focal length

plano-convex lens. A 50 mm £ 50 mm, 2400 lines/mm holographic grating provided the

feedback to the array. In this con¯guration, approximately 80% of the array emission

is coupled out of the cavity, though with only 68% of that output frequency-narrowed.

We therefore included a ¸/2 plate in the cavity in order to increase the feedback to the

array slightly to obtain maximum narrowed output power. In this way, the ECDLA

puts 66% of the array's emission into a frequency-narrowed output.
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Figure 4.7: Frequency-narrowed array output vs. the output of the same array without

external cavity.

We measured the linewidth of the ECDLA output using a home-built parallel plate

Fabry-Perot cavity with ¯nesse »20. Care was taken to measure the total array

linewidth as opposed to the linewidth of a few select elements. The output from the

grating was focused onto a ground glass di®user. The di®used light was then passed

through a second ground glass di®user before then being sent through the Fabry-Perot

etalon. (Again, we quote the linewidth as the frequency window which contains 64%

of the power.) Figure 4.7 shows the typical output of this ECDLA as compared to

the free-running output. In order to keep intracavity power below the array's speci¯ed

rating (20 Watts at 30 Amps), we have run the array at only 27 Amps (18 Watts

output).

We have also demonstrated the tunability of the ECDLA. Figure 4.8 illustrates the

approximately 4 nanometers of tuning that we are able to produce by changing the

angle of the feedback grating. This, when combined with temperature tuning, allows
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our ECDLA to reach wavelengths 3 to 4 nanometers away from its free-running peak

without signi¯cant loss of narrowed output power.

Figure 4.8: Tuning the ECDLA via grating rotation. The unnarrowed portion of the

spectrum has been subtracted o® in each case.

For producing polarized 129Xe, we constructed an ECDLA using a hand-picked 40

Watt, 19 element Coherent Semiconductors Group array (part # B1-79-40.0C-19-30-

A). This array exhibited a 1.5 nanometer wide free-running peak centered at 796.4

nanometers. Coherent's diode arrays emit light with polarization along the fast axis

of the array. Without an intracavity ¸/2 plate, only 10% of the light emitted by

the array is coupled out of the cavity. Indeed, setting the ¸/2 plate for maximum

output yields only 66% of the array emission in the ECDLA output. The smile of this

array was somewhat larger than that of the IMC array, at 2.5 microns (see ¯gure 4.8).

We constructed the ECDLA cavity from a 1.5 mm diameter graded index microlens (f

=1.027 mm), a 25.4mm diameter, 50mm focal length achromat, and a 100mm diameter,

250mm focal length biconvex lens. These parameters yield a 60 GHz cavity bandwidth
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due to smile. We were able to obtain 16.5 Watts output power in 86 GHz linewidth

(¯gure 4.9) when providing the array with 30 Amps (corresponding to an output power

of approximately 30 Watts). We then compared the 129Xe polarization produced by

our ECDLA to that produced by a commercially available 15 Watt ¯ber-coupled diode

array (Optopower Corporation OPC-A015-FCPS).

Figure 4.9: Best output obtained from Coherent array. The peak shown contains 16.5

Watts and has FWHM = 86 GHz.

Several additions to the ECDLA allowed e±cient coupling of the output to the

optical pumping cell. In order that the output angle of the ECDLA did not change

with grating angle (tuning), we attached a mirror to the grating mount such that the

mirror always has a ¯xed orientation relative to the grating itself. In this way, changing

the tuning angle only translates the output a small amount, rather than changing its

angle. A 60mm tall, 200mm focal length cylindrical lens immediately after the mirror

collected the (slowly diverging) slow axis of the output. The focal length of this lens

was chosen to provide a 5mm tall spot size in its Fourier plane (to match the 5mm
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wide collimated fast axis). This 5mm x 5mm square was then imaged onto the cell via

a 63 mm focal length plano-convex lens with magni¯cation 4 in order to provide a 2cm

x 2cm area of illumination. A ¸/4 plate imposed the desired circular polarization upon

the beam.

We used the ECDLA output to optically pump the cell used previously to measure

the performance of our frequency-narrowed BAL. 129Xe polarization was again mea-

sured as a function of cell (oven) temperature for each source. The ECDLA results

have been added to the graph of the previous results to produce ¯gure 4.10. We see

that the ECDLA produces approximately 3 times as much polarization as does the

¯ber-coupled array. The ECDLA output for these measurements consisted of a ¼130

GHz wide peak containing 14 Watts superimposed on the unnarrowed 7 Watts of re-

maining power. The theory curve in ¯gure 4.10 was produced assuming a 1.5 nm wide

gaussian lineshape for the unnarrowed light and a 130 GHz wide lorentzian lineshape

for the narrowed peak. The relatively poor agreement with the model may be due to

the relaxivity of the Pyrex walls degrading over time.

The ECDLA we have demonstrated is clearly more ideally matched to the special

constraints of spin-exchange optical pumping than are any commercially available light

sources. Its features include low cost, high power output, and bandwidth well matched

to the pressure-broadened rubidium linewidth. We expect that its full potential will

be realized by producing highly polarized 129Xe at lower pressures and temperatures

than is currently feasible using unnarrowed diode arrays.
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Figure 4.10: Relative 129Xe polarization induced by frequency-narrowed array com-

pared to that induced by other light sources



Chapter 5

Rate Measurements

Though spin-exchange optical pumping of 129Xe has been a widely known laboratory

technique for over twenty years [Grover78], it has only recently been employed in the

interest of producing large quantities of hyperpolarized gas for practical applications

[Driehuys96]. The performance of a practical spin exchange optical pumping system

must be evaluated in terms of both the ¯nal nuclear polarization of the noble gas

delivered as well as the speed (liters per second) with which it can be delivered. From

chapter 1, the polarization of the 129Xe is given by

2hKzi = 2hSzi
Ã

¡SE
¡SE + 1=T1

!
(5.1)

=

Ã
Rp

Rp + ¡

!Ã
¡SE

¡SE + 1=T1

!
; (5.2)

while the rate at which it is produced is given by (¡SE+1=T1)V [Xe]=[G]. As in chapter

1, ¡SE is the rate at which 129Xe acquires spin from the Rb, ¡ is the rate at which

Rb loses spin, Rp is the optical pumping rate per Rb atom, and 1=T1 is the 129Xe

relaxation rate. In addition, V is the volume of the spin exchange cell and [G] denotes

total gas density. It is clear that in order to accurately model the performance of a gas

polarizer, we must have accurate values for both ¡SE and ¡, and we must also have

64



65

some information about how these factors change with temperature, gas density, and

gas composition.

High power high bandwidth lasers have driven the recent trend toward higher tem-

peratures, pressures, and lean mixtures of xenon [Driehuys96]. Unfortunately, this

trend has made much of the excellent early work in this ¯eld [Bouchiat72] [Cates92],

done at relatively low temperatures, pressures, and with di®erent gas compositions,

perhaps somewhat less useful for predicting the performance of practical spin-exchange

systems [Shah00]. For this reason, we have undertaken to extend that work into higher

temperature and pressure regimes.

We ¯nd that while the Rb spin loss rate is nearly entirely due to binary Rb-Xe

collisions, the spin exchange rate is dominated by spin exchange during the lifetimes of

Rb-Xe van der Waals molecules. We have measured the temperature and gas density

dependences of both ¡ and ¡SE, and have found a surprisingly large temperature

dependence to the van der Waals molecule spin exchange rate which has dramatic

implications for modeling hyperpolarized 129Xe gas production systems.

I have described the spin-exchange system we have used for these measurements in

Chapter 2. The commercially premixed gas composition we have studied (1% natural

abundance Xe, 1% N2, balance 4He, Spectra Gases) was chosen for its practical rel-

evance. It re°ects the composition used in much recent work [Shah00] [Driehuys96].

We experimentally veri¯ed the Xe fraction in the gas to better than 5% by freezing a

known density of the total mixture in a cell with liquid N2, pumping out the unfrozen

gas, warming, and remeasuring the density. We have measured the Rb loss rates and

spin-exchange rates in this mixture at several temperatures between 80±C and 120±C,

and over densities ranging from 0.006 to 3.2 amagats (1 amagat = 2:69£ 1019/cm3 is

the density of an ideal gas at 0±C and 1 atmosphere of pressure).
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5.1 Rb Spin Loss Rate

The dominant collisional processes a®ecting Rb spin loss are Rb-Rb spin-exchange

collisions, Rb-Xe binary collisions, and formation and breakup of Rb-Xe van-der-Waals

molecules. The Rb-Rb spin-exchange collisions to a good approximation conserve the

spin-angular momentum, but redistribute it between nuclear and electron spins. It

is nonetheless extremely important, as it is this redistribution of angular momentum

which, when much faster than all spin loss processes present, leads to a single spin-

temperature for all alkali atoms [Anderson60]. Under this condition, both stable Rb

isotopes (85Rb and 87Rb) share the same slowest spin decay rate, making analysis of

measured decay transients much simpler (compare subsection 5.1.2 to subsection 5.1.1).

Rb-Xe binary collisions in principle lead to loss of Rb spin polarization hFzi to

either the 129Xe nuclear spin polarization hKzi or to the angular momentum of the

colliding pair, N. The Fermi contact interaction, ®K ¢ S, is responsible for the spin

exchange, and tends to equalize hKzi and hSzi, the Rb electron polarization, while the

spin-rotation interaction, °N ¢ S, reduces Rb polarization independently of hKzi. We

can describe the e®ects of these two interactions respectively in terms of two simple

velocity-averaged cross sections, ¾se and ¾sr:

d

dt
hFzi = [Xe]

µ
h¾sevi (hSzi ¡ hKzi)¡ h¾srvihSzi

¶
: (5.3)

For this work, we are careful to maintain low 129Xe polarization. We therefore describe

the loss of Rb spin via all binary collisional processes by a single velocity-averaged rate

coe±cient h¾vi = h¾sevi+ h¾srvi:

d

dt
hFzi = [Xe]h¾vihSzi: (5.4)

Rb spin relaxation in van der Waals molecules is more complex, depending strongly

on the average correlation time of Rb-Xe van der Waals molecules in the spin-exchange
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cell. The important time scales here are the relatively long time scale set by the spin

rotation interaction, °N ¢ S, and the shorter time scale set by the Rb hyper¯ne inter-

action, AI ¢S Together, these two characteristic timescales divide the range of possible

van der Waals molecule correlation times into three regimes [Happer84]. Throughout

this work, we have made the assumption that the correlation time for the spin rotation

interaction is equal to the correlation time for the hyper¯ne interaction, denoting them

both by a single variable, ¿c.

In the \very short" lifetime limit, de¯ned by

µ
A¿c(2I + 1)

2¹h

¶
¿ 1; (5.5)

molecular formation and breakup is sudden with respect to both the spin rotation

and hyper¯ne interactions. In particular, it is sudden with respect to the Rb nuclear

polarization, and transitions can occur between ¢f = 0;§1 hyper¯ne levels, where

f = I § 1
2
.

In the long lifetime limit, ¿c is long compared to both the hyper¯ne interaction time

¹h=A and the spin rotation time ¹h=°:

µ
°¿c

(2I + 1)¹h

¶2

À 1: (5.6)

S may precess through large angles due to both the spin rotation and hyper¯ne in-

teractions during the molecular lifetime. Because S is strongly coupled to I during

the molecular lifetime, only \F-damping" transitions, which leave the total Rb angular

momentum quantum number unchanged (¢f = 0) may occur. (¢f = §1 transitions

are correspondingly termed \S-damping".)

In the intermediate regime (often called the \short lifetime limit") [Happer84],

molecular formation and breakup is sudden with respect to the spin rotation interaction,

but S may still precess about I many times during the molecular lifetime. Once again,

only F-damping transitions may occur.
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van der Waals molecules inducing F-damping transitions relax the total Rb spin of

isotope i, hFizi, as per the following rate equation (where we have taken into account

the 129Xe nuclear spin K = 1
2
) [Happer84]:

dhFizi
dt

¯̄
¯̄
FD

= ¡ 1

TA

2
42

3

Ã
Á°

2Ii + 1

!2

hFizi+ ´129

Ã
Á®

2Ii + 1

!2 ÃhFizi
2
¡ hF 2

i ¡ F 2
izihKzi

!3
5 :

(5.7)

S-damping van der Waals molecules yield a similar rate equation [Happer84]:

dhFzi
dt

¯̄
¯̄
SD

= ¡ 1

TA

"
2

3
(Á°)

2 hSzi+ ´129 (Á®)2

Ã
hSzi

2
¡ hKzi

2

!#
: (5.8)

TA is the formation rate of van der Waals molecules per Rb atom, ´129 is the isotopic

fraction of 129Xe (´129 = 0:264 in our natural abundance gas mixture), and the angles

Á° and Á® are, respectively, the rms precession angles of the Rb electron spin around

the molecular spin and the Rb nuclear spin:

Á° =
°N¿c

¹h
; (5.9)

and

Á® =
®¿c
¹h
: (5.10)

We follow Cates et al. [Cates92] in de¯ning a rate ¡vdW to parameterize the e®ects

of van der Waals molecules:

¡vdW =

Ã
2Á2

°=3 + ´129Á
2
®=2

TA

!
: (5.11)

¡vdW can be thought of as the \very short" lifetime van der Waals molecule contribution

to the relaxation rate of an alkali atom with arbitrary I (or as the \short" lifetime van

der Waals molecule contribution to the relaxation rate of a ¯ctitious alkali isotope

with I = 0). ¡vdW contains density dependences in the factor 1=TA as well as in the

Á's, so it is helpful to write equation 5.11 in terms of gas densities. We can ¯rst use
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detailed balance to rewrite 1=TA in terms of gas densities and the chemical equilibrium

coe±cient, K:

1

TA
=

[RbXe]

[Rb]¿
(5.12)

=
K[Xe]

¿
; (5.13)

where ¿ is the van der Waals molecule lifetime. We also use the parameter x = °N=®

[Zeng85] to write

¡vdW =
K[Xe]

¿
(2=3 + ´129=2x

2)
µ
°N¿c

¹h

¶2

(5.14)

= (2=3 + ´129=2x
2)K[G]0

°N

¹h

[Xe]

[G]
; (5.15)

where in the last step, we have assumed that collisions violent enough to reorient N

or I are su±cient to break up the van der Waals molecule [Happer84]. Therefore we

set the correlation time ¿c equal to the van der Waals molecular lifetime, ¿ . [G] =

[He] + [N2] + [Xe] is the total gas density, while [G]0 is a characteristic density, de¯ned

below, which depends upon the composition of the gas. ¡vdW can be seen to be gas

composition dependent ([Xe]=[G], [G]0), but density independent for a particular gas

mixture. We note here that throughout this work we quote gas density rather than

the (more ambiguous) gas pressure, as questions about to which temperature a quoted

pressure is referenced abound in the spin exchange optical pumping literature.

We describe the fractions of van der Waals molecules inducing S-damping vs. F-

damping transitions in terms of the (Rb isotope dependent) parameters f1 and f0,

where [Appelt98]

f1 =
1

1 + (!hf¿ )2 =
1

1 + ([G]1=[G])2
(5.16)

and

f0 =
1

1 +
³
!°¿
2I+1

´2 =
1

1 + ([G]0=[G])2=(2I + 1)2
: (5.17)
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[G]0 and [G]1 are characteristic total gas densities de¯ned via

!hf;i¿ = [G]1;i=[G] (5.18)

°N¿

¹h
= [G]0=[G]: (5.19)

Physically, f1 may be thought of as the fraction of van der Waals molecules whose

lifetimes are \very short", (!hf¿ ¿ 1), while (1¡f0) can similarly be thought of as the

fraction of van der Waals molecules whose lifetimes are \long", (!°¿=(2I + 1) À 1).

[G]1, then, marks the \short" to \very short" transition, while [G]0 marks the \long" to

\short" transition. The authors of reference [Wu85] have measured °N=h = 135MHz.

This, combined with the Rb hyper¯ne frequencies (!hf;85 = 2¼£ 3:0357 GHz, !hf;87 =

2¼ £ 6:8347 GHz) suggests that the two transitions are well separated.

With these de¯nitions in place, and assuming that we are careful to maintain low

129Xe polarization (hKzi ¼ 0), we can write a simple expression for the total spin

relaxation of Rb isotope i:

dhFizi
dt

= ¡(f0;i ¡ f1;i)¡vdW
1

(2Ii + 1)2
hFizi ¡ f1;i¡vdW hSzi ¡ [Xe]h¾vihSzi; (5.20)

valid for !hf À !°=(2Ii + 1). The three terms arise respectively from F-damping van

der Waals molecules, S-damping van der Waals molecules, and (S-damping) binary

collisions.

5.1.1 High Temperature

The Rb isotopic dependence of equation 5.20 leads in general to four di®erent relax-

ation rates in a Rb vapor [Appelt98]. However, if Rb-Rb spin exchange is su±ciently

rapid compared to S-damping and F-damping relaxation rates (¡se À ¡FD;¡SD), the

polarization of the total Rb vapor (both isotopes) may be described by a single spin-

temperature [Anderson60]. In this limit, we can relate the total Rb spin to the electron
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spin via the \paramagnetic coe±cient", ²i [Happer84]:

hFizi = (1 + ²i)hSzi; (5.21)

where

²i = 2hI2
i ¡ I2

izi: (5.22)

In the low polarization limit, this reduces to

²i =
4

3
Ii(Ii + 1): (5.23)

.

We can then perform an isotopic average of equation 5.20 to write a simple form

for the expected spin-temperature fundamental relaxation rate of a Rb vapor:

dhSzi
dt

= 1
1+¹²

P
85;87 ´i

dhFizi
dt

(5.24)

= ¡ 1
1+¹²

µP
85;87 ´i¡vdW

·
(f0;i ¡ f1;i)

(1+²i)
(2Ii+1)2 + f1;i

¸
+ [Xe]h¾vi

¶
hSzi (5.25)

= ¡¡0hSzi (5.26)

where ¹² = ´85²85+´87²87. The sum over 85Rb (´85 = 0:72, I85 = 5
2
) and 87Rb (´87 = 0:28,

I87 = 3
2
) yields

¡0 = (0:0234f0;85+0:00972f0;87+0:0432f1;85+:0162f1;87)¡vdW +0:0926[Xe]h¾vi: (5.27)

Our full high temperature ¯tting function is

¡ = ¡0 + ¡corr + °inv=[G]; (5.28)

where, for the analysis of our data, we have included ¡corr, the ¯rst order (¡vdW=¡se,

¡bin=¡se) corrections to ¡0 (see Appendix A):

¡corr = ¡0:0449¡2
bin=¡se +
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+
µ
¡ 0:0483f1;85 ¡ 0:0331f1;87 + 0:0067f0;85 ¡ 0:0151f0;87

¶
¡bin¡vdW=¡se +

+
µ
¡ 0:0238f2

1;85 ¡ 0:0127f 2
1;87 + 0:00497f1;87f0;85 ¡ 0:000933f 2

0;85 ¡

¡0:00145f1;85f1;87 ¡ 0:000609f0;85f1;85 + 0:00137f0;87f1;85 ¡ 0:0112f1;87f0;87 +

+0:0042f0;85f0;87 ¡ 0:00473f2
0;87

¶
¡2
vdW=¡se: (5.29)

¡corr represents the deviation of our system from spin-temperature equilibrium, and

yields a ¼5% correction at the highest gas densities studied. Fluctuations in ¡corr due

to vapor pressure °uctuations dominate the experimental errors.

We also include a ¯t parameter, °inv, in order to include an inverse pressure depen-

dent relaxation rate. Physically, this parameter represents Rb spin loss both through

di®usion to the cell walls and through Rb-Rb singlet molecules. We can estimate the

magnitude of the di®usion contribution to this term through solving the di®usion equa-

tion for our cylindrical cell geometry with the boundary conditions of perfectly relaxing

walls (hFzi = 0 at the walls).

dhFzi
dt

= Dr2hFzi ¡ ¡hFzi (5.30)

Keeping only the ¯rst longitudinal and ¯rst radial mode yields a di®usion dependent

wall relaxation rate [Wagshul94]

¡dif =

Ã
x2

01

R2
+
¼2

L2

!
D; (5.31)

where R and L are the cell radius and length, and x01 = 2:405 is the ¯rst zero of the

Bessel function J0. Our cell dimensions yield a di®usion dependent loss term

¡dif = (1:61cm¡2)D0=[G]; (5.32)

where D0 is the di®usion constant at one amagat.

We ¯rst measured Rb spin decay rates at an oven temperature of 150±C, corre-

sponding to a Rb density of » 7 £ 1013 cm¡3 (measured as described in section 2.6).
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At this temperature, the spin exchange rate between alkali atoms is approximately

6£ 104/s [Walker97], signi¯cantly greater than even the highest loss rate we have mea-

sured. It is therefore a good approximation to describe the Rb polarization by a single

spin-temperature distribution, and ¯t relaxation transients to a single exponential.

Our experiment follows closely the design of other recent spin-relaxation experi-

ments in our laboratory [Kadlecek98] [Erickson00]. The spin-exchange cell, oven, and

polarization analyzer have been described in Chapter 2. The Rb atoms are spin-

polarized using circularly polarized light from a broad-band diode array, intentionally

tuned 1.2 nm o® the atomic 5S1=2 ! 5P1=2 (795 nm) resonance to produce a spatially

homogeneous, low (<5%) Rb spin polarization. The Rb spin-polarization is deduced

by Faraday rotation of 0.5 mW of diode laser light tuned 2 nm o® the 5S1=2 ! 5P3=2

(780 nm) resonance. The large probe detuning was selected to produce a light-induced

relaxation rate of < 1/s at the highest gas pressures. A mechanical chopper periodi-

cally blocked the pump light and relaxation transients \in the dark" were digitized and

averaged by a digital oscilloscope. The relaxation transients were ¯t to single expo-

nentials exp[¡¡t] (as expected, given our low spin polarization, no evidence was found

for multiple relaxation times) with a typical statistical uncertainty in the ¯tted decay

rates of 1/s.

We periodically veri¯ed that the light-induced relaxation rate was indeed negligible

by adding an additional 1=10 neutral density ¯lter to the probe beam and remeasuring

¡. Though statistical error was increased (due to smaller, noisier signals), no signi¯cant

change in ¡ was detected.

We also checked that each averaged transient did consist of only a single exponential.

First, we visually checked the residuals of each exponential ¯t for any signs of another

exponential. Second, we designed a short computer program to ¯t each transient from

a number of di®erent starting points, starting progressively farther down the decay
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curve with each point. We recorded both the value of ¡ and the statistical uncertainty

in ¡ at each point. As expected, the uncertainty in ¡ increases as less of the transient

is ¯t, but the value of ¡ is (within error) unchanged.

The decay rates are shown as a function of gas density in Fig. 5.1. We ¯nd that

the transient decay rates are highly reproducible, with the caveat that we found when

fresh gas was put into the cell the relaxation rates sometimes temporarily decreased

by 5-10/s due to reduced Rb vapor pressure. The decrease in ¡ is well explained by

reduced vapor pressure a®ecting ¡corr, and is likely due not to Rb-Rb relaxation [Kadle-

cek98] [Erickson00]. We made certain that the cell had returned to equilibrium each

time by measuring ¡ every ten minutes after adding gas, stopping when 4 sequential

measurements agreed to within 1%.

We ¯t equation 5.27 to the data of ¯gure 5.1, using the 4 free parameters °inv,

h¾vi, ¡vdW , and a characteristic density parameter [G]1, where we have de¯ned a single

[G]1 ´ [G]1;85. Because the inverse pressure relaxation rate obscures the \long" to

\short" lifetime transition in the data of 5.1, we have forced the relation

[G]1=[G]0 = !hf;85= (°N=¹h) (5.33)

by setting [G]0 = [G]1=22:5 from the 85Rb hyper¯ne splitting and the previously mea-

sured °N=h = 135 MHz [Wu85]. If we ¯t without this constraint (with [G]0 as a ¯fth

free parameter), the values obtained for [G]0 and °inv have statistical errors associated

with them many times their own magnitude; we don't have the low density data needed

to sort out the contribution from these two competing e®ects. However, the other three

¯t parameters are left essentially unchanged.

The ¯t to the data is excellent, and gives

°inv = 2:66§ 0:64 (¡0:1=+ 0:37) s¡1amagat (5.34)

h¾vi = (2:44§ 0:02 (¡0:07=+ 0:16))£ 105 s¡1amagat¡1 (5.35)
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Figure 5.1: Measured transient decay rates as a function of total gas density at 150±C,

for a mixture of 98% He, 1% N2, and 1% Xe. The results of approximately four

measurements are shown at each gas density.
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¡vdW = 2049§ 110 (+40=¡ 120) s¡1 (5.36)

[G]1 = 1:95§ 0:20 (¡0:21=+ 0:66) amagat (5.37)

The last two numbers are speci¯c to a He(98%)-N2(1%)-Xe(1%) mixture. The ¯rst

error quoted is statistical, while the second (in parentheses) is systematic. The largest

source of systematic error is °uctuating Rb number density a®ecting our spin-exchange

corrections. We have set systematic error bars, therefore, by assuming §30% error in

¡SE and simply re¯tting the data at each extreme. The systematic error shown then

gives the deviation at 30% greater [Rb] and 30% smaller [Rb], respectively.

To emphasize the contribution of van der Waals molecules to Rb spin loss, we have

applied the ¯rst order (¡vdW=¡SE; h¾vi[Xe]=¡SE) corrections to the data points them-

selves (increasing the highest pressure measured values by ¼5%). We then subtracted

the binary spin loss contribution, [Xe]h¾vi, and the di®usion/singlet molecule loss con-

tribution, °inv=[G], from the data. This corrected data appears in ¯gure 5.2 along with

the ¯t from ¯gure 5.1, altered in the same manner.

We note here that this value of °inv, if assumed to be entirely due to di®usion (no Rb-

Rb singlet molecule relaxation), yields a di®usion constant D(Rb¡4 He)j1 amagat;150±C =

1:65 § 0:5 cm2/s. This is consistent with the D0 obtained in the work of reference

[Wagshul94], where the authors made this assumption and measured D0(Rb¡3 He) =

1:5§ 0:4 cm2/s at 150±C by similar methods (we can expect

D0(Rb¡3 He)=D0(Rb¡4 He) = 1:25§ 0:1

from reference [Aymar69]). However, Aymar et. al. measured D0(Rb¡4 He) = 0:42§

0:06 cm2/s at 27±C [Aymar69], where Rb number density is so low that Rb singlet

molecule relaxation is entirely negligible. Scaling their result by T 1=2 yields D0 = 0:50

cm2/s at 150±C, a factor of three smaller than our result under the above assumption.

However, if we assume D0 = 0:50 cm2/s, equation 5.32 yields a wall relaxation
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Figure 5.2: Data of ¯gure 5.1, corrected for ¡SE, and with h¾vi[Xe] and °invP sub-

tracted o®.
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rate ¡dif = 0:81 s¡1¢amagats. The remaining °inv relaxation, 1:85 s¡1¢amagats, can

be compared with the Rb-Rb singlet molecule relaxation in N2 bu®er gas as measured

by Kadlecek et. al. in ref. [Kadlecek98]. From that reference, we can expect 1.2 out

of every 1000 Rb atoms to be contained in a singlet dimer at any time (the binding

energy of these Rb singlet dimers, 500 meV, is much greater than kT [Krauss90]). At

this dimer fractional density, 1:85 s¡1¢amagats implies a dimer spin-reorientation cross

section for 4He collisions equal to 3:6ºA2, or approximately half that measured for N2

(a reasonable value).

5.1.2 Low Temperature

In natural isotopic mixtures of Rb vapor at low densities ([Rb]), interpretation of spin-

relaxation transients is considerably complicated by the two isotopes having di®erent

nuclear spin. At high densities, spin-exchange collisions occur at a higher rate than

spin is lost, and simplify the interpretation of the experiments as described above.

At lower densities, when the spin-exchange rate is comparable to the relaxation rates,

however, it is necessary to make a precise measurement of the Rb density and to account

for multiple time constants in the decay transients. To avoid having to measure the

Rb density, we have chosen to repeat the measurements of the previous section at a

low enough temperature (80 ±C) that the spin-exchange rates are much less than the

spin-relaxation rates.

When spin-exchange collisions can be ignored, the 85Rb and 87Rb populations relax

independently, with two relaxation rates per isotope. However, one rate for each iso-

tope, the \fundamental" rate, is much faster than the other [Appelt98]. Application of

equation (186) of that reference with the spin exchange rate 1=Tex = 0 reduces to the

following result for the fundamental relaxation rate of an alkali vapor in the low spin
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exchange limit:

¡i fun =
1

(2Ii + 1)2 TFD
+

2

(2Ii + 1)2 TSD
; (5.38)

where, in the notation of that reference, 1=TFD is the F-damping rate and 1=TSD is the

S-damping rate. For the two Rb isotopes, equation 5.38 yields

¡85 fun =
1

18

Ã
h¾vi[Xe] +

f1;85 + f0;85

2
¡vdW

!
(5.39)

¡87 fun =
1

8

Ã
h¾vi[Xe] +

f1;87 + f0;87

2
¡vdW

!
: (5.40)

The ratio of these two rates would be simply 2.25 were it not for the f factors, but the

f 's are of course to be determined from the data.

We have therefore chosen to analyze our data in the following way. We ¯rst ¯t the

transients to a sum of exponentials exp¡¡85t+ r exp¡2:25¡85t, with the ¯t value of r

checked to be sure it is approximately the ratio of the isotopic fractions, ´87=´85. We

take a series of such relaxation transients to determine ¡85 at various pressures, and

¯t the pressure dependence to equation 5.41 with h¾vi, [G]1, [G]0, and ¡vdW as free

parameters. We then use the ¯t values so determined to calculate the ratio g = ¡87=¡85

as function of pressure and re¯t our transients to exp¡¡85t + r exp¡g¡85t. On the

¯rst iteration of this procedure, the relaxation rates changed by less than 5% at all

pressures, and after the second iteration the rates changed by only 1%. Our measured

Rb density was 5£ 1010 cm¡3, implying spin-exchange corrections of less than 1%.

We ¯t the resulting data to the following equation:

¡85 =
1

18

Ã
h¾vi[Xe] +

f1;85 + f0;85

2
¡vdW

!
+ °inv=[G]; (5.41)

where we have included °inv as neither F-damping nor S-damping, but instead as a

mechanism which simply removes all angular momentum from atoms striking the walls

of the cell (at this low Rb number density, Rb singlet dimers should contribute less than
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a tenth as much relaxation as at 150±C (barely 1 out of 10000 Rb atoms is contained

in a dimer)[Kadlecek98]).

The spin-relaxation rate ¡85 is shown in Fig. 5.3 as a function of density. The

Figure 5.3: Spin-relaxation rate ¡85 as a function of total gas density, with ¯t. The

inset shows the low pressure portion of the data.

data qualitatively resemble the high temperature data, but at the lower temperature

the singlet molecule contribution to the relaxation is smaller and we are able to see

the decrease in the van der Waals molecule contribution to the relaxation rate at low

densities.
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Figure 5.4: Data of ¯gure 5.3, with binary and di®usion losses (obtained from the ¯t)

subtracted o®.
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We ¯nd at a temperature of 80±C

°inv = 0:56§ 0:01 s¡1amagat (5.42)

h¾vi = 2:28§ 0:07£ 105 s¡1amagat¡1 (5.43)

¡vdW = 3240§ 100 s¡1 (5.44)

[G]1 = 2:80§ 0:60 amagat (5.45)

[G]0 = 0:100§ 0:010 amagat; (5.46)

where the quoted errors are statistical.

As stated earlier, we were unable to extract a measurement of D0 from our high

temperature data (most likely due to relaxation in Rb singlet molecules). The value

of °inv we obtained at 80±C, when inserted into equation 5.32, yields D0 = 0:35 §

0:03cm2=s. This is in reasonable agreement with the measurement of Aymar et al.

[Aymar69], whose result at 27±C yields D0 = 0:46§ :07 when scaled by T 1=2 to 80±.

5.1.3 Analysis

Our two binary spin loss rate coe±cient measurements are consistent with the expected

T 1=2 temperature dependence (see ¯gure 5.5), yielding

h¾vi
¯̄
¯
300±K

= (2:08§ 0:17)£ 105 s¡1amagat¡1 (5.47)

= (7:72§ 0:64)£ 10¡15 cm3s¡1: (5.48)

Bouchiat previously measured ¾ = (16:41§ 0:87)£ 10¡4ºA2, or h¾vi = (5:73§ 0:30)£

10¡15 cm3/s, at low pressure (<1 Torr) at 27±C [Bouchiat72], signi¯cantly lower than

our result. It is pointed out in reference [Bouchiat72] that because ° is actually a func-

tion of interatomic distance, there is reason to suspect that ¾=°2 is a constant. Our

results, combined with that of Bouchiat et al. suggest an approximately linear tem-
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Figure 5.5: Measured binary collision spin loss rate coe±cients. The open circles are

from this work, while the ¯lled circle is from reference [Bouchiat72]. The solid line

shows a T 1=2 temperature dependence.

perature dependence to h¾vi, which in turn suggests a weak temperature dependence

(T 1=4) to h°(r)i.

The ratio of the characteristic pressures at 80±C is [G]1=[G]0 = 28§5, in reasonable

accord with the expected 22.5 from the Rb hyper¯ne splitting and the previously

measured °N=h = 135 MHz [Wu85]. The ratio of ¡vdW to [G]1 yields

(¡vdW=[G]1)
150±C

(¡vdW=[G]1)80±C

= 0:91§ 0:25

Within errors, this is consistent with the T¡3=2 scaling that would predict 0.76 for

this ratio. The T¡3=2 dependence assumes (see equation 5.15) °N
¹h

and [G]0=[G]1 are

temperature independent and the temperature dependence of K is dominated by the
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T¡3=2 phase-space factor.

The strong temperature variation of [G]1 (and, presumably, [G]0 as well) is some-

what surprising, as it suggests that the breakup cross section for RbXe molecules is

strongly temperature dependent. Indeed, our two data points suggest a T¡2:0 temper-

ature dependence for [G]1.

Our two measurements of ¡vdW suggest a temperature dependence of T¡2:5. From

equation 5.15 and our assumed T¡3=2 temperature dependence of K, this in turn sug-

gests a T¡1 temperature dependence to [G]0°N=¹h = (°N=¹h)2¿ . We must assume that

the temperature dependence of [G]1 (» T¡2) is due to ¿ , which leads us to a T 1=2

dependence of °N
¹h

. The only other direct measurement of ¡vdW is that of reference

[Cates92]; the gas composition in that work was almost entirely xenon (a small amount

of N2 bu®er gas was also present). Though it is possible in theory to connect the two

results, doing so requires knowledge of [G]0 in pure xenon, [G]0 in pure helium, and

[G]0 in pure nitrogen [Schaefer90].

A direct comparison of our high temperature results can be made with recent work

on polarization imaging of dense (> 7 amagat) optically pumped cells with similar

gas compositions to ours [Baranga98b] [Shah00]. For these experiments the width of

magnetic resonance lines depends on the spin-relaxation rate. The quoted relaxation

rates are total spin relaxation rates ° where dhFzi=dt = ¡°hSzi. At these high pres-

sures, f1;85 = 0:94 so we can assume the high pressure limit (all f 's = 1) and ¯nd

° ¼ h¾vi[Xe] + ¡vdW . For the 7.8 atm, 1.34% Xe cell of Ref. [Baranga98b] we predict

2:6 £ 104 s¡1, somewhat smaller than the observed 3 £ 104 s¡1. For the 7.0 atm, 1%

Xe cell of ref. [Shah00], our results predict 1:97£ 104 s¡1 which is in close agreement

with the observed 1:84£ 104 s¡1.
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5.2 Rb-129Xe Spin Exchange Rate

The dominant terms in the Hamiltonian for our Rb-Xe system in a magnetic ¯eld B is

H = AI ¢ S + °N ¢ S + ®K ¢ S + ¢ ¢ ¢;

where AI ¢ S is the Rb hyper¯ne interaction between the Rb electron spin S and

its nuclear spin AI, ®K ¢ S is the Fermi contact interaction between S and the Xe

nuclear spin K, and °N ¢ S is the spin-rotation interaction between S and the angular

momentum N of a Rb-Xe colliding pair. It is the Fermi contact term, ®K ¢ S, which

is responsible for Rb-Xe spin exchange. This spin exchange can in principle occur in

either binary collisions or in Rb-129Xe van der Waals molecules.

As has been discussed in section 5.1, there are three important regimes for the van

der Waals molecules' lifetimes in our system: the long lifetime limit set by the spin

rotation interaction, the \very short" lifetime limit set by the Rb hyper¯ne interaction,

and the intermediate short lifetime regime. While previous work has explored the short

lifetime limit [Cates92], the trend toward higher pressures in spin-exchange systems

has made measurements in the transition region between the short and \very short"

lifetime limits particularly desirable. This consideration has driven us to measure Rb-

129Xe spin-exchange rates between 0.6 and 3.1 amagats. This pressure range allows

us to observe the transition from the short to the \very short" regime, while always

staying well above the short to long lifetime transition at gas density [G]0 (measured

in section 5.1.2 above).

The rate of change of hKzi due to spin exchange with a Rb vapor is given by

[Happer84] [Appelt98]

d

dt
hKzi =

X

i

(f0;i ¡ f1;i)Á
2
®

2(2Ii + 1)2TXe

³
hFizi ¡ h2F 2

i ¡ 2F 2
izihKzi

´
+

f1;iÁ
2
®

2TXe
(hSizi ¡ hKzi) + [Rb]h¾SEvi(hSizi ¡ hKzi)¡ ¡0hKzi: (5.49)
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The ¯rst term is responsible for relaxation in short lived molecules (F-damping), where

(1 ¡ f1;i) is the fraction of van der Waals molecules which break up in a time long

compared to the characteristic hyper¯ne interaction time of Rb isotope i. The second

term describes very short lived molecules (S-damping), where f1;i is the fraction of van

der Waals molecules which break up in a time short compared to the characteristic

hyper¯ne interaction time of Rb isotope i. (For the work described in this section,

the gas density is always well above the short to long lifetime transition, so we will set

(1¡f0;i), the fraction of molecules which live longer than the characteristic spin rotation

interaction time, equal to 1.) ¡0 represents all other 129Xe relaxation mechanisms that

may be present, and h¾SEvi is a velocity averaged binary spin exchange rate coe±cient.

We can make several simpli¯cations to this equation. First, we watch Kz decay in

the absence of optical pumping. Therefore we are assured that Fiz; Siz ¿ 1. We are

then able to make the substitution [Happer84]

hF 2
i ¡ F 2

izi =
1

2
+

2

3
Ii(Ii + 1): (5.50)

Assuming further that hSizi ¿ hKzi (guaranteed just after optical pumping is turned

o®) allows us to write

d

dt
hKzi = ¡¡hKzi; (5.51)

where

¡ =
X

85;87

Á2
®´i

2TXe

µ1 + 4
3
Ii(Ii + 1)

(2Ii + 1)2
(1¡ f1;i) + f1;i

¶
+ [Rb]h¾SEvi+ ¡0: (5.52)

We perform the sum in equation 5.52 over the two stable Rb isotopes, 85Rb and

87Rb:

¡ =
Á2
®

2TXe

µ
0:358 +

0:648´85

1 + (
[G]1
[G]

)2
+

0:625´87

1 + (
2:25[G]1

[G]
)2

¶
+ [Rb]h¾SEvi+ ¡0: (5.53)

We point out that the factor of 2.25 which appears in the denominator of equation

5.55 is simply the ratio of the 87Rb hyper¯ne frequency to that of 85Rb, and appears
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because we have again chosen to rede¯ne a single [G]1 as equal to the characteristic

density for 85Rb. We also note that equation 5.53 agrees with references [Happer84]

and [Cates92] in the proper limits.

We rewrite the multiplier of the ¯rst term in terms of the chemical equilibrium

coe±cient, K, (recall K = [RbXe]=([Rb][Xe]), and the characteristic density [G]1:

Á2
®

2TXe
=
K®[Rb]

2¹h

[G]1
[G]

: (5.54)

Finally, we assume that the spin exchange rate is much higher than any other rate ¡0,

and so we ¯t our data to

¡SE=[Rb] =
K®
2¹hx

[G]0
[G]1

[G]1
[G]

µ
0:358 +

0:648´85

1 + ( [G]1
[G]

)2
+

0:625´87

1 + (2:25[G]1
[G]

)2

¶
+ h¾SEvi: (5.55)

We veri¯ed that ¡0 ¿ ¡SE by measuring the relaxation rate of the 129Xe in our cell

after it had cooled to approximately 40±C. We obtained ¡0 ¼ :0012 s¡1, a factor of 6

less than the slowest decay rate measured at 120±C, and a factor of 25 less than the

slowest decay rate measured at 150±C.

We have written the multiplier of the ¯rst term of equation 5.55 in this way because

we assume that the ratio [G]0=[G]1 = !hf;85=!°N is largely temperature independent.

We will then assume that the temperature dependence of equation 5.55 is entirely

contained within three parameters: K, which we assume has a T¡3=2 dependence; h¾vi,

for which we assume T 1=2; and [G]1 (recall that the data of section 5.2 suggested

[G]1 / T¡2:0).

5.2.1 ¡SE Measurements

As others have previously done [Cates92], we have measured ¡SE by observing the decay

of the 129Xe nuclear polarization in our cell just after optical pumping light has been

turned o®. However, we have chosen to observe the 129Xe nuclear polarization decay by
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observing the Rb repolarization induced by the 129Xe via the spin-exchange interaction

®K ¢S in the absence of pumping light [Zeng85]. In spin-temperature equilibrium, the

small Rb repolarization follows the 129Xe with a proportionality given by

hSzi = hKzi
¡SE

¡SE + ¡SD
; (5.56)

where here ¡SE is the rate at which Rb acquires spin from 129Xe, and the sum ¡SE+¡SD

(¡SD is the spin destruction rate, and describes angular momentum lost from the hSzi,

hKzi system) is exactly the total Rb spin loss rate measured in section 5.1. When

not in spin-temperature equilibrium, the Rb polarization continues to follow the 129Xe

polarization, although the constant of proportionality is more complicated [Zeng85].

This method o®ers two signi¯cant advantages over observing the 129Xe polarization

hKzi directly via NMR. Firstly, unlike NMR techniques, optical observation of Rb

polarization hSzi is a completely lossless method of tracking hKzi. Secondly, a minimal

change in our polarization analyzer (as described in chapter 2) allows us to measure

[Rb], as opposed to being forced to infer [Rb] from oven temperature and published

vapor pressure data. This has been the dominant source of error in previous similar

¡SE measurements [Cates92]. We note that recent evidence and our own observations

as well suggest that high power laser absorption leads to signi¯cant internal heating of

spin-exchange cells [Walter01], casting further suspicion on the method of inferring [Rb]

from measured oven temperatures; though the actual relaxation transients in [Cates92]

were recorded in the dark, we note that our experience suggests that it takes several

minutes for [Rb] to equilibrate after a strong pump beam is switched o®.

The spin-exchange cell, oven, and polarization diagnostics have been described pre-

viously (see Chapter 2). For the Faraday rotation measurements of the previous section,

we were able to use a signi¯cant fraction of a milliwatt of probe power without fear of

perturbing the Rb polarization | we simply detuned the probe from resonance until
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the Rb loss rate did not depend upon the probe power (until probe absorption was

negligible). However, for the circular dichroism measurements of this section, some

signi¯cant fraction of the probe must be absorbed. The Rb spin loss rate is determined

by the number of photons absorbed:

¡probe =
1

2

N°

[Rb]¼r2l
; (5.57)

where N° is the number of photons absorbed and ¼r2l is the volume of the cell ¯lled

by the probe beam. We therefore reduced our probe beam intensity to 25 ¹W through

the use of a ¸/2 plate and a polarizing beam splitter cube. If we assume complete

absorption of our 25 ¹W, 2mm diameter probe beam over the 8 cm length of the cell,

the Rb loss rate due to absorption is at most 5 per second (for [Rb] = 1013 cm¡3),

much less than the minimum loss rate due to collisions in the cell (see section 5.1).

We used a single 15 Watt ¯ber coupled diode array as the pumping light source

for these measurements. The unpolarized output of the ¯ber bundle is approximately

1000 GHz (2 nm) wide, centered around 795 nm. We ¯rst imaged the end of the ¯ber

bundle onto a chopper wheel with unit magni¯cation. We then collimated the beam

to approximately 2 cm diameter with a 5 cm focal length lens, and passed it through a

polarizing beam splitter cube. In order to minimize heating associated with pump light

absorption, we wished to avoid excessive amounts of pumping light. For this reason, we

simply blocked one of the beams from the cube. We passed the other beam through a

¸/4 plate and imaged the collimating lens onto the cell with magni¯cation »4 (grossly

over¯lling the cell). In this way, we delivered only »3 Watts of spatially uniform light

to the cell.

For each temperature and pressure, we ¯rst allowed the cell to equilibrate with

the pump beam on for approximately ten minutes. We then measured [Rb]¾±l by

comparing the total voltage VDC on the analyzer photodiodes (with pump beam and
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PEM o®) to a baseline voltage V0, recorded with the cell at or near room temperature

(such that the Rb vapor pressure is negligible).

[Rb]¾±l = ¡ ln
VDC
V0

(5.58)

We retuned the probe beam occasionally so as to maintain 30%-70% absorption ([Rb]¾±l

changed with cell pressure as well as temperature). We rechecked V0 frequently (ap-

proximately daily), so as to verify that our [Rb]¾±l measurements were not a®ected by

any systematic drift (e.g. in probe laser output power or frequency).

We then chopped the pump beam at approximately 10 Hz and used the analyzer in

the upper con¯guration of ¯gure 2.6. The lock-in ampli¯er then puts out an approx-

imately square wave at the chopper frequency, which we display on an oscilloscope.

The amplitude of this square wave, Vcd, is given by equation 2.17. Background circular

dichroism (of cell windows and/or optics) is automatically corrected for by means of

this chopper technique. We can then calculate the quantity [Rb]¾±lP :

[Rb]¾±lP = 2 sinh¡1

Ã
Vcdp

2VDCJ1(¯)

!
(5.59)

The ratio of equation 5.59 to equation 5.58 gives us the polarization P of the Rb.

After changing the optics to the lower con¯guration of ¯gure 2.6 and measuring the

new amplitude of the square wave from the lock-in ampli¯er, VFR, we calculate [Rb]P

from equations 2.8 and 2.22:

[Rb]P =
1

2

Ã
¼le2c

3mc2

Ã
1

¢3=2

!!¡1

sin¡1

Ã
Vfrp

2VDCJ1(¯)

!
; (5.60)

where it is assumed that ¢1=2 À ¢3=2 À °3=2. Having previously calculated P , this

gives us a measurement of the Rb number density [Rb].

Leaving the analyzer in the lower con¯guration, we then turned o® the chopper

wheel and pumped the cell for approximately two spin-exchange times (2-5 minutes
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depending on Rb number density) before turning o® the pump beam. The oscilloscope

records the subsequent decay VFR(t). A sample of this data appears in ¯gure 5.6. We

¯t each decay curve to a single exponential exp(¡¡t), and divided the rate from the

¯t by our measured Rb density to obtain the spin exchange rate coe±cient at each

temperature and pressure.

Figure 5.6: A sample of our spin exchange data (130±C, 1.84 amagats). The Rb

repolarization signal is shown along with the exponential ¯t and the residuals from

that ¯t. The spin exchange rate given by the ¯t is 0.01237 s¡1.

We initially made use of an 780 nm band pass interference ¯lter to isolate the
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analyzer optics from the pump beam. However, we found that the ¯lter was heated

by the pump beam during the pumping up cycle, changing its transmission of the

780 nm probe beam. During the decay cycle the ¯lter would again cool, causing a

characteristic drift in VFR(t). We found it necessary to remove the ¯lter and instead

isolate the analyzer from the pump beam by making use of the small angle at which

the probe passes through the cell; a pair of ¼5 mm apertures placed after the cell

approximately 1 meter apart both passed the probe beam while blocking all direct

pump light.

In an attempt to cancel any unnoticed systematic drifts, we took each decay curve

four times, twice with the 129Xe atoms aligned along the ¯eld and twice with the 129Xe

atoms aligned against the ¯eld. Changing the polarization changes the polarity of the

decay curve; any systematic drift not associated with the 129Xe polarization would be

averaged out. We noticed no such systematic di®erence between the two pairs of decay

curves at each temperature and pressure, and the standard deviations of the averages

at each point were typically 5-10%.

Our measured spin-exchange rate coe±cients are shown as a function of 1=[G] in

¯gure 5.7.

5.2.2 Analysis

We ¯t the entire data set shown in ¯gure 5.7 to equation 5.55 by assuming that we the

temperature dependence of K is T¡3=2 and that of h¾vi is T 1=2. We then used six free

parameters:

°SE

¯̄
¯̄
20±C

;h¾SEvi
¯̄
¯̄
20±C

; [G]1

¯̄
¯̄
120±C

; [G]1

¯̄
¯̄
130±C

; [G]1

¯̄
¯̄
140±C

; and [G]1

¯̄
¯̄
150±C

; (5.61)

where we have de¯ned °SE = K®= (2¹hx)
[G]0
[G]1

. Note that then the slope of each line

approaches °SE[G]1 in the low density limit (i.e. the right hand side of the graph),
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and the y-intercept is h¾SEvi at 20±C. The ¯t to the data is shown in ¯gure 5.7, and

provides the following values:

Figure 5.7: Spin-exchange rates at various temperatures and densities. For clarity,

the four measurements at each point are averaged to produce a single data point with

errors »10%.

°SE

¯̄
¯̄
20±C

=
K®
2¹hx

[G]0
[G]1

¯̄
¯̄
20±C

= (1:16§ 0:16)£ 10¡15cm3=s (5.62)

h¾SEvi
¯̄
¯̄
20±C

= (2:2§ 2:5)£ 10¡17cm3=s (5.63)

[G]1

¯̄
¯̄
120±C

= 2:42§ 0:35 amagats (5.64)
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[G]1

¯̄
¯̄
130±C

= 2:36§ 0:34 amagats (5.65)

[G]1

¯̄
¯̄
140±C

= 1:96§ 0:28 amagats (5.66)

[G]1

¯̄
¯̄
150±C

= 1:57§ 0:22 amagats (5.67)

(5.68)

We can immediately compare these values of [G]1 to those obtained in section

5.2 (where [G]1 was obtained by observing Rb loss rates). Figure 5.8 contains both

sets of values for [G]1, plotted vs. temperature. The ¯t shown is / T p, where the

temperature dependence p = ¡2:64 § 0:60. This large temperature dependence is

somewhat surprising, as it represents a T¡2:64 temperature dependence to the van der

Waals molecule correlation time (or lifetime, as we have assumed that the two are

equivalent) at constant density. We might expect the lifetime to scale like the time

between collisions from kinetic theory, 1=([G]¾v), or like T¡1=2. Nevertheless, the

agreement between the two data sets displayed in ¯gure 5.8 is compelling.

This work represents the ¯rst measurement of [G]1 | there are no previous mea-

surements in any gas composition with which to compare. We do, however, expect

that [G]1=[G]0 = 22:5 (from previous measurements of °N=h [Wu85]). Ramsey et al.

measured [G]0 in helium at T = 85:3±C to be 0.21 amagats [Ramsey83]. Our 80±C spin

loss measurements suggest [G]0 = 0:10 § 0:01 amagats at 80±C, while our [G]1 data

suggest 2:9=22:5 = 0:13 amagats, both signi¯cantly lower than the results of reference

[Ramsey83].

We can also compare the binary cross section h¾SEvi obtained here to previous

work. Walker has made theoretical estimates of ¾SE [Walker89] from time dependent

perturbation theory, obtaining 1:5£104 barns. Multiplying by a reasonable Rb-Xe rel-

ative velocity, 4£104 cm/s, yields h¾SEvi ¼ 6£10¡16. Cates et al. [Cates92] measured

h¾SEvi = 3:7£10¡16 by observing 129Xe relaxation in the dark; however, their analysis
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Figure 5.8: Characteristic density [G]1 obtained by two di®erent methods.
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di®ers somewhat from our method. Zeng et al. [Zeng85] estimate h¾SEvi = 4:1£10¡16

based on their measurements of van der Waals molecules and earlier measurements of

h¾vi, the binary Rb spin loss rate coe±cient [Bouchiat72].

Though our measurement should properly be called an upper limit on h¾SEvi owing

to its large statistical error, the value of that upper limit, h¾SEvi < 5:0£10¡17, is nearly

an order of magnitude smaller than that obtained in any previous work. While it is

unclear why the estimated rates of references [Walker89] and [Zeng85] disagree with the

results obtained here, we feel that the analysis of reference [Cates92] may be neglecting

nonnegligible temperature dependences of K and h¾sevi, and perhaps extrapolating

data taken in the short van der Waals lifetime regime through the \very short" lifetime

regime improperly. It is di±cult to see, given our data and the high density behavior

of ¡SE, how h¾SEvi could be as high as previously estimated to be.

Our measurements of [G]1 and knowledge of the 85Rb hyper¯ne frequency immedi-

ately allow us to calculate the van der Waals molecule lifetime, ¿ :

¿ =
[G]1
[G]

1

!hf;85
(5.69)

= 0:103 ns ¢ amagats
µ
T + 273

413

¶¡2:64

: (5.70)

From this and [G]0 we can calculate °N=h:

°N

h
=

[G]0
[G]1

!hf;85 (5.71)

= 108:4 MHz; (5.72)

where we have used the characteristic densities as measured at 80±C. This is in fair

agreement with measurements by Wu (135 MHz) [Wu85], Ramsey (120MHz) [Ram-

sey83] and Bhaskar (120§ 10MHz) [Bhaskar83].

The ratio of ¡vdW (see equation 5.15) to our ¯t parameter °SE, along with [G]1,
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provides us with a measure of x:

¡vdW
°SE

=
µ

4

3
x2 + ´129

¶
[Xe]

[G]
[G]1 (5.73)

or

x2 =
3

4

Ã
¡vdW
°SE

[G]

[Xe]

1

[G]1
¡ ´129

!
(5.74)

Our 150±C data yields x = 2:2 § 0:3, while our 80±C data yields x = 1:9 § 0:2,

both substantially lower than previous measurements made by Zeng et al. [Zeng85],

x = 3:2§0:3. In that work, the authors calculated x from measured [Rb] and the ratio

of Rb decay rates to 129Xe decay rates. It may or may not be signi¯cant that that

work was performed at gas densities below [G]0 (in the long lifetime regime), where

F-damping transitions are dominant and contributions to both decay rates from binary

collisions are small.

From x and °N=h, we ¯nd

®

h
=

°N

h

1

x
(5.75)

= 57 MHz: (5.76)

Note that this value depends upon four ¯t parameters, [G]0, [G]1, ¡vdW , and °SE. This

value is signi¯cantly higher than that reported elsewhere [Bhaskar83] because our value

for x is signi¯cantly lower [Zeng85].

Finally, using equation 5.15 and the same four ¯t parameters, we obtain K at 80±C:

Kj80±C = 6:76£ 10¡3 amagats¡1 (5.77)

= 2:51£ 10¡22 cm3; (5.78)

smaller than the value obtained by Bhaskar et al., 9:4£ 10¡22 [Bhaskar83]. Walker has

previously used semiempirically calculated RbXe potentials to estimate K to be 310 ºA3
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at 100±C [Walker89] | scaled by T¡3=2 to 80±C this is 3.37 £10¡22 cm3, in reasonably

good agreement with our result.

This work represents the ¯rst measurement of h¾SEvi using rubidium number den-

sities measured in this way. As an exercise, we also re¯t our data using [Rb] from the

vapor pressure curve of Killian [Killian26]. Because the [G]1's were not determined

by this ¯t, we ¯xed the [G]1's at values from ¯gure 5.8. The revised data and ¯t are

displayed in ¯gure 5.9. That ¯t yields

°SE

¯̄
¯̄
20±C

=
K®
2¹hx

[G]0
[G]1

¯̄
¯̄
20±C

= (7:45§ 0:43)£ 10¡16cm3=s (5.79)

h¾SEvi
¯̄
¯̄
20±C

= (4:3§ 1:9)£ 10¡17cm3=s (5.80)

This °SE is »70% of that obtained using the measured number densities. From

equation 5.74, this would have the e®ect of raising x2 to 6.2, or x to 2.5, in closer

agreement with previous work. This value of h¾SEvi, though slightly larger than that

obtained using measured number densities, is within error bars of that value, and does

little to bring this work into agreement with previous estimates and measurements.

It is worth noting again here that we assumed in ¯tting our data that the spin

exchange rate signi¯cantly exceeded any other 129Xe relaxation rate in our system.

Including a [Rb]-independent rate ¡0 would have an unusual e®ect on the data, as it is

¡=[Rb] which is plotted in ¯gure 5.7. Including a constant ¡0 leads to an o®set, ¡0=[Rb],

which is constant within each constant temperature curve (it would not change each

slope, °SE[G]1), but which would be nearly 10£ larger at 120± than at 150±). The

excellent ¯t to the data as well as the agreement with the Rb spin loss data (sect. 5.2)

seem to argue against the presence of such an o®set. Also, the e®ect of such an o®set

introduced to the ¯t is only to make h¾sevi smaller and even less in agreement with

previous work. A 129Xe relaxation rate proportional to [Rb] would be indistinguishable

in our experiment from 129Xe-Rb spin exchange, and so would tend to decrease x;
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Figure 5.9: Data of ¯gure 5.7 re¯t using [Rb] from vapor pressure curve rather than

the measured values.
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however, we know of no such relaxation mechanism.

5.3 NMR Calibration and Spin Exchange E±ciency

Though they have proven to be highly interesting themselves, our original motivation

for these spin loss and spin exchange measurements was a calibration of our NMR

system. Equation 5.56 illustrates how a knowledge of the Rb polarization (in spin

temperature equilibrium) and the rates we have measured allows us to calculate the

129Xe polarization:

hKzi = hSzi
¡SE + ¡SD

¡SE
: (5.81)

We can then measure the FID voltage VFID following a pulse from our NMR coil, and

thereby calibrate an NMR signal to a nuclear polarization.

We can also use the results of the previous sections to obtain the spin-exchange

e±ciency for RbXe, which is simply the ratio of the spin-exchange and spin-relaxation

rates. In the spin-temperature limit, the spin-exchange rate equations become

dhFzi
dt

= R
µ

1

2
¡ hSzi

¶
¡ ¡hSzi+ ´129·SE[Xe]hKzi (5.82)

dhKzi
dt

= ·SE[Rb] (hSzi ¡ hKzi) (5.83)

where R(1 ¡ 2hSzi) is the rate at which the atoms absorb photons from the laser.

The spin exchange rate coe±cient, ·SE, is exactly what was measured in section 5.2

(·SE = ¡SE=[Rb]), and ¡ is the Rb spin loss rate measured in section 5.1. The spin-

exchange e±ciency is de¯ned as the ratio of the initial rate of increase of angular

momentum stored in the nuclei to the steady-state rate at which photons are deposited

into the vapor:

² =
[Xe]dhKzi=dt

[Rb]R(1¡ 2hSzi)

¯̄
¯̄
¯
hKzi=0

=
´129·SE[Xe]

2¡
(5.84)
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The factor of 2 arises from the Rb optical pumping process, so we can de¯ne a collisional

e±ciency

²c = ´129·SE[Xe]=¡: (5.85)

In practice, we have combined these two measurements. We measured VFID, Rb

polarization Pa, and the Rb repolarization P 0a at ¯ve di®erent gas densities at 150±C.

Again, in order to avoid heating the cell with the pump beam, we used only a fraction

of the available power (¼3 Watts). As a result, the 129Xe polarizations attained were

fairly low (typically ¼5%). This, coupled with the already lean 129Xe gas mixture

(´129 £ 1% = 0:264%), made the FID signals quite small; an example of a single

frequency domain FID appears in the inset of ¯gure 5.10. We therefore averaged 10 of

these frequency domain signals (see ¯gure 5.10) and calculated VFID from the resulting

trace (as described in section 2.4). We then calculated P 0a=VFID at each point and ¯t

these points to the e±ciency obtained from equation 5.85 and our rates measured in the

previous sections (at 150±C), with a constant of proportionality as the free parameter.

This constant of proportionality then gives us the scaling factor between VFID and PXe,

good to 5%:

129Xe Polarization (%) = 55:8£ VFID (volts): (5.86)

The rescaled points are shown in ¯gure 5.11, along with the collisional e±ciency pre-

dicted from our measured rates.

Also included in ¯gure 5.11 are experimental lower limits on ²c, obtained by mea-

suring the ratio P 0a=Pa. This is a lower limit since the probe samples the center of the

cell, which presumably is the region with the highest Rb polarization when the light

is on. With the light o®, the Rb polarization should be very isotropic since it is being

produced by the isotropic 129Xe polarization. The experimental lower limits are about

10% lower than the e±ciency predicted from the separate loss and spin-exchange mea-
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Figure 5.10: Average of 10 frequency domain FID signals. The inset shows an example

of the individual FIDs.
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surements. Note that obtaining these lower limits does not involve either a Rb vapor

pressure measurement or an NMR calibration | it is simply the ratio of the Faraday

rotation angles with the pump on vs. o®, and as such is an extremely robust limit.

Expanding the probe beam to ¯ll the entire cell to obtain the volume averaged Rb

polarization with the light on vs. o® would make e±ciencies measured this way no

longer lower limits but robust e±ciency measurements.

These e±ciency measurements serve three purposes: they provide a check on the

earlier measurements, they provide a 129Xe NMR calibration, and, perhaps most im-

portantly, they underscore the dramatic pressure dependence of the spin exchange

e±ciency. The e±ciency decreases rapidly with pressure essentially because the Rb

spin loss process is dominated by Rb-Xe binary collisions (rate proportional to gas

density), while the spin exchange process is dominated by van der Waals molecules

(rate independent of gas density within each lifetime regime).

5.4 Conclusions

The measurements in this section represent the ¯rst systematic measurements of spin

loss and spin exchange rates of Rb atoms in He-dominated bu®er gas mixtures of Xe,

He, and N2. We have observed for the ¯rst time the transition from the short to \very

short" molecular lifetime regime for van der Waals molecules. Our spin loss results agree

with two recent measurements at a single pressure, using RF spectroscopy, of spin loss

rates in high pressure spin-exchange optical pumping experiments. Our spin exchange

measurements in particular suggest that the present spin exchange optical pumping

theory is inadequate for predicting fundamental rate parameters (e.g. h¾SEvi). The

surprising temperature dependences suggested by our data also are not predicted by

current theory. These results will be useful for modeling and for the design of Rb-129Xe
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Figure 5.11: The solid line is the collisional spin-exchange e±ciency at 150±C deduced

from measurements of Fig.5.1 and Fig.5.7, for natural abundance Xe in a 1% Xe mix-

ture. Arrow symbols are experimental lower limits on the e±ciency found from the

ratio of the Rb polarization with and without the optical pumping laser on. Filled

circles are absolute collisional e±ciencies (with the 129Xe NMR signal calibrated via

comparison to the solid line.
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polarizers.



Chapter 6

Implications

Throughout this work, a common theme has been basic physics research with immediate

impact on a practical problem: maximizing production of hyperpolarized gas (129Xe in

particular). With this in mind, this chapter is meant to clarify just what that impact

is expected to be.

The current state of the art hyperpolarized 129Xe production system, as utilized

for example in references [Shah00] and [Baranga98b], is ¯rst described in reference

[Driehuys96]. The gas mixture in these systems is either identical or similar to that

which we have studied (1% Xe, 1% N2, and 98% He), and gas pressures quoted are 7-10

atmospheres. Optical pumping light is provided by ¯ber coupled diode laser arrays,

typically providing 60-140 Watts of power with »2 nm linewidth. Oven temperatures

quoted are 130±C-180±C.

These systems have been designed to optimize production of hyperpolarized 129Xe

constrained by the best available 1) technology, 2) theoretical understanding, and 3)

measurements. The biggest technological constraint has been the lack of availability

of high power, narrow linewidth lasers. The high power diode arrays currently com-

mercially available necessitate the use of high 4He pressures and high temperatures in

106
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order to absorb a signi¯cant fraction of the light due to their »2 nm linewidths, as ¯rst

described in [Driehuys96].

The problem associated with the currently understood theory is that it fails to pre-

dict the actual performance of systems in the references above. The 129Xe polarization

measured in reference [Shah00], for example, is less than a third of the volume averaged

Rb polarization measured. Though this suggests that the (wall) relaxation time of the

129Xe atoms is less than the spin exchange time, the authors of that reference imply

that the spin exchange time is expected to be much shorter. They postulate a wall

relaxation mechanism which increases with temperature in such a way as to always

maintain ¡SE < 1=Tw.

Perhaps the major problem with applying the theory to model polarizer performance

is that nearly all of the fundamental rates needed had previously been measured at

vastly lower pressures and/or temperatures. For example, the ¯rst (and only, until

this work) measurements of h¾vi [Bouchiat72] were conducted at 27± and at pressures

less than 1 Torr. The work of reference [Ramsey83], measurements of [G]0 for He and

N2, also were done at a much lower temperature (85.3±C) than is common in current

polarizers. In addition, no measurements of temperature dependences of any of the

fundamental rates are to be found in the literature | our work is the ¯rst of any kind.

Previously, best guesses at temperature dependences had been made for the sake of

modeling higher temperature systems.

6.1 Implications for Modeling

The measurements we present in this work, in particular the surprisingly large tem-

perature dependences and small binary spin exchange rate coe±cient, seem to suggest

that models based on previous measurements should overestimate 129Xe polarizations



108

(at least in systems similar to ours at high temperatures and pressures). As a means

of illustrating this, we have used our data with its suggested temperature dependences

to calculate collisional spin exchange e±ciency vs. density at various temperatures.

For the purpose of generating these estimates, we have assumed T¡2:64 temperature

dependences for [G]1 and ¡vdW (as suggested by the data of section 5.1.1), T¡3=2 for

°SE, and T 1=2 for both binary rate coe±cients h¾vi and h¾SEvi. Figure 6.1 shows the

resulting e±ciencies.

We can recalculate each e±ciency curve making only the following changes: replace

our measured h¾vi with that measured in reference [Bouchiat72], and replace our h¾sevi

with that measured in reference [Cates92]. This change to h¾vi increases the e±ciency

by a factor approximately equal to the ratio of the two h¾vi's (»1.5), because the Rb

spin loss is dominated by binary collisions in either case. The change we have made to

h¾sevi, however, has a much more dramatic result. Our value of h¾sevi suggests that van

der Waals molecules dominate spin exchange (with the associated large temperature

and pressure dependences), while that of reference [Cates92] suggests a balance between

molecules and binary collisions. The ratio of the two e±ciency curves (using previously

measured rate coe±cients vs. using our measurements) appears in ¯gure 6.2.

We suggest that the disagreement between previous models and polarizer perfor-

mance may be explained by ¯gure 6.2: our predicted e±ciency for typical polarizer

temperatures and gas densities is approximately a factor of ¯ve smaller than that pre-

dicted based upon previous measurements. In addition, our measurements suggest that

the e±ciency itself drops o® much faster with temperature than was previously thought.

It may be this fundamental rate limitation which has served to keep 129Xe polarizations

low even as ¡SE is increased by increasing [Rb] (i.e. by increasing temperature).

Issues related to temperature dependent e±ciencies are compounded in light of re-

cent work measuring gas temperature (as opposed to oven or exterior cell temperature)
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Figure 6.1: Collisional e±ciency vs. gas density for several cell temperatures.
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Figure 6.2: Ratio of e±ciencies calculated using previously measured binary rate coef-

¯cients (h¾vi and h¾sevi) to those calculated using our measured values.
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in a spin exchange optical pumping system pumped by a high power diode array [Wal-

ter01]. In that reference, the gas temperature (as measured via rf spectroscopy on

the N2 bu®er gas vibrational levels) was observed to increase initially by as much as

10± for each Watt absorbed (until convective processes set in). When it is considered

that 30-50 Watts are routinely absorbed in 129Xe polarizing systems, the e®ect on ef-

¯ciency may be dramatic. We emphasize here that though [Rb] is likely set by the

cell wall temperature, our estimated temperature dependences of the e±ciencies are

with respect to the gas temperature | under conditions of high power absorption, the

average gas temperature may exceed the cell wall temperature by over 100±, reducing

e±ciency accordingl y.

It is clear that the temperature dependences of the spin exchange optical pumping

parameters must be accounted for when modeling real systems. Our work is the ¯rst

step in this direction.

6.2 Implications for Polarizer Design

From ¯gure 6.1, it appears that it is desirable to work at the lowest densities and tem-

peratures possible. Our introduction of high power external cavity diode laser arrays

(ECDLA's, see section 4.2) makes it feasible to lower the densities and temperatures

while still maintaining su±cient optical pumping rate Rp. Just as present polarizing

systems were designed largely around the broad linewidth high power diode arrays, we

present a redesign around our narrow linewidth ECDLA's.

It is instructive to reframe the spin exchange optical pumping equations, presented

¯rst in the introduction of this work, in more fundamental terms. From the expression
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for the polarization of the Rb atoms,

PRb =
Rp

Rp + ¡
(6.1)

and the expression for circular dichroism (with Nº as the number of photons absorbed

per second in the cell volume V ),

Nº = Rp(1¡ PRb)[Rb]V; (6.2)

we can relate laser absorption to Rb polarization:

Nº = PRb¡[Rb]V: (6.3)

So for PRb = 1, the number of photons absorbed per Rb atom exactly makes up for the

polarization loss rate, ¡ (this is the upper limit on the number of photons which can

be absorbed). If the absorption falls behind, the polarization drops.

We can reframe the expression for the polarization of the 129Xe atoms in a similar

manner:

PXe =
·SE[Rb]

·SE[Rb] + ¡w
PRb (6.4)

leads to

·SE[Rb] =
PXe

PRb ¡ PXe
¡w: (6.5)

Again, the rate at which spin is added (·SE[Rb]) must balance the rate at which it is

lost (¡w).

Equations 6.3 and 6.5 together, along with the de¯nition of the collisional e±ciency

²c, yield a fundamental relation relating the various parameters of the spin exchange

optical pumping system:

PXe
1¡ PXe=PRb

´129[Xe]V ¡w = Nº²c: (6.6)

There are obviously many interconnected system parameters to be varied: gas den-

sity, temperature, cell volume, and the cell area presented to the pumping laser (this
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parameter a®ects not only laser absorption, but also a®ects the cell surface area to

volume ratio (recall that this sets ¡w through the relaxivity, %). Also, the ¯gure of

merit for practical 129Xe polarizer systems used for di®erent applications is not always

the same; it is some combination of PXe and ·SE[Rb], the rate at which the 129Xe is

produced. The following is meant to serve only as one example of system design.

We start with two design constraints: 1) we will assume that we can absorb up to

10 Watts of laser power (corresponding to 4£ 1019 photons per second), and 2) we will

constrain ourselves to total gas densities greater than 1.0 amagat and temperatures

greater than 80±C. The constraints on density and temperature are largely to make

the absorption assumption realizable | we must keep Rb number densities reasonably

high and pressure-broadened absorption linewidths reasonably large.

Equation 6.3 serves as a density and temperature dependent limit on the volume

of our cell. Choosing PRb = 1 as a target polarization,

Nº = ¡[Rb]V (6.7)

or,

V =
Nº

¡[Rb]
(6.8)

(6.9)

This is actually an upper limit on V , as reducing V simply reduces the Rb spin loss

rate, and we absorb less light; increasing V reduces the Rb polarization because we

have assumed a maximum 10 Watts absorption. Because Rb spin loss is dominated by

binary collisions, this limit is approximately inversely proportional to gas density. This

maximum volume is plotted in ¯gure 6.3 as a function of temperature for ¯ve di®erent

densities: 1,3,5,7, and 9 amagats.

We can also get a limit on the number of gas atoms from equation 6.5. Choosing
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Figure 6.3: Upper limit on the volume of the spin exchange cell for 10 Watts laser

absorption. (Note that this volume limit is proportional to laser absorption.)
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PXe ¼ 1=2,

[G]V =
200Nº²c
´129¡w

: (6.10)

Now we assume that by keeping the cell temperature relatively low and by absorbing

only 10 Watts, we make it possible to use a cell coated with a siliconizing agent such

as SurfaSil, which extends the 129Xe relaxation time (there is some evidence that these

coatings degrade quickly at high temperatures). We will therefore assume a relatively

long 1=¡w = 1hour:

[G]V < 1026²c: (6.11)

This limit is more sensitive to gas density than to temperature in our range of interest.

We ¯nd that, owing to the long wall relaxation time we have assumed, this limit is not

as restrictive as that of equation 6.9. We will later see just how much this assumption

can be relaxed.

Another parameter of interest to us is the rate at which the 129Xe is polarized,

·SE[Rb]. Though [Rb] increases rapidly with temperature, this is partially o®set by

the behavior of ·SE, a decreasing function both of temperature and pressure over our

range of interest. ·SE[Rb] is plotted in ¯gure 6.4. Note that we must keep the spin

exchange rate higher than the wall relaxation rate in our cell (2:8£ 10¡4 s¡1), but this

is not a limiting factor in our range of interest: ·SE[Rb](at80±C; 1amg) = 1:67£ 10¡3.

We will assign a ¯gure of merit, [G]V ¡SE, for our system, which is [G]=[Xe] = 100 times

the number of 129Xe atoms polarized per second. This quantity is plotted in ¯gure 6.5.

It is obvious from ¯gure 6.5 that, owing to the temperature and density dependence

of the spin exchange rate, it is desirable to design our system to operate at the lowest

temperature and density possible. We will therefore choose to operate at 80±C and 1

amagat gas density. Figure 6.3 then prescribes a 7000 cm3 (7 liter) cell. With these
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Figure 6.4: Spin exchange rate for Rb-Xe.
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Figure 6.5: Figure of merit, atoms polarized per second, plotted vs. temperature at

several gas densities.
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parameters, we should be able to produce hyperpolarized Xe at a rate of 3:2 £ 1018

atoms per second (1% of the value read from ¯gure 6.5), or 420 cm3 per hour.

A cylindrical cell is desirable because the °at end windows allow good optical access.

There are two considerations relevant to choosing the aspect ratio: laser absorption and

internal heating due to the absorption. We ¯rst treat the heating. Assuming that it is

the conductivity of the gas itself which limits the rate at which heat leaves the cell, we

must solve the heat di®usion equation for the temperature rise in the cell:

Xr2T = ¡Q; (6.12)

where Q is the power per volume per time which we add to the (center of the) cell

(10 Watts per 7000 cm3), and X is the thermal conductivity of He at 80±C, 1.649

mW¢cm¡1±K¡1 [CRC].

First we assume a °attened, pancake like cell. The thermal gradient will then be

along the optical axis, ẑ (see ¯gure 6.6). For simplicity, we assume a quadratic variation

of the temperature along z, where the length of the cell is L. For z < L=2,

T (z) =
a

2

Ãµ
L

2

¶2

¡ z2

!
+ Toven (6.13)

Then a = Q=X = 0:87 ±K/cm2, and the temperature rise at the cell center is

±T = T (0)¡ Toven =
aL2

8
(6.14)

To keep the temperature rise less than 10±K, we need L < 9:6 cm.

Alternatively, we could assume an elongated cylinder for the cell shape. The thermal

gradient is then radial, along r̂. The di®usion equation in cylindrical coordinates is

Xr2T (r) = X 1

r

@

@r

Ã
r
@T

@r

!
= Q: (6.15)

We again choose a quadratic variation for T (r) for simplicity:

T (r) =
a

4

Ãµ
D

2

¶2

¡ r2

!
+ Toven; (6.16)
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Figure 6.6: Cylindrical cell dimensions: \pancake" cell is assumed to have D À L for

heat removal calculations, while elongated cell has LÀ D.

where D is the cell diameter. Once again a = Q=X , but with the heat able to dif-

fuse radially, the temperature rise at the center of the cell is only half as large. Our

requirement to keep the temperature rise less than 10±K is then D < 18 cm.

We have written a short numerical model to illustrate the laser absorption and

Rb polarization for each case. The input parameters of the model are [G], T , laser

power, laser linewidth, cylindrical cell area, and cylindrical cell length. (We use the

measurements of chapter 5 to set the spin loss and spin exchange rates, so the relative

composition of the gas can not be varied.) For the purposes of modelling, the cell is

divided into 100 slices along its length. At each slice, the pumping rate is evaluated

from the laser intensity, laser linewidth, and the pressure broadened Rb linewidth. The

Rb polarization in that slice is calculated from the pumping rate and the loss rate. The

intensity absorbed by that slice is then subtracted from the laser pro¯le and the model

steps ahead to the next slice.

We ¯rst apply the model to the pancake cell. As prescribed by our calculations,

we take [G]=1 amagat, T = 80±C, and cell dimensions L = 10 cm (to keep ±T < 10±)
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and D = 30 cm, so as to make a 7 liter volume. The light source is assumed to be an

ECDLA, with 20 Watts of output with a spectral pro¯le taken to be a Gaussian with

100 GHz FWHM. Figure 6.7 shows the model output, the amount of laser absorption

and both the pumping rate and Rb polarization as a function of z.

For the 7 liter elongated cylinder, we take D = 18 cm (to keep ±T < 10±), L = 27:5

cm. We run the model with other input parameters unchanged, and obtain the results

shown in ¯gure 6.8. The results are measurably better in this case.

In fact, both the Rb polarization and absorption (photons per second per Rb atom)

are monotonically increasing functions of L for constant cell volume, approaching 1

and ¡ respectively. Of course, this is just equation 6.3. The number of photons taken

out of the beam per Rb atom is simply equal to the Rb loss rate, a constant, times the

Rb polarization, a function of the pumping rate. The laser is obviously more intense if

the cell is more elongated, yielding a larger Rp and therefore a larger Rb polarization.

Though heat removal and laser absorption are both facilitated by elongating the

cell at a given volume, the wall relaxation time for 129Xe atoms is not. Still, with a cell

this large, the surface to volume ratio is extremely favorable. Even for an extremely

elongated 5 cm diameter, 350 cm long cylindrical cell (yielding 98% average Rb po-

larization, from the model output), the relaxivity of the wall need only be lower than

1:73£ 10¡3 cm/s to produce 50% 129Xe polarization.

This design represents a fairly radical departure from past designs [Driehuys96]

[Shah00] [Baranga98b] , which is made practical by our ECDLA. We have taken ad-

vantage of its narrow linewidth as well as the fundamental rates' density and temper-

ature dependences which we have measured. The system described should be capable

of producing polarized 129Xe at a rate of 1/3 liters per hour and at 80% polarization or

greater (subject to the cell wall relaxivity). This production rate is comparable to or

greater than those of high temperature systems, and we expect that by avoiding high
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Figure 6.7: Model output for the pancake cell. The upper graph shows the laser

spectral pro¯le before (long dashed line) and after (solid line) traversing the cell. The

Rb absorption cross section is shown for comparison. The lower graph shows the

pumping rate (dashed line) decreasing slowly as a function of distance through the cell

and the resulting Rb polarization (solid line).
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Figure 6.8: Model output for the elongated cylindrical cell.
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temperatures the 129Xe polarization produced will be much greater as well.



Chapter 7

Conclusion

Through the course of the studies described in this thesis, we have addressed the three

main problems facing spin exchange optical pumping systems: pumping light sources,

surface relaxation mechanisms, and fundamental rate measurements.

Our external cavity diode laser array (ECDLA) provides a much needed narrow

bandwidth high power light source for optical pumping. Its application makes it possi-

ble to pump lower temperature, lower pressure spin exchange cells, thereby increasing

the e±ciency of the system as a whole.

Our studies of 129Xe relaxation on metal surfaces, though not de¯nitive by any

means, may lead to a direct observation of surface Korringa relaxation in the future. In

the course of this work, we have gained a greater understanding of physical adsorption

e®ects in general and the interesting adsorption behavior of xenon in particular.

The fundamental rate measurements provided here will aid us and others in un-

derstanding the basic physical interactions of the Rb-Xe system. The temperature

dependences of the fundamental rates (measured here for the ¯rst time) are particu-

larly interesting for the implications they may have for spin exchange optical pumping

theory.
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Taken as a whole, the work we have done has allowed us to model and design

improved spin exchange optical pumping systems.

All of the work described in this thesis was undertaken with the hopes of not only

having a practical impact on hyperpolarized gas production, but to gain a greater

appreciation of the physics at work as well.



Appendix A

Full Rb Relaxation Equations

Following Appelt et. al. (reference [Appelt98], section XI), we write the rate equations

for the spin-projections haiiz and hbiiz, where ai = Ii+
1
2

and bi = Ii¡ 1
2
. In the absence

of optical pumping,

d

dt

0
BBBBBBBB@

a85z

b85z

a87z

b87z

1
CCCCCCCCA

= ~¡

0
BBBBBBBB@

a85z

b85z

a87z

b87z

1
CCCCCCCCA

; (A.1)

where the (4£ 4) matrix ~¡ is the sum of 3 matrices describing Rb-Rb spin exchange,

S-damping, and F-damping: ~¡ = ~¡se + ~¡SD + ~¡FD.

~¡SD and ~¡FD relax each isotope independently, so we can use the (2£ 2) matrices

directly from [Appelt98]:

~¡SDi =
1

2[Ii]
2TSDi

0
@

[Ii]
2 ¡ [Ii] + 2 ¡[Ii]

2 ¡ 3[Ii]¡ 2

¡[Ii]
2 + 3[Ii]¡ 2 [Ii]

2 + [Ii] + 2

1
A ; (A.2)

and

~¡FDi =
1

[Ii]
2TFDi

0
@

1 0

0 1

1
A ; (A.3)

where 1=TSDi = ([Xe]h¾vi + f1;i¡vdW ), the S-damping rate, and 1=TFDi = (f0;i ¡
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f1;i)¡vdW , the F-damping rate. For Rb,

~¡FD85 = (f0;85 ¡ f1;85)¡vdW

0
@

1
36

0

0 1
36

1
A (A.4)

~¡FD87 = (f0;87 ¡ f1;87)¡vdW

0
@

1
16

0

0 1
16

1
A (A.5)

~¡SD85 = (¡bin + f1;85¡vdW )

0
@

4
9

¡7
9

¡5
18

11
18

1
A (A.6)

~¡SD87 = (¡bin + f1;87¡vdW )

0
@

7
16

¡15
16

¡3
16

11
16

1
A ; (A.7)

where we have de¯ned ¡bin = [Xe]h¾vi.
~¡se describes spin exchange both within each isotope and between isotopes. We then

need 4 (2 £ 2) matrices to describe the 85Rb - 87Rb system, ~¡se85¢85, ~¡se87¢87, ~¡se85¢87,

and ~¡se87¢85, where

~¡sei¢j =
±ij

2[Ii]
2Tex

0
@

[Ii]
2 ¡ [Ii] + 2 ¡[Ii]

2 ¡ 3[Ii]¡ 2

¡[Ii]
2 + 3[Ii]¡ 2 [Ii]

2 + [Ii] + 2

1
A+

+
´j

6[Ii][Ij]Tex

0
@
¡[Ii]

2 ¡ 3[Ii]¡ 2 [Ii]
2 + 3[Ii] + 2

[Ii]
2 ¡ 3[Ii] + 2 ¡[Ii]

2 + 3[Ii]¡ 2

1
A : (A.8)

(Note that the ¯rst matrix in equation A.8 is identical to the S-damping matrix, equa-

tion A.2.) Solving these for Rb yields

~¡se85¢85 = ¡se

0
@

0:258 ¡0:591

¡0:211 0:544

1
A (A.9)

~¡se87¢87 = ¡se

0
@

0:350 ¡0:850

¡0:170 0:670

1
A (A.10)

~¡se85¢87 = ¡se

0
@
¡0:109 0:109

0:0389 ¡0:389

1
A (A.11)
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~¡se87¢85 = ¡se

0
@
¡0:150 0:150

0:030 ¡0:030

1
A ; (A.12)

where ¡se = 1=Tse.

We can then construct the total (4£4) relaxation matrix:

~¡ =

0
@

~¡SD85 + ~¡FD85 + ~¡se85¢85
~¡se85¢87

~¡se87¢85
~¡SD87 + ~¡FD87 + ~¡se87¢87

1
A : (A.13)

Finding the fundamental relaxation rate is a matter of ¯nding the smallest eigen-

value of this matrix, which depends upon ¡vdW¡se and ¡bin=¡se. (In the high ¡se limit,

the smallest eigenvalue corresponds to equation 5.27.) The ¯rst order corrections to

equation 5.27 are then obtained from the smallest eigenvalue of the total relaxation

matrix to ¯rst order in ¡vdW=¡se, ¡bin=¡se minus the smallest eigenvalue in the high

spin-exchange limit.

The following Mathematica-produced output (Wolfram Research, Inc.) illustrates

how this may be done using ¯rst order perturbation theory. The S-damping, F-

damping, and spin exchange matrices are constructed as above; note that j's and

k's correspond to f1's and f0's, respectively.

The matrix \gam0" is the spin exchange matrix (i.e. the total matrix in the high

spin exchange limit), with eigenvectors \u[[1]]" through \u[[4]]" and corresponding

eigenvalues \°[[1]]" through \°[[4]]". Note that we have used ¡se = 1; for example,

¡vdW in the ¯nal form is actually ¡vdW=¡se.
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Appendix B

ECDLA Alignment Procedure

In the interest of assisting future students in our group in ECDLA construction, I

include this step by step construction and alignment procedure.

B.1 Parts List:

1. 1 cm long high power diode array

2. Diode current driver capable of 30 Amps output (Newport 5405)

3. Temperature controller capable of 8 Amps output (Melcor 12080)

4. High power diode laser mount (Newport 762-TE includes TEC for temperature

control)

5. Cylindrical microlens (Doric lenses 1.500 mm diameter, 2.5 cm length, BBAR

coated)

6. 2£ Newport GM-1R 3-axis waveplate/polarizer holder

7. 2£ Newport RSA-1TI solid insert
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8. 25.4 mm diameter, 50 mm focal length lens, BBAR coated (plano-convex singlet

or achromat)

9. ¸/2 plate in a rotating optics mount

10. 100 mm diameter, 250 mm focal length lens, BBAR coated (Melles Griot)

11. 50mm x 50mm 2400 lines/mm holographic di®raction grating (Edmund Scienti¯c

K43-226)

12. Cylindrical lens, 75.6 mm focal length

13. Linear translation stage (New Focus EZ-track)

14. 2-axis translator (New Focus EZ-track)

15. assorted posts, bases, optical breadboard or table

B.2 Machining:

Enlarge the center hole of one of the RSA-1TI inserts to 2 cm diameter. This insert will

serve as the cylindrical microlens holder. Mill a 1.50 mm diameter groove, semicircular

in cross section, across the diameter of this insert. Cement the microlens into this

groove.

We have found it helpful to attach a 3" mirror in the following manner to one of

the GM-1R mounts (which will serve as the di®raction grating mount), such that the

angle that this mirror makes with the GM-1R face is ¯xed. Though not necessary for

ECDLA operation, it minimizes the beam movement with tuning which is inherent to

Littrow cavity designs. Drill and tap an 8-32 hole in the center of the top edge of the

GM-1R face. Using this hole, bolt a ¼5 cm long aluminum bar to the GM-1R. Bolt
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the mirror (in a suitable mount) to this bar such that it hangs from the end of the bar

at an adjustable angle and is mechanically stable.

B.3 Position array

Mount the array on the high power mount. Secure the mount to the optical table

such that the long dimension of the array is oriented vertically and the array output

will be aligned with a row of holes in the optical table. Turn on array to just above

threshold. The divergence in the vertical direction should be only ¼10±, allowing the

angle of inclination of the array to be set at 0± (parallel to optical table) by observing

the height of the illuminated horizontal stripe on a far wall.

B.4 Align microlens

Turn the machined cylindrical microlens holder into one of the GM-1R holders, and

position this on the 2-axis translator such that the center of the microlens is at the

height of the center of the array, or at y = 0 (refer to ¯gure 4.4 for coordinate axes,

where the array center de¯nes (0; 0; 0)). Using the translator, center the microlens

approximately 2 mm from the array. Position the 75.6 mm focal length cylindrical

lens at z = 9 cm, and place a screen at z = 58 cm. With the array running just

above threshhold, carefully translate the microlens in towards z = 0 while observing

the screen. At some point an image of some portion of the array should begin to come

into focus on the screen (visible as individual elements, perhaps displaying \smile" as

in ¯gure 4.5).

Keeping in mind that this image is inverted, use the xz-translation adjustments and

the GM-1R tilt/rotation adjustments to properly collimate the fast axis of the array
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Figure B.1: High power laser diode array mount and microlens.
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output. For example, if the top of the image comes into focus before the bottom as

the microlens is brought closer to the array, then the bottom of the microlens is closer

than the top. Adjust the GM-1R tilt accordingly. Similarly adjust the rotation angle

of the GM-1R to make the image as vertical as possible. Also adjust the x-position of

the microlens (using the xz-translator) to properly align the collimated output along

x = 0 (some iteration may be necessary if the various adjustments are not precisely

orthogonal).

When ¯nished, an image similar to those in ¯gure 4.5 should be visible on the

screen. (This is a good time to measure the amount of smile present in the array.)

Remove the screen and move the 75.6 mm cylindrical lens closer to the array such that

an image of the vertical dimension of the array appears on a far wall. Complete the

microlens adjustment by decreasing the z-position of the microlens slightly, such that

the fast axis of the array is collimated. Remove the 75.6 mm focal length cylindrical

lens.

B.5 Align telescope

Place the 50 mm focal length lens at z = 5 cm. Observe the large image of the vertical

dimension of the array on a far wall. Adjust the height of the 50 mm lens such that

the vertical center of this image is at the same height as the center of the array itself.

Adjust the x-position of this lens such that the image appears at x = 0. Adjust the

z-position of the lens to bring the image into focus.

Place the ¸/2 plate at approximately z = 10 cm, the 250 mm focal length lens at

z = 35 cm, and a screen at z = 60 cm. Adjust the (x; y; z) position of the 250 mm lens

to produce a well focused image of the vertical dimension of the array on the screen

centered on (x; y) = (0; 0).
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B.6 Position grating

Cement the second RSA-1TI insert to the center of the back of the di®raction grating.

Screw the grating into the second GM-1R holder. Align the grooves of the grating

along the ŷ direction. Mount the GM-1R holder on the translation stage (translatable

along z) such that the center of the grating is located at (x; y; z) = (0; 0; 60cm) and

the grating normal makes approximately the Littrow angle with the z-axis (72.6± for

¸ = 795 nm). An image of the vertical dimension of the array should approximately

¯ll the grating. This image should be well focused along the horizontal center of the

grating, and should not deviate signi¯cantly from well focused near the image edges.

B.7 Adjust feedback

Use some appropriate method for observing the frequency of the array output in real

time (e.g. Ocean Optics S2000 spectrometer). Care mut be taken to observe all of

the array elements with the spectrometer. In practice, this means collecting all of the

output light with a suitable lens and passing it through at least one di®using medium

before entering the spectrometer. Some subset of array elements may be blocked and

unblocked just after the di®raction grating in order to verify that they are contributing

to the spectrometer signal.

With the array running slightly above threshhold, make ¯ne adjustments to the

grating position, tilt, rotation, and tuning angle to optimize ECDLA output (i.e. max-

imize frequency tuning range and minimize frequency bandwidth), setting the ¸/2

plate to achieve as much frequency-narrowed output as possible. Only after good per-

formance is achieved at low power should the current to the array be turned up to the

desired operating level, at which point more ¯ne grating adjustments may need to be
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made (the ECDLA output will be narrower and tune signi¯cantly better just above

threshhold than at higher power, hence the recommendation to begin optimization at

lower power.)

Very ¯ne adjustments of the other optical elements (especially the microlens) may

be necessary, depending on the dominant source of frequency broadening. Observing

ouput frequency di®erences between various subsets of array elements can be a valuable

means to diagnose suboptimal ECDLA performance associated with microlens rotation

(which leads to a di®erent Á for di®erent elements exactly as does array smile (see

equation 4.7)).



Appendix C

Calculated Surface Korringa

Relaxation Times

The following table lists the metals from the periodic table ordered by atomic number.

The work functions, Á, have been taken from the CRC Handbook of Chemistry and

Physics [CRC], where the references cited there are [Holzl79][Riviere69][Michaelson77].

Á varies according to crystal face for monocrystalline samples; where the CRC lists

values for more than one crystal face, the value in the table below is approximately the

average. Conduction electron densities listed are from Tipler's Modern Physics (Table

9-2) when possible, and otherwise are taken from reference [Rose91].

The fourth column, \129Xe T1cc", lists the surface Korringa relaxation times for

129Xe in a 1 cm3 spherical cell at 20±C, as predicted by equation 3.9. The ¯fth column,

\129Xe T01cc", lists the relaxation times for those conditions as predicted by equation

3.40, which includes a modi¯cation to account for 129Xe monolayer formation. This

modi¯cation is pressure dependent | these numbers represent the values predicted for

our experimental pressure, 2.5 amagats.

The sixth column lists the relaxation times for 3He under those conditions as pre-
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dicted by equation 3.9. As the binding energy for 3He on all metals listed is much less

than kT , equation 3.40 gives the same result.

The remaining columns contain the approximate binding energies (²0) and locations

of the potentials' minima (r0) as calculated from Á via our semiempirical method.

Conduction electron densities, [e¡]c, are in units of £1022 cm¡3. 129Xe relaxation

times are listed in number of hours, while 3He times are years.
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Metal [e¡]c Á

(eV)

129Xe

T1cc

129Xe

T01cc

3He

T1cc

r0(Xe)

(ºA)

²0(Xe)

(meV)

r0(He)

(ºA)

²0(He)

(meV)

Li 5.7 2.9 28 31 1500 2.8 88 4.5 2.7

Be 5.32 4.98 .74 1.9 4700 2.2 198 3.5 6.0

Na 2.65 2.36 90 96 1500 3.1 65 5.0 2.0

Mg 8.61 3.66 6.7 8.1 1800 2.5 125 4.0 3.8

Al 18.1 4.2 1.6 2.2 1500 2.4 153 3.8 4.6

K 1.4 2.3 147 155 2200 3.2 62 5.1 1.9

Ca 3.16 2.87 44 47 2100 2.8 87 4.6 2.6

Sc 4.22 3.5 14 16 2700 2.6 120 4.1 3.5

Ti 4.83 4.33 3.0 4.4 3800 2.3 160 3.7 4.9

V 5.38 4.3 2.9 4.3 3500 2.3 159 3.7 4.8

Cr 5.7 4.5 1.9 3.1 3700 2.3 170 3.7 5.1

Mn 16.5 4.1 2.0 2.7 1500 2.4 150 3.8 4.5

Fe 17 4.7 .61 1.2 1900 2.2 180 3.6 5.5

Co 5.56 5 .69 1.8 4600 2.2 200 3.5 6.0

Ni 5.43 5.15 .51 1.6 5000 2.1 210 3.4 6.3

Cu 8.47 4.65 1.1 2.0 3000 2.2 180 3.6 5.4

Zn 13.2 4 2.8 3.6 1600 2.4 140 3.9 4.3

Ga 4.26 4.2 4.1 5.8 3900 2.4 150 3.8 4.6

Ge 5.0 2.2 200 3.5 6.0
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Metal [e¡]c Á

(eV)

129Xe

T1cc

129Xe

T01cc

3He

T1cc

r0(Xe)

(ºA)

²0(Xe)

(meV)

r0(He)

(ºA)

²0(He)

(meV)

Rb 1.04 2.26 187 196 2600 3.2 60 5.2 1.8

Sr 2.95 2.59 65 69 1800 3 74 4.8 2.2

Y 3.92 3.1 27 30 2200 2.7 97 4.4 2.9

Zr 4.63 4.05 5.1 6.8 3400 2.4 150 3.8 4.4

Nb 5.24 4.3 3.0 4.4 3500 2.3 160 3.7 4.8

Mo 5.59 4.6 1.6 2.8 3900 2.2 180 3.6 5.3

Tc 5.68

Ru 5.68 4.71 1.2 2.4 4000 2.2 180 3.6 5.5

Rh 5.49 4.98 .73 1.9 4600 2.2 200 3.5 6.0

Pd 5.1 5.12 .57 1.7 5100 2.1 210 3.4 6.2

Ag 5.86 4.6 1.5 2.7 3800 2.2 180 3.6 5.3

Cd 4.15 4.22 4.0 5.7 4000 2.3 150 3.8 4.7

In 3.89 4.12 5.1 6.7 4000 2.4 150 3.8 4.5

Sn 14.8 4.42 1.2 1.8 1900 2.3 170 3.7 5.0

Sb 4.55 2.3 170 3.6 5.2

Cs 1.9 1.95 164 171 1300 3.5 48 5.5 1.5

Ba 2.92 2.7 57 62 1900 2.9 79 4.7 2.4

La 3.88 3.5 15 17 2800 2.6 120 4.1 3.5

Hf 4.81 3.9 6.6 8.3 3100 2.4 140 3.9 4.1

Ta 5.38 4.25 3.2 4.6 3400 2.3 160 3.8 4.7

W 5.71 4.55 1.7 2.9 3800 2.3 170 3.6 5.2
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Metal [e¡]c Á

(eV)

129Xe

T1cc

129Xe

T01cc

3He

T1cc

r0(Xe)

(ºA)

²0(Xe)

(meV)

r0(He)

(ºA)

²0(He)

(meV)

Re 5.88 4.96 .72 1.8 4400 2.2 200 3.5 5.9

Os 5.92 4.83 .95 2.0 4100 2.2 190 3.5 5.7

Ir 5.75 5.27 .38 1.4 5000 2.1 220 3.4 6.5

Pt 5.43 5.65 .17 1.2 5900 2.0 240 3.3 7.2

Au 5.9 5.1 .54 1.6 4600 2.1 200 3.4 6.2

Hg 4.07 4.49 2.4 4.0 4600 2.3 170 3.7 5.1

Tl 3.73 3.84 8.6 10.7 3500 2.5 134 4.0 4.1

Pb 3.64 4.25 4.2 6.0 4400 2.3 156 3.8 4.7

Bi 4.22 2.3 150 3.8 4.7
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