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Chapter 1

Introduction

1.1 Motivation

Nuclear spin-polarized 3He and 129Xe [Walker97][Appelt98] are becoming increasingly

important in many areas of fundamental physics and applied physics. Applications of

these ”hyperpolarized” noble gases include magnetic resonance imaging of the lungs

and other organs [Albert94][Middleton95][MacFall96], precision measurements [Bear00]

[Newbury91] [Romalis01], spin-polarized targets for nuclear physics [Xu00] [Jones00],

quantum computation [Verhulst01], and surface physics [Nagasaka01][Raftery91][Wu90].

Since its discovery in 1960 by Carver and coworkers [Bouchiat60] the technology has

progressed to such an extent that liters of highly polarized 3He and 129Xe are routinely

produced by laboratories around the world. Nevertheless, the basic fundamental limits

to the efficiency of the spin-exchange process rates are not fully understood. For ex-

ample, the fundamental spin-exchange rate in Rb-3He reported in the literature differs

by as much as a factor of 2 [Coulter90][Larson91][Baranga98].

In spin exchange optical pumping, resonance circularly polarized pump light is

absorbed by the alkali-metal vapor contained in a glass cell. Also contained in the
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glass cell is a much larger quantity of noble gas. Collisions between the alkali-metal

atoms and noble gas atoms transfer some of the electron-spin polarization to the nuclei

of the noble gas. The polarization of the noble gas in steady-state is [Walker97]

P = PRb
κ[Rb]

(κ[Rb] + Γw)

=
Rp

(Rp + ΓRb)

κ[Rb]

(κ[Rb] + Γw)
, (1.1)

where PRb is the Rb polarization, Rp is the optical pumping rate, ΓRb is the Rb spin-

relaxation rate, [Rb] is the Rb density, Γw is the noble gas wall-relaxation rate, and κ

is the Rb-noble gas spin-exchange rate coefficient. With the current understanding of

the spin-exchange process and the available technology of high power diode-array bars,

it should be possible to have Rp À ΓRb, κ[Rb] À Γw so that equation 1.1 predicts a

very high noble gas polarization. In 3He, the polarization should be close to unity with

an easily-made room-temperature cell lifetime of a few hundred hours [Rich02][Hsu00].

However, the highest 3He polarization reported in the literature for diode pumping is

about 55% [Rich02]. In 129Xe the typical observed polarization is about 10 to 15%

[Driehuys96]. Thus, for example, the resolution of the magnetic resonance of the lungs

using 129Xe is still very much limited by this low 129Xe polarization. Experiments

which rely on high 3He polarization could also greatly benefit from higher than 55%

3He polarization. For example, an upcoming experiment at the Los Alamos spallation

neutron source plans to measure the weak nucleon-nucleon coupling constant, Hπ, by

measuring the gamma ray emission directional parity-violating asymmetry (Aγ) in the

n + p→d + γ reaction. Here polarized 3He is used as a neutron polarizer. The goal

of the experiment is to measure Aγ with an uncertainty of < 5× 10−9. Assuming the

current value of 55% 3He polarization, this makes the run time of the nuclear reactor

to 500 days. With 3He polarization of 74% as demonstrated in this thesis, that reduces

the run time to 290 days.
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In order to understand the low-observed noble gas polarization, all of the parame-

ters in equation 1.1 must be carefully studied. In this thesis I describe a comprehensive

study that was undertaken in the last four years in trying to understand the funda-

mental processes in spin-exchange optical pumping.

1.2 Overview of Spin-Exchange Optical Pumping

In spin-exchange optical pumping [Happer72] [Walker97] [Appelt98], resonance circu-

larly polarized pump light is absorbed by the alkali-metal atoms, usually Rb, contained

in a sealed glass cell. The transition of interest is the 52S1/2 → 52P1/2. Also contained

in the sealed glass cell is a a high density of 3He or 129Xe. In most conditions, the

hyperfine levels of the Rb atom are not resolved due to the pressure broadening of

the noble gas (20 Ghz/Amagat)[Romalis97]. Normally, the pressure of the noble gas

ranges from 1 to 10 amagats [amg], so that the pressure broadening is many tens of

GHz, and much greater than the hyperfine splitting of the Rb atoms. Even at one

amagat of noble gas pressure, the laser linewidth is typically much greater than the

hyperfine levels. Thus, all the Rb hyperfine levels are pumped equally.

Also in the sealed glass cell is a fraction of an amagat of buffer gas, almost always

N2. After the Rb atoms absorb a resonance photon they collide with the noble gas or

N2 before they decay optically . The collisions redistribute the Rb atoms in the excited

state with equal probability. Once in the excited state the Rb atoms have an equal

probability of de-exciting to the ground state. The excitation energy is absorbed by the

N2. On average, therefore, half a unit of the photon angular momentum is transferred

to the Rb atom per one unit of photon angular momentum absorbed. Figure 1.1 shows

a simplified optical pumping of the D1 line with only two Zeeman sublevels.
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Figure 1.1: A simplified picture of optical pumping of the D1 line.
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The average photon absorption rate is [Walker97] [Appelt98]

〈δΓ〉 = (1− 2〈Sz〉)Rp, (1.2)

where Rp is the pumping rate for the unpolarized Rb atoms, and 2〈Sz〉 is the average

polarization of the Rb atoms. The pumping rate is given as [Happer72] [Walker97]

[Appelt98]

Rp =
∫ ∞

0
I(ν)σ(ν)dν, (1.3)

where I(ν) is the intensity of the pumping laser per unit frequency and σ(ν) is the Rb

absorption cross section.

The rate equation which governs the average spin of the Rb atoms, 〈Fz〉, is

d〈Fz〉
dt

=
1

2
(1− 2〈Sz〉)Rp − ΓRb〈Sz〉, (1.4)

where (1−2〈Sz〉)Rp is the rate at which the photons are absorbed, and each absorption

deposits 1/2 unit of angular momentum. ΓRb is the total Rb atoms spin-relaxation

rates. Hence, in steady state, the Rb polarization, PRb = 2〈Sz〉, is

PRb =
Rp

(Rp + ΓRb)
(1.5)

Once the Rb atoms are spin-polarized, some fraction of the electron spin is trans-

ferred to the nuclear spin of the noble gas through spin-exchange collisions [Happer72]

[Walker97] [Appelt98]. The Hamiltonian of the Rb-noble gas system is [Walter98]

H = AaIa·S+gSµBS ·B+µaIa·B+µbK·B+γN · S+AbK·S+BbK·(3R̂R̂−1)·S, (1.6)

where Ia, K, and S are the spins of the Rb nucleus, noble gas nucleus and the alkali-

metal electron, respectively. B is the external magnetic field and N is the rotational

angular momentum of the colliding pair. R̂ is the vector displacement between the

pair. The first term of the Hamiltonian is the hyperfine coupling between the electron
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and nucleus of the alkali-metal atoms and is usually the strongest. The second, third

and fourth terms are the coupling of the spins to the external magnetic field. The

term γN ·S causes spin-relaxation due to the coupling between the spin of the electron

and the rotational angular momentum of the colliding pair. The term AbK · S is

responsible for the spin-exchange between the electron spin of the alkali-metal and

the nucleus of the noble gas. This is the well-understood isotropic hyperfine ”Fermi

contact” interaction that aligns the noble-gas nuclear spin with the electron spin of the

alkali-metal atom. The last term is the anisotropic coupling of the electron spin with

the noble gas nucleus due to the long-range classical dipole-dipole interaction [Walter98]

which is usually ignored. A substantial value of Bb is a potential explanation for the

low observed noble gas polarization and will be discused in chapter 6.

1.3 Summary of Thesis

1.3.1 Introduction

The thesis is comprised of four parts. The first part deals with alkali-alkali metal spin-

relaxation, an important contribution to ΓRb, which is described in detail in chapter

2. The second part describes the 129Xe-Xe molecular spin-relaxation in van der Waals

molecules and is described in chapter 3. This process is a fundamental limit in Γw for

129Xe. The third part of the thesis addresses the invention of an external cavity diode

array bar [Chann00] for spin-exchange optical pumping and is described in chapter

4. This device allows for a greater Rp and higher PRb. The last part of the thesis

deals with the measurements of the Rb-3He spin-exchange rate coefficients, κ, and is

described in chapters 5 and 6. The thesis is summarized in chapter 7.

The following subsections give summaries of findings.
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1.3.2 Cesium-Cesium spin-relaxation

From equation 1.5 the alkali-metal atom polarization is limited by the alkali-metal spin

destruction rate ΓRb. Alkali-alkali spin-relaxation accounts for the majority of the spin-

relaxation. Originally, the alkali-alkali spin-relaxation mechanism was thought to arise

mainly from binary collisions. This was proven to be incorrect when Kadlecek, Walker,

and Anderson [Kadlecek98] showed that the relaxation rate could be decoupled in a

magnetic field of few thousand gauss. The mechanism responsible, however, was not

understood.

Although, we still do not understand the alkali-alkali metal spin-relaxation in buffer

gases at pressures of an amagat or more, the low pressure Cs experiment in this thesis

proves that the main alkali-alkali relaxation comes from the spin-axis interaction

2λ

3
S·(3ξ̂ξ̂ − 1)·S, (1.7)

where S = S1 + S2 is the total electron spin of the colliding pair, ξ̂ is a unit vector along

the direction of the internuclear axis. λ = λ(R) is the interaction energy thought to

arise from the electrons’ magnetic moments and spin-orbit interaction in second order

[Mies96].

Results from fitting the Cs experimental data with the theory as predicted by spin-

axis interaction are summarized in table 1.1. The first two columns assume each colli-

sion breaks up the molecules and the last two columns allow for collisional reorientation

without breakup. The theoretical chemical equilibrium coefficient, 3κchem, calculated

using the ab intio potential calculated by Krauss and Stevens [Krauss90] gives 613 A3.

Thus, λ is most likely accurate to a factor of about 2.

We also measure the spin-destruction cross section between 4He, N2 buffer gas with
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Positive λ Negative λ Positive λ Negative λ

λ = 3.4 GHz λ = −2.9 GHz λ = 2.71 GHz λ = −2.13 GHz

κ = 307 A3 κ = 350 A3 κ = 431 A3 κ = 584 A3

σ = 82 A2 σ = 98 A2 σ = 55 A2 σ = 42 A2

Table 1.1: Cesium-cesium spin-relaxation fitted parameters. The first two columns

assume each collision breaks up the molecules, the last two columns allow for colli-

sional reorientation without breakup. λ is the spin-axis interaction strength, 3κchem is

the chemical equilibrium coefficient, and σ is the breakup cross section. The theoret-

ical 3κchem calculated using the ab intio potential calculated by Krauss and Stevens

[Krauss90] gives 613 A3. Thus, λ is most likely accurate to a factor of about 2.

Cs atoms

σN2−Cs = 38.6× 10−22 cm2 (1.8)

σ4He−Cs = 6.3× 10−22 cm2. (1.9)

The σ4He−Cs cross section is about a factor of ten bigger than the calculated value by

Walker of (0.6× 10−22cm−2)[Walker89].

1.3.3 129Xe-Xe molecular spin-relaxation

One of the big applications of spin-polarized noble gases is in magnetic resonance

imaging of human organs. One of the challenges is to be able to store the polarized

noble gas as long as possible before administering it to patients. In the 3He the dipole-

dipole interactions place the fundamental limit in bulk 3He relaxation at (807/P) hours,

where P is the partial pressure of 3He in units of bars at room temperature [Newbury93].

Previously for 129Xe, it has been generally accepted that the fundamental limit is

56 hours which is due to the 129Xe spin-relaxation due to 129Xe-Xe binary collisions
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[Hunt63] [Moudrakovski01].

We identified a new gas-phase 129Xe-Xe spin-relaxation that is due to the formation

of van der Waals molecules. The interaction responsible for the relaxation is the spin-

rotation coupling between the nuclear spin, K, and the rotational angular momentum,

N, of the molecules

Vsr = cK(R)K ·N. (1.10)

For a fixed gas composition this mechanism is independent of gas density and thus

difficult to isolate from the wall relaxation. To measure the relaxation due to van der

Waals molecules we measure the total relaxation as a function of gas composition. The

measured van der Waals molecules spin-relaxation contributes

ΓvdW = 6.72± 0.1× 10−5 s−1 (1.11)

to the total observed relaxation rate. This is more than an order of magnitude larger

than the well-known spin-relaxation due to the 129Xe-Xe binary collisions at one 1 at-

mosphere of pressure. Thus, this makes spin-relaxation due to van der Waals molecules

the primary fundamental process at gas densities less than 14 amagats. The measured

rate is consistent with the theoretical estimates deduced from previously measured

NMR chemical shifts. From ΓvdW we calculate the breakup cross section to be

σ = 44Å2 (1.12)

1.3.4 External Cavity Diode Array Bar

One of the crucial steps in achieving high noble gas polarization is to have a high

alkali-metal atoms pumping rate. In the last ten years or so, traditionally, the laser

of choice is the diode array bar with a power from 15W to hundred of watts. It is

easy to use and relatively inexpensive compared to the dye laser or Ti:Sapphire laser.
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However, one of the major disadvantages of the diode array bar is its large spectral

width, about 1000 GHz. Traditionally, high pressures cells are used to match the

absorption linewidth of the alkali-metal atoms (20 GHz/amagat) to the laser linewidth

[Romalis97]. The highest 3He polarization using such a diode array bar reported in the

literature is about 55%. In 129Xe the typical observed polarization is about 10 to 15%.

Thus, the question arises of whether the observed low noble gas polarization is due to

the inefficient pumping rate of the diode array bar. In order to answer that question,

we invented an external cavity diode array bar [Chann00]. We have obtained a laser

linewidth as low as 47 GHz with about 33% loss in power. The external cavity diode

array bar is instrumental in achieving high polarization, especially in low pressure cells.

It is detailed in chapter 4.

1.3.5 Rb-3He spin-exchange rate coefficients

In the course of investigating the low observed noble gas polarizations we have mea-

sured the Rb-3He spin-exchange rate coefficients. Until the work of Baranga et al.

[Baranga98], only two measurements of the Rb-3He spin-exchange rate coefficient had

been reported. Coulter et al. [Coulter90] measured the spin-exchange rate coefficient

to be 12± 2× 10−20 cm3/s. Larson et al. [Larson91] using the same method measured

the spin-exchange rate coefficient to be 6.2± 0.2× 10−20 cm3/s. Both these measure-

ments relied on the relaxation rate of 3He as a function of temperature. In both cases

the wall-relaxation is assumed to be temperature-independent. Also both experiments

deduce the Rb vapor pressure using published saturated vapor curves, a procedure that

can be in error by a factor of 2 or more [Jau02] [Borel02].

Recently, Baranga et al. [Baranga98] remeasured the Rb-3He spin-exchange rate

coefficient. They deduced the spin-exchange rate coefficient to be 6.7 × 10−20 cm3/s.
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Baranga used a different method which does not rely on Rb density measurement.

Furthermore, his method made no assumption about the wall-relaxation of the cell.

Therefore, it should be quite reliable.

To better understand the discrepancies between these three measurements, and also

to further test our basic understanding of the spin-exchange optical pumping process

we have measured the spin-exchange rate coefficients in Rb-3He. We measured it three

different ways. The first method we use is the same one used by Coulter [Coulter90]

and Larson [Larson91] , which we call the ”relaxation method”. The second one is

the method used by Baranga [Baranga98], which we call the ”repolarization method”.

The third method is a new ”rate balance method” which is based on the equilibrium

3He polarization attained in a cell of known Rb density and 3He polarization. Here, we

make no assumption about the magnitude of the anisotropic spin-exchange rate.

We obtained (6.73± 0.12× 10−20) cm3/s for the ”repolarization method”. Thus, it

agrees very well with Baranga [Baranga98]. For the ”rate balance method” we deduce

the spin-exchange rate coefficient to be (6.61±0.12×10−20) cm3/s. These two methods

agree very well with each other. For the ”relaxation method” we deduce the value to

be (8.82± 0.16× 10−20) cm3/s. This is about 30% higher than the other two methods,

which implies a temperature-dependence wall-relaxation or a large value of anisotropic

spin-exchange interaction for Rb-3He. At this time, we believe the most likely cause is

the temperature-dependence wall relaxation. Thus, this excess 3He relaxation explains

the low observed 3He polarization.
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References Method Spin-Exchange Rate Coeff. (10−20 cm3/s)

This work Relaxation Method 8.82 ± 0.16

[Coulter90] Relaxation Method 12± 2

[Larson91] Relaxation Method 6.2 ±0.2

This work Repolarization 6.73 ±0.12

[Baranga98] Repolarization 6.7 ± 0.6

This work Rate Balance 6.61 ± 0.12

Table 1.2: Rb-3He spin-exchange rate coefficients using various methods. The re-

laxation’s method spin-exchange rate coefficient is most likely contaminated by wall

effects, while the other two methods make no assumption about the wall.
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Chapter 2

Cesium Spin-Relaxation

2.1 Introduction

Under the typical operating conditions of the Rb-3He spin-exchange polarizers, the

majority of the Rb spin depolarization is due to Rb-Rb collisions [Kadlecek98]. In

1980 Bhaskar et al. proposed that the alkali-alkali spin-relaxation is due to binary

collisions [Bhaskar80], where the average duration collision time is about τ ≈ 1 psec

[Happer72][Kadlecek98]. In 1998 Kadlecek, Anderson, and Walker [Kadlecek98] showed

that the alkali-alkali spin-relaxation rate could be decoupled in a few kG of magnetic

field. They reported the relaxation rate can be reduced up to a factor of 3 with a

few kG of applied magnetic field. Hence, if the alkali-alkali spin-relaxation is due to

binary collisions with a duration of ∼ 1 psec, for an applied field of 1 kG, the precession

around the applied magnetic field is

Ωτ =
µBBτ

h̄
¿ 1, (2.1)

where Ω is the Larmor precession frequency. Thus, the applied magnetic field of a

few kG should not affect the alkali-alkali spin-relaxation rate. This rules out that the
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alkali-alkali spin-relaxation comes from binary collisions. Kadlecek et al. measured the

decoupling magnetic field width in Rb-Rb to be about 1.15 kG or a correlation time

of about 50 ps. This implies that the alkali-alkali spin-relaxation occurs in molecules.

The mechanism that is responsible was not understood.

Bhaskar et al. [Bhaskar80] also pointed out that there should be a spin-rotation

interaction in triplet dimers of the form, Vsr = γS ·N, where S = S1 + S2 is the total

electronic spin of the dimer, and N is the rotational angular momentum of the pair.

They ruled this out because the coupling coefficient γ was too small to account for the

relaxation. Instead, they suggested a possible mechanism is the spin-axis interaction

in triplet dimers of the form

Vsa =
2λ

3
S·(3ξ̂ξ̂ − 1)·S, (2.2)

where ξ̂ is the unit vector between the two atoms.

The Cs-Cs experiment described here, along with the Rb-Rb experiment at Prince-

ton University showed [Erickson00] that at pressures less than one amagat of buffer

gas, half of the alkali-alkali-metal spin-relaxation comes from the spin-axis interaction

in triplet dimer molecules. The key observation is the magnetic-resonances in spin-

relaxation as predicted by the spin-axis interaction. The fit of the experimental data

for Cs gives λ = −2.13 GHz with the chemical equilibrium coefficient of 3κchem = 584

A3. This compares favorably to the theoretical estimate of 613 A3 for the chemical

equilibrium coefficient.

Section 2.2 is a brief overview of the experiment. Section 2.3 describes the appara-

tus (light sources, cell, detector) and techniques (rate measurement, Cs density) used

to measure the Cs spin-relaxation. Section 2.4 details the theory of the spin-relaxation

rate of triplet molecules due to the spin-axis interaction. Section 2.5 discusses the

experimental data. Finally, section 2.6 presents the spin-relaxation cross section mea-
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surement between Cs and buffer gas.

2.2 Brief Description of Experiment

The experimental setup is a typical spin-exchange optical pumping experiment. The

setup is shown in figure 2.1 [Kadlecek98] [Kadlecek00][Kadlecek01]. We have a cell

containing Cs vapor within a volume of about 100 cm3. The cell is placed in an oven

and heated to the desired temperature. Attached to the cell is a valve that is used

to let in buffer gas or a mixture of buffer gases. The oven is placed in a uniform

magnetic field. We then polarize the Cs vapor to a few percent polarization with a

circularly polarized pump beam. After about 100-200 ms of pumping, the pump beam

is blocked and we measure the time-dependent decay of the Cs polarization with a

weak probe beam [Franzen59]. The exponential decay rate of the Cs polarization is

the total relaxation rate of the Cs atoms. We make measurements as a function of

magnetic field strength, buffer gas pressure, and Cesium density.

2.3 Experimental Apparatus

2.3.1 Light Sources

We use a standing-wave Ti:Sapphire laser (Spectra Physics model 3900) which is

pumped by a 5W of an Ar+ laser (Spectra Physics model 171) to pump the Cs vapor.

The output of the Ti:Sapphire laser is about 50-150mW at 852 nm. The Ti:Sapphire

laser wavelength is typically detuned about 0.5 nm to 2 nm from resonance to keep

the polarization of the Cs vapor to less than 5%. This ensures that the spin-relaxation

rate of the Cs atoms is only a single exponential [Happer72][Appelt98].

To detect the spin-relaxation rate of the Cs vapor we use an external cavity diode
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Figure 2.1: Cesium spin-relaxation experimental setup.

laser (5 mW at 850 nm, Intelite- part MLD850-5S5N) as a probe in the Littman-Metcalf

configuration [Littman78]. We keep the power of the probe laser to less than 1 mW to

ensure that there is no optical pumping of the Cs vapor by the probe laser.

2.3.2 Cell

The cell is a cylindrical stainless-steel chamber, shown in figures 2.2 and 2.3. The

dimensions of the chamber are 1 3
8

′′

in diameter and 2.5
′′

in length. The cell is first

cleaned thoroughly and baked at about 300C for about 3 to 4 days to remove any

impurities. After the cell is cooled down, high purity Cs is then introduced. The

windows are then attached in the manner described in [Noble94] [Kadlecek00] with

home-made knife-edge copper gaskets. We use plain pyrex circular discs as our windows

(2
′′

diameter and 3/8
′′

thick) and 30-40 sheets of aluminum foil as a pad between the
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Figure 2.2: Stainless Steel Cesium Cell-From Top View

window and the stainless-steel retaining ring.

2.3.3 Polarization Detector

For our spin polarization detection, we use a polarization-Faraday rotation detector

[Kadlecek98][Kadlecek00]. The optical setup is shown in figure 2.4. The detection is

based on the birefringence of the alkali-atoms when it is spin-polarized. When linearly

polarized light enters the cell, the polarization of the light gets rotated. The rotation is

proportional to the polarization and density of Cs vapor. The detector is composed of

a half-wave plate followed by a polarizing beam splitter and two photodiode detectors.

The two photodiodes are wired to opposite polarity.

The signal detected is proportional to sin(P ), where P is the Cs vapor polarization.

Since the polarization is kept small, sin(P ) ∼= P . At large detuning compared to
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Figure 2.3: Stainless Steel Cesium Cell-From Side View

atomic linewidth and hyperfine structure, the Faraday rotation angle as a function of

polarization is given as [Kadlecek00] [Vliegen01] (Appendix D)

θP =
[Cs]Le2

6mc

(

1

∆3/2

− 1

∆1/2

)

P, (2.3)

where L is the probe path length through the vapor and ∆3/2 ∆1/2 are the detunings

from P3/2 and P1/2 resonances. [Cs] is the cesium density, m is the atomic mass, e is

the electronic charge and c is the speed of light and P is the polarization. The absolute

calibration is then obtained by measuring the rotation angle on the half-wave plate.

2.3.4 Relaxation Rate Measurements

The spin-relaxation signal [Franzen59] is usually averaged many times before being

recorded. Typically, the number of averages ranges from 50 to 5000 times. The signal is

then fitted to a single exponential. Care must be taken to make sure the Cs polarization
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π

Figure 2.4: Our standard Faraday rotation detector used in most measurements in this

thesis. The diagram for the cell is not an open flash as indicated in the diagram but

valved as shown in figure 2.1.

is low. If the polarization is high, the signal is a linear combination of many exponentials

from many different relaxation observables [Happer72]. A sample spin-relaxation signal

and its residual fit is shown in figure 2.5.

2.3.5 Vapor Pressure Measurement

We use magnetic field-Faraday rotation to measure the Cs vapor density. In the large

magnetic field (1 Tesla) that is used in our experiment, the rotation is typically on

the order of many tens of degrees. This technique has been proven reliable up to 20

atmospheres of buffer gas [Vliegen01]. Also, our group has calibrated this technique

to a much more laborious but very reliable technique using absorption spectroscopy of

the second resonance [Kadlecek00].

The rotation angle, for the probe’s detuning much greater than the atomic linewidth

and hyperfine structure, as a function of Cs density and magnetic field is [Kadlecek00]
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Figure 2.5: A sample exponential transient with an exponential fit with residual.

[Vliegen01] (Appendix D)

θB = [Cs]
Le2µBB

18mhc

(

4

∆2
1/2

+
7

∆2
3/2

− 2

∆3/2∆1/2

)

, (2.4)

where, for example, ∆3/2 = ν−ν3/2 is the detuning of the probe from the nS1/2 → nP3/2

transition. Here e is the electronic charge, µB is the Bohr magneton, m is the electron

mass, h is Planck’s constant, L is the path length of the probe through the cell, c is the

speed of light, B is the external applied magnetic field, and [Cs] is the Cs density. Thus,

to measure the Cs density we measure the rotation angle as we change the magnetic

field. We then plot the rotation angle as a function of the magnetic field and do a least

square fit of a straight line. The slope of the line is proportional to the Cs density. A

sample of the field-Faraday rotation is shown in figure 2.6.
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Figure 2.6: Rotation angle plotted as a function of applied magnetic field- the slope is

proportional to Cs density. Also shown is the linear fit.

2.4 Spin-Relaxation in Triplet Dimers

2.4.1 Triplet Dimer Density

In a typical spin exchange optical pumping condition, about 0.01% of the Cs atoms are

in triplet molecules. Unlike singlet dimers, the total electronic spin is not zero. Thus,

fast spin-relaxation is possible through the magnetic coupling between the two electrons

[Appelt98][Kadlecek00]. Other relaxation mechanisms like spin-rotation interaction

and electric-quadrupole interaction [Kadlecek01] are much smaller.

To make any reasonable relaxation rate calculations due to triplet dimers, we need

to know the triplet dimer density in the vapor. Unfortunately, it is extremely difficult

to measure the triplet dimer density directly. So we are forced to deduce the triplet

dimer from the atom density and the chemical equilibrium coefficient. We calculate the
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Figure 2.7: Cesium Triplet Potential- points are ab initio calculations of Krauss and

Stevens [Krauss90], curve is a convenient fit to the potential.

chemical equilibrium using the ab initio potential calculated by Krauss and Stevens

[Krauss90] which is shown in figure 2.7.

The relative motion of the pair of Cs atoms is reduced to the motion of the relative

particle of mass [Bouchiat69]

µ =
m1m2

(m1 +m2)
(2.5)

in the effective potential

Ueff = U(r) +
N(N + 1)h̄2

2µr2
, (2.6)

where h̄N is the rotational angular momentum of the pair and r is the internuclear

separation. U(r) is the dominant term which describes the electrostatic exchange forces

between the two atoms. The second term is the rotational energy of the pair.

The density of the triplet dimers can be deduced from the chemical equilibrium

coefficient. From the law of mass action [Reif65], the chemical equilibrium coefficient,
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Figure 2.8: Cesium Triplet Potential...Here N is the rotational angular momentum of

the molecule. Note at N=200, there is a region of bound states and quasi bound states,

where energy is greater than zero.

3κchem, of the triplet molecules is given as:

3κchem = [
3Cs2]/[Cs]

2, (2.7)

where [3Cs2] is the triplet dimer density.

First, from the ab intio potential of Krauss and Stevens [Krauss90] we numerically

calculate all the bound eigenstates and eigenenergies using the Fourier Grid Hamilto-

nian method (Appendix A) [Marston89] [Balint-Kurti92] [Borisov01]. Figure 2.9 shows

all the bound eigen-energies plotted as a function of the rotational angular momentum.

From the eigen-energies we sum over all the states and weight it by the Boltzmann factor

to determine the chemical equilibrium coefficient defined as [Kadlecek00][Kadlecek01]:

3κchem =
3

8

[

h2

πmkT

]3/2
∑

i

e−Ei/kT (2Ni + 1), (2.8)

The accuracy of 3κchem depends critically on the accuracy of the ab intio potential.

Since there is no experimental binding energy to scale the ab intio potential of Krauss



24

and Stevens [Krauss90] to, we are forced to estimate the error in 3κchem from the

chemical equilibrium coefficient in singlet molecules, 1κchem. The calculated
1κchem of

singlet molecules using ab initio potential and the calculated 1κchem using ab initio

potential scaled to the known binding energy differs by about 15% [Kadlecek01]. Thus,

our calculated value of 3κchem, in triplet molecules has an error of at least about 15%

and probably more.

Note the chemical equilibrium coefficients calculated here are a bit off compared

to Kadlecek’s [Kadlecek00][Kadlecek01] calculation using conventional numerical iter-

ations to find the eigenstates and energies. For example, at 500K Kadlecek calculated

the chemical equilibrium coefficient for Cs to be 574 A3, as compared to 515 A3 in this

thesis. The source of this discrepancy has not been found.

From the chemical equilibrium, we can deduce the triplet dimers density. Figure

2.11 shows the fraction of Cs atoms in triplet dimers.

2.4.2 Spin-Axis Interaction

The Hamiltonian for a homonuclear triplet dimers is [Appelt98] [Erickson00]

H =
A

2
S · I− gsµBBSz +

2λ

3
S·(3ξ̂ξ̂ − 1)·S+ γN · S (2.9)

Here A is the atomic magnetic-dipole hyperfine coupling coefficient, I = I1 + I2 is the

sum of the nuclear spin for the two atoms, S = S1 + S2 is the total electron spin of

the colliding pair, and ξ̂ is the unit vector between the two atoms. N is the molecular

angular momentum of the dimer. The first term in the Hamiltonian is the magnetic

dipole hyperfine interaction between the nuclear and the electron. The second term is

the interaction between the electron spin and the external magnetic field. The third

term is the spin-axis interaction [Mies96]. The last term is the spin-rotation coupling

between the electron spin and the molecular angular momentum N .
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The spin-axis interaction term in the above Hamiltonian looks pretty obscure. To

show it more clearly we need to write it in terms of the interaction between the total

spin, S, and the molecular rotation, N. First we write the unit vector ξ̂ in terms of its

rectangular coordinate,

ξ̂ = cos θ cosωtx̂+ sinωtŷ − sin θ cosωtẑ, (2.10)

where θ is the angle between the rotational angular momentum and the quantization

axis ẑ, and ω is the angular velocity of the molecule. The spin-axis term from equation

2.9 can be written as

2λ

3
(3(S · ξ̂)2 − S2). (2.11)

Since the second term does not couple to anything, we do not need to worry about it.

Expanding the first term as

(S·ξ̂)2 = S2
xξ̂

2
x + 2ξ̂xξ̂ySxSy + 2ξ̂z ξ̂xSzSx + 2ξ̂z ξ̂ySzSy + ξ̂2z + ξ̂2y (2.12)

Substituting the unit vector from equation 2.10 and averaging over time the result

equation is

(S · ξ)2 = 1

2
cos2 θS2

x +
1

2
S2
y +

1

2
sin2 θS2

z −
1

4
sin2 θ(SxSy + SySx). (2.13)

From this last equation, it can be shown easily that

S2

2
− 1
2
(S·n̂)2 = (S·ξ̂)2, (2.14)

where n̂ is the unit vector pointing along the rotational angular momentum of the pairs.

Thus, the full Hamiltonian becomes

H =
A

2
S · I− gsµBBSz −

λ

3
S·
(

3n̂n̂− 1
)

·S+ γN · S (2.15)
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2.4.3 Spin-Relaxation Due to Spin-Axis Interaction

The relaxation rate caused by the spin-axis interaction can be derived from a density

matrix model [Happer72][Erickson00]. Let us define the triplet dimer total spin angular

momentum as

Gz = Sz + I1z + I2z, (2.16)

where I1,2z are the projections of the nuclear spin of the two alkali atoms along the quan-

tization axis, and Sz = S1z+S2z is the total electron spin projection. Assuming that the

Cs atoms are in spin-temperature equilibrium, the initial density matrix of the triplet

dimers is a Boltzmann distribution and will be very nearly [Anderson59][Happer72]

ρ(t = 0) =
eβGz

Z(β,G)
=

eβGz

Z(β, I1)Z(β, I2)Z(β, S)
, (2.17)

where β is the spin-temperature parameter, and related to the polarization, P , as

[Happer72]

β = 2 tanh−1 P. (2.18)

Z is a partition function and for an arbitrary spin K it is equal to [Happer72]

Z(β,K) =
sinh

[

β(K + 1/2)
]

sinh(β/2)
. (2.19)

When the polarization is low, or β ¿ 1, the partition function is roughly

Z(β,K) ' (2K + 1). (2.20)

Thus, in the low polarization limit, which is the case for our experiment, the initial

density matrix of equation 2.17 becomes

ρ(t = 0) ≡ ρ0 '
(1 + βGz)

3(2Im + 1)2
, (2.21)

where S = 1 is assumed, and Im is the monomer alkali nuclear spin .
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The total average spin stored in the triplet dimer at the instant of formation can

be defined as

〈Gz0〉 = 〈I1z〉+ 〈I2z〉+ 〈Sz〉, (2.22)

where [Happer72]

〈Iz〉 = (Im + 1/2) coth
[

β(Im + 1/2)
]

− 1/2 coth(β/2) (2.23)

〈Sz〉 = 1/2 tanh(β/2) (2.24)

In the low polarization limit the above equations reduce to

〈Iz〉 ' βIm(Im + 1)/3 (2.25)

〈Sz〉 ' βS(S + 1)/3 (2.26)

Substituting the last two equations into (〈Gz0〉) of equation 2.22 we get the average

total spin at the instant of formation to be

〈Gz0〉 = 2(I2m + Im + 1)β/3 (2.27)

We are interested in calculating the relaxation rate coefficient, thus we need to

calculate the mean change, 〈∆Gz〉, in the total triplet dimer spin due the Hamiltonian

in equation 2.9. According to the density matrix theory this is just

〈∆Gz〉 = Tr
[

Gz∆ρ
]

, (2.28)

where ∆ρ is the mean change in the density matrix after it evolves by the Hamiltonian

and given as

∆ρ = ρt − ρ0 = Uρ0U
−1 − ρ0. (2.29)

U is the time evolution operator and equal to

U = eiHt/h̄ =
∑

i

|i〉〈i|e−iEit/h̄, (2.30)
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where |i〉 are the eigen-states that diagonalize the Hamiltonian H

H|i〉 = Ei|i〉 (2.31)

The coherent evolution of the triplet dimers is, of course, interrupted by collisions.

If we assume that each collision dissociates the molecule, which is most likely true since

the well depth is on the order of kT , then the triplet dimers’ lifetime is the same as the

period between collisions. The coherent evolution is expected to be Poisson distributed

as

P (t) =
e−t/τ

τ
. (2.32)

Thus, we also need to average equation 2.29 over the collisional lifetime of the molecules.

Therefore, the change in total spin is

〈∆Gz〉 =
∫ ∞

0

dt

τ
e−t/τTr

[

Gz

[

Uρ0U
−1 − ρ0

]]

. (2.33)

Substituting for ρ0 and U in the above equation we get

〈Gz〉 =
∫ ∞

0

dt

τ3(2Im + 1)2
e−t/τTr

[

Gz([
∑

ij

(|i〉〈i|eiωijt(1 + βGz)|j〉〈j|)]− (1 + βGz))

]

=
∑

ij

−βω2
ijτ

2〈j|Gz|i〉〈i|Gz|j〉
(1 + ω2

ijτ
2)3(2Im + 1)2

(2.34)

Here ωij = (Ei − Ej)/h̄ are the Bohr frequencies.

The spin destruction probability is then [Erickson00]

W = −〈∆Gz〉
〈Gz0〉

= 2
∑

ij

ω2
ijτ

2〈j|Gz|i〉〈i|Gz|j〉
(1 + ω2

ijτ
2)(2Im + 1)2[(2Im + 1)2 + 3]

= 2
∑

ij

ω2
ijτ

2|〈i|Gz|j〉|2
(1 + ω2

ijτ
2)(2Im + 1)2[(2Im + 1)2 + 3]

(2.35)

The spin destruction probability has to be averaged all over directions of n̂

WT =
1

4π

∫ π

0
sin θdθ

∫ 2π

0
dφW

=
1

2

∫ π

0
sin θdθW (2.36)
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In the typical pumping cell, almost all the spin is carried by the Cs monomer. Using

equations 2.25 and 2.26, the monomer spin density per unit volume can be shown to

be [Erickson00]

[Cs]β(4I2m + 4m + 3)

12
. (2.37)

The spin loss rate per unit volume from triplet dimers is [Erickson00]

[3Cs2]〈∆Gz〉
τ

, (2.38)

from which we can get the relaxation rate due to triplet dimers as

Γ3 = 2

[

(2Im + 1)
2 + 3

(2Im + 1)2 + 2

]

W (3κchem)

τ

= η
W

TF
, (2.39)

where TF = 2(
3κchem)/τ is the formation rate, η is equal to 1.015 for Cs.

2.4.4 Average Spin-destruction During a Triplet Dimer Life-

time

So far we have assumed that each collision breaks up the molecule. In the case

that collisional reorientation does not lead to breakup of the molecule, the average

spin-destruction probability will change and can be derived as follows [Kadlecek00]

[Kadlecek01].

If an atom undergoes N coherence before exiting the molecule, then the fractional

polarization remaining is
[

1− (1−W )N
]

. (2.40)

Thus, if P(N) is the probability of getting N coherences, then the average fractional

polarization loss is

W̄ =
∞
∑

N=1

P (N)
[

1− (1−W )N
]

= 1−
∞
∑

N=1

P (N)(1−W )N . (2.41)
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It can be shown that [Kadlecek00] [Kadlecek01]

P (N) =
τN−1b τJ
(τb + τJ)N

, (2.42)

where τb is the molecular breakup lifetime and τj is the time at which a triplet dimer

is subject to decoherence from collisions with a buffer gas without breakup. Therefore,

W̄ = 1− τJ
τb

∞
∑

N=1

[

τb(1−W )N
τb + τJ

]N

=
(1 + 〈N〉)W
1 + 〈N〉W , (2.43)

〈N〉 = τb/τJ is the average number of reorientation before dissociation and τb =
1

〈σbv〉[N2]
,

τj =
1

〈σjv〉[N2]
[Kadlecek00][Kadlecek01].

2.5 Data and Discussion

The experimental Cs spin-relaxation magnetic decoupling curves are fitted to the form

Γ = Γb + Γ3 = Γb + η
W (λ/A,Aτb/h̄, h̄Ω/A)

TF
,

where Γb is the background spin-relaxation. Here Γb is independent of the magnetic

field. They are known to come from Cs-N2 collisions, Cs-Cs binary collisions, diffusion

and possibly singlet molecules. Γ3 is the triplet spin-relaxation rate and is given in

equation 2.39. h̄Ω = 2µBB is the Zeeman interaction.

Therefore, the fit parameters are Γb, 1/TF , λ/A, and, in the case of collisional

reorientations without breakup, N. Our 84torr data is first fitted by allowing all the

free parameters to vary. In subsequent fits to the rest of the data, λ and N are held

fixed. Also, since the coherence time τc should be inversely proportional to the gas

pressure, all the coherence times as a function of pressure are scaled to the 84 torr fit

τc. Thus, in all subsequent fits only Γb and 1/TF are allowed to vary.

Graph 2.12 shows the data and the fit at N2 buffer gas of 84 torr. There should be

seven resonances spin-relaxation due to anti-crossing of the Hamiltonian as predicted
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Figure 2.12: Graph showing relaxation (1/s) as a function of magnetic field (gauss) at

N2 buffer gas pressure of 84 torr. The fit parameters are listed top to bottom, λ/A, the

formation rate (1/TF ) in unit of (1/s), Aτ/h̄, and the background rate Γb in unit of

(1/s), and the average number of reorientations before breakup N . Notice the ”bump”

around 2000 gauss, where the 7 resonances are supposed to be.
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by the spin-axis interaction at the magnetic fields [Erickson00]

BI =
A(2I + 1)

4gsµB

= (616, 1026, 1436, 1847, 2257, 2668, 3078) Gauss. (2.44)

Notice the ”bump” around 2000 gauss, where the 7 resonances predicted by the spin-

axis interaction are supposed to be. Graphs 2.13 through 2.16 show the data and the

fit up to N2 buffer gas of 690 torr. The data fits very nicely up to 390 torr. At 690 torr

it does not fit that well anymore.

Here is the summary of the fit parameters. Using the negative value of λ and allow-

ing for collisional reorientation without breakup, the fit parameter gives Aτc/h̄ = 16.046

in the 84 torr of N2 data. Hence, the deduced coherence time can be parametrized to

the 84 torr of N2 as

τc = (
84 torr

P
)11.20× 10−10 s, (2.45)

where A/h̄ = 2.28 GHz and P is the buffer gas pressure in the unit of torr. The density

of 84 torr of N2 buffer gas at the cell temperature of 450K is 1.8 × 1018 cm−3. The

relative velocity between the N2 and Cs atom is 6.14 × 104cm/s at this temperature.

This gives the cross section

σc =
1

〈vτc〉[N2]
= 80.8 A2. (2.46)

Since 1
τc
= 1

τb
+ 1

τj
and σc = σb + σj, using the fit parameter for N = 0.995531 gives

σb = 40.5 A3 (2.47)

σj = 40.3 A3 (2.48)

The deduced formation rate in 84 torr is 4.1723/(sec torr). Also from the fit, the value

for λ is

λ = −2.13 GHz. (2.49)
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Using these values we can find the chemical coefficient (3κchem)

3κchem =
τc(1 +N)

2TF [Cs]

= 584 A3, (2.50)

where [Cs] = 6× 1014 cm−3.

These fit parameters are reasonable. The fit value of N ≈ 1 implies that the

breakup cross section is about same as the reorientation cross section. Even though

the well depth is about KT , this does not seem to be outrageous. Also the calculated

3κchem from Krauss and Stevens ab initio potential curve, which are believed to be

very reliable, at 450K using Fourier Grid is 613 A3 or about 5% different from the fit

parameter. This is very favorable since at best our calculated chemical coefficient error

is at least 15%.

Using the opposite sign of λ the fit parameters are

λ = 2.71 GHz, (2.51)

σc = 93 A3, (2.52)

σ = 55 A3, (2.53)

3κchem = 431 A3. (2.54)

Using the negative value λ allowing no collisional reorientation, the data are well

fitted by

λ = −2.9 GHz, (2.55)

σ = 98 A3, (2.56)

3κchem = 350 A3. (2.57)

Assuming the opposite sign o f λ we get

λ = 3.4 GHz, (2.58)
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σ = 82 A3, (2.59)

3κchem = 307 A3. (2.60)

At buffer gas pressures of an amagat or more, spin-relaxation rate decoupling curves

are independent of the buffer gas pressures. As expected, the fit gets worse as a function

of increasing buffer gas pressure. It is a mystery at this time. If all the alkali-alkali spin-

relaxation comes from triplet molecules or molecules in general, the spin-relaxation rate

contribution from the molecules should vanish as the buffer gas pressure is increased

since the formation of the molecules has TF ∝ 1/[B] dependent.

Unlike the Princeton data in Rb, our Cs data, unfortunately, do not show the

distinct seven resonances spin-relaxation due to anti-crossing of the Hamiltonian as

predicted by the spin-axis interaction. This is most likely due to the closeness of the

seven peaks to each other. We wanted to emphasize that single values of λ and σc

accurately describe all the magnetic decoupling spin-relaxation curves from 10 torr to

690 torr of N2 buffer gas.

2.6 Cesium Spin-Relaxation with Buffer Gas

At buffer gas pressure of an amagat or more, a small fraction of Cs spin-relaxation

comes from collisions with buffer gas. Although the interaction time is very short,

there is a small probability that the Cs atoms loose some of their spin during collisions

with the buffer gas. The relaxation rate depends only on the buffer gas density. The

relaxation rate can be written as

ΓB = [B]〈σv〉, (2.61)

where [B] is the buffer gas density and 〈σv〉 is the velocity average spin-destruction

cross section between the alkali-atom and the buffer gas. The microscopic mechanism
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Figure 2.13: Graphs showing relaxation (1/s) as a function of magnetic field (gauss)

at N2 buffer gas pressures 10 torr and 39 torr.
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Figure 2.14: Graphs showing relaxation (1/s) as a function of magnetic field (gauss)

at N2 buffer gas pressures 65 torr and 84 torr.
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Figure 2.15: Graphs showing relaxation (1/s) as a function of magnetic field (gauss)

at N2 buffer gas pressures 122 torr and 212 torr.
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Figure 2.16: Graphs showing relaxation (1/s) as a function of magnetic field (gauss)

at N2 buffer gas pressures 397 torr and 690 torr.
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behind this spin-relaxation most likely arises from the spin-rotation interaction in the

alkali-metal-buffer gas pairs [Walker89].

From figure 2.17 the fitted-spin-relaxation due to Nitrogen buffer gas is

0.058± 0.0026/(torr s), (2.62)

where the Cs density is (5.6e14 cm−3) or the temperature of about 444K. The relative

velocity of the of the nitrogen buffer gas and cesium atom at this temperature is about

(1.1e5cm/s). Thus, the collisonal cross section is

σN2−Cs =
0.058× 760× 22

(1.1× 105)(2.69× 1019)(273/444) cm
2

= 38.6× 10−22 cm2, (2.63)

where the number 22 in the first equation is the slowing down factor of Cesium atoms

[Happer72] [Appelt98]. Also from the figure, the spin-relaxation due to the Helium

buffer gas is

0.0146± 0.0011/(torr s) (2.64)

At this temperature the relative velocity of the Helium atom is about (2.7e5 cm/s).

Thus, the spin-destruction cross section between Helium and Cesium atoms is about

σHe−Cs = 6.3× 10−22cm2. (2.65)

This cross section is about a factor of ten bigger compared to the calculated value

of (0.6 × 10−22cm−3) [Walker89]. This is expected since the measured spin-relaxation

cross section for other alkali-4He buffer gas is also about a factor of ten bigger than the

calculated value. This is most likely due to the uncertainty in potentials used in the

calculations.
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2.7 Summary

The Cs-Cs experiment described here, along with the Rb-Rb experiment at Princeton

University show [Erickson00] that at pressures less than one amagat of buffer gas, the

main spin-relaxation in alkali-alkali-metal comes from the spin-axis interaction in triplet

dimer molecules. The key observation is the magnetic-resonances in spin-relaxation as

predicted by the spin-axis interaction. We wanted to emphasize that single values of

λ and σc accurately describe all the magnetic decoupling spin-relaxation curves from

10 torr to 690 torr of N2 buffer gas. At buffer gas pressures of an amagat or more we

still do not understand alkali-alkali spin-relaxation. The relaxation rate up to about

20 amagat of buffer gas still shows the same decoupling curve with the same magnetic

field decoupling width.



45

Chapter 3

129Xe-Xe Molecular Spin-Relaxation

3.1 Introduction

It is generally agreed that the interaction that produces spin-relaxation in both gaseous

and liquid 129Xe is the nuclear spin-rotation interaction [Happer84] [Hunt63] [Fitzgerald99]

[Torrey63]

Vsr = cK(R)K ·N, (3.1)

where K is the nuclear spin of the 129Xe atom and N is the rotational angular mo-

mentum of the 129Xe-Xe pair. The interaction is due to the coupling between the

atom’s nuclear magnetic moment and the magnetic field arising from the rotation of

the 129Xe-Xe pair. The spin-rotation interaction is also believed to be responsible for

the spin-relaxation of solid 129Xe at temperature 50 ≤ T ≤ 120K, where it gives rise

to Raman scattering of phonons [Fitzgerald99]. Furthermore, it is also responsible for

the chemical shift in both solid [Raftery92] and gaseous 129Xe [Jameson73].

There have been measurements of the gaseous 129Xe-Xe spin-relaxation cross section

over the years and they all seem to agree fairly well [Moudrakovski01] [Brinkmann62]
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[Hunt63]. However, these measurements were done at high gas pressures, where the

primary spin-relaxation occurs through the binary collisions between 129Xe-Xe. On

the other hand, most practical applications require moderate or low gas pressures (less

than 14 amagats) where van der Waals molecules can exist.

In this part of the thesis, we identified and observed a new gas phase spin-relaxation

mechanism that occurs in bound 129Xe-Xe van de Waals molecules. The interaction

responsible is the same nuclear spin-rotation interaction. For a fixed gas composition,

the spin-relaxation rate turns out to be independent of gas density. Hence, it is diffi-

cult to differentiate the relaxation rate due to the van der Waals molecules from the

relaxation rate due to the wall. To observe the 129Xe-Xe van der Waals molecules’

spin-relaxation we measured the spin-relaxation rate as a function of gas composition.

Since the wall spin-relaxation does not depend on gas composition and density, we were

able to isolate this new gas phase 129Xe nuclear spin-relaxation.

We measured the relaxation rate due to 129Xe-Xe van der Waals molecules to be

(6.7 × 10−5s−1) or 4.1 hours for pure 129Xe gas. At one amagat of 129Xe the spin-

relaxation due to binary collisions is 56 hours. Thus, the relaxation rate due to van

der Waals molecules is more than an order of magnitude faster than the well-known

spin-relaxation rate due to the binary collisions. This has very important implications

for magnetic resonance imaging of human organs, where one would like to be able to

store the polarized 129Xe as long as possible before administering it to patients.

In section 3.2 I present the 129Xe-Xe potential that we used to calculate the chemical

equilibrium coefficient for the 129Xe-Xe van der Waals molecules. Following this, the

theory behind 129Xe-Xe van der Waals spin-relaxation due to spin-rotation coupling is

given in section 3.3. Section 3.4 is a description of the experimental procedure. Finally,

I present the data and discussion in section 3.5.
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3.2 129Xe-Xe Potential

The Hamiltonian describing the evolution of a 129Xe nucleus in a 129Xe-Xe pair is

[Torrey63]

H = V (R) + h̄K ·Ω+ cK(R)K ·N, (3.2)

where the first term is the spin-independent 129Xe-Xe interaction potential. The second

term is the Zeeman coupling between the nucleus and the external magnetic field

B = KΩ/µK , where µK is the nuclear magnetic moment. K is the nuclear spin which

is equal 1/2. The last term in the Hamiltonian is the spin-rotation coupling between

the nuclear spin and the rotational angular momentum, N, of the pair. cK(R) is the

spin-rotational coupling energy.

The spin-independent 129Xe-Xe interaction potential is taken from Dham et al.

[Dham90]. It is plotted in figure 3.1. The potential V (R) has a depth of 24.4 meV at

Ro = 4.36A. The explicit expression for the potential is

V (R) = Aexp(−αR + βR2)− (C6R
−6 + C8R

−8 + C10R
−10)F (R); (3.3)

where

F (R) = exp
[

−(DRmR
−1 − 1)2

]

, R < DRm; (3.4)

= 1, R ≥ DRm. (3.5)

The parameters are:

Rm(a0) = 8.249788, (3.6)

C6(hartree a
6
0) = 283.900, (3.7)

C8(hartree a
8
0) = 11214.00, (3.8)

C10(hartree a
10
0 ) = 619600.0, (3.9)
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α(a−10 ) = 0.912700, (3.10)

β(a−20 ) = −0.049061, (3.11)

A(hartree) = 48.72733, (3.12)

D = 1.114. (3.13)

To make any reasonable spin-relaxation rate calculation we need to know the frac-

tion of 129Xe atoms that are in the molecules. The procedure is the same as in cal-

culating triplet molecules in Cesium vapor. The relative motion of the pair of 129Xe

atoms is reduced to the motion of the relative particle of reduced mass [Bouchiat69]

µ =
m1m2

(m1 +m2)
(3.14)

in the effective potential

Ueff = V (R) +
N(N + 1)h̄2

2µR2
, (3.15)

where h̄N is the rotational angular momentum of the pair. We used the Fourier

grid method (Appendix A) [Marston89] [Balint-Kurti92] [Borisov01] to find all the ro-

vibrational wave functions |i〉 and energies Ei. Figure 3.2 shows all the eigen-energies

plotted as a function of rotational angular momentum, N . From the eigen-energies we

calculated the chemical equilibrium coefficient defined as [Kadlecek01]

κchem =
1

2

(

h2

2πµkT

)3/2
∑

i

(2Ni + 1)e
−Ei/kT . (3.16)

The resulting chemical equilibrium coefficient, κchem, at temperature of 297 K is

κchem = 230 A
3 (3.17)

3.3 129Xe-Xe van der Waals Spin-Relaxation

Molecular spin-relaxations in van der Waals molecules were first discussed and derived

in detail by Bouchiat and coworkers [Bouchiat69] [Kadlecek01]. Therefore, the details
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Figure 3.1: Xenon-Xenon Hartree-Fock-dispersion potential from Dham et al. The

potential has a depth of 24.4 meV at Ro = 4.36A
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Figure 3.2: All eigen-energies as a function of rotational angular momentum.
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of the derivation will be left out in this thesis and only the results will be summarized

here.

The spin-relaxation rate due to the 129Xe-Xe van der Waals molecules is the rate,

1/TF , at which the
129Xe atoms are formed into molecules times the fraction,W (τB), of

polarization lost during its molecular lifetime, τB. Here we assumed that each collision

with a third body breaks the molecules apart. In other words, the coherence time of

the molecules is the same as the molecular lifetime. By detailed balance, the molecular

formation rate is [Happer84][Kadlecek01]

1

TF
=
2κchem[Xe]

τB
(3.18)

With these assumptions the 129Xe nuclear spin-relaxation rate due to the van der Waals

molecules is [Bouchiat69][Walker02][Kadlecek01]

ΓvdW =
W

TF
=

1

TF

2〈c2KN2〉τ 2B
3h̄2(1 + Ω2τ 2B)

=
4κchem[Xe]〈c2KN2〉τB
3h̄2(1 + Ω2τ 2B)

. (3.19)

In the typical spin-exchange optical pumping experiment the static applied magnetic

field is less than 100 gauss. Thus, the magnetic field dependent part of the relaxation

rate can be ignored and the resulting equation is

ΓvdW =
4κchem

3h̄2
[Xe]〈c2KN2〉τB. (3.20)

From the above equation, for a fixed pure 129Xe gas, ΓvdW is independent of Xenon

density since τB ∝ 1/[Xe]. In the general case of two gases (or more), the molecular

lifetime, τB, [Happer84] [Kadlecek00] [Kadlecek01] can parameterize it as

1

τB
= κB[B] + κXe[Xe], (3.21)
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where κB and κXe are the breakup rate coefficients due to buffer gas and
129Xe, respec-

tively. [B] is the buffer gas density. Substituting the above equation into ΓvdW

ΓvdW =
4κchem

3h̄2
〈c2KN2〉

κXe(1 + r[B]/[Xe])

=
ΓXe
vdW

(1 + r[B]/[Xe])
, (3.22)

where r = κB/κXe and

ΓXe
vdW =

4κchem〈c2KN2〉
3h̄2κXe

(3.23)

is the 129Xe-Xe molecular spin-relaxation rate in pure 129Xe gas.

The above equations tell us that for a fixed ratio of buffer gas to Xenon, the relax-

ation rate due to van der Waals molecules is inseparable from wall-relaxation. Also,

the above equations tell us explicitly how to measure the relaxation rate due to the van

der Waals molecules. By varying the ratio of buffer gas density to 129Xe gas density,

the relaxation due to van der Waals molecules can be varied in a way that is different

from the wall-relaxation.

3.4 Experimental Design

The measurement of the spin-relaxation rate of 129Xe as a function of gas composition

is as follows. A prototype commercial continuous flow 129Xe polarizer [Driehuys96]

from Nycomed Amersham is used. The spin-exchange optical pumping cell is pumped

by a 50 W fiber-coupled diode array bar. The continously-flowing polarized 129Xe is

frozen using liquid N2 at a glass cold-finger in a 2000 gauss magnetic field. After

collecting for about 10-20 minutes, corresponding to roughly about 100 cm3 of gaseous

polarized 129Xe, the cold-finger is thawed and the gaseous 129Xe is collected with a 7.5

cm diameter uncoated quartz cell. Typical 129Xe polarization ranges from 10-30%. It
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Figure 3.3: A sample exponential decay and the fit of Xe polarization as a function of

time. Here the gas composition is 0.19 amagat of Argon and 0.12 amagat of Xe.

is then mixed with the desired buffer gas (4He, Ar, N2). The
129Xe pressure is kept as

low as possible to avoid spin-relaxation due to binary collisions. Most of the time the

129Xe density is held at about 0.15 amagat. We use isotopically enriched 129Xe with

82% 129Xe composition to enhance the NMR signal.

After collecting the polarized gas, the cell is then placed on a low field magnetic

resonance detection coil. The holding field is 20.4 gauss. The 129Xe polarization as

a function of time is then detected by sending a series of small angle tip to a surface

mounted coil every 10 minutes. The free-induction decay (FID) signal is detected using

the same coil. The loss due to FID pulses is determined experimentally to be negligible.

The spin-relaxation rate is obtained by fitting the FID amplitudes as a function of time.

The exponential decay time constant gives the spin-relaxation rate. Figure 3.3 shows

a typical exponential decay of 129Xe polarization as a function of time. Also shown is

the exponential fit of the raw data.
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3.5 Data and Discussion

The total 129Xe relaxation rate in the cell comes from three parts: wall relaxation, bi-

nary collisions and 129Xe-Xe van der Waals molecules. The binary collisions contribute

[Moudrakovski01] [Brinkmann62] [Hunt63]

Γb = 5.0× 10−6s−1
[Xe]

1 amagat
(3.24)

to the relaxation rate. Since in our experiment the typical 129Xe density is about 0.1

-0.3 amagat we will ignore the binary contribution. Therefore, we fit our data to the

functional form

Γ = Γw +
ΓXe
vdW

(1 + r[B]/[Xe])
, (3.25)

where Γw is the wall relaxation rate. Figures (3.4, 3.5, 3.6) show the
129Xe relaxation

rates as a function of buffer gas to 129Xe density. Also shown is the fit of the data

to equation 3.25. The fit results for the three buffer gases are shown in Table I. The

results for r suggest that 4He has the smallest breakup rate coefficient. Ar is twice as

efficient as 4He. N2 has about the same breakup rate coefficient as
129Xe. Notice that

Γw is almost the same for all the buffer gases.

The mean weighted molecular spin-relaxation rate for pure 129Xe-Xe is

ΓXe
vdW = 6.72 ± 0.1× 10−5 s−1. (3.26)

This corresponds to a relaxation rate of 4.1 hours. This is very surprising. Compared

to the binary collision rate, it is more than an order of magnitude larger.

From ΓXe
vdW we can deduce the value of 129Xe breakup rate coefficient, κXe. First

we need to calculate 〈c2KN2〉 which is a weighted sum over all the eigen-states:

〈c2KN2〉 = 1

Z

∑

i

N2
i (2Ni + 1)〈i|cK(R)|i〉2e−Ei/kT , (3.27)
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Buffer gas ΓXe
vdW (10−5s−1) r Γw(10

−5s−1)

4He 8.23± 0.6 0.25± 0.8 9.05± 0.6

Ar 6.81± 0.2 0.49± 0.06 9.5± 0.2

N2 6.63± 0.1 1.05± 0.08 9.9± 0.1

Table 3.1: 129Xe-Xe molecular spin-relaxation rates ΓvdW and the relative breakup rate

coefficient r deduced from 129Xe spin-relaxation in quartz cell with wall-relaxation rate

Γw.

where Z is the partition function

Z =
∑

i

(2Ni + 1)e
−Ei/kT . (3.28)

cK(R) is related through the chemical shift as [Torrey63]

cK(R)

h
=

µK
KµB

3h̄

4πR2
σ1(R) = cK(R0)

(

R0

R

)8

, (3.29)

where µK is the magnetic moment, µB is the Bohr magneton and the chemical shift,

σ1(R), is assumed to be of the form [Jameson92]

σ1(R) = σ1(R0)
(

R0

R

)6

. (3.30)

The 129Xe-Xe chemical shift at room temperature is measured [Jameson75] to be σ1 =

−553 ppb/amagat. Knowing this and the potential, we can estimate σ1(R0) through

[Jameson92]

σ1(T ) =
∫

dR 4πR2σ1(R) e
−V (R)/kT = −553 ppb

amagat
. (3.31)

This is only true if

σ1(R0) = 2.3× 10−5. (3.32)
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Using this value of σ1(R0), we obtain

cK(R0) = −24Hz. (3.33)

This value is very comforting since cK(R0) was deduced by Fitzgerald et al. [Fitzgerald99]

in solid 129Xe experiment to be about -27 Hz. Putting all of these together and evalu-

ating the matrix element, we find

√

〈c2KN2〉 = h× 820Hz. (3.34)

Thus, using our measured value for ΓXe
vdW we deduce the breakup rate coefficient to be

κXe = 1.2× 10−10cm3/s. (3.35)

This corresponds to breakup cross section of

σXe = 4.4× 10−15cm2. (3.36)

We can also check the 129Xe relaxation rate by fixing the ratio of the buffer gas

density to 129Xe density fixed and varying the total pressure. Figure 3.7 shows the

relaxation rate with the ratio fixed at 1.75. The relaxation rate is independent of the

total gas pressures as expected. Furthermore, as a consistency check, we estimate cK(R)

by scaling it to the recently remeasured binary spin-relaxation rate [Moudrakovski01].

An energy dependent binary spin-relaxation cross section is defined as [Walker89]

σ(E) =
8πµ2

3h̄4

∫ ∞

0
b3 db

∣

∣

∣

∣

∣

∫ ∞

r0
dR

cK(R)
√

1− b2/R2 − V (R)/E

∣

∣

∣

∣

∣

2

, (3.37)

where r0 is the classical turning point or when [ (1 − b2/r20 − V (r0)/E = 0)] and b is

the impact parameter. By averaging over all velocities we get

σ(T ) =
1

(kT )2

∫ ∞

0
dE σ(E) E e−E/kT . (3.38)
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Figure 3.4: The relaxation rate of Xe as a function of the ratio of argon to xenon

pressure. Also shown is the fit from equation 3.25.
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Figure 3.5: The relaxation rate of Xe as a function of the ratio of Helium buffer gas to

Xe. Also shown is the fit from equation 3.25.
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Figure 3.6: The relaxation rate of Xe as a function of the ratio of Nitrogen buffer gas

to Xe pressure.
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The ratio was kept at 1.75
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At 25oC the measured binary spin-relaxation cross section is 5.9× 10−30cm2, which

implies that

| cK(R) |= h× 41Hz×
(

R0

R

)8

, (3.39)

which is a fair agreement with the estimate using the frequency shift.

In addition to 129Xe-Xe van der Waals molecules, there is also a possible relaxation

from Xe-Ar, Xe-N2 and Xe-He molecules which we have not taken into account. The

binding energy for Xe-Ar and Xe-N2 is about 16.2 meV [Aziz83] and 8.4 meV [Dios97],

respectively. This is smaller than the 129Xe-Xe binding energy but not negligible. The

spin-relaxation rate by these molecules will have the exact form as 129Xe-Xe,

Γ
′

vdW =
2κ

′

[B]〈c′2KN2〉τ ′

B

3h̄2(1 + Ω2τ
′

B)
(3.40)

From the frequency shift [Jameson92] and the potential curve we estimate

κ
′

= 185 A3 (3.41)
√

〈c′2KN2〉 = h× 765 Hz (3.42)

for the Xe-Ar pairs. Assuming that these molecules are more readily broken up implies

that

Γ
′

vdW (max) < 0.35 Γ
Xe
vdW . (3.43)

This seems, however, to be unlikely since the deduced Γw are the same for all the buffer

gases. Considering that the binding energy for Xe-He is only about 2.5 meV [Aziz89]

[Aziz90], the spin-relaxation rate due to van de Waals molecules in Xe-He would be

very small. Thus, it is unlikely that Xe-Ar and Xe-N2 van der Waals molecules play a

significant role in the spin-relaxation.
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Chapter 4

External-Cavity Diode-Laser-Array

Bar

4.1 Introduction

The steady state polarization of the noble gas is

P =
Rp

(Rp + Γ)

κ[Rb]

(κ[Rb] + Γw)
, (4.1)

where Rp is the alkali-metal pumping rate, Γ is the alkali-metal spin-relaxation rate,

κ is the alkali-metal-noble gas spin-exchange rate coefficient, and Γw is the noble gas

wall-relaxation rate. To achieve high noble gas polarization, as shown in equation 4.1,

it is crucial to have a high pumping rate so that Rp >> Γ. This means that the laser

plays a key role in maximizing P .

The lasers of choice for spin-exchange optical pumping are the diode array bars

(DAB) with power from 15 watts to hundreds of watts. These are relatively inexpensive

and easy to use compared to dye or Ti:Sapphire lasers. However, the DAB’s linewidths

are typically about 1000GHz and much bigger than the absorption linewidth of the Rb
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atoms (20 GHz/bar) [Romalis97]. Conventionally, high 3He or 4He pressure (3 to 10

bar) is used to broaden the Rb absorption linewidth, but such high a pressure is not

always desirable. For mechanical stability cells tend to be round with small diameters

and thus further complicates the pumping of Rb atoms. Many applications including

neutron spin filters require large cells with nice geometries.

The highest 3He polarization attained using diode array bar reported in the liter-

ature is about 55% [Rich02]. In 129Xe the typical observed polarization is about 10

to 15% [Driehuys96]. Thus, for example, the resolution of the magnetic resonance of

the lungs using 129Xe is still very much limited by this low 129Xe polarization. Experi-

ments which rely on high 3He polarization could also greatly benefit from higher than

55% 3He polarization. For example, one of the experiments at Los Alamos plans to

measure the weak nucleon-nucleon coupling constant, Hπ, by measuring the gamma

ray emission directional parity-violating asymmetry (Aγ) in the n+ p→d+ γ reaction.

Here 3He is used as a polarizer. The goal of the experiment is to measure Aγ with an

uncertainty of < 5 × 10−9. Assuming the current value of 55% obtained for the 3He

polarization, this requires 500 days of run time on the accelerator. A 3He polarization

of 74% reduces the run time to 290 days.

In this part of the thesis I present the external cavity diode array bar that was

invented by our group [Chann00]to improve on this state of affairs. We have obtained

a linewidth as low as 47 GHz with only a loss of about 33% in output power which gives

a much greater amount of light for the atoms to absorb. Therefore, pressure broadening

is not as necessary, so efficient optical pumping of Rb atoms can be performed at a

pressure of one bar or lower. In addition, it has the added benefit of allowing longer

lifetimes for the cells, since the dipole-dipole interactions place the fundamental limit in

bulk 3He relaxation at (807/P) hours, where P is the pressure of 3He in units of bars at

room temperature [Newbury93]. Since pressure broadening is not required cells can be
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made with large diameters which would meet the demands of experiments such as the

proposed n + p→d + γ at LANSCE. Furthermore, work described later in this thesis

suggests that the only way to achieve high 3He polarization is using a large volume

cell. This is due to an unknown mechanism that produces an excess of 3He relaxation

[Chann02a][Chann02b].

Section 4.2 describes in detail the external cavity diode array bar. Section 4.3

analyzes its performance.

4.2 External Cavity Diode Array Bar

A diode laser array bar (DLAB) consists of a large number of broad area lasers (BALS)

or emitters, typically anywhere from 10 to 49 emitters, in a length of 1 cm. The

dimension of each emitter is typically 1µm by 100µm with a separation of about 500µm.

Light emitted perpendicular to the array (fast axis) has a typical diffraction-limited

divergence of 40 degrees, while light emitted along the laser (slow axis) has a divergence

of 10 degrees. Frequency narrowing a DLAB is difficult because of the large number

of emitters and the large divergence of the emitted light. To make matters worse,

most DLABs are not straight. There is a small curvature, or better known as ”smile”,

usually about 3 µm to 10 µm. A picture of the ”smiles” is shown in figure 4.1.

In an external cavity low power single mode diode laser [Wieman91] [MacAdam92],

light in a Littrow-mounted cavity is collimated by a single fast aspheric lens and retro-

reflected off a grating. The first order retro-reflected light is used as feedback to set

the laser frequency and reduce its linewidth. The zeroth diffraction order is taken as

the laser output. This simple cavity does not work for DLAB due to its large number

of emitters and large divergence angles, but we found that a slightly more complex

version is effective.
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7µm

1µm

2µm

Figure 4.1: Picture showing the images of 3 different diode array bars. Notice the

”smile” or curvature of the laser. The left image is a picture of a 7 µm ”smile” 46-

element CEO laser. The middle is an image of a 1 µm ”smile” 46-element CEO laser.

The right is an image of a 19-element Coherent laser with a 2 µm ”smile”.

The cavity that we developed is shown in figure 4.2. We use a fast cylindrical

microlens to collimate the fast axis. This is followed by an afocal telescope which

images each emitter onto the Littrow-mounted grating. Typical magnification of the

telescope is about 4 to 5. The frequency-selected first order from the grating of each

emitter is reimaged back onto itself.

For light striking the grating with direction ẑ cosα cosφ+ ŷ sinα+ x̂ sinα sinφ with

respect to the optical axis, the grating equation for a Littrow-mounted cavity reduces

to [Chann00]

λ = 2d sin(θ − φ) cosα (4.2)
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Figure 4.2: Diagram showing selected rays of the external cavity diode array bar cavity.

The two vertical arrow-lines are the two spherical lenses of the telescope.

or

δλ/λ0 ≈ −α2/2− φ cot θ (4.3)

where λ0 = 2d sin θ. θ is the angle between the optical axis and the grating normal, α

is the divergence of the light along the slow-axis, and φ is the angle due to the smile.

δλ = λ− λ0 and the angles α and φ are assumed to be small. Thus, from equation 4.3

spreads in α and φ both result in broadening of the laser spectrum. Also, the linewidth

has a cot θ dependence. From figure 4.2, the telescope reduces the angular spread, α0,

from the laser by a factor inversely proportional to the magnification of the telescope

or α = α0/M , where M is the magnification of the telescope. Thus, from equation 4.3

this reduces the broadening of the laser spectrum due to the slow axis divergence by

the square of the magnification. The telescope also reduces the spread of the angle of

curvature by a factor φ = x/Mfc, where x is the curvature or ”smile” of the laser and

fc is the focal length of the micro-lens. The resulting linewidth due to the ”smile” is

dλ

λ
=
x cot θ

Mfc
. (4.4)
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So for the cavity to work best it is desirable to have a low ”smile” x, large diffraction

angle θ, large telescope magnification M , and long micro-lens focal length fc.

4.3 Results

We began by testing the narrowing of a 20W 801-nm laser that is 1 cm-long with 46-

emitters from Cutting Edge Electronics [CEO]. The measured unnarrowed linewidth

was 670Ghz. The array was preselected by the manufacturer to have a ”smile” of about

1µm, which we verified by direct measurement. We used a fc=0.73 mm cylindrical

micro lens, a telescope with a magnification of four, and a 2400 lines/mm holographic

grating. The output zeroth order beam was at about 72o. The measured output power

was 12.2W out of 18W total unnarrowed output power from the laser. We measured

the linewidth with a home-made parallel-plate Fabry-Perot to be about 60 GHz. With

some adjustments we have achieved a best linewidth of 47 GHz as is shown in figure

5.3. Thus a reduction of a factor of 15 in the linewidth was obtained with only 33% loss

in power. Figure 4.4 shows the tuning range and spectral power of the external cavity

diode array bar, which is suitable for spin-exchange optical pumping where precise

frequency is required. Using a similar laser from Coherent Inc. [Cohr] with a ”smile”

of about 2µm we obtained 14W of power out of 22W free-running. The spectral width

measured was about 125 GHz at 795 nm.

We now compare the performance between the narrowed light and the unnarrowed

light. Using a 14W narrowed Coherent external cavity diode array bar with about

125GHz linewidth, the measured Rb polarization is 100% at a Rb density as high as

3.5 × 1014 cm−3 in a cylindrical cell with diameter 4.7 cm and length 4.9 cm. The

3He polarization is as high as 73% in the same cell (the cold-lifetime of the cell is 240

hours). This is the highest reported 3He polarization using the diode array. A plot
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about 10 times greater than the free-running power density.
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Figure 4.4: Tuning range and spectral power density of the external cavity diode array

bar.

comparing the advantages of using the external cavity diode array for spin-exchange

optical pumping is shown in figure 4.5. The graph plots the 3He polarization using

a 14W Coherent external cavity diode array bar as compared to 42W of unnarrowed

light (22W from the Coherent diode array and 20W from the Spectra Physics diode

array). The spectral width of the unnarrowed diode array is about 1500 GHz for the

Spectra Physics diode array and about 750 GHz for the Coherent diode array.
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Figure 4.5: Graph showing the 3He polarization obtained using a 14W narrowed Co-

herent external cavity diode array bar as compared to 42W of unnarrowed light (22W

unnarrowed Coherent array and 20W Spectral Physics diode array bar) in NIST cell

”Betty” with a cold lifetime of 240 hours. Circles are for the unnarrowed light and

squares are the narrowed light. The spectral width of the unnarrowed diode array bar

is about 750 GHz for the Coherent diode array and 1500 GHz for the Spectra Physics

diode array.
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Chapter 5

Rb-3He Experimental Design

5.1 Introduction

The rest of this thesis describes extensive measurements on the Rb3He spin-exchange

rate coefficients. This chapter describes in detail the experimental methods and hard-

ware use to measure the Rb-3He spin-exchange rate coefficients. The rate coefficient

measurements require us to measure the absolute 3He polarization, 3He relaxation rate,

3He density Rb density, Rb polarization, Rb repolarization and Rb spin-relaxation.

Sections 5.2 to 5.4 describe the experimental hardware. In section 5.2 gives short

description of the forced-air oven used for optical pumping and section 5.3 gives a list of

all the Rb-3He spin-exchange cells that were used to measure the Rb-3He spin-exchange

rate coefficients. Finally, in section 5.4 all the magnetic field coils are listed.

Sections 5.5 to 5.9 describe the experimental theory and methods. Section 5.5 is a

description of the theory and experiment we used to determine the Rb polarization. It

is a variant of the rf-spectroscopic method recently introduced by Young and coworkers

[Young97] which is based on measuring the number of atoms in all the Zeeman sublevels.

Section 5.6 describes in detail the three methods we used to measure the Rb density. We
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used absorption spectroscopy, field-Faraday rotation, and polarization-Faraday rotation

[Kadlecek00]. The Rb spin-relaxation rate is measured with a weak probe beam at low

Rb polarization and is briefly described in section 5.7. Finally, in section 5.8 I describe

the experimental method we used to measure the Rb repolarization.

Section 5.10 describes the absorption spectroscopy method for measuring 3He den-

sity. The absolute 3He polarization is measured using the well-established method of

EPR resonance frequency shift of Rb atoms due to the polarized 3He atoms [Romalis98].

Furthermore, we introduced a new method which is based on the NMR frequency of

the 3He atoms. These two methods are described in detail in section 5.11. The 3He re-

laxation rate is measured by observing the free induction decay (FID) of the 3He NMR

signal using our custom-built low magnetic field NMR detection circuit [Abragam61].

This is described in detail in section 5.9.

The basic experimental set up to measure most of these parameters is shown in

figure 5.1. Not included in the figure is the NMR pick up and sensing coil.

5.2 Forced-Air Oven

Our oven is made mostly from half-inch Teflon sheets with two glass windows in the

front and back for optical access. It is assembled mostly from brass, aluminum and a

few stainless steel screws. The front and back windows are 7”×7” square Pyrex with

3/8” thickness. The bottom of the oven is attached to a hot air duct provided by two

heaters (Omega part-AHP5051). The air is delivered by 1/4” diameter copper tubing.

We use an infrared sensor that is mounted 10 cm above the oven to monitor the

temperature. We avoid any detector that has to be attached directly next to the

cell, since it might contaminated our NMR signal. The top of the oven has a 1”

slot where a salt-glass window is inserted for best infrared transmission. On the cell
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Figure 5.1: Experimental layout for measurements of Rb polarization, Rb re-

polarization (field and polarization rotation), Rb spin-relaxation, and 3He polarization.

The transverse field correction coils are used to cancel the Earth’s magnetic field. The

magnetometer is used to stabilize the static holding field. Not shown in the figure is

the 3He NMR coil.
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itself is a piece of high-heat black tape for the emission of the infrared signal. The

infrared sensor is connected to a PID temperature controller (Omega-CN77000), which

in turn provides 110 Volts to the process air heater as needed through a solid-state relay

(Omega-SSR240DC25). The infrared sensor is calibrated with the standard RTD. The

temperature controller stabilizes the oven to within a degree Celsius.

The oven is mounted on an XY-translation stage which in turn is mounted on an

optical lab jack. This allows us to adjust the position of the cell for minimum magnetic

field gradient.

5.3 Cells

We are very fortunate to have several beautiful cells on loan from Tom Gentile at NIST-

Gaithersburg, two cells from New Hampshire, one from Amersham Health, one from

Michigan, and one cell from Utah. Their life times range from 8.12 hours to 436 hours.

All the cells and their parameters are listed in table 5.1. A picture of some of the cells

is shown in figure 5.2. ”Betty”, ”MichCell” and ”Boris” are cylindrical cells with very

well-defined geometries. They are made with a stock Corning 1720 body with GE180

windows. ”BamBam” is also a cylindrical cell with the same stock Corning body but

with 10B-depleted Corning 1720 windows. ”Barney” and ”Natasha” are reblown GE180

cells. ”Miti”, ”Saam”, ”Rb-K1”, Bonnie, and ”Rb-K2” are spherical GE180 cells.

5.4 Field Coils

Our spin-exchange optical pumping experiment is done at a low magnetic field. The

holding field is about 9 gauss. For a shorter period of time the field can be turned

up to 60 gauss. Other magnetic field coils are listed in table 5.2. These coils are:
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Cell Name [3He]1 [3He]2 [3He]3 Place Lifetime Geometry S/V

(amg) (amg) (amg) (hrs) (cm) (1/cm)

Betty 0.7443 0.7865 0.800 NIST 240 D=4.5 L=4.9 1.297

BamBam 0.839 0.7686 0.7542 NIST 119 D=9.6,L=4.7 0.842

Natasha 0.6 0.7684 NIST 436 D=5,L=5 1.2

Saam 2.5 Utah 115 D=3.25 2.7

Miti 2.725 N.C 182 D=7.1 0.845

MichCell 0.65 0.6656 Mich. 8.12 D=4.3, L=4.5 1.375

Barney 0.983 1.07 NIST 391 D=8, L=4 1

Boris 0.7732 0.7686 NIST 70 D=4.5,L=4.9 1.297

Bonnie 3.165 NIST 110 D=2.8 2.15

TimeBomb 2.713 NIST 6.8 D=4.0, L=1.4 2.3

SunShine NIST 550 D=11.43 0.525

Rb-K1 3.27 N.H. 90 D=3.5 1.714

Rb-K3 3.3 N.H. D=3.5 1.714

Table 5.1: Rb-3He cells that were used in our experiment. ”Betty”, ”MichCell” and

”Boris” are cylindrical cells with a stock Corning 1720 body with GE180 windows.

”BamBam” is also a cylindrical cell with the same stock Corning body but with 10B-

depleted Corning 1720 windows (for neutron beam). ”Barney” and ”Natasha” are

reblown GE180 cells. ”Miti”, ”Saam”, ”Bonnie”, ”SunShine”, ”Rb-K1”, and ”Rb-K2”

are spherical GE180 cells. [3He]1 density is measured using absorption spectroscopy.

[3He]2 is the density measured at the time of filling. [3He]3 is the density measured

using neutron beam spectroscopy. The density is in units of amagat. The lifetime is in

hours and the length is in units of cm. All NIST cells are filled to 50 torr of N2. The

”Miti” cell has (3/4)% of N2. S/V are the ”actual” surface-to-volume ratio to account

for some cells that have non-negligible stems.
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Figure 5.2: Picture showing some of the Rb-3He cells used to measure spin-exchange

rate coefficients.

the adiabatic fast passage coil (AFP) used to measure the Helium polarization, the

electron paramagnetic resonance (EPR) coil use to generate RF signal to measure the

rubidium polarization, and transverse coil use to cancel the Earth’s magnetic field and

for studying skew light propagation (Appendix C). Also, we use a 2-turn correction

coil to stabilize the magnetic field with the magnetometer. We use a single coil of 300

turns to detect the 3He NMR signal . It is wound from 34 gauge magnet wire around

a 9mm Teflon form. It serves as both the pulse and sensing coil. The coil is placed in

a Teflon form with the appropriate cell sitting on top.

5.5 Rb Polarimetry

5.5.1 Introduction

Recently, Happer and coworkers [Young97] introduced a method to measure the abso-

lute Rb polarization in an optically pumped cell. They used a weak circularly polarized

probe beam perpendicular to the alkali polarization direction. Application of a trans-

verse rf field at the Rb resonance frequency caused a polarization-dependent transmis-

sion modulated at the rf frequency. By scanning the rf frequency across all the Rb

Zeeman sublevels, the relative populations of the levels can be obtained. The absolute

Rb polarization is the appropriate ratio of these integrated areas of the sublevels. Here
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Coil Diameter(cm) Wire gauge Number turns B-field Power source

NMR coil 7 300 34 <<1 LabView

Holding field 100 14 135 30 Sorensen DHP

Holding field 58.5 14 54 30 HP 6574A

AFP 22 14 20 1 SRS DS345

EPR 9 14 7 1 SRS DS345

Tranverse 43 14 20 1 HP 6574A

Correction 100 14 2 0.5 HP 6574A

Table 5.2: Field coils used in our experiment. Diameter is in units of cm and the

magnetic field is in units of gauss.

we introduce a variation of this method. It is based on polarization-Faraday rotation

[Kadlecek00] [Wu86][Vliegen01]. Instead of sending the probe beam perpendicular to

the pumped cell, we send a linearly polarized weak probe beam along the alkali-metal

polarization axis. Since the alkali-atoms are polarized, when rf frequency is applied

at the Rb resonance this causes the probe beam to rotate due to polarization-Faraday

rotation. This rotation angle is proportional to the Rb density. By scanning the rf

frequency across all the Zeeman sublevels of the Rb atoms we can get the relative

populations of all the sublevels.

5.5.2 Theory

The Hamiltonian for an alkali-metal atom sitting in a transverse sinusoidal magnetic

field with amplitude Bx is

H =
∑

m

Em|m〉〈m|+ gsµBSxBx cosωt

(5.1)
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If we assume well-resolved resonances, the equation of motion for the coherence between

state |m〉 and state |m− 1〉, ρm,m−1, is

idρm,m−1
dt

= (Em − Em−1 − ω)ρm,m−1 − iγρm,m−1 + Vm,m−1(ρm−1 − ρm), (5.2)

where ρm and ρm−1 is the probability to be in state |m〉 and |m − 1〉 with energy Em

and Em−1, respectively. γ is the decay rate. If we assume that the coherence can be

written as ρm,m−1 = σ exp−iωt, then the above equation can be written as

idσ/dt = (Em − Em−1 − ω)σ − iρσ/2 + 〈m|V |m− 1〉(ρm−1 − ρm)/2 (5.3)

where V = gsµBSxBx. In steady state, equation 5.3 becomes

σ =
〈m|V|m− 1〉
2(∆ + iγ/2)

(ρm−1 − ρm), (5.4)

where −∆ = (Em − Em−1 − ω). The equations of motion that govern the behavior of

the density of the sublevels |m〉 and |m− 1〉 can be shown to be

idρm/dt = 〈m|V |m− 1〉σ∗/2− 〈m− 1|V |m〉σ/2 (5.5)

idρm−1/dt = 〈m− 1|V |m〉σ/2− 〈m|V |m− 1〉σ∗/2 (5.6)

From the last three equations it can be shown that, assuming a single resonance is

being driven by the RF field,

dFz/dt =
|〈m|V|m− 1〉|2γ(ρm−1 − ρm)

∆2 + γ2/4
(5.7)

= (
γ

∆2 + γ2/4
)(gsµBBx/(2I + 1))

2(F (F + 1)−m(m− 1))(ρm−1 − ρm)/4

where dFz/dt = d(ρm − ρm−1)/dt. Thus, the signal observed will be proportional to

(F (F + 1)−m(m− 1))(ρm − ρm−1).

From the last equation and assuming a ”spin-temperature” distribution equilibrium

[Anderson59], the ratio of area under two successive peaks is

F(F + 1)−m(m− 1)
F(F + 1)− (m− 1)(m− 2)e

β (5.8)
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For 85Rb atoms in hyperfine level F = 3, the ratio of the two areas is (F=3, mF = 3→

F = 3,mF = 2 and F = 3,mF = 2→ F = 3,mF = 1 resonances)

A = (3/5)eβ. (5.9)

Also, the equation for the electron spin polarization in terms of spin-temperature pa-

rameter β is [Happer72] [Walker97]

P = 2〈Sz〉 = tanh(β/2) =
eβ/2 − e−β/2
eβ/2 + e−β/2

=
eβ − 1
eβ + 1

(5.10)

But from equation 5.9 eβ = (5/3)A, hence for 85Rb, the polarization is

P =
5A− 3
5A + 3

(5.11)

In practice we work with a magnetic field that is less than 50 Gauss, the (F =

2,mF = 2 → F = 2,mF = 1) and the (F = 3,mF = 2 → F = 3,mF = 1) peaks are

very close together. In that case the 85Rb polarization can be shown to be

P =
7A85 − 3
7A85 + 3

, (5.12)

where A85 is the ratio of the (F = 3,mF = 3→ F = 3,mF = 2) area to the combined

area of (F = 3,mF = 2 → F = 3,mF = 1) and (F = 2,mF = 2 → F = 2,mF = 1)

resonances. A similar equation in 87Rb is

P =
3A87 − 2
3A87 + 2

, (5.13)

where A87 is the ratio of the (F = 2,mF = 2 → F = 2,mF = 1) area to the area of

(F = 2,mF = 1→ F = 2,mF = 0). In the unresolved case, the equation becomes

P =
2A87 − 1
2A87 + 1

, (5.14)

where A87 is the ratio of the (F = 2,mF = 2→ F = 2,mF = 1) area to the combined

area of (F = 2,mF = 1 → F = 2,mF = 0) and (F = 1,mF = 1 → F = 1,mF = 0)

resonances.
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5.5.3 Experiment

Of course, if the magnetic field is low, all the sublevels are roughly degenerate and

there is only one resonance. The magnetic field we need to separate the resonances can

be estimated using the famous Breit-Rabi formula [Ramsey56]

EF,m = −
∆E

2(2I + 1)
− gIµoBom±

∆E

2

√

1 +
4mx

2I + 1
+ x2, (5.15)

where F is the total angular momentum, m is the quantum projection of F along the

quantized axis, and

x =
−gJµo + gIµo

∆E
Bo. (5.16)

∆E is the energy difference between the two hyperfine energy levels. The (±) signs are

for F = I ± 1/2 hyperfine levels. We expand the formula to the second order in terms

of x2 which gives

EF,m = −
∆E

2(2I + 1)
− gIµoBom±

∆E

2

[

1 +
4mx

2I + 1
+ x2/2(1− 4m2

(2I + 1)2
)

]

(5.17)

The resonance frequency between two Zeeman sublevels (F,m↔ F,m− 1) is

|ω| =
∣

∣

∣EF,m − EF,m−1

∣

∣

∣

h̄
, (5.18)

or approximately

|ω| ≈ ωo

2I + 1
+

ω2

(2I + 1)2

[

1− 2m
ωHFS

]

± gI
gj
ωo, (5.19)

where

ωHFS =
∆E

h̄
(5.20)

ωo =
gJµoBo

h̄
, (5.21)

and the sign (∓) applies to F = I ± 1/2 hyperfine levels. From equation 5.19 we can

make a quick approximation of the splitting between the adjacent transitions

|ω|F,m→F,m−1 − |ω|F,m−1→F,m−2 =
2ω2

o

ωHFS(2I + 1)2
(5.22)
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Thus, the splitting is proportional to the square of the magnetic field.

Assume that the width of each resonance is about 50 KHz, which corresponds to

a cell temperature of about 170C, hence we want a separation of at least 100 KHz

between two adjacent sublevels. With 100 KHz separation, the above equation says

that we need at least 25 gauss for 85Rb. Experimentally, you need at least this much

magnetic field. At higher temperatures, since the width of each resonance is dominated

by spin-exchange, you need a higher field to separate the peaks. Most of the time the

applied static magnetic field we used was 34 gauss.

To measure the Rb polarization, we set the oven to the desired temperature and

tune the pump beam on resonance. We fix the rf frequency at 16 MHz and amplitude-

modulate it at about 500 Hz to 2 KHz. We then sweep the magnetic field across the

Rb resonances. The total sweep span is about one to two gauss. The raw signal is

sent to the lock-in amplifier and is mixed with the reference frequency. The output is

sent to the oscilloscope, where it is recorded. Figure 5.3 shows the experimental setup.

Figure 5.4 shows a sample of 85Rb polarization spectrum taken at temperature 155C

with low Rb polarization to show all the 6 peaks from F = 3 and 4 peaks from F = 2

ground states. Figure 5.5 shows the 85Rb polarization spectra taken at 183C at various

positions on the cell. Notice the narrowing of the F=3, mF = 3 → F = 3,mF = 2

peak as the polarization is getting higher [Appelt99].

5.6 Rb Density Measurement

5.6.1 Introduction

To make any reasonable measurement of spin-exchange rate coefficients, we need to

measure the absolute Rb density. Inferring the Rb density from the temperature sensor
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Figure 5.3: EPR spectroscopy optical setup.

Figure 5.4: 85Rb polarization spectrum taken at 155C and low polarization. Note the

6 peaks from F = 3 states and 4 peaks from F = 2 states. The relative areas under

the resonance peaks determine the Rb polarization.
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Figure 5.5: 85Rb polarization spectra taken at 183C. The four spectra shown are with

the probe at the center of the cell and 1 mm from the edge of the cell, with laser off

resonance, and broadband laser. Notice the narrowing of the F=3, mF = 3 → F =

3,mF = 2 peak as the polarization is getting higher.
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and the vapor pressure curve is not reliable enough. Most of the time the Rb density

that we measured did not correspond to what was expected from the temperature

reading on the cell. This is probably due to a combination of an inaccurate sensor and

the fact that temperature at the surface of the cell is not the same temperature as at

the center of the cell [Walter01] and possible unknown chemical reactions.

We rely mostly on Faraday rotation of the probe light to do our density measure-

ments [Kadlecek00] [Wu86] [Vliegen01]. We use field Faraday rotation, polarization

Faraday rotation, and sometimes absorption spectroscopy to deduce the Rb density.

5.6.2 Field Faraday Rotation

The rotation angle, for probe detuning much greater than the atomic linewidth and

hyperfine structure, as a function of Rb density and magnetic field is [Kadlecek00]

[Vliegen01] [Chann02a] (Appendix D)

θB =
[

Rb
] le2µBB

18mhc

(

4

∆2
1/2

+
7

∆2
3/2

− 2

∆3/2∆1/2

)

, (5.23)

where, for example, ∆3/2 = ν−ν3/2 is the detuning of the probe from the nS1/2 → nP3/2

transition. Here e is the electronic charge, µB is the Bohr magneton, m is the electron

mass, h is Planck’s constant, l is the path length of the probe through the cell, c is the

speed of light, B is the external applied magnetic field, and [Rb] is the Rb density.

We do not have a one Tesla magnetic field available for the Rb3He apparatus. Thus,

our rotation angle at about 150 GHz detuning from resonance is only a fraction of a

degree. To measure such a small angular rotation, we use a photoelastic modulator

(PEM) and a lock-in amplifier. When a circularly polarized probe light is passed

through the PEM it gets modulated at the PEM’s frequency, 50 KHz. After the probe

passes through the cell, it goes through our standard Faraday rotation detector as first

described in 2.3.3. The raw signal is then mixed with the 50 KHz reference signal at the
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Figure 5.6: Optical setup using field Faraday rotation with photoelastic modulator to

measure Rb density.

lock-in amplifier. The optical setup is shown in figure 5.6. It can be shown that, after

mixing with the raw signal with the fundamental frequency with a lock-in amplifier the

output signal is [Nelson01]

V = −2J1(β) sin 2φe−nσl, (5.24)

where J1 is the first order Bessel function and β is the retardation of the photoelastic

modulator.

5.6.3 Polarization Faraday Rotation

At large detuning compared to atomic linewidth and hyperfine structure, the Faraday-

rotation angle as a function of polarization is given as [Kadlecek00] [Vliegen01] [Chann02a]

(Appendix D)

θP =
[Rb]le2

6mc

(

1

∆3/2

− 1

∆1/2

)

P. (5.25)

To measure the Rb density we send a linearly polarized probe light to the cell. The

pump beam is then chopped at a few Hertz by an optical chopper. The probe is passed
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Figure 5.7: Optical setup using polarization Faraday rotation to measure Rb density.

through the cell and is then detected with our Faraday rotation detector. When the

pump beam is blocked by the chopper we make sure that the Rb atoms are completely

depolarized by allowing the blocking time to be at least 5 relaxation time-constants.

If the Rb is not completely depolarized the measured rotation angle will be smaller

than the actual rotation which will result in inaccurate Rb density measurement. The

rotation angle is measured by rotating the signal and calibrating to the angle on the

half-wave plate. The rotation angle is typically many tens of degrees at about 1000

GHz from resonance. We then measure the Rb polarization. From the rotational angle

and Rb polarization, the Rb density can be determined through equation 5.25. The

optical set up is shown in figure 5.7.

5.6.4 Absorption Measurement

As a further consistency check, we also measure the Rb density using a more laborious

method of absorption spectroscopy of the 5s→ 6p transitions. The two transitions of

interest are 420.185nm and 421.552 nm which correspond to the p3/2 and p1/2, respec-
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tively. The 5s → 5p transitions are not suitable for this because the large oscillator

strengths make the cell extremely optically thick under our experimental conditions.

The absorption spectroscopy is based on the following formula [Kadlecek00] [Romalis97]

∫ ∞

−∞
σ(ν)dν = πrefc, (5.26)

where f is the oscillator strength, re = 2.82× 10−13 cm is the classical electron radius,

and σ(ν) is the absorption cross section. Also, the intensity transmitted through the

cell IT is given by

IT = I0e
−[Rb]σ(ν)L, (5.27)

where [Rb] is the Rb density and L is the length of the cell. From these two equations

and the known oscillator strengths [Migdalek98], the Rb density can be determined.

For the 6p1/2 state, we take the average of the two experimental values of 4× 10−3 and

3.75× 10−3. For the 6p3/2 state, we take the average of the two experimental values of

9.37× 10−3 and 9.54× 10−3.

We use an external cavity 830nm-Hitachi diode with maximum free-running power

output of 150mW. We double about 80-90 mW of 838-846nm to fully resolve the s1/2 →

p1/2 and s1/2 → p3/2 resonances [Hetch87]. The pump beam output is focused onto the

1 cm cube LiIO3 crystal by a 200mm biconvex lens. Typical blue-light power output

is a fraction of a microwatt. The blue light is split before the cell into two beams.

One beam is for measuring the laser power. The second beam passes through the cell

where the transmission is measured as the frequency is scanned across the resonances.

In both cases we use a narrowband interference filter (CVI part F10-420-0-4-0.5) and a

blue-light sensitive photodiodes (Hamamatsu G1893). For better signal-to-noise ratio

we chop the pump beam with an optical chopper.

The resulting transmission spectra are then fitted to determine the areas under the

5s → 56p(1/2,3/2) peaks. With the known oscillator strengths, the Rb density can be
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deduced.

Figure 5.8 shows the spectra taken with the pump light off. Figure 5.9 shows

the spectra with the pump light on. The noise is due to a combination of very low

blue light probe intensity, spurious pump light, and the alignment associated with

frequency doubling. The optical setup is shown in figure 5.10. As shown in table 5.3

the discrepancy in Rb density between the pump light on and off is about 15%. Also

shown in table 5.3 are the results of the different methods: field Faraday rotation,

polarization Faraday rotation, and absorption spectroscopy .
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Method Density (1014 cm−3)

Field Faraday Rotation 1.91

Polarization Faraday rotation 1.92

Absorption- light on 2.15

Absorption- light off 2.03

Table 5.3: Table shows the results of the different methods: field Faraday rotation,

polarization Faraday rotation, and absorption spectroscopy to measure the Rb density.

5.7 Rb spin-relaxation

The Rb spin-relaxation measurement is done using the standard ”relaxation in the

dark” method [Franzen59]. In our experiment, first we turn down the pump laser

power to a few watts. At the same time we detune it a few nm from resonance. This

is done to ensure that the Rb polarization is less than a few percent. We also check

this method with the repolarization rate method, as described in the next subsection.

The two methods agree to within a few percent.

5.8 Rb repolarization

In the absence of pumping light, the Rb atoms are polarized through spin-exchange

with the polarized 3He [Baranga98]. Typical Rb repolarization is a small fraction of a

percent, hence we use the photoelastic modulator to enhance our signal-to-noise ratio.

The setup is shown in figure 5.11. To measure the Rb repolarization, we apply a 2

Hz square-wave amplitude-modulated rf frequency at the Rb resonance that strongly

saturates the Rb resonance. The applied static magnetic field is kept less than 8 gauss.

This ensures that all the RB sublevels are roughly degenerate and hence the rf pulse is
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Figure 5.11: Optical setup used to measure the Rb repolarization.

very efficient in destroying the Rb repolarization. The Rb repolarization is calibrated

by comparing the Faraday rotation angle of the re-polarized Rb atoms with the fully

polarized atoms. A sample of Rb repolarization signal is shown in figure 5.12.

5.9 3He NMR

To detect the polarization of 3He we use a custom-built Labview controlled NMR

system. A single coil of 300 turns is wound from 34 gauge magnet wire around a 9mm

Teflon form. It serves as both the pulse coil and sensing coil. The coil is placed in a

Teflon form with the appropriate cell sitting on top. To detect the polarization, a short

pulse of about 0.4 ms with an amplitude typically of about 0.4V is sent to the coil.

The pulse is generated by the Labview program. The resonance pulse, at 24.54 KHz

(3.243 KHz per Gauss), tips the longitudinal polarization of the Helium polarization.

This tip creates a transverse magnetization [Abragam61]

M =Mz sin θe
−t/T2 , (5.28)
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Figure 5.12: A typical repolarization signal of Rb atoms using the rf chopper.

where T2 is the transverse relaxation of the polarization and θ is the tipping angle. The

transverse magnetization induces a voltage in the pick up coil

V = QE, (5.29)

where Q is the Q of the coil and E is the emf induced in the coil by the precessing

magnetization, which is given by Faraday law

E = ωMzA sin θe
−t/T2 , (5.30)

where ω is the Larmor precession frequency and A is the area of the pick up coil. The

picked up signal is sent to a Stanford Research Systems 830 lock-in amplifier. The

lock-in phase sensitive detector (PSD) multiplies the atoms’ signal,

Va sin(ωat+ φa) (5.31)

by the reference signal,

Vref sin(ωref t+ φref ), (5.32)

The output signal is

Vout = (1/2)VaVref sin ((ωa − ωref )t+ (φa − φref ))e−t/T2 (5.33)
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Using the lock-in amplifier, we mix the signal down to 50-100 Hz from the 3He

resonant frequency. The mixed down signal is read by the DAQ card. Both the time

and frequency domain are displayed on the computer and both are fitted by Labview.

The time domain signal is fitted to the form

V (t) = V sin(ωt+ φ)e−t/T2 , (5.34)

where V, ω, φ and T2 are the free parameters. V is the initial induced voltage, which is

proportional to the 3He magnetization. Since the signal is mixed down, V is sensitive to

the mixed down frequency or the fluctuation in the magnetic field. Thus, we correct for

this with the appropriate roll-off gain. Figure 5.13 shows the NMR detection circuit.

Figure 5.14 shows a typical free-induction decay signal of the 3He atoms and figure 5.15

shows a typical 3He spin-up curve.

5.10 3He Density Measurement

A potentially important uncertainty in our 3He polarization and thus the spin-exchange

rates is due to the uncertainty in 3He density. We independently measure the 3He

density using the absorption profiles of the pressure broadened D1 and D2 lines of the

Rb atoms. We use a New Focus laser (model 6200) in the Littman-Metcalf configuration

as the probe laser. The probe is sent through a half-wave plate which is then passed

through an optical chopper. After it passes through the optical chopper the probe is

sent through two pieces of glass. The reflection from the first piece of glass is sent to

a photodiode to monitor the laser power. The reflection from the second piece of glass

is sent to the New Focus Fizeau wavemeter. The rest of the probe is sent to the cell.

The setup is shown in figure 5.16.

We heat the cell to about 80C. Using the precision line-broadening parameters of
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Romalis and coworkers [Romalis97] we fit the absorption profiles to four Lorenzians,

two for each Rb isotope. The only free parameter is the width of the spectrum. We

ignore the hyperfine structure of the excited states. The contribution should be very

small compared to the ground states splitting. After the contribution from the buffer

gas is subtracted out of the total width of the absorption spectrum, the density of

the 3He can be determined. A sample density absorption spectrum of one of our cells

(Betty) is shown in figure 5.17.

5.11 3He polarimetry

5.11.1 Introduction

It is very important for us to have an accurate method of measuring the 3He polariza-

tion. One of the most common methods is to compare the NMR signal of the polarized

3He with the signal of the thermally polarized protons in an identically shaped water

cell [Romalis98b]. This can be done with high precision but it is difficult to implement.

To have an reasonable signal requires a high magnetic field, on the order of a Tesla
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Figure 5.17: Pressure broadening spectra of the Rb atoms due to 3He.

or higher. Furthermore, complications with cell geometry, and signal -temperature-

variation have to be taken into account. Another method is to measure the static mag-

netic field produced by the noble nuclei directly outside the cell [Wilms97]. A third

method of measuring 3He polarization relies on neutron beam spectroscopy [Jones00]

[Heil99].

We cannot measure the 3He polarization using any of these three methods. Firstly,

our NMR system works at low magnetic field, where proton polarization is small. Sec-

ondly, our Rb-3He cells are low pressure, thus the magnetic field produced outside the

cell is extremely small. Lastly, we do not have a nuclear reactor at our disposal to im-

plement the neutron beam method. Hence, we choose to measure the 3He polarization

using the well-established method of measuring the Rb Zeeman frequency shift due to

the polarized 3He [Schaefer89] [Newbury93] [Barton94] [Romalis98]. This Rb Zeeman

frequency shift is proportional to the 3He polarization and density. The frequency shift

also depends on the enhancement factor k0 which is known very accurately [Romalis98].
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In addition, we introduce a fourth method to measure the 3He polarization. We mea-

sured the 3He polarization by measuring the NMR frequency shift of the 3He atoms

due to its own field.

The procedure to measure the Rb EPR shift is as follows. First, we look for the Rb

resonance frequency using our EPR spectroscopy. Once the Rb resonance frequency

is found, we frequency modulate the Rb rf frequency to get a dispersion signal from

the probe beam. The dispersion signal is fed to a control circuit that locks to the zero

crossing of the Rb resonance. The 3He polarization is then flipped using AFP. The new

Rb resonance frequency is then compared to the old one. The difference in the two is

twice the total shift. The following subsections go into more detail.

5.11.2 Rb EPR Frequency Shift Polarimetry

Using the Breit-Rabi formula [Ramsey56] (equation 5.15), the transitional angular

frequency between (F,m→ F,m− 1) states is

ωF,m→F,m−1 = gIµoB −
∆Ex

h̄(2I + 1)
+

∆Ex2

h̄(2I + 1)2
+

∆E2mx

h̄(2I + 1)2
. (5.35)

What we are interested is in the change of electronic frequency of the alkali-atoms

with respect to the change of the magnetic field due to the Fermi-contact interaction.

Taking the derivative with respect to the magnetic field in the last equation we get

δω =
gIµoδB

h̄
− (−gJµo + gIµo)

h̄(2I + 1)
δB+

(−gJµo + gIµo)

h̄(2I + 1)2
2mδB+

(−gJµo + gIµo)
2

∆Eh̄(2I + 1)2
2mBδB.

(5.36)

But gj ≈ gS À gI , thus for the F = I + 1
2
hyperfine state

δω =
gSµo

h̄(2I + 1)
δB − gSµo

h̄(2I + 1)2
2mδB − gSµo

∆Eh̄(2I + 1)2
2mBδB. (5.37)
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In our case we are working in a low magnetic field, thus the frequency shift is, ignoring

everything except the first term,

δω =
gSµo

h̄(2I + 1)
δB. (5.38)

The change in the magnetic field that is seen by the atoms is roughly a spherical

volume that surrounds each atom or

δB =
8πM

3
, (5.39)

where M is the magnetization due to the polarized 3He. Substituting for M

δB =
8

3
πµK [He]PHe, (5.40)

where µK is the 3He magnetic moment. Still this is not correct because a lot of times

the Rb’s electron has a enhanced probability of being at the nucleus of the 3He atoms

during binary collisions [Romalis98][Walker89]. Thus, the field that the electron feels

enhances by a factor, κ0. Taking this into account, the magnetic field seen by the Rb’s

electron due to the polarized 3He is

δB =
8

3
πκ0µK [He]PHe. (5.41)

Combining all the terms together we get

∆ν =
8

3
π

µogS
h(2I + 1)

κoµK [He]PHe. (5.42)

=

(

1.13
KHz

Amagat

)

κ0[He]PHe, (5.43)

for 85Rb and where [He] in the last equation is assumed to be in units of amagat. κ0

has been measured very precisely [Romalis98] and is

κ0 = 4.52 + 0.00934× T, (5.44)
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where T is the temperature of the cell and in units of Celsius.

The above value of κ0 assumes that the cell is spherical. In our experiment, most of

the cells are not spherical. We need to add the contribution to κ0 due to the classical

magnetic field that the Rb atoms feel due to the polarized Helium.

5.11.3 Geometric Correction of a Magnetized Cylinder

For a uniform magnetized cylinder, the magnetic scalar potential φM is [Jackson75]

φM =
∫

d2r′
M.n̂

|r̄ − r̄′| , (5.45)

where M is the magnetization due to the polarized Helium, and n̂ is the unit vector.

We can use the expansion in the cylindrical coordinate (ρ, φ, z) [Jackson75]

1

|r̄ − r̄′| =
∑

m

∫ ∞

0
dkeim(φ−φ′)Jm(κρ)Jm(κρ

′)e−k(z>−z<) (5.46)

and cylindrical symmetry to obtain, for −L/2 < z < L/2

φM(r̄) = 4πM
∫ a

0
ρ′dρ′

∫

dkJ0(κρ)J0(κρ
′)e−κL/2 sinhκz, (5.47)

where L is the length of the cylinder with radius a. The magnetic field produced by

the polarized 3He nuclei is

BMz
(r̄) =

4π

3
M +Hz

=
4π

3
M − δzφM

=
4π

3
M − 4φM

∫

κdκ coshκzJ0(κρ)e
−κL/2

∫ a

0
ρ′dρ′J0(κρ

′)

=
4π

3
M − 4πMa

∫

dκ coshκzJ0(κρ)J1(κa)e
−κL/2 (5.48)

We are interested in the magnetic field at the cylindrical axis ρ = 0

BMz
(0, φ, z) = 4πM

(

−2
3
+

(L− 2z)
2
√

4a2 + (L− 2z)2
+

(L+ 2z)

2
√

4a2 + (L+ 2z)2

)

. (5.49)
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This is the same axial magnetic field of a solenoid minus 8πM/3, as expected. Since

our probe samples the cell through the middle, to get the correction factor we need to

average from z = L/2 to z = −L/2

〈BMz
(0, φ)〉 =

∫ dz

L
BMz

(0, φ, z)

=
8πM

3

[

−1 + 3

2L

(√
a2 + L2 − a

)]

(5.50)

Thus, our δκ0 is the term in the square bracket. This is the geometric correction

term for a cylinder. The total enhancement factor κ taking into account the geometric

correction of the cylinder becomes

κ = κ0 + δκ

= 4.52 + 0.00934× T + 1
2
− 3
2

[

1 +
a

L
−
√

1 + (a/L)2
]

(5.51)

5.11.4 Adiabatic Fast Passage

The effect of an alternating transverse magnetic field upon the nuclear spin of the He-

lium atoms is analyzed using classical physics [Slichter90]. Let the transverse magnetic

field be

Bx = Bxo cosωt. (5.52)

This transverse magnetic field can be decomposed into two counter propagating com-

ponents. One component rotating counterclockwise and one in the opposite direction.

The two components can be written as

BR = B1(i cosωt+ j sinωt) (5.53)

BL = B1(i cosωt− j sinωt), (5.54)

where 2B1 = Bxo. The subscripts R and L refer to left and right propagation or

counterclockwise and clockwise, respectively. We may neglect one component of the
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field since in the rotating frame, as will be shown, it rotates at twice the frequency and

has no effect on the atoms. The equation of motion for the 3He atoms due to the total

field is

dµ

dt
= µ× γ

[

Bo +BR

]

, (5.55)

where Bo is the static holding field along the z-direction. In a rotating frame with

angular velocity ω, the equation of motion becomes [Slichter90]

δµ

δt
= µ× γ

[

k(Bo −
ω

γ
) + iB1

]

= µ+ γBeff , (5.56)

where

Beff = k(Bo −
ω

γ
) + iB1. (5.57)

Thus, in the rotating frame the 3He atoms see only this effective magnetic field. They

precess in a fixed cone at an angular frequency of γBeff .

This last equation is the basis of the two most popular ways of detecting 3He atoms,

namely free induction decay (FID) and adiabatic fast passage (AFP). For our frequency

shift measurements, we rely on AFP. We use AFP not to detect the 3He polarization

but rather to flip the 3He polarization. How it works can be seen easily from equation

5.57. If we were to start the rf frequency above resonance or

Bo À
ω

γ
, (5.58)

and assume that

Bo À B1, (5.59)

which is always the case experimentally, then the effective field seen by the 3He atoms

is roughly the static holding field. The Helium atoms will precess around this static

field which points in the, say, positive z-direction. If we now sweep the transverse field
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frequency closer to resonance, the effective field will lie somewhere between the static

field and the transverse field. At resonance, the effective field will be just B1i. So the

3He atoms will precess at this new effective field, which is perpendicular to the static

holding field. If we continue sweeping the transverse field, the 3He atoms will end up

in the negative z-direction. Thus, the 3He polarization has been flipped.

The magnitude of the rf field and the sweep rate must satisfy the AFP conditions

[Slichter90]

γB1 À
ω̇

γB1

À D
|∆Bz|2
B2

1

, (5.60)

where D is the diffusion coefficient of the 3He atoms and ∆Bz is the field gradient of

the static applied magnetic field. In our experiment, the Rb resonance frequency is

24.54 Hz. We sweep the rf frequency from 11950 Hz to 26050Hz at a rate of 0.170Hz.

The loss per AFP flip is about 0.5%.

5.11.5 Rb EPR Frequency Shift Measurement

To lock the RF to the Rb Rf resonance, and then measure the frequency shift, we need

a dispersion shaped signal. To do this we rely on the standard practice that is used in

locking the diode laser. Assume that the resonance lineshape T (ν) is a Lorentzian. If

the signal is modulated with an amplitude A, and frequency νm, then the transmitted

signal will be

IT (ν) = IT (ν + A sin νmt) (5.61)

We expand this using Taylor series

IT (ν) = sin νmt(AdIT/dν + ...)

+ cos 2νmt(−A2d2IT/4dν
2 + ...) + ... (5.62)
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Figure 5.18: Locking circuit for EPR frequency shift measurement and magnetic field

stabilization using the magnetometer.

When this signal is put into a lock-in amplifier and detected at the fundamental fre-

quency, the signal is proportional to the derivative of the Lorentzian and therefore

has the needed dispersion-like shape. Once the dispersion signal of the Rb atoms is

obtained, we feed the signal to the locking circuit shown in figure 5.18. The locking

circuit locks to the zero crossing signal of the Rb resonance frequency.

To get the Rb dispersion signal we send a modulation source signal to a voltage-

controlled-oscillator (VCO) analog input of an rf generator (Tektronic CFG253). We

use a function generator (SRS DS345) as our modulator. Typically we modulate the

RF at 500Hz to 5000Hz, depending on the experimental conditions. Also, coupled

with the modulation source is the output from the lock-box. The frequency of the

rf generator is measured using a digital frequency counter (HP53131A). The output

of the counter is sent to a computer where it is recorded. The computer reads the

frequency at a one-second interval. The basic diagram is shown in figure 5.19. The

3He polarization is then flipped and the frequency remeasured. The frequency shift of

the Rb resonance as explain in section 5.10.2 is then just half this shift. A sample of a

typical frequency shift is shown in figure 5.20.
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Figure 5.20: Typical Frequency shift of the Rb atoms. Here we flipped the 3He atoms

four times. The quality of the signal is limited by the stability of the magnetic field.
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5.11.6 NMR frequency shift

Theory

We also introduce another method of measuring the 3He polarization. It is based on

the NMR frequency shift of the polarized 3He due to its own field. This is non-zero for

a non-spherical cell.

The magnetic field produced by the polarized 3He nuclei in a cylindrical cell is, as

shown in equation 5.48,

BMz
(r) =

4π

3
M − 4πMa

∫

dκ coshκzJ0(κρ)J1(κa)e
−κL/2. (5.63)

We are interested in the magnetic field at the surface of the cell or ρ = a

BMz
(a, φ, z) =M

(

−2π
3

+ 2K

[

−16a2
(L− 2z)2

]

+ 2K

[

−16a2
(L+ 2z)2

])

, (5.64)

where K(m) is the complete elliptic integral of the first kind [Abramowitz72]. At z = 0

and ρ = a the equation simplifies to

BMz
(a, φ, 0) =M

(

−2π
3

+ 4K

[

−16a2
L2

])

. (5.65)

Figure 5.22 plots the field as a function of the aspect ratio of the cell. For our cell

”Betty” with L = 4.9 cm and a = 2.25 cm and density [He] = 2.067× 1019 cm−3, the

magnetic field is

BMz
(a, φ, 0) = 4.6773× 10−4 Gauss (5.66)

assuming 100% polarization. The total (two times) NMR frequency shift is then

δν = ν1 − ν2

= 2× 4.6773× 10−4 × 3.243× 103 Hz

= 3.034 Hz. (5.67)

This shift is large enough that, with care, it can be detected even at this low 3He

density.
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Experiment

The experimental setup is shown in figure 5.1. A small surface coil (1.2 cm diameter,

0.6 cm long with 320 turns) is mounted on the side of the cylindrical cell. It is used both

as a sending and pick-up coil. We actively stabilize the applied static magnetic field

using a 2-gauss fluxgate magnetometer (Bartington single-axis fluxgate magnetometer

MAG-01) placed about 20 cm from the cell. The magnetic field is stabilized to about

100 µG, which is close to the resolution of the magnetometer.

The experimental procedures is as follows. A pulse is sent to tip the 3He atoms by

a small angle and the free-induction decay (FID) signal is detected and mixed down to

about 100 Hz with a lock-in amplifier. The resulting signal is fitted to the function

sin (2πν1t+ φ)e−t/τ (5.68)

to determine the center frequency ν1. The
3He atoms are then flipped using adiabatic

fast passage (AFP). A second FID is then detected and analyzed using the same fit

function to get the new center frequency ν2. The two frequencies are than subtracted

out to get the NMR frequency shift.

The primary source of error in this experiment is the applied static magnetic field

drift which is not completely eliminated by the fluxgate field stabilization. In order

to further reduce the magnetic field drift, we increase the sweep speed of the AFP.

This increases the loss of the AFP to about 3% per pulse. Figure 5.23 shows the

experimental result for our cell ”Betty”. Plotted in the figure are the NMR frequency

shifts, NMR amplitudes and EPR frequency shifts. Notice the correlation amongst the

three signals, as expected. The 3He polarization using EPR frequency shift and NMR

frequency shift differs by a few percent.
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Chapter 6

Measurements of Rb-3He

Spin-Exchange Rates

6.1 Introduction

One of the very perplexing problems in Rb-3He spin-exchange optical pumping is the

low measured 3He polarization compared to theory. With the current laser technol-

ogy [Chann00], good lifetime spin-exchange cells [Hsu00][Rich02], and with current

understanding of Rb-3He spin-exchange, there should be no barrier to producing 3He

polarizations close to 100%. With very few exceptions [Coulter90][Larson91], the high-

est polarization that has been measured is about 55 %. Of the two noble gases, 3He and

129Xe, currently used in spin-exchange optical pumping, the fundamental physics be-

hind Rb-3He spin-exchange optical pumping is thought to be fully understood. Unlike

129Xe, the basic spin-exchange mechanism in Rb-3He occurs primarily due to binary

collisions [Walker89] [Walker97] [Appelt98].

Until the work of Baranga et al. [Baranga98], only two measurements of the most

fundamental parameter of the Rb-3He spin-exchange, the spin-exchange rate coeffi-
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cient, had been reported. Coulter et al. [Coulter90] measured the spin-exchange rate

coefficient to be 12± 2× 10−20 cm3/s. Larson et al. [Larson91] using the same method

measured the spin-exchange rate coefficient to be 6.2 ± 0.2 × 10−20 cm3/s. In both of

these measurements, the spin-exchange rate coefficient was deduced from the relaxation

rate of 3He as a function of temperature. In both cases the wall relaxation is assumed to

be temperature-independent. Also, both experiments deduced the Rb vapor pressure

using published saturated vapor curves [Killian26][Smithells65], a procedure that can

be in error by a factor of 2 or more [Jau02] [Borel02].

Recently, Baranga et al. [Baranga98] remeasured the spin-exchange rate coefficient.

They deduced the spin-exchange rate coefficient to be 6.7×10−20 cm3/s. Baranga used

a different method. The method did not rely on Rb density measurement. Furthermore,

the method makes no assumption about the wall-relaxation of the cell. Therefore, it

should be quite reliable.

To better understand the discrepancies between these three measurements, we re-

measured the Rb-3He spin-exchange rate coefficients. We measured it three different

ways [Chann02b]. The first method we use is the same one used by Coulter [Coulter90]

and Larson [Larson91] , which we call the ”relaxation method”. The second method

is the one used by Baranga [Baranga98], which we call the ”repolarization method”.

The third method is a new ”rate balance method” which is based on the equilibrium

3He polarization attained in a cell of known Rb density and 3He polarization. In all

these spin-exchange rate coefficients, we make no assumption about the magnitude of

the anisotropic spin-exchange rate as briefly described in the first chapter.

Section 6.2 describes the theory of spin-exchange optical pumping which includes

the often neglected anisotropic spin-exchange. Section 6.3 describes the experimental

procedures. Section 6.4 gives the result of the measurements of the spin-exchange rates

and discussions.
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6.2 Theory

Including the anisotropic spin-exchange rate, the fundamental rate-equation governing

the build-up or decay of the 3He polarization is [Walter98]

dPHe

dt
= κa[Rb](〈PRb〉 − PHe)− ΓwPHe + κb[Rb](−〈PRb〉/2− PHe), (6.1)

where κa is the isotropic spin-exchange rate coefficient, κb is the anisotropic spin-

exchange rate coefficient. [Rb] is the rubidium density, and Γw is the wall depolarization

rate of the 3He atoms. The first term is the well-known spin-exchange interaction

between Rb and 3He. The second term is the loss due to the wall. The last term is

the spin transfer to the 3He nucleus due to the anisotropic hyperfine interaction and is

usually assumed to be small. Note that the anisotropic term polarizes the 3He nuclei

antiparallel to the Rb spin [Walter98]. Thus, a substantial value of κb is a potential

explanation for the low observed 3He polarization.

From equation 6.1, the steady state polarization, PHe, of the
3He atom is

PHe =
(κa − κb/2)[Rb]〈PRb〉
(κa + κb)[Rb] + Γw

. (6.2)

The time constant, ΓHe, for build-up or decay of
3He polarization is

ΓHe = (κa + κb)[Rb] + Γw. (6.3)

Writing the 3He polarization in terms of ΓHe we get

PHe =
(κa − κb/2)[Rb]

ΓHe

〈PRb〉. (6.4)

The above two equations provide us with two ways to measure and isolate κa and κb,

and can be written as

κa − κb/2 =
PHeΓHe

〈PRB〉[Rb]
(6.5)

κa + κb =
δ(ΓHe)

δ([Rb])
, (6.6)
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where δ(ΓHe)
δ([Rb])

is just the slope of the 3He relaxation rate as a function of the Rb density.

The spin-exchange rate coefficient’s measurement based on equation 6.5 is called the

”rate balance method”. Note that the ”rate balance method” makes no assumption

about the wall-relaxation. The spin-exchange rate coefficient’s measurement based on

equation 6.6 is called the ”relaxation method”.

Another method of measuring the spin-exchange rate coefficient was introduced

by Baranga and coworkers [Baranga98]. This is the ”repolarization method”. In the

absence of optical pumping, the Rb total longitudinal spin 〈Fz〉0 obeys

d〈Fz〉0
dt

= D∆2〈Fz〉0−ΓRb〈Sz〉0+κa[He](〈Kz〉−〈Sz〉0)+κb[He](−〈Kz〉/2−〈Sz〉0). (6.7)

Here 〈Fz〉0 = 〈Iz〉0 + 〈Sz〉0, where Iz and Sz is the nuclei and electron projection, re-

spectively. The first term in the equation represents the loss of the spin to diffusion,

where D is the diffusion coefficient. The second term is the loss due to the randomiza-

tion of the electron spin [Happer72]. The last two terms are the spin-transfer terms.

Due to the small diffusion coefficient [Happer72][Appelt98], the first term can be ne-

glected completely. Thus, for ΓRb À (κa+κb)[He] we can write the spin-exchange rate

coefficient as

κa − κb/2 =
ΓRbPRb0
PHe0[He]

, (6.8)

where PRb0 is the Rb repolarization due to the spin-exchange being between Rb and
3He

in the absence of optical pumping. Note that the equation does not contain Rb density

and makes no assumption about the wall. This makes the ”repolarization method”

probably the most reliable of the three methods.
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6.3 Experiment

The spin-exchange rate coefficient measurements require us to determine the absolute

Rb density, polarization and spin-relaxation rate. Also, we need to measure the absolute

3He polarization and density. The methods to do this are described in detail in the

previous chapter. Here I will just briefly describe the procedures.

The procedures to measure Rb-3He spin-exchange rates are as follows. First we

set our oven to the desired temperature, usually between 140C and 200C. Using our

external cavity diode array with about 14W of power and about 125 GHz linewidth at

795 nm, we polarize the 3He nuclei through spin-exchange optical pumping with the Rb

atoms. The spin-up data is recorded on a personal computer using a Labview program.

The spin-up is taken at a 30-minute time interval. After about 3 time-constants, we

stop the spin-up. The 3He polarization is then measured using the Rb EPR frequency

shift. Next, the Rb polarization is measured using EPR spectroscopy. We then turn

on the optical chopper and measure the polarization-Faraday rotation angle. From

the rotation angle and the Rb polarization, we can deduce the Rb density. We then

measure the Rb spin-relaxation. We use the optical chopper to chop the pump beam

on and off. The Rb spin-relaxation is obtained by fitting the exponential decay of the

Rb polarization when the pump beam is blocked.

The Rb repolarization is measured by blocking the pump beam and using an rf

chopper. The repolarization rotation is then calibrated to the rotation angle when the

Rb is fully polarized. This gives us the absolute repolarization. Finally, while the pump

is still blocked we measure Rb density using field-Faraday rotation.

From all these measured parameters we can deduce the ”repolarization method”

and ”rate balance method” spin-exchange rate coefficients. We get the ”relaxation

method” spin-exchange rate coefficient by measuring the 3He relaxation rate, ΓHe, as
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a function of Rb density, [Rb].

6.4 Spin-Exchange Rates and Discussion

Primarily, we use two cells for our measurements of the three spin-exchange rate coef-

ficients. Both of them are cylindrical cells with well-defined geometries. The first one

is ”Betty” from NIST. She has a lifetime of 240 hours with a diameter of 4.7 cm and

a length of 4.9 cm. Our second cell is ”MichCell” from Michigan which has a lifetime

of 8.16 hours with a diameter of 4.8 cm and a length of 4.5 cm. We have several more

cells, most with much longer lifetimes than ”MichCell”. However, due to the lack of

nice geometries for optical pumping we only use them to measure the spin-exchange

rate using the ”relaxation method”.

Figure 6.1 shows spin-exchange rate coefficients deduced using the ”repolarization

method” and the ”rate balance method” in ”Betty” and ”MichCell”. In all of these

measurements, we assume that the spin-exchange rate coefficients have no temperature-

dependence [Walter98]. With ”Betty” the statistical averages of the ”repolarization

method” gives 6.83 ± 0.18 × 10−20 cm3/s for the spin-exchange rate coefficient. The

”rate-balance method” gives 6.61±0.15×10−20 cm3/s. In ”MichCell”, the ”repolariza-

tion method” gives the spin-exchange rate of 6.62± 0.15× 10−20 cm3/s, and the ”rate-

balance method” gives 6.60±0.21×10−20 cm3/s. Combining these measurements of the

two cells, the deduced spin-exchange rate coefficient for the ”repolarization method”

is 6.73± 0.12× 10−20 cm3/s. The combined deduced spin-exchange rate coefficient for

the ”rate-balance method” gives 6.61± 0.12× 10−20 cm3/s.

The close agreement between the ”repolarization method” and the ”rate-balance

method” is strong evidence that the systematic errors in the experiment are well con-

trolled. The only common quantity measured in the two methods is the absolute 3He
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Figure 6.1: Spin-exchange rate coefficients deduced using the repolarization method

and the rate balance method in ”Betty” and ”MichCell” with a lifetime of 240 and

8.16 hours, respectively.
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Figure 6.2: 3He relaxation rate as a function of Rb density in ”Betty”. The circles are

the points taken with the pumping laser on, the squares have the pumping laser off.

polarization. It occurs in the numerator for the rate balance method and the denom-

inator for the repolarization method. Thus, the systematic errors in the two methods

should be very different. Also it agrees very well with Baranga’s deduced measurement

of 6.7± 0.6× 10−20 cm3/s for the ”repolarization method”.

Figure 6.2 shows the 3He relaxation rate as a function of Rb density for ”Betty”.

This is the relaxation rate method. The slope of the data gives us the spin-exchange rate

coefficient. The bulk of the data were taken with the light on, and few were taken with

the light off. The slope of the data gives κa+κb of 8.82±0.16×10−20 cm3/s. Compared

to the two previous measurements using the same method [Coulter90][Larson91] our

measurement lies almost exactly in the middle between the two.

The significantly larger value of the spin-exchange rate coefficient with the relax-

ation method indicates that there is an excess 3He relaxation. This is most likely

due to a temperature-dependent wall-relaxation and/or unexpectedly large anisotropic

spin-exchange contributions. In order to explain the wall-dependent effect, the wall-
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relaxation must produce a 3He relaxation that is Rb-density dependent. If it is due to

this, the mechanism responsible for it is entirely a mystery at this stage.

If it is due to the anisotropic optical pumping, the ”measured” anisotropic spin-

exchange rate coefficient is an order of magnitude larger than theoretical prediction.

Assuming the anisotropic is present in all three methods, the deduced anisotropic spin-

exchange rate would be about 1.4 ± 0.34 × 10−20 cm3/s. The theoretical calculation

predicted by Walter and coworkers [Walter98] is 0.17 × 10−20 cm3/s, which is nearly

an order of magnitude smaller. Using the same wave-functions, Walter and coworkers

[Walter98] calculated the isotropic spin-exchange rate coefficient to be 5.6 × 10−20

cm3/s, which is very close to the experimental value. Thus, at this stage, it is probably

unlikely that the excess 3He relaxation is due to the anisotropic optical pumping.

We also measure the spin-exchange rate coefficient using the relaxation rate method

in 7 other cells. If the excess 3He relaxation is due to the wall, then the spin-exchange

rate coefficient due to the relaxation method should depend on the surface-to-volume

ratio. We can parameterize the 3He relaxation rate as

ΓHe = ηS/V, (6.9)

where S and V is the surface and volume of the cell, respectively. In the limit of

surface-to-volume ratio equal zero, or no surface, the 3He relaxation rate should go to

6.7×10−20 cm3/s; since the 3He relaxation only comes from the Rb-3He spin-exchange.

Figure 6.3 plots the relaxation rate of 3He as a function of surface to volume ratio.

Also shown is the line fit with 6.7× 10−20 as the constraint to the intercept.
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References Method Spin-Exchange Rate Coeff. (10−20 cm3/s)

This work Relaxation Method 8.82 ± 0.16

[Coulter90] Relaxation Method 12± 2

[Larson91] Relaxation Method 6.2 ±0.2

This work Repolarization 6.73 ±0.12

[Baranga98] Repolarization 6.7 ± 0.6

This work Rate Balance 6.61 ± 0.12

Table 6.1: Rb-3He spin-exchange rate coefficients using three different methods in this

thesis and previously measured spin-exchange rates.
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Figure 6.3: Spin-exchange rate coefficient using the relaxation rate method plotted as

a function of surface-to-volume ratio for all the cells. Also shown is the line fit with

6.7× 10−20 as the constraint to the intercept.
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Chapter 7

Summary

In this thesis I have described a comprehensive study that was undertaken in the last

four years in trying to understand the fundamental processes in spin-exchange optical

pumping. One of the main underlying problems in spin-exchange optical pumping is

the discrepancy between the measured noble gas polarization, 3He and 129Xe, and the

theoretical prediction.

This thesis tries to answer that question in four parts. The first part deals with

alkali-alkali relaxation, specifically with cesium-cesium relaxation. To achieve high no-

ble gas polarization, the alkali-metal vapor must first be polarized. The limit of the

alkali-metal vapor polarization is imposed by the alkali spin-relaxation. Most of this

spin-relaxation comes from alkali-alkali collisions. Until recently, alkali-alkali relax-

ations were thought to arise from binary collisions where the correlation time is on the

order of a few picoseconds. This, however, was proven to be incorrect by Kadlecek, An-

derson, and Walker who showed that the relaxation can be reduced by a factor of two

or more with a few thousand Gauss of external magnetic field. In this thesis we have

shown that, although we still do not understand fully the relaxation at pressures of an

atmosphere or more, an important part of the spin-relaxation comes from the classical
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dipole-dipole anisotropic spin-axis interaction acting in triplet dimer molecules. The

key observation is the existence of magnetic resonances in the magnetic decoupling

curves which are predicted from the spin-axis interaction.

The second part of the thesis concerns 129Xe-Xe van der Waals spin-relaxation.

Here we identified a new gas-phase, room temperature spin relaxation that is due to

the spin-rotation coupling in bound 129Xe-Xe van der Waals molecules. In the practical

condition of spin-exchange optical pumping, less than 10 amagats, this 129Xe-Xe van

der Waals relaxation is the primary relaxation. One of the reasons why this relaxation

mechanism was not identified before is because for a fixed gas composition the relax-

ation is independent of the gas density, making it hard to separate this relaxation from

the wall relaxation. By measuring the 129Xe-Xe spin-relaxation as a function of gas

composition we were able to isolate the 129Xe-Xe relaxation from the wall relaxation.

This 129Xe-Xe spin-relaxation is more than an order of magnitude stronger than the

well-known 129Xe-Xe binary spin-relaxation.

The third part of the thesis deals with the pumping laser itself. The laser of

choice used in spin-exchange optical pumping is the diode array bar (DAB) with

power from 15 watts to hundreds of watts. However, the DAB’s linewidth is typi-

cally about 1000GHz and much bigger than the absorption linewidth of the Rb atoms

(20 GHz/bar) [Romalis97]. Conventionally, high 3He or 4He pressures (3 to 10 bar)

are used to broaden the absorption linewidth, but such high pressures are not always

desirable. Furthermore, most of the pump light is still wasted. With our external cav-

ity diode array bar, we find, based on tests of several cells, that the power required to

reach the same polarization is typically three times lower for the spectrally narrowed

laser. This last result indicates that spectrally narrowed lasers are critical to obtaining

the highest polarizations in large volume cells.

The fourth part of the thesis concerns Rb-3He spin-exchange rates. Until the work of
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Baranga et al. [Baranga98], only two measurements of the most fundamental parameter

of the Rb-3He spin-exchange, the spin-exchange rate coefficient, had been reported.

Coulter et al. [Coulter90] measured the spin-exchange rate coefficient to be 12 ± 2 ×

10−20 cm3/s. Larson et al. [Larson91] measured and obtained the spin-exchange rate

coefficient to be 6.2 ± 0.2 × 10−20 cm3/s. Both of these measurements relied on the

relaxation rate (”relaxation method”) of 3He as a function of temperature. In both cases

the wall relaxation is assumed to be temperature-independent. Baranga and coworkers

[Baranga98] remeasured the spin-exchange rate coefficient (”repolarization method”).

They deduced the spin-exchange rate coefficient to be 6.7× 10−20 cm3/s. This method

does not rely on Rb density and makes no assumption about the wall-relaxation.

In this thesis we measured the spin-exchange rate coefficients using three different

methods. We obtained 6.73±0.12×10−20 cm3/s for the ”repolarization method”. Thus,

it agrees very well with Baranga. We deduced the spin-exchange rate coefficient to be

6.61 ± 0.12 × 10−20 cm3/s for the ”rate balance method”. Thus, these two methods

agree very well with each other. For the ”relaxation method” we deduced the value to

be 8.85 ± 0.32 × 10−20 cm3/s. This is about 30% higher than the other two methods.

This implies a temperature-dependence wall-relaxation or a large value of anisotropic

spin-exchange rate coefficient for Rb-3He and would explain the shortfall 3He measured

polarization.
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Appendix A

Fourier Grid Hamiltonian

The derivation of the Fourier Grid Hamiltonian to follow is taken from Marston and

Balint-Kurti [Marston89] [Balint-Kurti92].

The basic idea behind Fourier Grid Hamiltonian method is the Fourier transforms

between the coordinate and momentum space [Marston89] [Balint-Kurti92] [Borisov01].

The non-relativistic Hamiltonian, H, can be written as a sum of kinetic energy and

potential energy operator

H = T̂ + V̂ (x)

=
P̂ 2

2m
+ V̂ . (A.1)

The potential energy is diagonal in the coordinate representation.

〈x́|V̂ (x)|x〉 = V (x)δ(x́− x) (A.2)

The kinetic energy operator is orthogonal in the momentum representation.

〈ḱ|T̂ |k〉 = h̄2k2

2m
δ(ḱ − k) (A.3)

where k is the wave-number. The transformation between the coordinate and momen-
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tum representation is

〈k|x〉 = 1

(2π)1/2
e−ikx. (A.4)

Thus if can write the Hamiltonian in one representation, we would be all set. It is

easier to work in the spatial coordinate representation. We begin by taking the matrix

element of the Hamiltonian in the coordinate representation

〈x|Ĥ|x́〉 = 〈x|T̂ |x́〉+ V (x)δ(x− x́),

= 〈x|
∫ ∞

−∞
T̂ |k〉〈k|x́〉+ V (x)δ(x− x́),

=
1

2π

∫ ∞

−∞
eik(x−x́)Tkdk + V (x)δ(x− x́). (A.5)

If we now discretize we obtain [Marston89] [Balint-Kurti92] [Borisov01]

Hij = 〈x|Ĥ|x́〉 = 1

2π

n
∑

l=−(n−1)

eil∆k(xi−xj)
[ h̄2

2m
(l∆k)2

]

∆k +
V (xi)δij
∆x

,

=
1

∆x

[

n
∑

l=−(n−1)

eil2π(i−j)/N

N

[ h̄2

2m
(l∆k)2

]

∆k + V (xi)δij

]

, (A.6)

where the momentum spacing is ∆k = 2π
N∆x

and ∆x = L/N the grid spacing in the

coordinate representation. L is the length of the grid, N (even) is the number of grid

points and n = N/2. The above equation in the big bracket is just the normalized

Hamiltonian

H0
ij =

1

N

[[

n−1
∑

l=1

2Tl cos (2lπ(i− j)/N)
]

+ (−1)(i−j)TN/2
]

+ V (xi)δij, (A.7)

where

Tl =
h̄2

2m
(l∆k)2 =

1

2m
(
lh

L
)2. (A.8)

The summation can be shown to yield:

H0
ij =

h2

4mL2

[

(N − 1)(N − 2)
6

+ 1

]

+ V (xi)δij, (A.9)

=
(−1)(i−j)

m

[

h

2L sin (π(i− j)/N)

]2

, (A.10)
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where the first equation is for i = j and the second line is for i 6= j.

Thus, to calculate all the eigenvalues and eigenvectors, the matrix elements are

calculated. The solutions of the matrix are all eigenvalues and eigenvectors, including

all the continuum ones.
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Appendix B

Alignment

B.1 Parts List:

Below are the parts and equipment that we used to build our external cavity diode

array bar.

1. Low ”smile” high power diode array bar with or without microlens (Coherent

Inc. or CEO Inc. diode array bar)

2. Diode current driver (Newport 5045) [Newport]

3. Temperature controller (Melcor MTCA Series-120W) [Melcor]

4. Water-cooled high power diode laser mount (Newport-762 includes TEC for tem-

perature control)

5. Cylindrical microlens (Doric lenses 1.500 mm diameter, 3.0 cm length, BBAR

coated) [Doric]

6. 2× Newport GM-1R 3-axis waveplate/polarizer holder
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7. 2× Newport RSA-1TI solid insert

8. 25.4 mm diameter, 50 mm focal length lens, BBAR coated (plano-convex singlet

or achromat)

9. λ/2 plate in a rotating optics mount

10. 100 mm diameter, 250 mm focal length lens, BBAR coated (Melles Griot) [MellesGriot]

11. 50mm x 50mm 2400 lines/mm holographic diffraction grating (Edmund Industrial

Optics K43-226) [Edmund]

12. Cylindrical lens, 75.6 mm focal length

13. 2-axis translator (New Focus EZ-track) [NewFocus]

14. assorted posts, bases, optical breadboard or table

B.2 Detailed Alignment Procedure

The alignment procedures for building the external cavity diode array bar are listed in

detail in the following subsections. The first two subsections explain the alignment of

the microlens to the array bar. We have found that the external cavity diode array bar

works just as well if the diode array bar is already attached with a microlens by the

manufacturers. Thus, the first two subsections can be skipped altogether.

B.2.1 Machining:

First we mill a 2cm diameter hole in one of the Newport RSA-1TI solid inserts. This

solid insert will be used to mount the micro cylindrical lens. We then mill a 1.5mm
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diameter hole, semicircular in cross section, across the insert. Using glue the micro

cylindrical lens is then attached into the groove.

B.2.2 Align microlens

After the micro-lens is attached, we screw the machined cylindrical microlens holder

RSA-1TI solid insert into one of the GM-1R holders. Place the GM-1R holder onto

the 2-axis translational stage. Position the translational stage about 5 mm from the

diode array bar. Make sure that the center of the microlens and the center of the diode

array bar are at the same height. Also align the vertical axis of the diode array bar

with the vertical axis of the microlens. We then position the 75.6 mm focal length

cylindrical lens at z = 9 cm, and place a white screen at z = 58 cm. Turn the diode

array bar on, running just above threshold. Using one of the knobs on the translational

stage, we carefully translate the microlens in towards z = 0 while observing the image

of the diode array at the screen (x,y,z=0 at the center of the diode array bar). As the

microlens is moving closer to the diode array, make adjustments to the microlens to

make sure that the vertical axis of the diode array is parallel to the axis of the micro-

lens. As the microlens is getting closer to the diode array, at some point an image of

some portion of the array should begin to come into focus on the white screen. Stop

moving the microlens. If the image on the screen is not symmetric about the y-axis,

adjust the rotation of the microlens with one of the knobs. Then, if only a portion of

the diode array image is focused on the screen, it means that the vertical position, the

y-axis, of the microlens is not yet parallel with the diode array. Keep in mind that the

image is inverted. Thus, for example, if the vertical portion is imaged on the screen

that means the bottom part of the microlens is closest to the diode array bar. Move

the microlens away from the diode array bar and adjust the position of the microlens
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using the vertical adjustment on the knob on the GM-1R holder. Move the microlens

back to the original position. Now there should be more of the diode array imaged on

the screen. Move the microlens out again and continue adjusting the vertical position

of the microlens and move the microlens back until the whole diode array is imaged on

the screen. Figure 4.1 shows the image of the diode array bar on the screen. Notice

the curvatures of the diode array bars. After the diode array bar is properly imaged,

remove the cylindrical lens and screen. Put the light beam of the diode array bar

far(5m-10m) away and adjust the microlens until the beam is collimated. The beam

size should be a few millimeters. Figure B.2 shows a picture of the diode array bar

mounted on the diode mount and the microlens.

λ/2

Figure B.1: External cavity diode array bar picture

B.2.3 Align telescope

Place the first telescope lens at z=50 mm. Project the beam onto the wall again. Make

sure that the height of the center of the beam is at the same height as the diode array
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Figure B.2: Detailed picture of the diode array on the mount with the microlens

attached

bar. Place the λ/2 plate a few cm from the first lens. Then place the second telescope

lens at z=350mm. Again make sure the vertical and horizontal position of the beam is

aligned with the diode array bar.

B.2.4 Position grating

Screw the second RSA-1TI insert into the GM-1R holder. Cement the holographic

grating onto the RSA-1TI insert. Position the center of the grating at z=600 mm. An

image of the diode array should be shown on the grating. Make sure that the groove

of the grating is along the y-direction. Measure the power output and adjust the λ/2

plate for maximum power output.
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B.2.5 Adjust feedback

Once all the lenses and grating are in place, use some appropriate spectrometer for

observing the frequency of the array output in real time (e.g. Ocean Optics S2000

spectrometer). Adjust the position of the grating to allow for the first order diffraction

light as the feedback back to the laser. A tuning peak with a broad background should

show up in the spectrometer. Care must be taken to make sure that the spectrometer

samples all of the diode bar elements equally. We found a good method is to focus the

output beam onto a small spot on a holographic diffuser. The spectrometer is then

placed behind the diffuser to sample the light.

Most likely the external cavity diode array is not working properly yet and needs

further adjustments. The goal is to maximize the tuning peak. Make sure the groove

of the grating is pointed along the y-direction; adjustment can be made with one of

the knobs on the grating holder. Once that is maximized and if the diode array bar

did not come with the microlens attached, further improvement can usually be made

with the microlens by adjusting the horizontal position. Be extremely careful with

this adjustment, since the microlens is very close to the diode array bar already. Once

all these adjustments are maximized adjust the feedback using the λ/2 plate until the

desired spectrum is obtained. Usually, the feedback required is about 20-30% of the

free-running power output. Then turn the laser current to the desired power output.

Figure B.1 shows the picture of the external cavity diode array bar.

B.2.6 Output Coupling

The high, spatially asymmetric output of the laser is efficiently coupled to the cell

using the optical system set up as shown in figure C.2 (Appendix C). The choice of

lenses depends on the distance and setup of the experiment. Shown in figure C.2 is a
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set up for pumping one of our cylindrical cells with D=4.7 cm and L=4.9 cm. Here

we use a 200-mm cylindrical lens to produce a symmetric, uniform beam on the λ/4

plate. A 62.7 mm spherical lens then images this plane onto the front face of the

cell. Thus, depending on the experimental conditions a variation of this scheme can be

implemented. Note that an additional lens is needed to fix skew light [Appendix C].
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Appendix C

Skew Light Propagation in

Optically Pumped Cell

For a neutral anisotropic vapor, Maxwell’s equation can be written as

∇2−→E −∇(∇ · −→E )− 1

c2
∂2
−→
E

∂t2
=
4π

c2
∂2P

∂t2
, (C.1)

where P is the induced polarization. If we assume we have a plane wave of the form

−→
E = Eei(k.r−wt) (C.2)

with amplitude E, frequency ω, and propagation wavenumber k = k/k, the induced

polarization P is defined as

P = χ · −→E , (C.3)

where χ is the susceptibility tensor.

From equations C.1, C.2, C.3 the propagation of the light wave through an anisotropic

vapor becomes

(k2 − kk.)E = k20(1 + 4π~χ·)E, (C.4)
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where k0 = ω/c. In our experiment we are interested in the effect of pump light

propagating at an angle θ with respect to the quantization axis, z. First, we write the

electric field amplitude as the superposition

E = Eaâ+ Ebb̂, (C.5)

where â = ẑ×k̂/ sin θ and b̂ = k̂×â are the unit vectors and orthogonal to k̂ and θ is the

angle between the quantization z-axis and the propagation vector. The wavenumber

k, amplitude Ea and Eb can be written as

k = (sin θ cosφ, sin θ sinφ, cos θ) (C.6)

Ea = (sinφ,− cosφ, 0) (C.7)

Eb = (cos θ cosφ, cos θ sinφ,− sin θ) (C.8)

For an optically pumped vapor with B-field along the z-direction the alkali-metal

susceptibility can be written in the simple form [Happer72][Appelt98]

χ = χ0(1− iPẑ×). (C.9)

Here χ plays the role of the Hamiltonian as in the Schrodinger equation. Taking the

matrix elements

â · χ · â = b̂ · χ · b̂ = χ0, (C.10)

b̂ · χ · â = −iPχ0 cos θ = −â. · χ · b̂. (C.11)

Thus, the matrix of χ is just








χ0 iχ0P cos θ

−iχ0P cos θ χ0









The eigenvectors and eigenvalues of χ are

e± =
â± ib̂√
2

(C.12)

χ± = χ0(1∓ P cos θ) (C.13)



133

For a highly polarized vapor P ≈ 1, the e− mode is rapidly attenuated at the

entrance to the vapor cell [Bhaskar80]. The interior of the cell the light is primarily in

the e+ mode. Note, however, that the transparency of this mode is not perfect even

for P = 1 due to the cos θ factor. To see this more clearly we find the wavenumber by

substituting equation C.13 into equation C.4, assuming k · E = 0,

k2 = k20 + 4πk
2
0χ0(1− P cos θ). (C.14)

k ≈ k0(1 + 2πχ0(1− P cos θ)). (C.15)

Hence, from this last equation, the attenuation of the light obeys

dI

dr
= −nσI(1− P cos θ), (C.16)

instead of dI
dr
= −nσI.

We now consider how the optical pumping is affected by the imperfect polarization

of the light along the magnetic- field direction. Write out all the terms

e+ =
Ea + Eb√

2
(C.17)

= (sinφ+ i cos θ cosφ,− cosφ+ i cos θ sinφ,− sin θ)/
√
2. (C.18)

It can then be resolved into σ+, π, and σ− polarization components. The fraction of

light contains in each polarization is

f+ = cos
4(θ/2) (C.19)

fπ = 2 cos
2(θ/2) sin2(θ/2) (C.20)

f− = sin
4(θ/2) (C.21)

In steady state, the rate at which angular momentum is added to the alkali-metal atoms

by depopulation pumping from the ms = −1/2 state must be balanced by the rate at
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which angular momentum is removed by depopulation pumping from the ms = 1/2

state and by spin relaxation

dt〈Fz〉
dt

= R
(

fπ
2
+ f+

)(

1

2
− P

2

)

−R
(

fπ
2
+ f−

)(

1

2
+
P

2

)

− ΓP
2

(C.22)

At steady state the above equation reduces to

R
(

fπ
2
+ f+

)(

1

2
− P

2

)

= R
(

fπ
2
+ f−

)(

1

2
+
P

2

)

+
ΓP

2
(C.23)

solving for the polarization, P , gives

P =
R(f+ − f−)
R + Γ

=
R cos θ

R + Γ
. (C.24)

Combining equation C.24 with equation C.16 gives

dI

dr
= −nσI

(

R sin2 θ + Γ

R + Γ

)

(C.25)

Thus, the ratio of the differential equation with the pump beam propagating at an

angle θ to when θ = 0 is

dI

dr

∣

∣

∣

∣

∣

θ

/

dI

dr

∣

∣

∣

∣

∣

θ=0

=
R sin2 θ

Γ
+ 1. (C.26)

The last equation tells us explicitly that when the pump beam makes an angle θ

with the quantization axis, the absorption of the pump beam is greater by a factor

R sin2 θ

Γ
+ 1. (C.27)

This can be quite severe in Rb-3He optical pumping (worst in K-3He), where R can be

quite high and Γ is small. For a 50-W, 1-THz-broad 795-nm laser with a cell area of 40

cm2, since the laser linewidth is much broader than the atomic linewidth, we estimate

R ≈ φ(ν)
∫

dνσ(ν) = φ(ν)πrefc = 4.4× 104 s−1. (C.28)
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A typical relaxation rate for Rb in Rb-3He cell might be 500 s−1, so that an θ = 0.11

radian, the light absorption rate at the entrance to the cell is double.

Figure C.1 illustrates the effect [Chann02a]. We used a 15-W frequency narrowed

diode laser sent along the axis of a 5-cm-long, 4.5-cm-diameter cylindrical Rb vapor

cell contains 0.85 bar of 3He and 65 torr of N2. The temperature of the cell was 185C.

The optical depth at this temperature is about 600. With only a skew angle of 3.1

degree ( Bz= 8 gauss, and Bx=0.44 gauss), the transmission of the pump cut almost

by half as compared to when the skew angle is a degree or less.

A second illustration of the effect is shown in figure C.3. The cell is heated to 200C

where an optical depth of about 1000. Using about 17W of divergence narrowed light

(overfilled), the Rb polarization measured is about 44%. We then collimate the pump

light using a 400mm focal length (150mm diameter) as shown in diagram C.2. The Rb

polarization increases to 81%.
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The transverse field of 0.44 G is simply the Earths field that is cancelled for the 0.5-G

data.
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Figure C.2: Ray tracing optics (side view) used to correct for skew-light propagation.

The grating, not shown, is at x=0. We used a 150mm diameter, 400 mm focal length

biconvex lens to correct for the large divergence angle. The insert diagram is without

the correction lens. The pump is overfilling the cell to insure uniform Rb polarization.

Figure C.3 shows the results of the PRb with and without the correction optics.
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Figure C.3: EPR spectra taken with divergent and collimated light. Without col-

limation the PRb = 44%, while collimated the PRb = 81%. The main peak is the

F = 3,m = 3 → F = 3,m = 2 transition in 85Rb, while the second peak is the

unresolved F = 3,m = 2 → F = 3,m = 1and F = 2,m = 2 → F = 2,m = 1 pair.

Notice the narrowing of the F=3, mF = 3 → F = 3,mF = 2 peak as the polarization

is getting higher [Appelt99]
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Appendix D

Faraday Rotation

The following derivation of Faraday rotation is a generalization of Kadlecek’s derivation

[Kadlecek00] [Kadlecek01] [Vliegen01], where the fine structure mixing is taken into

account due to the applied static magnetic field. This is especially important when the

probe detuning is close to one of the resonances (P1/2 and P3/2) or the fine-structure

splitting is small. We thank Prof. Nornval Fortson (University of Washington Physics

department) for pointing out this effect.

For an alkali-metal atom in magnetic field Bz, the polarizability α± can be written

as

α± =
e2

2h̄

∑

JmJms

{ms|r∓1|JmJ}{JmJ |r±1|ms}
ω − ωJmJms

+ iγ/2
Pms

, (D.1)

where the magnetic field Bz mixes states with the same mJ but different J . Pms
is

the probability to be in ground state |ms〉 = ±1/2. r± are the two components of the

spherical basis. γ is the spontaneous decay rate from the state J . In our experiment,

the probe is usually about 500-1000 GHz from resonance and, thus, we are only taking

into account the fine-structure. A similar equation can be written when the hyperfine

structure have to be taken into account. From first order perturbation theory, the
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excited state |JmJ} and ground state |ms} can be written as

|JmJ} = |JmJ〉 − |J
′

mJ〉
〈J ′

mJ |HΩ|JmJ〉
EJ

′ − EJ

(D.2)

|ms} = |ms〉 − |J
′

mJ〉
〈J ′

mJ |HΩ|ms〉
EJ

′ − Ems

= |ms〉, (D.3)

where HΩ = gJµBJzB. The matrix element in equation D.3 is zero since the two wave-

functions have opposite parity and the operator is even parity. Substituting the last

two equations into equation D.1, the resulting equation is

α± =
e2

2h̄

∑

JmJms

[

〈ms|r∓1|JmJ〉〈JmJ |r±1|ms〉
ω − ωJmJms

+ iγ/2
(D.4)

− CJmJ

〈ms|r∓1|J ′

mJ〉〈JmJ |r±1|ms〉+ 〈ms|r∓1|JmJ〉〈J ′

mJ |r±1|ms〉
ω − ωJmJms

+ iγ/2

]

,

where CJmJ
= 〈J

′

mJ |HΩ|JmJ 〉
E

J
′−EJ

and the second order in CJmJ
is neglected. It can be

further simplified to

α± ≈ e2

2h̄

∑

JmJ

〈ms|r∓1|JmJ〉〈JmJ |r±1|ms〉ΩJmJMs

∆2
J

− e2

h̄

∑

JmJms

〈ms|r∓1|J ′

mJ〉〈JmJ |r±1|ms〉
∆J

, (D.5)

where

ω − ωJmJms
= ∆J − ΩJmJms

(D.6)

and Ω = µBB/h̄. Also γ has been neglected which is valid for large detuning from

resonance. The difference between indices for the two circular polarizations is defined

as

n− − n+ =
√

1 + 4πNRe(α−)−
√

1 + 4πNRe(α+) ≈ 2πN(α− − α+), (D.7)

where N is the alkali-metal vapor density.
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The difference of α+ and α− for the magnetic field dependence gives

α+ − α− =
−e2Ω
2mω

[

14

9∆2
3/2

− 4

9∆3/2∆FS

+
8

9∆2
1/2

+
4

9∆1/2∆FS

]

, (D.8)

where −∆FS = ∆3/2−∆1/2 is the fine-structure splitting. Hence, the Faraday rotation

as a function of magnetic field gives

ΘB =
πNLω

c
(α− − α+)

=
[N ]Le2µBB

18mhc

[

7

∆2
3/2

+
4

∆2
1/2

− 2

∆3/2∆1/2

]

, (D.9)

where the detuning are in units of Hertz.

The Faraday rotation as a function polarization P is less sensitive to the fine-

structure mixing and is [Kadlecek00]

ΘP =
[N ]Le2P

6mc

[

1

∆3/2

− 1

∆1/2

]

, (D.10)

where the detuning are in units of Hertz.
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