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0.1 Abstract

This dissertation describes experiments involving the Holographic Atom Trap

(HAT) (Newell et al., 2003). The HAT is a novel far-off resonant optical trap formed

by the interference of five Nd:YAG laser beams. At the intersection of the five beams a

lattice of microtraps is formed; each mictrotrap is 10µm x 10µm x 100 µm in size. Three

primary experiments will be discussed. The purpose of this work is the development

of high density, mesoscopic atomic samples for use in studying Rydberg physics.

The first experiment described in this dissertation uses the HAT to attain high

phase space densities approaching the quantum phase transition into a Bose Einstein

Condensate. The phase space density is increased by preforming forced evaporation in

the HAT. A model has been developed to understand the evaporation dynamics. Using

the model as a guide for how to efficiently lower the trap depth, phase space densities

of 1.1 are demonstrated. During evaporation, the number of atoms in the HAT are

measured with either a calibrated absorption imaging system or Spatial Heterodyne

imaging (Kadlecek et al., 2001).

The second experiment uses the HAT to attain high density atomic samples

(Sebby-Strabley et al., 2004). Atoms are evaporated from the HAT until the phase

space density approaches unity. Then the trap depth is rapidly increased to compress

the atom cloud. The result is atomic densities in excess of 1 × 1015 atoms/cm3, the

highest atom densities attained in incoherent ultracold matter. We have verified these

densities three ways: measuring the number of atoms, the temperature, and the oscil-

lation frequency of the atoms in the cloud; measuring the 3-body recombination rate;

and measuring the spatial profile of the dense atomic clouds.

In an extension of the second experiment which produced the high density sam-
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ples, we have produced and observed mesoscopic atom samples (Sebby-Strabley et al.,

2004) which contain 2000 atoms and are 5.6 µm in the longest direction. Creation of

these samples represents an important step towards the first observation of a complete

dipole blockade and eventually the realization of using Rydberg atoms for quantum

computation (Lukin et al., 2001). A further extension of this work is to generate one

Rydberg atom in a HAT microtrap, and this will blockade further Rydberg excitation.

By exciting one Rydberg atom to n=95, we estimate the probability of a second excited

atom in a single compressed microtrap is < .001.

The final experiment described in this dissertation is a prelude to the Rydberg

experiments in the HAT: the creation of 46d and 48s Rydberg atoms in a Magneto-

optical trap (MOT), and the investigation of suppression of Rydberg excitation from

Rydberg-Rydberg interactions. The Rydberg atoms created in this experiment have a

range of influence much less than the size of the atomic cloud. In this case the excitation

is suppressed, not blockaded. The Rydberg atoms were excited by either a single photon

excitation from the 5P3/2 to nl state or by a two photon excitation from the 5S1/2 to

the nl Rydberg state. This work is the first demonstration of a two photon excitation

of Rydberg atoms in a MOT. This work also presents the first measurements of the

absolute loss rate of atoms from the MOT due to Rydberg excitation. The fundamental

lower limit on the loss rate of Rydberg atoms from the MOT is given by the black body

ionization rate. Given this, the measured loss rates are approximately 25/sec, over a

factor of 3 lower than expected. A model describes the loss rates due to Rydberg

excitation. Built into the model is the suppression of excitation to the Rydberg state

from Rydberg-Rydberg interactions. The fit to the model suggests that excitation to

the Rydberg state is suppressed.
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Chapter 1

Introduction

1.1 Background and Motivation

Two of the most exciting areas in atomic physics involve recent developments in

quantum computing and quantum manipulation, and the studies of Rydberg atoms

in cold atomic clouds. Typically Rydberg experiments with cold atoms are done in

Magneto-optical traps (MOTs) which tend to have large spatial scales (≈ 1 mm) and

contain many atoms (N > 106). Thus, experiments with Rydberg atoms have been

limited to densities found in MOTs (1010− 1012 atoms/cm3). Conversely, the majority

of atomic physics experiments in quantum computation and manipulation have been

done using only a few atoms or even a single atom stored in an tightly confined optical

trap or high finesse cavity (Sauer et al., 2004) (McKeever et al., 2004 ) . Relatively few

experiments have been done at an intermediate length scale with a large ensemble of

atoms. While the fields of quantum manipulation and Rydberg atoms have generated

much recent interest and made profound forward progress, there is a need in both

of these fields for small and/or dense atomic samples. The primary result of this

dissertaion is a robust demonstration of high density (> 1015 atoms/cm3) mesoscopic

(5 - 10 µm) atom samples which are ideal for quantum manipulation and computation
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involving Rydberg atoms.

Experiments with Rydberg atoms date back to 1885 when Rydberg atoms were

detected in the Balmer series of Hydrogen. More recently Rydberg atoms have been

generated in Magneto-optical traps. The first generation of Rydberg atoms in a cold

atomic sample was in 1998 (Anderson et al., 1998). Since then Rydberg physics using

cold atom samples has revealed many new phenomenon. For instance, several groups

have used Rydberg atoms to create cold plasmas (Roberts et al., 2004) (Gallagher

et al., 2003) (Walz-Flannigan et al., 2004) (Simien et al.,2004). Ion formation and

dynamics of the resulting plasma are becoming well understood. However, this work

has been limited to atomic densities attainable in a Magneto-optical trap. Generat-

ing Rydberg plasmas in the samples presented here, which have orders of magnitude

higher densities than MOTs, promises to reveal more new and interesting phenomenon.

Furthermore, new proposals (Greene et al., 2000) (Boisseau etal., 2002) (Farooqi et al.,

2003) predict the existance of novel ultralong range Rydberg molecular states. The

formation of these Rydberg molecules require extremely high densities to attain signif-

icant production rates. These molecules have been called ”trilobite” molecules because

the molecular wave function resembles a trilobite (a hard-shelled segmented prehistoric

creature that existed in the Earth’s ocean 300 million years ago). Greene (Greene et al.,

2000) suggests that in dense atomic samples, on the order of 1015atoms/cm3, trilobite

molecules should be observable.

Other topics that could be addressed with Rydberg atom production in high

densities atomic samples are line broadening and spectral shifts. Line broadening

occurs when collisions change the atomic phase during absorption or emission of a

photon. This results in greater variance of the frequencies emitted or absorbed and

thus broadens the respective line. Line broadening is important to understand as it is

a probable source of decoherence in quantum computing. Similarly, spectral shifts are
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also a result of collisions but can come from two sources: collisions involving the highly

excited electron or collisions involving the Rb ion. Spectral shifts were first calculated

by Fermi and have been measured in the presence of buffer gases, but no measurements

have been made in a cold atomic gas at densities in excess of 1014 atoms/cm3.

While high density samples have many applications, experiments at the frontier

of atomic physics also require small atomic clouds (5-10 µm in the largest dimension).

Recently, Lukin et al. (Lukin et al., 2001) proposed using Rydberg atoms to perform

quantum logic. They predicted that a long range dipole-dipole interaction produced

by a Rydberg atom would block the excitation of other Rydberg atoms. Evidence for

suppression of Rydberg excitation has been seen in MOTs where the blockade range is

much smaller than the sample size (Singer et al., 2004) (Tong et al., 2004). In theory

this suppression could turn into a total blockade if the sample size was less than the

blockade range. The atomic samples demonstrated in this dissertation have a radius of

5.7 µm. These samples fit the criteria that their spatial scales are less than the range

of influence of a highly excited Rydberg atom, and these samples would be excellent

candidates for the demonstration of dipole blockade.

In this disseration we report on using a Holographic Atom Trap (HAT) (Newell et

al., 2003) to form high density, mesoscopic atom samples (Sebby-Strabley et al., 2004).

The method involves performing forced evaporation in the HAT to high phase space

densities followed by a recompression of the trap depth. This work represents signif-

icant advances in the field. No other experiment has demonstrated mesoscopic atom

ensembles suitable for the demonstration of dipole blockade. The samples presented

in this thesis are the first demonstration of atomic clouds well-suited to investigate

high speed, high fidelity collective coherent quantum manipulations. Furthermore, the

densities presented here are the highest densities demonstrated in ultracold incoher-

ent matter. The ability to use a ”classical” gas to do experiments, such as long range
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molecule formation between Rydberg atoms, greatly simplifies the needed experimental

resources and adds versatility to the experiment.

1.2 Summary of the Dissertation

This dissertation discusses experiments involving the Holographic Atom Trap

(HAT) (Newell et al., 2003). Three primary experiments will be discussed: force evap-

oration in the HAT to high phase space density, creation of high density mesoscopic

samples in the HAT, and generation of Rydberg atoms in the MOT as a prelude to

future work in the HAT. The overall purpose of the work described in this disserta-

tion is the development of high density, mesoscopic atomic samples for use in studying

Rydberg physics.

The dissertation begins with the description of the HAT. The HAT is a novel

far-off resonant optical trap formed by the interference of five Nd:YAG laser beams.

At the intersection of the five beams a lattice of microtraps is formed; each microtrap

is 10µm x 10µm x 100 µm in size. Using an interference pattern to form the trap

has two advantages: the resulting trap depth is 3 times larger than if the light was

simply focused to form a single beam optical trap, and the rapid spatial variation in

intensity tightly binds the atoms yielding high oscillation frequencies. The HAT is

unique in that it enjoys high oscillation frequencies yet can store many atoms per site.

These two features make the HAT an excellent candidate for rapidly achieving high

atom densities and high phase space densities. We have developed an efficient loading

procedure to transfer atoms from the Magneto-optical trap (MOT) into the HAT. Using

this loading procedure we are able to load 36,000 atoms into each microtrap. After

loading we have demonstrated phase space densities of 1/200 and atom densities in

excess of 2× 1014 atoms/cm3. The discussion of the HAT is divided into two chapters.

The first chapter will develop the theory of the HAT. The second chapter will discuss
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the diagnostic methods for characterizing the HAT, loading the HAT from the MOT,

and some results attained in the HAT.

Included in Chapter 3 is a discussion of imaging systems. Two imaging systems

have been implemented in the development of the HAT: absorption imaging and spatial

heterodyne imaging. Our implementation of absorption imaging is novel in that it is

calibrated. Our imaging laser is stabilized to an optical transition which optically

pumps atoms to a different hyperfine state after the atoms scatter two photons. Once

optically pumped the atoms no longer interact with the imaging laser. Determining the

number of atoms is trivial: the number of atoms is the number of photons absorbed from

the probe beam divided by two. The second imaging system used in this experiment

is Spatial Heterodyne imaging (Kadlecek et al., 2001). Spatial Heterodyne imaging

is a interferometric nondestructive imaging system which measures the phase shift

imprinted on an off-resonant probe beam as it passes through the atom cloud. The

probe beam is interfered on a CCD camera with a reference beam which does not go

through the atoms, resulting in a set of straight line fringes warped at the location of

the atom cloud. The information about the atoms is extracted in a method analogous

to lock-in detection. Spatial Heterodyne is the most nondestructive imaging system

ever used to image cold atoms, capable of imaging cold atoms with a signal to noise of

10 while only scattering 0.0004 photons/atom.

Chapter 4 of this dissertation describes an experiment which uses the HAT to

attain high phase space densities approaching the quantum phase transition into a

Bose Einstein Condensate. The method described in this experiment will serve as a

fundamental piece in the development of the high density mesoscopic atomic clouds

discussed in Chapter 5. The phase space density is increased by performing forced

evaporation in the HAT. This is achieved by lowering the trap depth in such a way

that the phase space density is maximized. A model has been developed to understand
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the evaporation dynamics. The model describes evaporation as a two step sequence:

lowering the potential followed by rethermalization. The two steps are repeated over

and over, and the next step cannot start until the previous step has been completed.

Using the model has a guide for how to efficiently lower the trap depth, phase space

densities of 1.1 are demonstrated. During evaporation, the number of atoms in the

HAT are measured with either absorption imaging or Spatial Heterodyne imaging, and

the temperature of the atoms is measured via time-of-flight. The temperature agrees

perfectly with the temperature predicted in the theoretical model, however, this work

reports on a discrepancy between the number of atoms predicted by the theory and

the number of atoms measured. This discrepancy is most likely caused by the presence

of a heating mechanism.

Chapter 6 is devoted to the discussion of heating mechanisms. Heating mecha-

nisms can be disguised as atom loss during evaporation: evaporation will always cause

the temperature to decrease, but if a heating mechanism is present the evaporation

process will cause excess atom loss. Two types of heating mechanism are discussed:

heating from the confining laser and heating due to collisions with the background

atoms. The heating rates from these sources were estimated and compared with theo-

retical rates which would account for the atom loss seen in the experiment. From our

estimates we concluded that even after a factor of 5 improvement in the quality of the

vacuum from previous work (Newell, 2003), at large trap depths the dominant heating

mechanism is from quantum diffractive collisions with the thermal background Ru-

bidium atoms. At lower trap depths heating from laser intensity noise and secondary

collisions are important. In this chapter we discuss a new heating mechanism: torque

heating, and derive equations for the heating rate. This work represents the first study

of this type of heating. A complete derivation of the heating rates associated with

torque heating is given in Appendix E.
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Using a method discussed in Chapter 5, we have developed a way to measure

heating rates. The measured heating rates are in good agreement with the quadrature

sum of of the heating rates due to laser induced intensity noise, quantum diffractive

collisions, and secondary background collisions. Heating due to quantum diffractive

collisions and secondary background collisions have been included in the evaporation

model. With the inclusion of these heating rates, the model does a better job of predict-

ing the number loss and the ultimate phase space density. The remaining discrepancy

between the theory and the experimental results is most likely due to intensity noise

from the YAG laser which was not included in the evaporation model. With the inclu-

sion of these heating rates, the model predicts that the phase transition to quantum

degeneracy is not attainable given the current initial conditions.

Chapter 5 of this dissertation discusses a second experiment which uses the HAT

to attain high density atomic samples (Sebby-Strabley et al., 2004). Atoms are evap-

orated from the HAT by decreasing the trap depth until the phase space density ap-

proaches unity. Then the trap depth is rapidly increased to compress the atom cloud.

The result is atomic densities in excess of 1× 1015 atoms/cm3, the highest densities at-

tained for ultracold incoherent matter. This result represents one of the primary goals

of this work. We have verified these densities three ways: measuring the number of

atoms, the temperature, and the oscillation frequency of atoms in the trap; measuring

the 3-body recombination rate; and measuring the spatial profile of the dense atomic

clouds. The 3-body recombination rate is proportional to n2. Our measurements of the

3-body recombination rates are in close agreement with previous measurements (Burt

et al.,1997), a solid verification of our densities. To our knowledge, this work is the first

work to measure 3 body recombination rates in a pure optical trap. The measurements

were repeated in a bias magnetic field similar to a field typically found in a magnetic

trap; we found this did not alter the measured rate.
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Also discussed in Chapter 5 is the production of mesoscopic atom samples (Sebby-

Strabley et al., 2004). According to the Oxford English dictionary, the word mesoscopic

refers to a length scale ”between macroscopic and atomic (typically between 10−6 m

and 10−8 m). Hence: influenced by or exhibiting both quantum and macroscopic

phenomena.” We have produced and observed atomic clouds containing 2000 atoms and

are 5.6 µm in the longest direction. Creation of these samples represent an important

step towards the first observation of a complete dipole blockade and eventually the

realization of using Rydberg atoms for quantum computation [Lukin et al., 2001]. In

a Rydberg blockade one, and only one, atom is excited into the Rydberg state. For

this to happen the length of the atomic sample must be less than the range, or radius,

of influence for an excited Rydberg atom, and the minimum interaction between a

pair of atoms must be sufficiently large to block the excitation of the pair of atoms.

Evidence for suppression has been seen in MOTs where the range of influence of the

excited Rydberg atom is less than the size of the atomic sample (Singer et al., 2004)

(Tong et al., 2004). The ultimate goal of this work is to demonstrate atomic samples

which have a radius less than the range of influence of an excited Rydberg atom, and

then use these clouds to generate one Rydberg atom in the HAT and blockade further

Rydberg excitation. In the absence of an external electric field, the interaction between

the Rydberg atoms is the van der Waals interaction (∼ 1/R6). By exciting a single

Rydberg atom with a principal quantum number of n=95 in a HAT microtrap, the

mean Rydberg-Rydberg blockade shift is predicted to be in excess of 20 MHz resulting

in probabilities of exciting a second atom as low as .001. The calculation for estimating

this probability is shown in Appendix B.

A stronger interaction between Rydberg atoms can be achieved by creating a

static electric field and inducing a permanent dipole moment in the atoms. The atoms

then interact in a 1/R3 dipole-dipole potential. The drawback of this potential is that
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at 54.7◦ the potential is zero, and at angles close to 54.7◦ the interaction is weak. This

would cause an incomplete blockade if atom pairs were oriented at angles close to 54.7◦.

If one atom in the pair is excited to the Rydberg state, there would be no mechanisms

for blocking the excitation of the atom pair. In the HAT, however, the trap geometry is

so anisotropic that this effect is suppressed. For atom pairs with a weak dipole-dipole

interaction there is still a strong van der Waals interaction to prevent the excitation of

a pair of Rydberg atoms. We estimate a mean dipole-dipole blockade shift in excess of

400 MHz. Under these conditions the probability of exciting two atoms within a single

microtrap is 10−7. The small size and the anisotropic nature make the HAT well-suited

to investigate coherent quantum manipulations.

The final experiment, described in chapter 7 of this dissertation, is a prelude

to the Rydberg experiments in the HAT: the creation of 46d and 48s Rydberg atoms

in the MOT and investigation of suppression of Rydberg excitation from Rydberg-

Rydberg interactions. The Rydberg atoms created in this experiment have a range

of influence much less than the size of the atomic cloud. In this case the excitation

will be suppressed, not blockaded. The Rydberg atoms were excited by either a single

photon excitation from the 5P3/2 to nl state or by a two photon excitation from the

5S1/2 to the nl Rydberg state. This work is the first demonstration of a two photon

excitation of Rydberg atoms in a MOT. A two photon excitation is preferable for

coherent quantum manipulations because the intermediate state is negligible. In the

single photon excitation atoms can decay from the 5P3/2 to the 5S1/2 without being

excited to the Rydberg state which is a source of decoherence. Furthermore, the two

photon excitation will be necessary for exciting Rydberg atoms in the HAT. The use

of resonant light in the one photon scheme will be a source of heat for atoms in the

HAT and will limit the timescale for doing experiments to only tens of microseconds.

This work also presents the first measurements of the absolute loss rate of atoms
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from the MOT due to Rydberg excitation. The loss rate is extracted from the MOT

fluorescence signal. We measure a maximum loss rate of 25/sec. The fundamental

lower limit on the loss rate of Rydberg atoms from the MOT is given by the black

body ionization rate which has been calculated to be 290/sec at n=50. Given this, the

measured loss rates are over a factor of 3 lower than expected. A model is presented

which describes the loss rates in the MOT due to Rydberg excitation. Built into the

model is the suppression of excitation to the Rydberg state from Rydberg-Rydberg

interactions. The model describes the system as a four level system. The evolution of

the populations in each of the levels is described by a set of rate equations. Our data

is compared to the model under the conditions that no suppression is present. At low

powers of the Rydberg excitation laser, the loss rates predicted by the no-suppression

model agree quite well the the measured loss rates. At higher laser powers the measured

loss rate saturates but at a lower power than the model loss rate saturates. The

deviation of the data from the no-suppression model signifies the presence of Rydberg-

Rydberg suppression. From the fit to the model, the extracted range of influence of the

Rydberg atoms is approximately 5µm, approximately 50 times the classically calculated

radius.

This is ongoing work. Current work is investigating the loss rates at a lower

principle quantum number. The interaction between Rydberg atoms due to the van der

Waals potential should scale as n11; at lower principal quantum number no suppression

is expected, at higher principal quantum number substantial suppression should be

observed. The next step in this experiment is to create Rydberg atoms in the HAT

and try to observe a complete Rydberg blockade.

The dissertation concludes with a summary of the work presented here and a

discussion of the current and future work.
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Chapter 2

Holographic Atom Trap

2.1 Introduction

In this chapter we will discuss a novel far-off resonant optical dipole trap, the

Holographic Atom Trap (HAT) (Newell et al., 2003). The goal for this work was

to create a trapping potential that would readily lend itself to the formation of high

density and high phase space density clouds. The HAT is formed by the interference

of five Nd:YAG beams. The resulting interference pattern is a collection of small, cigar

shaped traps. While the traps are small, 10 µm x 10 µm x 100 µm, we can load many

atoms per site.

I will begin this chapter with a basic introduction to optical dipole traps. The

interaction between the atoms and the confining laser can be minimized by using a

far-off resonant optical trap (FORT). FORTs have been employed in many research

groups, for instance, (Barrett et al., 2001) (O’Hara etal., 1999), because FORTs have

demonstrated long storage time while having virtually no effect on the trapped atoms.

Next I will discuss the theory of the Holographic atom trap, primarily the geom-

etry of the interference pattern. The oscillation frequencies of atoms in the HAT are

measured with parametric excitation. The procedure for measuring the frequencies is
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discussed, and we report the measurements of νx = νy = 18.9kHz and νz = 760 Hz.

These measurements are in good agreement with the calculated value for the oscillation

frequencies. For future reference equations for density, phase space density, thermal

radius, and elastic collision rate are given.

Finally I will discuss the apparatus. The apparatus has four primary components:

the YAG laser, the optical train, the intensity stabilizer, and the Magneto-optical trap

(MOT). The YAG laser is a CW multimode-mode flashlamp-pumped laser. Since the

path length difference between the five beams which interfere to form the HAT is small,

the coherence length can be short permiting the usage of a multimode laser. We have

measured the coherence length to be 7.56 cm (Newell, 2003), and we have measured

the M2 to be 1.07. The primary components of the optical train are an AOM, the

diffraction grating, and the transfer lenses which image the diffraction grating onto the

atom cloud. The intensity stabilizer is used to remove intensity noise from the laser. It

will be discussed in Chapter 6. A diagram for the intensity stabilizing feedback circuit

is shown in Appendix C.

The last major component of our apparatus is the Magneto-optical trap (MOT).

The HAT is loaded from the MOT. While the details of the loading procedure will be

given in the following chapter, I will end this chapter with a discussion of the MOT

utilized in this work. MOTs have become commonplace in many of today’s atomic

physics experiments. MOT technology is so well developed that it has become as much

of a tool in atomic physics as an object of study. Many excellent references describe

the fundamentals of MOTs (Metcalf and van der Straten, 1999), and for that reason,

the physics behind a MOT will not be discussed here. I will focus on giving some

details specific to our MOT. Typically we can trap and cool 1.56 x 108 Rubidium-87

atoms in a MOT cloud with a 1 mm radius giving a density of 3.7 x 1010 atoms/cm3.

We have measured the temperature of atoms in the MOT to be in good agreement
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with the predictions of Gertz et al. (Gertz et al., 1993). To attain higher densities we

employ a dark SPOT MOT (Ketterle et al., 1993). We have measured our densities

with the technique of spatial heterodyne imaging, also discussed in the next chapter, to

be 4× 1011 atoms/cm3, an order of magnitude larger than the density of our standard

MOT.

2.2 Theory

2.2.1 Optical Dipole Traps

The essence of an optical dipole trap is to use a laser to induce an oscillating

electric dipole moment on the atoms. If the laser field is inhomogeneous (focused),

this interaction exerts a force on the atoms. Depending on the detuning of the laser

relative to the atomic resonance, the force that the dipole traps exerts on the atom

can be either attractive (detunings below the atomic resonance) or repulsive (detunings

above the atomic resonance).

2.2.2 Far-off Resonant Traps

The simplest type of Far-off Resonant Trap (FORT) is one laser brought to a

tight focus, w0. The radial intensity pattern is given by

I(r) = I0e
−r2/w2

0 . (2.1)

If the laser is below the atomic resonance, a red detuned FORT, the ground state energy

level of the atom is shifted downward with the largest shift at the point of highest

intensity. Hence atoms are attracted to the high intensity regions. The opposite is true

for a Blue detuned FORT. The force exerted on the atoms is

F = −∇U = −2πα

c
∇I (2.2)



14

in other words, the tighter the focus, the stronger the confining force on the atoms.

Experiments with FORTs have achieved higher densities than a standard MOT can

achieve, for example in (Miller et al., 1993) they report densities of 8 x 1011/cm3.

2.3 Holographic Atom Trap

In this experiment we extend the idea of a single far-off resonant trapping beam

to the use of five beams to form an interference pattern. An interference pattern is an

easy way to form a rapid spatially varying potential. This rapid spatial variation yields

high oscillation frequencies, yet the resulting potential has a large enough trapping

volume that many atoms can be trapped per site. The combination of high oscillation

frequencies and many atoms per site make the Holographic Atom Trap, HAT, a good

choice for achieving high densities and phase space densities.

2.3.1 Geometry of Interference Pattern

In the HAT the trapping potential is formed by the interference of five beams

derived from a diffraction grating as shown in figure 2.1. Four of the beams are first

order diffracted beams; the fifth beam is the zeroth order beam. A cartoon of the

collimated diffraction pattern is shown in Figure 2.2. Taking the z-direction to be

the propagation axis for the laser and assuming that the intensities of the 1st order

diffracted beams are equal, the electric field at the intersection of the five beams can

be written as

E = E0

(
1 + 2βe

−ikθz
2 [cos kθx + cos kθy]

)
(2.3)

where β is the ratio of the electric field of a single first-order beam to the electric field

of the zeroth order beam and θ is the angle for the first order beams with respect to

the zeroth order beam. By squaring equation (2.3), we can write the intensity at the
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Fig. 2.1.— The Holographic Atom Trap

intersection region to be

I(x, y, z) = I0

[

1 + 4β2 (cos kxθ + cos kyθ)2 + 4β cos
kzθ2

2
(cos kxθ + cos kyθ)

]

(2.4)

where I0 is the intensity of the zeroth order beam. The calculated intensity pattern is

shown in figure 2.3.

At the center of the trap x = y = z = 0 the maximum intensity is

Imax = I0

(
1 + 8β + 16β2

)
(2.5)

where I0 is the intensity of the zeroth order beam. The term (1 + 8β + 16β2) is due

to the interference pattern. By measuring the ratio of the first-order intensity to the

zeroth-order intensity, we have measured the β for our phase plate to be β = 0.46. Prior

to the phase plate, the YAG power is 16 Watts, whereas the power in the center beam

is only 6 Watts. Formation of the interference pattern yields a factor of 3 enhancement
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Fig. 2.2.— Far field diffraction pattern from the phase plate.

X

Z

Fig. 2.3.— HAT intensity pattern.
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in the trap depth as opposed to just using the 16 Watts focused to the same beam

waist to form a standard FORT.

The trapping potential seen by an atom is given by

U(r) = −α | E |2= −2πα

c
I(r) (2.6)

where α is the static polarizability of the Rb-87 ground state at λ=1064 nm and I(r)

is given in equation (2.4). The polarizability was measured to be 114 ± 9 Å3 (Kadar-

Kallen et al., 1992), which agrees with the calculated value of 98.8 Å3. Along the

light propagation direction (z-axis), interference fringes arise from the Talbot effect

(Talbot,(1836)) (Boiron et al., 1998). We call these Talbot fringes. The Talbot effect

is formally defined as the periodic self-imaging of a diffraction grating, and appears

here as a result of the phase variances between the first order diffracted beams leading

to periodicity along the z-axis. Within each Talbot fringe there is a lattice of smaller

traps, which we call microtraps. The resulting trapping potential of each microtrap

gives strong confinement in the x and y-direction, but a weaker confinement in the

z-direction. The center microtrap has the deepest trapping potential given by

Umax = −2πα

c
Imax. (2.7)

In the limit that the microtrap spacing is much less than the beam waist, the trap

depths of the other microtraps can be approximated by

Ui,j = U0e
−λ2i/(θ2w2

x)e−λ2j/(θ2w2
y) (2.8)

where wx and wy are the Gaussian beam waists in the x and y direction respectively

and i,j count the microtraps (i,j=0 for the center trap; i,j=1 for the first outer well,

etc.). In the x and y direction the size scale for the microtraps is given by λ
θ and in the

z-direction the Talbot fringe spacing goes as λ
θ2 . For a typical value of θ = .1 radians
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the microtrap dimensions are 10 µm x 10µm x 100µm. Typically wx = wy = 92 µm.

Since 10 µm ' wx,wy the approximation we made for equation (2.8) is valid.

The x, y, and z oscillation frequencies in the microtraps can be calculated by

ν = 1
2π

√
κ
m where κ is the spring constant given by κ = −d2U(r)

dr2 . The explicit equation

for the spring constants are

κx =
16π2β(1 + 4β)θ2

λ2(1 + 8β + 16β2)
Umax, (2.9)

κy = κx, (2.10)

κz =
8π2βθ4

λ2(1 + 8β + 16β2)
Umax (2.11)

and likewise the oscillation frequencies are

νx =
2 θ

λ

[
β (1 + 4β) Umax

(1 + 8β + 16β2) m

]1/2

(2.12)

νy = νx (2.13)

νz =
θ2

λ

[
2 β Umax

(1 + 8β + 16β2) m

]1/2

. (2.14)

In the derivation of these equations I have ignored any effects owing to the Gaussian

nature of the beam, which is especially negligible for the center mictrotrap.

The trap depth can be calculated from (2.7) and (2.5). The intensity of the

zeroth order beam is simply I = 2P0
πw2 where now I will use w to be the geometric mean

beam waist, w = (wxwy)1/2. We have measured the beam waist many different ways to

conclude that at the atoms it is approximately 92 µm; the power in the zeroth order

beam is 6 W. This gives an intensity of 42 kW/cm2 and furthermore a well-depth of

600 µK.

The equations given for the oscillation frequencies (4.4) in the center microtrap

for our typical parameters of θ = 0.1 and λ = 1064 nm can be condensed into a

convenient form

νx = νy = 18.9 kHz

√
Umax

600 µK
(2.15)
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νz = 0.760 kHz

√
Umax

600 µK
. (2.16)

We can measure these frequencies with parametric excitation [Friebel et al., 1998].

When the intensity is modulated at twice the oscillation frequency the atoms should

experience a heating resonance and will be ejected from the trap. Therefore by measur-

ing the number of atoms in the HAT as a function of frequency, the resonant frequency

can be determined. We use the AOM, discussed in (2.5.2), to intensity modulate the

YAG light; the modulation is produced by a SRS DS345 digital function generator.

We have found that a modulation depth of 20-30% provides a good signal but does not

excessively broaden the curve. We have also found it useful to measure the oscillation

frequencies at a trap depth lower than the maximum trap depth. There are two reasons

for this. First, bandwidth limitations in the various electronic components limit the

highest frequency which we can reliably generate. Second, decreasing the trap depth

increases the fraction of atoms that occupy the center well. The presence of atoms in

the outer wells artificially broadens our signal. This point will be discussed at length in

Chapter 4. Our measurements are shown in figure 2.4. We fit the signals to a Gaussian

to determine the center of the curve which is 2νx,z. This method is probably overly

conservative as the highest frequency which results in atom loss is most likely the res-

onant frequency of the center well. Nonetheless, by fitting the data to a Gaussian and

applying the appropriate scaling factors to account for the measurement being taken

at a fraction of the maximum well depth, we measure the oscillation frequencies to be

18.4 ± 1.2 kHz and 735 ± 62 Hz in the x,y and z direction respectively at the maximum

trap depth.
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Fig. 2.4.— Parametric heating in the HAT. Figure a) shows heating resulting from

excitation of the x-axis and b) shows heating from the z-axis. Both measurements were

taken at Umax/6 then scaled appropriately to determine the oscillation frequencies at

maximum trap depth.
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2.4 Definition of Thermodynamic Variables

It is experimentally useful to define certain thermodynamic variables, namely

number density, phase space density, thermal radius, and collision rate, in terms of

HAT oscillation frequencies, temperatures, and number of atoms. In this section I will

define these equations. They will be referred to throughout this dissertations.

We will first define the atomic density. We assume a Boltzman density distribu-

tion for atoms in the HAT, n = n0e−U/kT . A convenient equation for the peak atomic

density, n0, can be derived by

N =
∫ ∞

−∞
n(x, y, z) dxdydz

= n0

∫ ∞

−∞

(
e
−mω2

xx2

2kT

)2 (
e
−mω2

zz2

2kT

)
d2xdz

= n0

(
kT

2πν2M

)3/2

n0 =
N

(
kT

2πν2m

)
3/2

(2.17)

where k is Boltzman’s constant. Unless otherwise specified, the notation ν refers to

the geometric mean of the x,y, and z oscillation frequencies, ν = (νxνyνz)
1/3.

The phase space density is the number of atoms per quantum state. A phase

space density of 2.612 marks the Bose-Einsten phase transition. Most generally, phase

space density is expressed as

ρ = n0λ
3
T (2.18)

where λT is the thermal de Broglie wavelength given by λT = h√
2πMkT

. In a harmonic

trap it is convenient to express the phase space density as

ρ = N
(hν)3

(kT )3
(2.19)
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Note in both equations (2.17) and (2.19) the strong dependence on ν. Since the HAT

enjoys high oscillation frequencies, it is readily able to produce high density and high

phase space density samples.

Above we have identified a size scale for the microtraps, but once the atoms are

held in the microtraps they occupy a much smaller, temperature dependent volume

which we call the thermal radius. The thermal radius along the ith dimension is , σT,i

is given by

σT,i =

√
2kT

mω2
i

(2.20)

where in this case ωi = 2πνi, the oscillation frequency for the ith component.

Lastly, the elastic collision rate, Γ, is given by

Γ = nσev (2.21)

where v is the velocity of atoms in the HAT and σe is the cross section for elastic

collisions. At low temperature the elastic collisions are dominated by s-wave scattering.

For identical bosons the cross section is given by

σe =
8πa2

1 + k2a2
(2.22)

where k = 2π/λT . The scattering length, a, has been measured very precisely to be 90

± 1a0 (Roberts et al., 1998). In the limit that k2a2 ' 1, σe can be approximated as

σe = 8πa2. For the highest temperatures measured in the HAT, the k2a2 term gives a

25% correction factor. For lower temperatures it is completely negligible.

2.5 Apparatus

In this section I will detail the apparatus we used create our holographic atom

trap. An overview of the apparatus is shown in figure 2.5. The primary components are

the YAG laser, the holographic phase plate, and the AOM used to intensity stabilize

the YAG laser.
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Fig. 2.5.— Optics train for the YAG (image modified with the permission of R. Newell).
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2.5.1 YAG Laser

The laser used to make the trapping potential is a Lee Laser series 800 flashlamp

pumped Nd:YAG laser with λ=1064 nm. The laser has excellent transverse mode

quality with an M2 = 1.07, but has multiple longitudinal modes. The frequency

spectrum of the YAG was studied in detail (Newell, 2003) and was found to have a

bandwidth of 890 MHz which corresponds to a coherence length of 7.56 cm. The HAT

geometry lends itself to the use of a multimode laser. The short coherence length

typical of a multimode laser is not a problem in the HAT because the path length

difference for any of the five beams is very small (' 7 cm). Typically we operate this

laser at 18 W CW.

2.5.2 Optical Train

The optical train is shown in figure 2.5. The primary components of the optical

train are the phase plate and acousto-optic modulator (AOM).

The AOM that we use is an IntraAction Corp. Model AOM-402AF4 which has a

frequency of 40 MHz. This AOM features excellent diffraction efficiency of better than

86% and low insertion loss (< 3%). To achieve these specifications the beam waist is

reduced to w = 750 µm before entering the AOM. We have attained the best results

using a collimated, rather than focused beam. The purpose of the AOM is three-fold:

it provides a method to quickly extinguish the HAT, it allows for us to vary the YAG

power and thus the trap depth in the HAT, and it serves as a mechanism for intensity

stabilizing the laser. The drawback of the AOM is that it alters the beam quality and

the beam shape. We have remeasured the M2 values after the AOM to be M2
x =2.25

and M2
y=3.17.



25

The phase plate is an off-the-shelf product of MEMS Optical, Inc. It serves as a

transmission diffraction grating. The incident beam is diffracted into many orders, but

the majority of the power is contained in the single zeroth order beam and the four

first order beams. A mask is used to block all the higher order beams.

An f=150 mm lens prior to the phase plate focuses the beam to a waist of 135

µm at the phase plate. Two lenses after the phase plate, f=300 mm then f=200 mm,

image the phase plate onto the MOT cloud with a magnification of 2/3. After passing

through the chamber the zeroth order from the holographic grating is imaged onto a

fast, battery powered photodiode for the feedback circuit discussed below.

2.5.3 Intensity Stabilization

The intensity stablization is achieved using an external feedback loop. The feed-

back loop adjusts the RF power going to the AOM so to maintain constant optical power

in the AOM’s first order beam. We monitor the zeroth order beam of the holographic

phase plate and compare that to a Labview generated reference voltage. Reference

(Newell, 2003) gives a discussion of the differential amplifier used to remove noise from

the reference voltage. A slight modification to the differential amplifier circuit is shown

in Appendix C. Though this point will be developed more fully in chapter 6, the impor-

tance of removing intensity noise from the laser cannot be stressed enough as intensity

noise at certain frequencies can lead to high heating rates. While the feedback loop

was discussed in (Newell, 2003), the work here presents two major advances in remedy-

ing the intensity noise problem: improved feedback circuit and monitoring the zeroth

order beam from the holographic grating rather than a third order beam. The circuit

diagram for the current feedback circuit is shown in Appendix C. The bandwidth of

the circuit is 22 kHz. The requirements on bandwidth are dictated by the oscillation

frequencies in the microtraps. This issue and relevant noise spectrum will be discussed
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further in chapter 6.

2.5.4 Magneto Optical Trap (MOT)

We use the MOT as a tool for loading atoms in the HAT. Atoms are first cooled

and confined to a small volume, ≈ 1mm in radius, using standard, well developed MOT

technology. We then overlap the HAT with the MOT to load the HAT. Loading will

be discussed in greater detail in Chapter 3, but here I will provide some details of our

Magneto optical trap.

The primary components of our vapor cell Rubidium-87 MOT are the vacuum

chamber, the confining laser for the MOT, a hyperfine repumping laser, and coils for

providing the various magnetic fields. An energy level diagram of the Rubidium 5s

and 5p states is given in figure 2.6 as an aid for understanding the roles played by the

various lasers discussed below.

I will first describe our vacuum chamber. We use a UHV-grade stainless steel

chamber with 10 ports for optical access. UHV vacuum was attained by pumping down

from atmosphere with a roughing and turbo pump to 10−7 torr. At this point we used a

Varian 8 L/s ion pump to further lower the pressure. The pressure inside the chamber

was monitored by using the current generated from the ion pump. From this we can

conclude that the pressure is less than 1× 10−8 Torr. To further improve the vacuum

we installed a Titanium sublimation pump which is run periodically (approximately 6

times per year).

Once we have achieved UHV we backfill the chamber with a small amount of

Rubidium vapor. The Rubidium vapor is provided by heating an oven containing

a 1 gram Rubidium ampule. The oven is connected via a valve to the main vacuum

champber. The ampule contains both naturally occurring isotopes of Rubidium, Rb-85

and Rb-87, however only the Rb-87 atoms are of interest.
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Fig. 2.6.— 5s state of Rubidium-87.

Rubidium atoms from the background vapor are trapped and cooled by 3 retro-

reflected lasers in x, y, and z. The lasers are tuned a few natural linewidths (Γ=5.9

MHz) below the cycling transition, 2S1/2 F = 2 to 2P3/2 F ′ = 3. The trapping light

is provided by a Schwartz Titanium:Sapphire laser pumped by a Coherent Innova-

310 8 Watt Argon Ion laser. The laser is described in greater detail in (Williamson,

1997). The laser is frequency stabilized using Doppler-free FM-spectroscopy. A detailed

description of the locking scheme is given in (Newell, 2003).

The laser is locked to the 2P3/2 F ′ = 1 to 2P3/2 F ′ = 3 crossover. A high efficiency
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IntraAction Corp. AOM shifts the light to 18 MHz to the red of the 2S1/2 F = 2 to

2P3/2 F ′ = 3. We double pass the AOM to increase the attainable frequency range and

to eliminate any steering effects caused by changing the AOM RF frequency. We can

also intensity stabilize the trapping beams by monitoring the power in the trapping

beams and feeding back to adjust the RF power driving the AOM. This also allows

us to easily adjust the power in the trapping beams by changing the set-point in the

stabilization circuit. After the AOM the trapping beam goes through a polarizing

preserving Oz-Optics fiber and sent to the trapping table. While several beams are

derived from the Ti:Sapph, the majority of the power is devoted to the generation of

the trapping beams. Under typical conditions we get 80 mW of light out of the fiber

for MOT use.

Once on the trapping table the light coming out of the fiber is collimated. The

maximum intensity at this point is typically 90 mW/cm2. The light is then divided

equally into the three orthogonal MOT beams. The Gaussian beam waist of each MOT

beam is approximately 1 cm.

Aside from the trapping lasers, a second laser is needed to operate a MOT. In

a MOT atoms will scatter photons from the trapping laser until an atom undergoes a

Raman transition and ends up in the 2S1/2 F = 1 state. To return to the F=2 state,

a hyperfine repumping laser is used. Our repumper is generated by a Toptica TA-

100 external cavity diode laser and taper amplifier system. The Toptica is frequency

stabilized by saturated absorption spectroscopy and is locked to the F ′ = 1 to F ′ = 2

crossover, and an AOM shifts the light slightly below (-4MHz) the 2S1/2 F = 1 to

2P3/2 F ′ = 2 transition. Since the branching ratio for emission to the F=2 state is 1/2,

on average two photons will be scattered by the repumping before the atom is back in

F=2.

The repumper is also fiber coupled for transport to the trapping table. After the
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fiber a lens collimates the light; the Gaussian waist of the collimated beam is 6 mm.

For optimum MOT loading we use 20 mW of repumper light.

While the viscous cooling force is provided by the trapping lasers and maintained

with the aid of the repumper, a magnetic field with B=0 at the intersection of the

trapping beams is needed to confine the atoms. This is supplied by a set of magnetic

field coils which I will refer to as the MOT coils. Each coil contains 90 turns of 14

Gauge high temperature wire. The average radius of the coil is 4.25 cm. The coils

are spaced 9.2 cm apart. Typically we power the coils with a steady-state current of

7 Amps, making a 15 G/cm magnetic field gradient at the trapping region. On short

time scales we can increase the gradient to 30 G/cm without causing significant heating

or damage to the coils. The coils can be rapidly turned off (< 100µs) as necessary.

Three additional sets of coils, shim coils, in a Helmholtz configuration on orthogonal

axes are used to null out the Earth’s magnetic field and magnetic fields created by

other experiments in the building. The current in each of the coils is independently

adjusted (on a daily basis) so that when the MOT coils are extinguished, the MOT

cloud uniformly spreads. If the coils do not compensate for the external fields, the MOT

cloud will be pushed in a certain direction when the MOT coils are extinguished. Each

of the shim coils are 20 turns of 14 Gauge wire which fit over the vacuum viewports.

The previously mentioned components are necessary for achieving a standard,

”bright”, Magneto-optical trap. While this is sufficient for many applications, the

MOT described above has a fundamental density limit. This limit is given by radiation

pressure or multiple photon scattering (Walker et al., 1990) (Sesko et al., 1991). Es-

sentially, the MOT cloud will adjust its volume so that the optical density of the cloud

is on order 1. This fundamentally limits the density to ≈ 1011 atoms/cm3. Several

widely used techniques can be used to circumvent this problem and achieve 1 - 2 orders

of magnitude higher densities.
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One such technique is a spatial dark SPOT MOT (dark spontanteous-force optical

trap) (Ketterle et al., 1993). In this method an opaque object is placed in the repumping

beam and imaged onto the MOT cloud. This limits the amount of repumping light at

the center of the trap where the atoms collect. It does not effect the loading process as

atoms load at the edge of the MOT cloud. Using this method, Ketterle et al. report

the trapping of 1010 Sodium atoms at a density of 1× 1012 atoms/cm3.

We implement the dark SPOT MOT by imaging a 3.5 mm diameter cross-section

of a rubber O-ring onto the MOT cloud. The imaging is done in two dimensions to

create a dark volume roughly the size of the MOT cloud. By decreasing the repumper

power, the effect of the dark SPOT is increased but at the cost of a lower loading rate.

We have found a compromise to occur at Prepumper=3.2 mW. Under these operating

conditions the dark SPOT causes approximately 50% of the atoms into the F=1 state.

The effect of the dark SPOT can also be increased by adding a depumping laser

which purposely removes atoms from the F=2 into F=1 (Ketterle et al., 1993). The

depumper is made to spatially overlap with the dark SPOT in both dimensions. Like

the trapping beams, the depumper is derived from the Ti:Sapphire laser and fiber

coupled onto the trapping table. The depumping laser is locked 54 MHz to the blue

of the 2S1/2 F = 2 to 2P1/2 F ′ = 2 transition. Again, the fluorescence branching ratio

for this transition is 1/2; on average after scattering two photons atoms in F=2 will

be pumped into F=1. Typically we use 3 mW of depumping light collimated to a

Gaussian waist of 1.2 mm. At this intentsity the depumper reduces the F=2 fraction

by an additional factor of 2 making 75% of the atoms occupy F=1.

Other groups (see for instance,(Barrett et al., 2001)) have implemented a dark

SPOT in the temporal domain rather than the spatial domain. This is simply done

by turning down, or turning off, the repumping laser. In theory this method has the

benefits of enjoying large loading rates while still transferring large populations into
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the dark state, and there are no alignment issues for overlapping the dark spot and the

MOT cloud. In practice we were never able to have as much success with this method

(the figure of merit being HAT loading) as with the spatial dark SPOT.

We measure and monitor the number of atoms in the MOT with fluorescence

imaging. We collect fluorescing photons with a lens which images the photons onto

a large-area photodiode. The current generated by the photodiode is converted to a

voltage with a current amplifier. Given the quantum efficiency of the photodiode and

of the optical train, the gain of the current amplifier, the solid angle subtended by

the lens, the excited state lifetime, and the energy of the fluorescent photons, we can

convert the measured voltage to atom number.

Typically for I=90 mW/cm2 and ∆ = −3Γ, we measure a fluorescence signal

which corresponds to 1.56× 108 atoms in the MOT cloud.

The number of atoms in the MOT cloud as a function of time is given by

dN

dt
= L− Γ0N (2.23)

where L is the loading rate and Γ0 is the loss rate. We measure the Γ0 by measuring

the time constant for loading the MOT. In the limit of high rubidium vapor pressure

this time is dominated by background collisions and is independent of trapping laser

power. In the limit of low rubidium vapor pressures, Γ0 is dominated by light induced

collisions (Sesko et al., 1989). In this limit the loss rate changes as a function of the

trapping laser power. The measured loss rate is given by

Γ0 = ΓlightinducedI + Γbg (2.24)

The contribution to the loss rate due to background collisions, Γbg, can be deter-

mined by plotting loss rate as a function of laser power, as showing in figure 2.7, and

extrapolating to zero power.
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Fig. 2.7.— Loss rate in the MOT as a function of trapping intensity.

From this graph we determine a background loss rate of Γbg = 0.0038/sec, or

in other words, a lifetime of 26 seconds. This is a factor of 9 improvement over our

previous work (Newell, 2003), which is largely due to the installation of a Titanium

sublimation pump.

The temperature of atoms in the MOT is determined using a time-of-flight

method. A cloud of atoms is prepared 1 cm above a probe beam near resonant

(∆ = −20MHz) with the 2S1/2 F = 2 to 2P3/2 F ′ = 3 transition. The trapping

lasers and magnetic field are extinguished and the cloud falls through the probe beam.

As the atoms fall they ballistically expand at a rate governed by the molasses temper-

ature. The atoms scatter photons from the probe beam; the fluorescence is collected

by a lens and imaged onto a silicon photodiode. A typical signal is shown in figure 2.8.

From the width of the fluorescence signal, the average temperature of the atoms can

be extracted. A detailed explanation of the time-of-flight signal analysis is given in

(Newell, 2003) and the references therein. An approximate expression for the molasses
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temperature was derived by Gertz et al. (Gertz et al., 1993),

T =
h̄Γ

kB

(
c⊥

I

Isat

Γ

∆

)
+ const. (2.25)

where I is the per beam intensity of the trapping laser, ∆ is the detuning of the trap-

ping laser, and Γ has been previously defined as the natural linewidth of the trapping

transition. The scaling factors of c⊥ and const were determined experimentally by

Gertz et al. to be 0.40 and 5 µK respectively. Our measured temperatures are in good

agreement with equation (2.25).

As discussed in the next chapter, the density of atoms in the MOT has proven to

be a key factor for successfully loading atoms into the HAT. The bright state density can

be calculated by simply dividing the number (derived from fluorescence measurement)

by the volume of the MOT cloud. We image the MOT cloud onto a CCD camera

with a known magnification and measure a cloud radius of 1 mm. As stated above,

we measure the number of atoms in the MOT cloud with fluorescence imaging to be

1.56× 108 atoms. The resulting density is 3.7× 1010 atoms/cm3.
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Measuring the dark state density is more difficult because the size is now not well

defined. The best method for measuring the density is an absorptive measurement (see

for instance (Ketterle et al., 1993)). In this reference the authors probe the dark atom

cloud with an off-resonant laser and measure the attenuation of the probe beam given

by

I(z) = I0 × e−nσz (2.26)

where σ is the off-resonant absorption cross section. In this paper, they report dark

state densities of 1 x 1012 atoms/cm3. An equivalent measurement would be to measure

the phase shift induced in a wavefront after passing through the cold atoms. Spatial

heterodyne is well suited for this measurement. More details about spatial heterodyne

imaging will be given in Chapter 3, but it is important to note that the phase shift is

given by

φ = nσl
∆

Γ
. (2.27)

Both methods measure the column density, nl. To extract the density some estimate

of the length along the integrated direction is still needed. With spatial heterodyne

imaging we measure the density of atoms in our dark SPOT MOT to be 4 × 1011

atoms/cm3.
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Chapter 3

HAT Loading Results

3.1 Introduction

This chapter continues the discussion of the Holographic Atom Trap. The pre-

vious chapter focused on how the HAT works; this chapter focuses on methods for

imaging the HAT, the loading procedure for transferring atoms from the MOT to the

HAT, and the results obtained after loading the HAT.

Two imaging systems are used to characterize the HAT: Spatial Heterodyne imag-

ing and absorption imaging. Spatial heterodyne, a nondestructive imaging system, was

first demonstrated in our lab. Other non-destructive methods have been demonstrated:

phase contrast imaging (Andrews et al., 1997), dark-ground imaging (Andrews et al.,

1996), and off-resonant defocus-contrast imaging (Turner et al., 2004). I will not be

discussing the previously mentioned nondestructive techniques, but a good summary

of these is given in (Newell, 2003) and (Ketterle et al., 1999). In general, the benefit of

a nondestructive imaging system is that the measured atom cloud is neither destroyed

nor altered while taking the image. This allows for multiple pictures of the same cloud

to be taken. Nondestructive imaging systems take advantage of the fact that when

nonresonant light interacts with atoms, the resulting electric field has both absorption
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and phase information. The absorption portion can be made small by detuning the

imaging light thus decreasing the scattering cross section. For optically dense samples

and for the appropriate detuning, the phase shift can be quite large (≈ 1 radian) and

easily detectable. The goal of a nondestructive imaging system is to maximize the

signal while scattering a minimum amount of imaging photons. To our knowledge,

spatial heterodyne imaging holds the record for being the most nondestructive imaging

system ever used to image cold atoms. We acquired an image with S/N = 10 while

only scattering 0.0004 photons per atom (Kadlecek et al., 2001). The resolution of our

spatial heterodyne imaging system is better than 10 µm. This was demonstrated by

resolving the microtraps in the HAT which are spaced 10 µm apart.

The other method of imaging utilized is absorption imaging. In some cases, such

as imaging optically thin clouds or for time-of-flight diagnostics, absorption imaging

has a superior signal-to-noise ratio. Absorption imaging is implemented by using a

resonant probe beam of Gaussian beam waist several times larger than the atom cloud.

The atoms cast a ”shadow” in the resonant beam. This shadow is imaged on the

camera. Our implementation of absorption imaging is calibrated. Assuming a high

enough fluence, we can calculate the number of atoms in the sample by simply counting

the ”missing” photons and dividing by the fluorescence branching ratio. We have also

developed a way to artificially increase the signal size with the use of an ”Image Booster

(IB) beam”. A benefit of absorption imaging is improved resolution. By placing an

iris in front of the imaging lenses, we have demonstrated a resolution of 5.6 µm.

The work presented in the following chapters makes use of our ability to load

many atoms into the HAT. We have developed a loading procedure to optimize the

number of atoms loaded into the HAT. Our optimum HAT loading method is similar

to other schemes for loading FORTS, (O’Hara et al., 2001b) (Kuppens et al., 2000).

After atoms are loaded into the HAT, the atoms collide and thermalize. During the
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process the hottest atoms are ejected, leaving an overall cooler sample. This process

is called free evaporation. Using the imaging systems discussed in this chapter, we

have characterized the HAT during and after free evaporation. I will conclude the

chapter by giving some results attained in the HAT after free evaporation. We have

found the temperature of atoms in the HAT rapidly decreases to 1/10 the trap depth

in less than 100 msec. In our case, the temperature rapidly approaches 60 µK. After

free evaporation there are approximately 600,000 atoms in each Talbot fringe. The

center microtrap contains 6% of the atoms or approximately 36,000 atoms. The large

number of atoms in the tightly confined microtraps yields high initial densities, in

excess of 2 × 1014 atoms/cm3, and high initial phase space densities, approximately

1/200 (Newell et al., 2003). These are excellent conditions for performing an efficient

forced evaporation to further increase the phase space density. This will be the topic

of the next chapter

3.2 Characterization of the HAT

I will now discuss the tools needed to probe and image the cold atomic sam-

ples. Imaging systems can basically be divided into two classes: nondestructive and

destructive. Both kinds of imaging systems have been employed in our lab. The non-

destructive technique, Spatial Heterodyne, is a novel interferometric method developed

in our lab to measure the index of refraction of a cold atom cloud. The destructive

technique, absorption imaging, uses the familiar method of measuring the number of

photons absorbed from a resonant probe beam. In this section I will discuss these two

imaging systems.
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3.2.1 Spatial Heterodyne Imaging

Spatial heterodyne is unique in that it is implemented by interfering two beams

on the a CCD camera. The two beams: the probe beam and the reference beam, are

derived from the same diode laser. The first beam, the probe beam with intensity Ip,

goes through the atoms. As the probe beam travels through the atoms a spatially

dependent phase shift, φ, is imprinted on the probe beam. The integrated phase shift

as seen on the camera is proportional to the the column density,

φ(x) = nσl
∆

Γ
. (3.1)

After the vacuum chamber a lens images the atoms onto the CCD camera. The probe

beam is interfered on the camera with a second beam, a reference beam with intensity

Ir, that does not go through the atom cloud. Figure 3.1 shows the optical train.

As long as the two beams have the same radius of curvature at the camera, the

resulting interference fringes on the camera will be a series of straight lines. At the

position of the image of the atom cloud, the straight fringes will be bent. The intensity
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pattern as seen by the camera is:

I(x) = Ir + Ip + 2
√

IrIp cos
(
δ + 2πθk̂⊥ ×

x

λ
− φ(x)

)
(3.2)

where k̂⊥ is a unit vector pointing along the direction of the component of the reference

wave vector k perpendicular to the direction of the probe beam. The first two terms

represent the sum of the intensities of the individual lasers. The third term is the

interference term; information about the atom cloud is contained in φ(x).

Two important factors contribute to good inteference fringes: the beams must

have the same polarization and the path length difference for the two beams must be

less than the coherence length of the laser. To address the first concern, a polarizer was

inserted in the optical train prior to the separation of the two beams. The separation

is done with a 50/50 nonpolarizng beam splitter cube. Typically for diode lasers the

issue of coherence length is not a concern as typical coherence lengths are on the order

of 1 km, a distance much greater than the path length difference. To avoid aliasing

effects from the camera, the angle of interference between the two beams is purposely

tilted an angle θ.

There are two possible modes for which spatial heterodyne can be implemented:

θ ' δ/λ (parallel mode) and θ ( δ/λ (tilted mode), where δ is the resolution needed

for the image. Parallel mode was not implemented in our lab for technical reasons and

will not be discussed here. For a full description see references [Kadlecek et al., 2001]

and [Newell, 2003].

The information about the atoms is contained in the factor φ(x). The method

to extract this information proceeds in a manner analogous to lock-in detection and

cartooned in figure 3.2. First we acquire an image of the interference pattern between

the probe and reference beams (figure 3.2 a). Next, we take the 2-dimensional Fourier

transform (figure 3.2 b). Examination of the FFT shows a large amount of information
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a) b)

c) d)

Fig. 3.2.— Processing of spatial heterodyne images. a) The interference pattern from

the two beams. b) A cartoon of a typical FFT. The arrow points to the fringe pattern

information. c) Filtering and shifting in the Fourier Plane. d) Inverse Fourier Transform

to extract the phase information. In this image, bright pixels represent the largest phase

shifts.
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a low spatial frequency and information at the spatial frequency of the fringe pattern.

The information about the atoms is at the frequency of the fringes. From the FFT

the spatial frequency of the fringes, kx and ky, can be determined. Using these values

we shift the fringe frequency to zero-spatial frequency. We then apply a low-pass-

filter, typically Gaussian, about zero frequency (figure 3.2 c). Then we take the inverse

Fourier transform; the phase is then calculated by φ(x) =tan−1Im(I(x, y)/Re(I(x, y)).

This represents the basic idea, but to actually get a map of phase shift as a

function of frequency, a series of images must be taken and analyzed to account for the

background and technical noise in the camera. The five picture sequence is acquired as

follows. Picture 1 contains the MOT cloud, the reference beam, and the (attenuated)

probe beam. Prior to picture 2 the MOT is turned off. Picture 2 contains the reference

and probe beam. Picture 3 is just the reference beam. Picture 4 is the probe beam.

Lastly, picture 5 is with all light blocked to capture the background. Pictures 3,4, and 5

are subtracted from pictures 1 and 2. This leaves only the interference term in equation

(3.2). Pictures 1 and 2 are independently analyzed as detailed above. After processing,

picture 2 is subtracted from picture 1. Figure 3.2 d) shows the final product, phase

shift as a function of position for a dark-sheet trap formed with a 59 µm wire imaged

in the hyperfine repumping beam.

In tilt mode the resolution of imaging system is set by the fringe spacing. As with

all lock-in detection schemes, modulation must be applied at a higher frequency than

the frequency of the signal. The same is true with spatial heterodyne: the fringe spatial

frequency must be higher than the spatial frequencies we are trying to detect. On the

other hand, it is necessary to have several pixels per fringe period to avoid aliasing

problems. We have found that a good compromise is to have 4-5 pixels per fringe

period. Given this constraint, we were still able to resolve 10 µm using a magnification

factor of 4.8. Using spatial heterodyne we have been able to resolve the microtrap
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in the HAT as shown in figure 3.3. Though not discussed here, diffraction limited

performance can be achieved in parallel mode.

The implementation of spatial heterodyne requires a few primary components:

the imaging laser, the optical train, and the detector. These are shown in figure 3.1.

The imaging light is generated from a homemade external cavity diode laser in the

Littrow configuration. The laser is locked to the D1 line 2S1/2 F = 1 to 2P1/2 F ′ = 2 in

Rb-87 using standard saturated absorption spectroscopy. We use the D1 line so that

a band pass filter can filter the D2 MOT fluorescence before the CCD camera. The

detuning and shuttering is done with two Accousto-Optic Modulators (AOM). The first

AOM is driven at a frequency δ1; the second AO is driven at δ2. The detuning from

resonance is given by ∆ = δ1 − δ2. The laser is then coupled into a single-mode fiber

for transport to the trapping chamber. The light coming out of the single-mode fiber

is collimated at a Gaussian beam waist of 2.64 mm.

The atom cloud is imaged onto the CCD camera with a pair of Achromatic doublet

lenses, f=150 mm (Newport PAC086) and f=750 mm (Newport PAC094). This set of

lenses was chosen to minimize aberrations. With an 15 mm diameter iris in front of

the lens pair, the aberration limited resolution is 5 µm. This will further be discussed

in Chapter 5. The magnification of the imaging system is 4.8.

The CCD camera is a Hamamatsu ORCA-ER. The ORCA-ER’s CCD chip has

1344 x 1024 6.45 µm square pixels. There are two modes of operation which effect the

quantum efficiency of the camera. In ”high” light mode the quantum efficiency, η, at

795 nm is 16%; in ”low” light mode η is 33%. Most spatial heterodyne and absorption

pictures were taken in the ”high” light mode. Using the quantum efficiency and the

conversion from camera counts to photoelectrons, 4.6 counts per photoelectron, the

number of incident photons can be determined. The ORCA-ER is controlled largely

with Labview IMAQ software, and the images are analyzed with a Labview program.
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Regardless of the implemented mode, spatial heterodyne has a number of advan-

tages over other nondestructive imaging systems. First, spurious fringes from optical

elements can be filtered out. Typically unwanted fringes have a definite spatial fre-

quency. With clever choice of filtering in the fourier plane, these fringes can be elimi-

nated. Second, there is no need for a specially fabricated phase plate as necessary in

phase contrast imaging (Andrews et al., 1997). All optics used in the implementation

of this method were standard-off-the-shelf optics. Third, spatial heterodyne can work

over a large range of spatial scales. In phase contrast (Andrews et al., 1997), the upper

limit on the spatial scale that can be imaged is the size of the phase plate. In spatial

heterodyne the upper limit is the size of the CCD chip. And finally, the probe beam

can be attenuated relative to the reference beam. This means that the camera will

see enough light from the reference beam to overcome technical noises (such as read

noise and dark current) but this light will not destruct the atomic sample. A complete

discussion of signal-to-noise and the non-destructive nature of spatial heterodyne in

Appendix F, but I will summarize the results here. The real figure of merit for spatial

heterodyne is the signal-to-noise per absorbed probe photon which is given by:

S/N

A
=

2φ
√

ηNp

αNp
(3.3)

where η is the quantum efficiency of the camera and α is the absorption coefficient.

This equation assumes that the number of photons in the probe beam, Np is much less

than the number of photons in the reference beam, Nr. It also assumes that Nr can be

sufficiently large that technical noise from the camera can be neglected. The dominate

source of noise is laser shot noise. Using the relation that φ/α ≈ ∆/Γ gives

S/N

A
≈ 2

∆

Γ

√
η

Np
. (3.4)

The ideal conditions to achieve high signal to noise ratio with the fewest number of

photons scattered is to go to high detuning and low probe fluence. At δ = 11Γ and a
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Fig. 3.4.— A nondestructive spatial heterodyne image of a MOT.

probe fluence of 61 pJ/cm2, we were able to use spatial heterodyne imaging to image

a MOT cloud by scattering only 0.0004 photons per atom. This is the record for the

most nondestructive image taken of cold atoms. The image is shown is figure 3.4.

3.2.2 Absorption

I this section I will discuss the other destructive imaging method used in this

experiment, absorption imaging. While nondestructive imaging is advantageous for

preservation of the sample being imaged, it is difficult to do with optically thin samples.

In these cases absorption imaging is a better choice.

In some cases, such as imaging optically thin clouds or for time-of-flight diagnos-

tics, absorption imaging has a superior signal-to-noise ratio. Absorption is implemented

by using a resonant probe beam of Gaussian beam waist several times larger than the

atom cloud. The atoms cast a ”shadow” in the resonant beam. This shadow is imaged

on the camera. The attenuation of the probe beam after passing through the atom
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cloud is related to the column density of the cloud by

I(x, y) = I0(x, y)e−n(x,y)σ0l (3.5)

where σ0 is the resonant absorption cross section. Assuming a narrow probe laser we

can express the absorption cross section as σ0 = 3λ2

2π .

Our apparatus for absorption imaging is easily modified from spatial heterodyne:

block the reference beam and remove the 795 nm bandpass filter. Typically the imaging

laser is shifted to be on resonance with the 2S1/2 F = 1 to 2P1/2 F ′ = 2 transition. A

second laser, the IB beam, can be added to increase signal size as discussed below.

Producing an absorption image requires a series of three pictures. A 150 µsec

pulse of resonant imaging light is sent through the atoms. The imaging transition has a

fluorescence branching ratio of 2; if the fluence is sufficient then on average each atom

will scatter two photons from the imaging laser before being optically pumped into

the F=2 hyperfine state. Once in F=2, the atoms no longer interact with the imaging

laser. After waiting 1 second for the once-trapped atoms to disperse, a second picture

is taken of just the probe beam. Finally, the probe beam is blocked and background

picture is taken. The background picture and the probe laser are subtracted from first

picture.

Our implementation of absorption imaging is calibrated. Typically, absorption

imaging is done on a cycling transition making it difficult to accurately account for

the number of photons absorbed per atom. By using a non-cycling transition, such as

the 2S1/2 F = 1 to 2P1/2 F ′ = 2 transition, we can accurately predict the number of

photons absorbed by each atom and thus can calculate the number of atoms. This is

done in the following way. A region of interest containing the cold atoms is identified.

The processed absorption image is fit to a Gaussian in case a residual background

remains. If present, the background is subtracted off, setting the pixels with no atom
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information to zero. Next the ROI pixel values (in counts) are summed. The number

of counts is converted to photoelectrons by using the ORCA-ER conversion of 4.6

photoelectrons/count. The quantum efficiency of the camera relates the number of

registered photoelectrons to incident photons. Using this algorithm we can ”count

up” the number of missing photons. Assuming that on average the atoms scatter two

photons, we divide the number of missing photons by two to measure the number of

atoms.

The S/N ratio for our implementation of absorption imaging is

S

N
=

2ηNA√
ηN0

=
√

ηN0
2NA

N0
(3.6)

where NA is the number of atoms per pixel and N0 is the number of probe photons per

pixel. This equation assumes that the sample is optically thick, and the primary source

of noise is shot noise. In this case the S/N decreases for increased number of incident

photons. Therefore it is desired to use the minimum amount of photons to increase S/N,

but enough photons must be present to assure the calibration of our imaging system.

We have several ”tricks” to increase the S/N ratio. One such method is binning. The

pixels can be binned 2x2, 4x4, or 8x8. Binning is advantageous when trying to defeat

the read noise of the camera. This works because binning adds the signal but not the

read noise. The disadvantage is that the resolution decreases at higher pixel binning.

For time-of-flight images when resolution is not important, binning has proven to be

very useful.

In the case of small signals or during time-of-flight measurements, two photons

per atom might not be enough signal to attain sufficient S/N. A second beam, the

”Image Booster Beam (IB Beam)” is turned on in concert with the imaging pulse. The

IB beam is resonant to the 2S1/2 F = 2 to 2P3/2 F ′ = 2 transition. This transition

also has a fluorescence branching ratio of 2; on average after scattering two photons
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Fig. 3.5.— Enhancement of the absorption signal due to the IB Beam.

from the IB beam, the atoms are now back in F=1 and can rescatter imaging photons.

Using this methods we can enhance the signal by a factor of 10-15 and can image

approximately 10,000 atoms with a S/N > 10. This effect is shown in figure 3.5. The

x-axis is proportional to the number of incident photons. In the presence of the IB

Beam the signal growns linearly. Without the IB beam the signal saturates after the

atoms have scattered two photons and have been optically pumped into a different

hyperfine state. The arrow designates the typical operating conditions. In the absence

of the IB beam we want to image with enough light so to insure that the atoms are

scattering the necessary 2 photons per atom. We do not want, however, to use too

much light as the shot noise of the laser will begin to degrade the S/N. As seen in

figure 3.5, when the IB beam is used, the signal is enhanced.

As will be discussed in chapter 5 typically the atom samples produced in the HAT

are optically dense. One disadvantage of absorption is that it can be over-sensitive and
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can cause ”black outs”, or in other words, the signal from an optically dense cloud can

easily saturate. This limits the amount of spatial information that can be extracted

from the image. Detuning the imaging laser several linewidths has proven to be an

effective method for attaining images which require spatial sensitivity.

3.3 Loading Procedure

We will now discuss the procedure for transferring atoms from the MOT to the

HAT. In steady state we prepare a MOT with approximately 70% of the atoms in F=1.

This is accomplished by the physical dark spot (see Chapter 2) and by attenuating the

repumping beam to approximately 3 mW. We also add a depumper tuned +54 MHz

from the F=2 to F′ = 2 transition. Typically we use 2-3 mW of the depumper, but

the final powers of both the depumper and repumper are adjusted during the daily

optimization process. By measuring the rapid increase in fluorescence after abruptly

removing the dark spot, we can estimate there to be approximately 9 × 107 atoms in

F=1.

We begin the loading procedure by first reducing the MOT beams’ intensity by

a factor of 4. This is achieved by using the intensity stabilized double-passed AOM as

discussed in Chapter 2. After 50 ms we then increase the current in the MOT coils by a

factor to 2 which increases the magnetic field gradient by a factor of 2. These two steps

are part of a well-developed method for compressing a dark SPOT MOT (Petrich,et al.

1994), . After these two steps we have used spatial heterodyne imaging to measure the

density of atoms in F=1 to be typically 4.7 x 1011 atoms/cm3. Reducing the trapping

intensity also reduces the molasses temperature from 188 µK to 47 µK. At this point

we turn on the YAG laser. Figure 3.6 is a plot of the number of atoms loaded into the

HAT as a function of loading time. We have found that the number of atoms loaded

into the HAT is time dependent with a maximum number loaded in for loading times
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Fig. 3.6.— Number of atoms per Talbot fringe as a function of HAT loading time.

of 50 - 70 ms.

The electric field from the YAG cannot be neglected when considering the effect

the YAG has on the MOT atoms. The AC stark shifts induced by the YAG are large.

The relevant polarizabilities (Newell, 2003) are α(5S1/2) = 98.8 Å3 and α(5P3/2) =

-271.0 Å3. In the presence of the YAG the 5S1/2 to 5P3/2 frequency shifts are given by

∆ν = −(α5S1/2
− α5P3/2

)I/h̄c. In terms of the trap depth, Umax = −2πα0

(
5S1/2

)
I/c,

the frequency shift becomes

∆ν5P3/2→5S1/2

Umax
=

α
(
5P3/2

)
− α

(
5S1/2

)

h α
(
5S1/2

) (3.7)

knowing that h = 48 µK/MHz, we can rewrite this in the convenient form of

∆ν5P3/2→5S1/2
= −7.8 MHz × Umax

100 µK
= −1.3Γ× Umax

100 µK
. (3.8)

The total frequency shift is 7.8Γ, the 5S1/2 is shifted down by 2.1Γ and the 5P3/2 is

shifted up by 5.7Γ.
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While these frequency shifts are large, they work in our favor: the MOT and

repumper lasers are shifted further from resonance, while the depumper is shifted closer

into resonance. This cools the atoms and decreases the excited state fraction to only a

percent so that now almost all of the atoms are in F=1. To further decrease the molasses

temperature, we detune the MOT lasers from -18 MHz to -40 MHz. Considering the

AC stark shifts, the final molasses temperature at this point is only a few µK. After

50 ms with the YAG on, the magnetic field is quickly turned off. 5 ms later all other

lasers, the repumper, depumper, and Ti:Sapph, are extinguished.

The Duke group (O’Hara et al., 2001b) uses the Fokker-Planck equations to model

the loading dynamics in their CO2 trap. A major result of this paper was the benefit

of having a trap depth much greater than the molasses temperature. Their model

shows rapid growth in the number trapped in the FORT at t=0 as the ratio of the trap

depth to MOT temperature increases. Furthermore, the authors see the same FORT

loading time dependences as discussed above. They show that the number loaded into

the FORT increases rapidly at first but slows as the loading time approaches 20 ms.

Similarly the Colorado group (Kuppens et al., 2000) showed that the number of atoms

in their FORT increases until the loading time approaches 100 ms, then slowly the

number decays. Of course, the actual ideal loading time with vary depending on the

specific trap conditions.

The final step in the loading procedure is a 20 ms pulse from the ”loading beam”

tuned to the 2S1/2 F = 2 to 2P3/2 F ′ = 2 (depumping) transition. This last step serves

to optically pump any remaining F=2 atoms into F=1. Once all the lasers are turned

off, the atoms now undergo rapid free evaporation in which atoms in the trap collide

and in the process the hottest atoms are ejected from the trap. Free evaporation is

an efficient process until the temperature of the atoms reaches 1/10 the well depth.

At this point the temperature stagnates. Chapter 4 will be devoted to more of the
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mechanics of evaporation.

Loading atoms into any FORT is really an art form. Besides following the proce-

dure laid out above, there are three key factors to good HAT loading: high MOT cloud

density, proper excited state fraction of the MOT, and positioning of the HAT relative

to the magnetic field zero in the MOT cloud. When aligning the retro-reflections in the

MOT it is generally better to sacrifice number for a smaller, denser MOT cloud. The

second key factor, excited state fraction, is generally determined by trial and error but

every effort should be made to make sure that all of the atoms are in F=1 by the end

of the loading procedure. The final factor regarding the position of the HAT relative to

the MOT was found by trial and error. Typically we try to position the HAT so that it

coincides with the magnetic field zero of the MOT. Generally the magnetic field zero is

at the center of the MOT. Furthermore, we can make a guess where the magnetic field

zero is by watching the MOT load after power cycling the magnetic field. The spot

where the atoms first collect is likely the magnetic field zero. But ultimately, locating

the position where the HAT best loads is by trial-and-error. This result is somewhat

contradictory to the findings in reference (Kuppens et al., 2000) which reported that

the FORT loads best when offset from the magnetic field zero.

3.4 Results after Loading

In this section I will give some typical results that we have achieved in the HAT.

Spatial heterodyne imaging or absorption imaging were used to gather these results.

I will limit this discussion to the results attained after loading and free evaporation.

Chapter 4 will discuss what happens after that.
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Fig. 3.7.— Left axis: Temperature (triangles) as a function of free evaporation time.

Right: Normalized number of atoms per Talbot fringe (circles) as a function of free

evaporation time.

3.4.1 Number per Talbot Fringe

After loading and during free evaporation, hot atoms leave the trap. In this case

atom loss is a cooling mechanism. Using the calibrated absorption method described

earlier in this chapter we can measure the number of atoms per Talbot fringe as a

function of free evaporation time as shown in figure 3.7. The atom loss slows as free

evaporation becomes less efficient. Typically after 40 ms of free evaporation we have

600,000 atoms in the most populated Talbot fringe.

3.4.2 Center Well Fraction

Our understanding is that during the loading process the atoms within a Tal-

bot fringe redistribute themselves amongst the microtraps. The distribution of atoms
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is proportional to e−U/T . Assuming that all the microtraps are in thermal equilib-

rium, atoms are preferentially loaded into the center well. Once loading is finished the

distribution remains fixed during the free evaporation process.

We can measure the distribution by taking absorption images of the microtraps

then fitting the distribution to a series of Gaussian radii as shown in figure 3.8. Using

the heights of the Gaussian fits, we can determine the center well fraction. We divide

the height of the center peak by the sum of the heights of all the peaks. This is the

fraction of atoms in the center well, but only in one dimension. We assume that the

y-distribution (into the page) is the same as the x-distribution, and so the fraction in

the center well is the square of the fraction in the x-direction.

Typically atoms in the Talbot fringe occupy 25 microtraps. We see center well

fractions of approximately 4-6% after loading. From this we can determine the number

of atoms in the center microtrap to be 36,000.

We have demonstrated a method, ”shake-n-bake”, to increase the center well

fraction. Essentially, we purposely intensity modulate the trap at a frequency of 2νi

where νi is the oscillation frequency an outer well. This heats and ejects atoms in the

outer well but not atoms in the center well. This can be seen in figure 2.4. If the laser

is intensity modulated at a frequency less than the 2ν0 (where ν0 corresponds to the

center trap oscillation frequency) there will be atom loss from the outer microtraps

in the Talbot fringe, but atoms will not be lost from the center microtrap. With

this method we have been able to increase the center well fraction by a factor of 2.7

compared to the initial conditions.

3.4.3 Lifetime

After free evaporation and in the absence of any heating mechanisms or laser

fields, the trap loss is predominately collisions with background atoms; the time de-
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Fig. 3.8.— Typical absorption image (top) and distribution (bottom) of atoms in the

microtraps.
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pendence is well explained by an exponential. By fitting the number of atoms in the

HAT as a function of time to an exponential, a lifetime can be extracted. The lifetime

is an important number because it sets the time scale for forced evaporation. This too

will be discussed in the chapter on evaporation, but if the evaporation procedure takes

longer than the lifetime it will become very inefficient. Typically we measure HAT

lifetimes of 3 seconds.

3.4.4 Temperature

We measure the temperature of atoms in the HAT with a time-of-flight(TOF)

technique. The YAG is quickly extinguished and atoms ballistically expand at a rate

proportional to the velocity distribution within the HAT prior to the YAG turn off.

We image the expanding cloud at several expansion times, fit the cloud to a Gaussian

radius, then plot the expanding radii as a function of time. Assuming a Boltzman

velocity distribution, the Gaussian radii as a function of time can be described by the

quadrature sum of the initial radius and the distance traveled

σ(t) =
√

σ2
0 + v2

T t2. (3.9)

From the fit the velocity can be extracted. The temperature can be calculated by the

standard method of T = (1/2)mv2
T which can be written in the convenient form of

T = 0.52µK +

(
v

1cm/s

)2

. (3.10)

It is difficult to measure the temperature of atoms in the trap immediately after

loading because the untrapped MOT atoms have not completely left. After about 10

ms after loading, a TOF is possible. Figure 3.7 shows the temperature as a function

of time during free evaporation. When the HAT is operated at Umax, the measured

temperature after free evaporation is 60 µK which agrees well with the predication that

free evaporation should cease when T = U/10.
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Though free evaporation seems to be the dominant cooling mechanism, we made

many attempts to laser cool the atoms in the HAT. A summary of these attempts is

given in [Newell, 2003].



58

Chapter 4

Evaporation

4.1 Introduction

On the surface, evaporation is a simple idea: allow a few hot atoms to collide and

leave the trap, resulting in an overall cooler sample. While in practice it is a bit more

difficult, our simple picture serves as a good model for what is happening.

The ultimate goal of evaporation is to decrease the temperature of the atoms in

such a way that the phase space density increases. Evaporation, in this context, was

first preformed in magnetic traps and led to the observation of the first Bose-Einstein

Condensate (Anderson et al.,1995) (Davis etal., 1995). The prospects of evaporating to

quantum degeneracy in an optical trap were good based on the high phase space densi-

ties and atomic densities with which atoms are loaded and the long storage times seen in

some FORTs. With the lessons learned from magnetic traps, the Georgia Tech. group

preformed optical evaporation of Rubidium in a crossed dipole optical trap (Barrett et

al., 2001) to achieve the first all optically produced Bose Condensation. Optical traps

have a number of advantages over magnetic traps including a more efficient evaporation

process and the ability to evaporate multiple spin components. This has allowed some

interesting studies of the interaction of BEC’s of different spinor components (Bar-
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rett et al., 2001). Furthermore, the high collision rates typical of optical traps have

allowed BECs to be produced in a few seconds, much faster than in magnetic traps.

Recently, optical traps have been used to produce the first Cesium condensate (Weber

et al., 2003) and to produce the first evidence of superfluidity in a Fermi degenerate

gas (Kinastet al., 2004).

The list of uses for evaporation is not limited to Bose Einstein Condensation. In

Chapter 5 I will discuss using evaporation as a integral part for the formation of high

density mesoscopic atom clouds. These clouds are of interest in a variety of experiments

and are well tailored for studying the interactions of highly excited ultracold Rydberg

atoms.

We have performed optical evaporation in the HAT and have used it for produc-

tion of high phase space density clouds. We have already discussed the high initial

densities attainable in the HAT. These high densities cause high collision rates which

allow for rapid evaporation. Initial collision rates are in excess of 20,000/sec. For

comparison, initial densities in magnetic traps are typically 1× 1011/cm3, resulting in

initial elastic collision rates of 12/sec. A vital tool in the production of these clouds

is a simple model which describes the dynamics of evaporation and predicts the opti-

mum conditions to achieve high phase space density. Using this model as a guide we

have generated clouds with a phase space density of 1.1, extremely close to quantum

degeneracy. In this chapter I will discuss in detail this model and give results typical

when using the model to produce high phase space densities. In the next chapter I will

discuss evaporation’s use in producing extremely high density mesoscopic clouds.

4.2 Theory

I will discuss evaporation in two parts: free evaporation and forced evaporation.

Forced evaporation in an optical trap is slightly different than its magnetic counterpart.
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These differences will be briefly discussed.

4.2.1 Free Evaporation

After the atoms have been loaded into the HAT they collide with other trapped

atoms. If the energy of the colliding pair is high enough, one of the atoms in the pair

will be given enough energy to be ejected from the trap. Initally, the pair has a large

amount of energy and there is a high probability that one of the atoms will be ejected

during the collision. After ejecting the hottest of the atoms, the remaining atoms in the

trap are at an overall colder temperature. This process is called free evaporation. It

continues until the temperature becomes low enough that few colliding pairs of atoms

have enough energy to be ejected. This usually occurs when the ratio of the trap depth

to the temperature of atoms in the trap approaches 10. In other words, the temperature

in the trap will go down with time but will stagnate at 1/10 the trap depth. Graphs

of temperature and number of atoms as a function of evaporation time are shown in

figure 3.7. As I will show in 4.3.1, during free evaporation both the density and the

phase space density increase.

4.2.2 Optical Forced Evaporation

The point of forced evaporation is to restore the conditions of T > U/10 so that

free evaporation can be rejuvenated. In magnetic evaporation this is done with the

”RF knife”: an RF probe which causes atoms near the upper edges of the trap to

make transitions to untrapped magnetic sublevels. By changing the frequency of the

RF knife, deeper cuts are made in the potential. In optical evaporation this is done by

lowering the trap depth. In either case, the effect is a truncation of energies that can

exist in the trap.

The major difference between optical evaporation and magnetic evaporation is
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in regards to what happens to the spring constant of the trap during evaporation. A

cartoon in figure 4.1 illustrates this difference. In the magnetic case the evaporation

occurs from the top down, thus keeping the spring constant at the bottom of the

well constant. It is then possible to increase the density as a function of time and a

condition called ”run away” evaporation is achieved. In optical evaporation, however,

the trap depth is lowered; lowering the well depth decreases the spring constant and

thus decreases the density. For this reason runaway evaporation is not possible in an

optical trap. The saving grace of optical evaporation is that the starting phase space

densities and atomic densities are orders of magnitude larger in optical traps than

magnetic traps, allowing these barriers to be overcome.

potential

space

0

magnetic

evaporation

potential

space

0

optical

evaporation

Fig. 4.1.— Left: Evaporation from a magnetic trap. Right: Evaporation from an

optical Trap. (image used with the permission of R. Newell)

4.3 Model of Forced Evaporation

In this section I will describe our model for evaporation. There are two ways to

model evaporation. The first method (Davis et al., 1995b) treats evaporation as a se-

quence of two discrete steps: a truncation of the trap depth followed by a rethermaliza-

tion process. In other words, in the first step the potential is truncated (experimentally
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this is done with the RF knife). After the truncation, the second step begins which

is the rethermalization of the atoms in the truncated potential. The rethermalization

step cannot begin until the truncation step been completed. The two steps are repeated

cyclically, and a set of simple scaling laws are used to calculate thermodynamic values

(such as the number, phase space density, and temperature) only at the end of each

truncation and rethermalization step. The model of Davis et al. pertained to evapora-

tion in a magnetic trap; to our knowledge this treatment has never been extended to

describe optical evaporation.

In contrast, O’Hara et al. (O’Hara et al., 2001) models evaporation as a contin-

uous process. This work uses the s-wave Boltzman transport equation to derive a set

of time dependent, analytical functions to describe the evolution of the phase space

density, temperature, etc. With these equations the thermodynamic values are known

at all times, not just at the ”end” of a step.

Even though the treatment of O’Hara et al. is more analytical and has more

formalism, we have created a model for evaporation that is similar to (Davis et al.,

1995b) in that we treat evaporation as a sequence two discrete steps, but we have

extended this model for the case of evaporation from an optical trap. This method is

a very straightforward approach, and we have found the scaling law approach to be a

useful intuitive tool. Below I will derive two sets of scaling laws: one set expresses all

the pertinent thermodynamic variables for the rethemalization process in terms of the

fractional energy and number remaining in the trap; the second set of scaling laws will

describe the change in the thermodynamic variables which results from adiabatically

lowering the potential. Like the Davis’s et al. model, the two steps will be iterated,

and the second step cannot begin until the first step has been completed. At the end

of each step, the values of the thermodynamic variable will be recalculated. Lastly, I

will discuss adaptations made to the model to account for losses due to background
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collisions. In future chapters this model will be revisited and further adaptations will

be discussed.

4.3.1 Scaling Laws for Rethermalization

We want to express all thermodynamic variables in terms of two parameters: ε,

the fractional amount of energy retained after a cut, and ν, the remaining fraction of

atoms. More explicitly

ν =
N ′

N
(4.1)

and

ε =
E ′

E
(4.2)

where the primed denotes the newly recalculated value, and the unprimed denotes the

previous value. We also introduce the cut parameter, η which is

η =
U

T
. (4.3)

We want to express ν and ε in terms of η. To determine the fraction of atoms

that remain in the trap, we find the number of atoms, N′ that will remain in the trap

after the cut and divide this by the total number of atoms

ν(η) =
N ′

N
=

∫ ηkT
0 g(E)eE/kT dE
∫∞
0 g(E)eE/kT dE

. (4.4)

Similarly we find the fractional energy retained by integrating the density of states over

the truncated region divided by the total energy

ε(η) =
E ′

E
=

∫ ηkT
0 g(E)EeE/kT dE
∫∞
0 g(E)EeE/kT dE

. (4.5)

The density of states for a three dimensional harmonic oscillator is given by

g(E) =
E2

2h3ν̄3
(4.6)
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where here I am using ν̄ to refer to the geometric mean oscillation frequency, not to be

confused with ν defined in equation (4.1). Plugging equation (4.6) into equations (4.4)

and (4.5) we can integrate to get the analytic functions

ν(η) = 1− 2 + 2η + η2

2eη
(4.7)

ε(η) = 1− 6 + 6η + 3η2 + η3

6eη
(4.8)

.

We can express the relevant thermodynamic variables in terms of ε(η) and ν(η).

After rethermalization, the temperature will be

T ′

T
=

ε

ν
. (4.9)

The density is reduced to

n′

n
=

N ′

N

(
T

T ′

)3/2

=
ν5/2

ε3/2
. (4.10)

The time between elastic collisions, τ = 1/Γ, can be expressed as

τ ′

τ
=

n

n′

(
T

T ′

)1/2

=
ε

ν2
. (4.11)

It has been shown that after roughly five collisions the gas is sufficiently rethermalized

(Snokes, et al., 1992). Given this, we set the time for rethermalization to be τretherm =

5τ . This determines the timescale for the rethermalization process. Lastly, the phase

space density is

ρ′

ρ
=

N ′

N

(
T

T ′

)3/2

=
ν4

ε3
. (4.12)

From the scaling laws, we can see that the requirement for the temperature to

decrease is that ν > ε, even though both these number are close to one. Under these

conditions, the density increases and the time between collisions decreases, similar to

magnetic evaporation. The phase space density also increases during free evaporation
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4.3.2 Scaling Laws for Adiabatically Lowering the Potential

The second discrete step of our model for evaporation is concerned with adiabat-

ically lowering the trapping potential. If done adiabatically, the number of atoms and

the phase space density is conserved and

ρ′ = ρ (4.13)

N ′ = N (4.14)

therefore

N ′ ν
′

T ′
= N

ν

T
(4.15)

ν ′

T ′
=

ν

T
. (4.16)

Based on this, a second set of scaling laws can be derived to describe the adiabatic

lowering of the trap depth. This case is more simple in that there is now only one

parameter needed to describe the process,

µ =
U ′

U
. (4.17)

Since U = 1/2 m ω̄2x2 and ω̄ = 2πν̄, the oscillation frequency scales as

ω̄′

ω̄
=

√
U ′

U
=
√

µ. (4.18)

In a harmonic oscillator, the oscillation frequency is proportional to the temperature,

so the temperature also scales as

T ′

T
=
√

µ. (4.19)

The density scales as

n′

n
=

(
T

T ′

)3/2
(

ω̄′

ω̄

)3

= µ3/4. (4.20)

And lastly, the time between collisions goes as

τ ′

τ
=

n

n′

√
T

T ′
=

1

µ
. (4.21)
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The timescale for lowering the potential is derived from the adiabatic constraint

that the potential must be lowered in a time slower than an atom oscillates in the trap.

We set this time to be twice the geometric mean oscillation period,

t′ = t +
2

ν̄ ′
. (4.22)

Again, from the scaling laws we can make some predictions about the behavior

of the thermodynamic variables during forced evaporation. Since the value of µ is less

than one (typically we use µ = 0.98), equation (4.19) and equation (4.20) predict that

the temperature and density will decrease when the potential is adiabatically reduced.

Since both the temperature and density are reduced, the time it takes to rethermalize

the sample is increased.

After the potential has been adiabatically lowered, U/10 < T . This triggers

evaporation to reoccur. Atoms will collide and rethermalize, again ejecting the hottest

atoms in the sample. This step goes on for the time τretherm, then the potential is

lowered and the process repeats.

4.3.3 Background Collisions

The loss due to collisions with background atoms can be modeled by multiplying

the N dependence by e−Γbgt in the scaling equations above. Γbg was defined chapter 3.

Evaporation must be completed in a timescale comparable to the lifetime due to

background collisions. After this time, the losses due to background collisions over-

whelm the evaporation process and progress towards higher phase space densities stag-

nate. The work presented here shows a factor of three longer lifetimes than earlier work

[Newell, 2003].
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Fig. 4.2.— A typical evaporation curve with µ = 0.98.

4.4 Model vs. Experiment

The goal of the model is to generate a curve for trap depth as a function of time

that will yield an optimal final phase space density. A typical curve is shown in figure

4.2. The general shape of the curve is easy to understand. At the beginning of evap-

oration, the densities and the oscillation frequencies are highest therefore allowing the

ramp to proceed rapidly. Towards the end, both density and oscillation frequencies

decrease causing the ramp to slow. After trial and error (Newell, 2003) we have deter-

mined µ = 0.98, which corresponds to an η= 10, to be an optimal value. The potential

ramp is implemented by adjusting the RF power sent to the YAG AOM (discussed in

Chapter 2). This adjusts the YAG power and thus the trap depth. We take absorption

images at various points throughout the evaporation to characterize the number, center

well fraction, and temperature. Below I will discuss how well our theoretical model

describes our measured HAT values.
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Fig. 4.3.— Well depth as a function of time for center microtrap and outer microtrap

4.4.1 Center Well Fraction

The density and oscillation frequency of the center microtrap sets the timescale

for the rethermalization and adiabatic lowering of the potential. The outer wells have

a lower density; atoms in those wells have lower oscillation frequencies and it takes

longer to rethermalize those atoms. As a result, the adiabatic requirements for the

outer wells is different from that of the center well. I have modeled this process; the

result of these two effects is an additional atom loss from the outer wells and thus an

increase in the center well fraction at later evaporation times. Figure 4.3 compares the

potential as a function of time for the center well and an outer well. The evaporation

dynamics in the outer wells are always lagging behind the dynamics in the center well.

As a result, the outer wells are forced to take bigger cuts which mean costly atom

loss. Figure 4.4 is a plot of the microtrap distribution before and after evaporation. A

typical microtrap distribution prior to evaporation is input to the model. Then using

the parameters of the experiment, we apply a typical curve for the trap depth as a

function of time to each of outer wells and record the atom loss. This generates the



69

0.5

0.4

0.3

0.2

0.1

0.0

fic
tio

na
l c

en
te

r w
el

l f
ra

ct
ion

86420
microtraps

 Before evaporation
 After evaporation

Fig. 4.4.— The enhancement of the center well fraction during evaporation.

post-evaporation distribution shown in figure 4.4. Note the increase in the center well

fraction after evaporation.

Experimentally we measure the center well fraction as a function of evaporation

time. The measurement procedure is outlined in chapter 3. Figure 4.5 shows that

experimentally we measure an increase in the fraction of atoms in the center microtrap

as a function of time. Typically we start with 6% and by the end of evaporation we

measure 25-30%. By using the method of ”shake-n-bake” discussed in Chapter 3, this

number can be improved to at least 40%.

4.4.2 HAT Number

Figure 4.6 shows the theoretical prediction and experimental results for the num-

ber of atoms in the center well as a function of evaporation time for the curve shown

in figure 4.2. Dots are experimental points. Solid line is theoretical. The data was

collected for this plot as long as the S/N ratio for the image was greater than 1. The
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Fig. 4.5.— Typical data for the enhancement of the center well fraction during evapo-

ration

model captures the general trend in the atom loss, but fails to accurately predict the

final number of atoms in the center microtrap. Even with the inclusion of the center

well enhancement and background collisions, we measure a greater atom loss from the

trap then predicted by the model. This point will be revisited in Chapter 6.

4.4.3 HAT Temperature

At the beginning of forced evaporation, the temperature is approximately 60 µK.

Using the ramp in figure 4.2 we measure the temperature of atoms, via time-of-flight,

in the HAT as a function of time. We find quite good agreement with the theoretical

curve (see figure 4.7). Again, the dots are experimental points, and the solid line is the

model.

For the interest of the reader, the coldest temperature ever measured after evap-

oration was 400 nK. Typically we can cool the atoms by over two orders of magnitude
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Fig. 4.6.— Number as a function of time for evaporation.

during the course of forced evaporation.

4.4.4 Phase Space Density

The phase space density as a function of time is shown in figure 4.8. The theoret-

ical prediction, represented by the solid line, is derived from the predicted number of

atoms in the trap, the predicted temperature of the atoms, and the oscillation frequency

of the atoms in the trap. The data, represented by the squares, is a result of knowing

the oscillation frequency (measured by parametric heating), the number (figure 4.6)

and the temperature (figure 4.7). After loading and free evaporation, the phase space

density at the beginning of forced evaporation is typically 1/200. According to the

model, we should have a phase space density of 1.5 after 2 seconds of evaporation. We

measure, however, a phase space density of 0.75. This discrepancy between the model

and the experimental results is almost entirely due to the fact that experimentally we

measure more atom loss than the model predicts. The model also predicts that if we
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Fig. 4.7.— Temperature as a function of time for evaporation.

evaporated for a longer amount of time, 4 seconds, the phase space density would stag-

nate at 2.5. This stagnation is a result of collisions with the background gases. The

lifetime of HAT is limited by background collisions to be approximately 3 second. If

the evaporation cycle is not completely in a time less than this lifetime, the process

becomes too inefficient to make progress towards increasing the phase space density.

The highest phase space density we have measured in the HAT is 1.1 (see figure

4.9). For this data set and in the absence of the additional atom loss, theoretically

quantum degeneracy would occur after only 2.4 seconds of evaporation.

4.4.5 HAT Density

As discussed above, the density in the HAT will decrease during forced evapora-

tion. Typically the beginning density is 2×1014 atoms/cm3. This density is important

to the success of the evaporation. At these high densities the rethermalization rate

is fast and evaporation can proceed quickly. Initial collision rates in the HAT are in

excess of 30,000/sec. Using the ramp in figure 4.2, the number measured in figure 4.6,
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Fig. 4.8.— Phase space density as a function of time for evaporation.

and the temperature measured in 4.7, the model can predict the density as shown by

the solid line in figure 4.10. Again, the disagreement between experiment and theory

hinges on the fact that we measure an atom loss not predicted by the theory. The

density decreases by almost an order of magnitude during evaporation.

4.5 Conclusions

The evaporation of atoms from the HAT can be understood by a simple iterative

model which separates evaporation into two steps: the rethermalization of the atom

cloud and the adiabatic lowering of the trap depth. The model generates a curve for the

trap depth as a function of time which optimizes the final phase space density. We use

this theoretical curve as a guide to perform forced evaporation. During evaporation

we measure the trap depth (oscillation frequency), the number of atoms per Talbot

Fringe, the center well fraction, and the temperature. From this information, phase

space density and atomic density can be extracted. Our simple model does a good
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Fig. 4.9.— Highest measured phase space density.

job of explaining the temperature of the atoms during evaporation, but the model

fails to predict the additional atom loss that we see. This atom loss is the reason for

discrepancies between theory and experiment for the phase space density and atomic

density. Despite this atom loss, we have used forced evaporation to improve the phase

space density in the HAT by a factor of 250 and have measured phase space densities

of 1.1 in less than 2 seconds. Rapid evaporation is possible because the high densities

yield fast rethermalization rates.

The unpredicted atom loss is likely a sign of heating mechanisms. Ordinarily, a

heating mechanism would cause an increase in temperature, however, during evapora-

tion this is not the case. If a heating mechanism is present, the temperature will still

decrease as expected but at the cost of more atom loss. Furthermore, it seems that

in the presence of these heating mechanisms, quantum degeneracy is not attainable in

the HAT. Chapter 6 will be devoted to discussing these heating mechanisms.

In the next chapter we will discuss the production of high densities, small clouds
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Fig. 4.10.— Density as a function of time for evaporation.

in our HAT. The production of these clouds uses the evaporation model described here

to evaporate the atoms to high phase space density. After evaporation the trap depth is

adiabatically recompressed. We will show that these samples are well suited for studies

of some interesting properties of highly excited Rydberg atoms and their interactions.
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Chapter 5

High Density Mesoscopic Samples

5.1 Introduction

In this chapter I will describe a second experiment which makes use of the Holo-

graphic Atom Trap. This chapter contains some of the primary results of this disser-

tation. I will discuss the demonstration of high density, mesoscopic samples and their

potential use in Rydberg experiments.

In the experiment described below I will detail a new method to produce high

density (< 1015 atoms/cm3) atomic samples (Sebby-Strabley et al., 2004). To our

knowledge this is the highest density attained in incoherent ultracold matter. We

evaporate atoms in the HAT to high phase space density then adiabatically recompress

the potential. This process increases the density by as much as two orders of magnitude.

The high densities have been verified three ways: direct measurement of the number,

oscillation frequency of the atoms, and the temperature of the atoms; measurement of

the 3-body recombination rate; and measurement the cloud size. The model presented

in Chapter 4 is modified to include the adiabatic recompression. From the model

a simple set of scaling laws is given which governs the process. Also, the optimal

conditions for achieving the high densities will also be derived. With these high density
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samples new and exciting physics will certainly be revealed. It has been predicted in the

literature (Greene et al., 2000) (Boisseau etal., 2002), (Farooqi et al., 2003)that with

these densities ultralong range Rydberg molecules, trilobite molecules, can be produced

at a high rate. Furthermore, Rydberg plasmas (Simien et al.,2004) (Walz-Flannigan

et al., 2004) (Gallagher et al., 2003) (Roberts et al., 2004) have never been studied at

these densities.

In addition to the high density clouds, we demonstrate the robust production of

mesocopic atomic clouds. The clouds discussed in this chapter are as small as 5.6 µm

in the longest direction (semi-major axis) and approximately 250 nm in the transverse

directions (semi-minor axes). The demonstration of these clouds is important because

these clouds have a length scales less than the range of influence for a highly excited

Rydberg atom. Evidence for suppression of Rydberg excitation has been seen in MOTs

where the range of influence is less than the size of the atomic sample (Tong et al., 2004)

(Singer et al., 2004). Experiments that could be done with the clouds presented here are

different. The demonstration of these clouds represents progress towards observation

of dipole blockade (Lukin et al., 2001).

The chapter concludes with some discussion of the prospects for achieving total

blockade. Appendix B estimates the probability of exciting two Rydberg atoms within

a single microtrap. The results of this calculation are summarized in the text. For a

cloud with a semi-major axis of 5.7 µm, the probability of two excited Rydberg atoms

is approximately 0.001. Furthermore, I discuss the possibilities of using a static electric

field to cause a stronger, dipole-dipole interaction between atom pairs. The drawback

of this potential is that zeros in the potential and areas of weak interaction occur for

certain orientations of atom pairs. In other words, if a Rydberg atom is excited, atoms

oriented 54.7◦ relative to the Rydberg atom will have little or no interaction. This could

cause a ”leaky” blockade because those atoms are not prevented from being excited.
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The anisotropic trap geometry of the HAT mictrotraps, however, virtually eliminates

this concern. Even if the dipole-dipole potential is zero or close to zero, there will be a

sizable enough van der Waals potential to blockade a second atom from being excited

to the Rydberg state. More over we will show that most of the atom pairs have a

dipole-dipole shift in excess of 10 MHz, and that there is a small probability of exciting

a pair of atoms which has a weak interaction.

5.2 Production of High Density Samples

In this section I will give the theoretical and experimental details of how the high

density samples are produced. This method builds on the model discussed in chapter

4. Like before, we evaporate the sample to high phase space density, but now we add

a step of adiabatically increasing the potential which compresses the atomic clouds.

With this method we have demonstrated densities in excess of 1 × 1015/cm3 and a

dynamic range of 20 in the final density. I will discuss the theory behind the adiabatic

recompression, derive the conditions for achieving the highest densities, and finally give

some results.

5.2.1 Adiabatic Recompression

We begin with the model discussed in chapter 4 which describes evaporation in

the HAT. After the evaporation is complete, we append to the model a procedure to

adiabatically increase, or recompress, the potential. Again, a set of simple scaling laws

is used to gain insight into the dynamics. At a trap depth of Ub we begin the recom-

pression. If the recompression is adiabatic then the phase space density is conserved.

This sets the condition that

ν3
b

T 3
b

=
ν3

t

T 3
t

(5.1)
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where the subscripts b denotes values at the ”bottom” of the ramp, or after evaporation.

The subscript t represents values at the ”top” of the ramp, or after recompression. The

oscillation frequency will increase as

νt = νb

√
Ut

Ub
. (5.2)

as will the temperature (using equation (5.1))

Tt = Tb
νT

νb
= Tb

√
Ut

Ub
. (5.3)

The ratios of the densities at the top and bottom therefore scale as

nt

nb
=

(νt/νb)3

(Tt/Tb)3/2
=

(
νt

νb

)3/2

(5.4)

so the final density is given by

nt = nb

(
Ut

Ub

)3/4

. (5.5)

Indeed, adiabatically recompressing the trap increases the density almost linearly with

the change in the trap depth. Unlike evaporation which relies on the rethermalization

of the atoms after every step, the adiabatic recompression of the potential does not

need to be done step-wise and can be done in one step. Equation (5.5) suggests that

the lower you make Ub, the higher the final density. Considering that we have a large

dynamic range of the trap depths, a factor of 600, this increase in density can be a

factor of 120. A simple argument given in 5.2.2 reveals that this is not exactly the case

in the HAT, and the optimum condition for achieving the highest density is derived.

It is interesting to point out that after recompression a typical value for the

temperature is 8 - 10 µK and U = 600 µK, therefore T<U/10. In this situation

evaporation is ”shut off” and a heating mechanism will heat the atoms, not cause atom

loss. This will be exploited in Chapter 6 to measure heating rates.
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5.2.2 Derivation of Optimum Conditions for High Densities

The question to be addressed is: what value of Ub gives the highest nt? To answer

this we need to rewrite the density at the bottom in terms of the phase space density

at the bottom

nt = nb

(
Ut

Ub

)3/4

(5.6)

∼ ρbT
3/2
b

(
Ut

Ub

)3/4

. (5.7)

Using our results from evaporation that Ub = 10Tb we derive that

nt ∼
ρbT

3/2
b

T 3/4
b

U3/4
t , (5.8)

and for fixed value Ut the equation for the optimum density is

nt ∼ ρbT
3/4
b . (5.9)

As discussed in Chapter 4, evaporating to lower potentials does not necessarily lead to

higher phase space densities – the phase space density can stagnate or even decrease

after long evaporation times due to heating mechanisms and collisions with background

atoms. From this we can conclude that by starting the recompression at a value of Ub

which optimizes the function ρbT
3/4
b , the highest densities will be realized. A plot of

ρbT
3/4
b as a function of Ub is given in figure 5.1. From the graph it is clear that the

optimum trap depth to start the adiabatic recompression is at Ub = 8− 10µK.

5.2.3 Results and Comparison to Theory

To test the model we show recompression densities for several values of Ub in figure

5.2. The points are data; the solid line is the model. The center microtrap densities

were measured by measuring the oscillation frequencies, the number of atoms, and the

temperature of the atoms. More detail on the density measurements is given in section
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Fig. 5.1.— ρT3/4 as a function of trap depth.

5.3.1. Figure 5.2 shows that the experiment agrees with the theory quite well. Figure

5.2 also verifies that by varying Ub, the resulting nt is also varied. The circles represent

a Ub of 100 µK and result in nt = 7 x 1014/cm3; squares represent Ub = 50 µK and

nt = 1 x 1015/cm3; and lastly, the triangles show Ub = 10µK and nt = 2 x 1015/cm3.

Our highest densities were achieved at Ue = 10µK which agrees with the predictions

of figure 5.1.

It is interesting to point out that the timescale for the recompression is just the

adiabatic constraint described in Chapter 4. As a result the recompression can be

done quite quickly. Furthermore, unlike evaporation, this constraint becomes less time

consuming as the recompression continues and is even a bit flexible. The potential for

the Ue = 10µK data in figure 5.2 was raised faster than normal adiabatic constraints

would allow to limit losses due to background collisions. The result is a small break

down of the scaling laws in section 5.2.1 which assume perfect adiabaticity.
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Fig. 5.2.— Recompression data for several values of Ub.

5.3 Verifying the Densities

This section details three methods of verifying the densities claimed in section

5.2.3. The first method involves precise measurement of the number in the center

microtrap, the temperature, and the oscillation frequency. The second method is mea-

suring the 3-body recombination rate for atoms in the microtraps and comparing our

measured rates to previous measurements (Tolra et al.,2004) (Burt et al.,1997). This

method is very sensitive to the density as the loss rate is proportional to n2; below I

will show that our measured rates are in good agreement with previous measurements.

The final verification is the direct measurement of the spatial distribution of atoms in

the microtrap.
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5.3.1 Direct Measurement of N, ν, and T

The first method for verifying our densities is direct measurement of N, ν, and the

temperature, then calculating the density using equation 4.10. The calibrated method

used to measure N is given in chapter 3. From this we measure that the number of

atoms in the highest density samples is 11310 ± 2300 atoms. As discussed in chapter

2, the x and z oscillation frequencies are measured with parametric heating (Friebel

et al., 1998) to be 18.400 kHz ± 1.2 kHz and 735 Hz ± 62 Hz. The geometric mean

is then 6300 Hz ± 330 Hz. Lastly the temperature is measured by time-of-flight (see

Chapter 3) to be 8.82 µK ± 0.4 µK. From this we calculate the density to be 1.8 ± 0.5

x 1015/cm3.

5.3.2 Three Body Recombination Rate Coefficient

Putting aside the existence of heating meachanisms, it is a good approximation

that the loss rates measured in the HAT are dominated by one-body and three-body

processes. Two-body losses can be neglected (Burt et al.,1997) and we can write the

following rate equation to describe the atom loss

dN

dt
= −K3

∫
n(t)3 dV −K1N (5.10)

where K3 is the 3-body recombination rate coefficient and K1 = Γbg, the one-body loss

rate coefficient.

We measure the number of atoms per Talbot fringe as a function of time immedi-

ately after recompression. Since the fraction of atoms in the center microtrap is fixed

during recompression, the number of atoms in the center microtrap can be extracted in

the usual way. The data is shown in figure 5.3. In the presence of 3-body recombination

we see rapid atom loss until the density decreases enough that the 3-body collisions are

suppressed. On a longer timescale the collisions with the background gas dominate,
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Fig. 5.3.— Number of atoms in the center microtrap as a function of time after recom-

pression.

giving the final slow decay process.

We can determine the 3-body recombination rate from the fit to the data. The

fitting function is derived in Appendix A, however, there are two complications. First,

in the fitting function we have to take into account any temperature increase due to

heating. As mentioned in section 5.2.1, if a heating mechanism is present it will raise

the temperature of the atoms and cause the density to decrease. In figure 5.3 the

density is decreasing due to both atom loss from the 3-body recombination and due to

heating.

The second complication comes from the fact that by measuring the number of
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atoms per Talbot fringe, which includes atom clouds of varying densities, we measure

the losses from a sample whose effective density is less than the density of the center

microtrap. The measured 3-body loss rate might be artificially lowered by this effect.

From Appendix A, the measured loss rate from three-body recombination is

dNTalbot

dt
=
−K3n2

effN

33/2
= − K3

33/2

(
neff

N

)2

N3 = AN3 (5.11)

where K3 is the 3-body loss rate averaged over the entire Talbot fringe and A is a

parameter in the fit function defined in Appendix A. We have modeled this effect and

determined a correction factor. The model proceeds as follows. Initially we take the

simplified case of only two microtraps. The loss rate from the two traps can be written

as

dN

dt
=
−K ′

3

33/2

[(
n2

N2

)2

N3
2 +

(
n1

N1

)2

N3
1

]

(5.12)

where K′
3 is the corrected 3-body recombination rate. Letting fi be the fraction of the

atoms in the ith microtrap, we can rewrite this and equate it to equation 5.11

dN

dt
= −K ′

3

[(
n2

N2

)2

f3
2 +

(
n1

N1

)2

f 3
1

]

N3 = AN3. (5.13)

Solving the equation for K′
3

K ′
3 =

A

1
33/2

[(
n2
N2

)2
f 3

2 +
(

n1
N1

)2
f 3

1

] (5.14)

and generalizing to the case of many wells,

K ′
3 =

A
1

33/2

∑
i>0

(
ni
Ni

)2
f3

i

. (5.15)

Now we multiply the top and bottom by 33/2(N2
0 /n2

0) where N0 and n0 are the number

and density in the center microtrap respectively. The numerator is equation A.18 in

Appendix A for K3. The resulting equation is

K ′
3 =

K3
(

N0
n0

)2 ∑
i>0

(
ni
Ni

)2
f 3

i

. (5.16)
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The denominator is the correction factor for having multiple wells. In practice we fit

Ntalbot versus time and determine K3 from equation (A.18). Then we use equation

5.16 to find the 3-body recombination rate for the maximum density in the center

microtrap. A typical value for the correction factor is 0.00571, concluding that the

3-body recombination rate for the maximum density in the center microtrap is 170

times higher than the 3-body recombination rate averaged over the effective density of

the Talbot fringe.

Including all this factors we have concluded that our 3-body recombination co-

efficient is K3 = 3.5 ± 1.9 x 10−29 cm6/sec. This is in good agreement with Burt et

al. who measured K3 = 4.3 x 10−29cm6/sec. To our knowledge, this was the first mea-

surement of the 3-body recombination rate made in a purely optical trap. We repeated

the measurement in a 2.5 Gauss bias field, typical of a field present in magnetic traps,

and measured K3 = 4.8 ± 2.3 x 10−29 cm6/sec. The difference between the rates is

insignificant and we concluded that the presence of the bias field was not important

for making the measurement. The good agreement with the measurements of Burt et

al. are a second confirmation that the recompressed atomic densities are in excess of 1

x 1015/cm3.

5.3.3 Spatial Measurement

The third validation of the densities is to measure the spatial distribution of

atoms in the microtrap. In the x and y direction the thermal radius is several hun-

dred nm, much too small to be resolved. We can, however, resolve the z-axis which

provides confirmation in the measured oscillation frequency and temperature, both

important factors in determining the density. The calculated z-axis thermal radius,

σcalc =
√

2kT/mω2
z for T = 13 µK and ωz = 2π × 735 Hz is 10.8 µm. We measure

a radius of 12.09 µm, but there are several factors that affect this measurement. The
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measured z-axis radius is

σmeasured =
√

σ2
diffraction + σ2

calc + σ2
TOF (5.17)

where σTOF takes into account the motion of the atoms during the imaging pulse,

and σdiffraction is the diffraction limited radius calculated from the diameter and focal

length of the imaging lens and the wavelength of the imaging laser. I have modeled

σTOF for a velocity of 5 cm/s and an imaging pulse of 200µs to be σTOF = 3.5 µm.

The resolution of our imaging system is limited by aberrations and can be im-

proved by using an iris to limit the amount of the lens used to make the image. We put

an aperture in front of the imaging lens (f = 150 mm) and experimentally determined

that a diameter of 15 mm yields the highest resolution. The diffraction limit for d =

15 mm is 4.8 µm. Using these values in equation (5.17), σmeasured = 12.3µm. We can

understand our measurement within 0.21 µm which serves as third validation that our

measured oscillation frequencies, temperatures, and thus densities are correct.

5.4 Mesoscopic Samples

In this section I will discuss the production of mesoscopic atomic samples. Here

we are less concerned with density and more concerned with attaining small cloud

sizes. Experimentally this is done in much the same way as generating high densities;

the cloud is evaporated to high phase space densities and then rapidly recompressed.

The production of mesoscopic samples is different from the production of high density

samples in that it has a different set of optimal conditions. I will also discuss the

prospects of seeing a complete, or near complete, dipole blockade and how the highly

anisotropic nature of HAT has some advantages for dipole blockade.
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5.4.1 Derivation of Optimum Conditions

The thermal radius of the cloud after recompression scales as

σt = σb

√
Tt

Tb

(
νb

νt

)
. (5.18)

Since the recompression is adiabatic, equation (5.1) applies. The result is

σt = σb

√
νb

νt
= σb

(
Ub

Ut

)1/4

. (5.19)

This suggest that minimizing Ub yields the smallest thermal radius. The 1/4-power

dependence means a large Ub/Ut ratio is necessary to achieve substantial size reduction.

5.4.2 Results

We have demonstrated a dynamic range in the trap depth of 300, giving a factor of

4 reduction in the radius. During evaporation the radius is constant because the radius

is proportional to T/U which is held constant by the evaporation process. After the

completion of free evaporation, the z-direction radius is always 23 µm . By evaporating

to a trap depth of Ub = 2µK, the recompressed z radius is 5.6 µm and 220 nm in the

x and y-direction.

These radii are all too small to be resolved with our imaging system. The best

way to verify these sizes is to use the measured temperature and oscillation frequencies

to calculate the radius. Since there are only about 2000 atoms left in the microtrap

at this time, it is difficult to have sufficient signal-to-noise ratio to get an accurate

measurement of the atoms’ temperature. We have observed clouds which resulted

from evaporating to a Ub = 2µK, but we were unable to measure the temperature of

these atom clouds. From the scaling relationship in equation (5.19) we can conclude

that the clouds had a thermal radius of 5.6 µm. We were, however, able to measure

the temperature for a cloud which resulted from evaporating to Ub = 4µK. Using
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the measured temperature and the measured oscillation frequency, we calculated the

thermal radius of this cloud to be 8 µm.

5.4.3 Prospects of Dipole Blockade

As mentioned above, if the size of the clouds is smaller than the effective range

of the Rydberg atom, a total blockade of the production of multiple Rydberg atoms is

possible. We estimate here the probability of a double excitation, P2. The details for

calculating P2 are given in Appendix B. I will assume the following scenario. In our

experiment, the Rydberg atoms are excited via a 2 photon transition into a Rydberg

state with principle quantum number n. We will assume that the first photon comes

from a laser with λ = 780nm and a beam waist large compared σ. The second photon

comes from a laser with λ = 480nm and has a beam waist w which is comparable to

σ. We apply a pulse of the 480 nm laser light for a time, T. For n = 95 Rb atoms, a

Gaussian beam waist of w = 10 µm, and a pulse width T = 1 µs we can calculate a

mean frequency shift for the cloud, Ω, for an arbitrary potential. This is given as

1

Ω
2 =

2(1 + 2σ2/w2)

N2

∑

i<j

e−2(x2
i +x2

j )/w2

Ω2
ij

. (5.20)

where Ωij frequency shift between pairs of Rydberg atoms. For the case of a van der

Waals potential this is given by

Ω(R) =
δ

2
+

√
4U3(R)2

3
+

δ2

4
(5.21)

where δ is the energy for the s + s → np + (n− 1) p defect, U3(R) = C3/R3 =

e2〈ns||r||np〉〈ns||r||(n − 1)p〉/R3, and C3 is the van der Waals coefficient (Walker et

al., 2004). Using equations (5.21) and (5.20) we can calculate the probability, P2 that

there will be 2 excited Rydberg atoms,

P2 =
π2

2T 2Ω
2 . (5.22)
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σ(µm) w (µm) Ω̄/2π(MHz) P2

8.0 10 10.5 1.1× 10−3

8.0 20 2.09 0.029
8.0 ∞ 0.92 0.148
5.7 10 28 2× 10−4

5.7 20 8.8 1.6× 10−3

5.7 ∞ 5.1 4.9× 10−3

Table 5.1: Summary of the dipole-diople shifts and probabilities of doubly excited

states in the HAT for various σ and w values.

Table 5.1 shows the blockade results for various cloud sizes, σ, and Gaussian beam

waists, w, for 95 s states in Rubidium. Even using the clouds with thermal radius of

8 µm, a large enough frequency shift would result that the probability of exciting two

Rydberg atoms would be 0.1%. Given these low probabilities, it seems that the HAT

is a good candidate for the observance of Rydberg blockade.

5.4.4 Elimination of Dipole Zeros

In the absence of any external field, the interaction of two Rydberg atoms is very

short-ranged and has a 1/R5 or 1/R6 dependence. As discussed in (Walker et al., 2004),

under certain unusual conditions application of an external electric field can greatly

enhance this interaction in a resonant collision process known at a Föster process. The

resulting interaction goes as 1/R3 and is isotropic. More generally, in the presence of

an external field the Rydberg atoms can also acquire a ”permanent” dipole moment,

p, causing the familiar dipole-dipole interaction

VDD =
1

4πε0

(
3pA · R̂R̂ · pA − pA · pB

)
=

1

4πε0

p2

R3

(
3 cos2 θ − 1

)
(5.23)

where θ is shown in figure 5.4 and R is the interatomic separation. The dipole moment is

p ≈ n2ea0, so for highly excited Rydberg atoms this interaction can be made quite large.

The only unfortunate drawback of this potential is that at θ = 54.7◦ the interaction is
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zero. This could cause a ”leaky” blockade because for atom pairs oriented 54.7◦ from

the electric field there is no mechanism for blockading the excitation to the Rydberg

state for the the pair of atoms. Furthermore, atoms pairs close to this orientation will

have a weak interaction thus increasing the probability for a doubly excited Rydberg

state.

In the HAT, this is less of a concern. After recompression in the HAT, the radii

in the x and y directions are between 250 and 360 nm. By orienting the electric field

along the z-axis we can take advantage of the highly anisotropic geometry of the HAT

in order to nearly eliminate the problem of zeros in the potential. We have estimated

the dipole-dipole blockade in a method similar to that done for the van der Waals

interaction. Figure 5.5 shows histograms of the number of atoms pairs that experience

a certain dipole-dipole shift for two different trap geometries. The top histogram is for

the case of a trap with isotropic geometry with cloud radii 5.7µm ×5.7µm ×5.7µm.
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The bottom histogram is for an anisotropic trap, such as the HAT, with cloud radii

5.7µm ×238nm × 238 nm. In the isotropic trap there are many atom pairs which

experience zero or small dipole-dipole shifts. As a result, the mean frequency shift is

less than 1 MHz. In the anisotropic trap, the number of atom pairs experiencing a

small frequency shift is much less. Most of the cloud experiences a dipole-dipole shift

in excess of 10 MHz. According to the histogram, only 7 atom pairs have dipole shifts

less than 10 MHz. But according to equation 5.20, there is only a 1/N2 probability

that a given atom pair will be excited. This make the excitation of weakly interacting

pairs unlikely.

If the atom pair is oriented such that the dipole-dipole potential is small or even

zero, in the HAT there will still be a sizable van der Waals potential between the atom

pair causing a blockade shift. The results for the dipole-dipole blockade are given in

table 5.2. For this simulation we took Ωij in equation (5.20) to be Ωij =
√

Ω2
dd + Ω2

vdw

where Ωdd is the frequency shift caused by the dipole-dipole interaction and Ωvdw is the

shift caused by the van der Waals interaction. Again we assume that the doubly-excited

n = 95 pair is being produced for a π-pulse of T = 1 µs.

By comparison of Table 5.2 with Table 5.1, it is clear that much larger frequency

shifts and hence smaller P2 values result by using a dipole-dipole interaction. For the

case of a isotropic trap of cloud radius 5.7 µm and a Gaussian beam waist of 10 µm,

the combined dipole-dipole and van der Waals shift is 415 MHz. Again, far superior

σ w ¯Ωvdw/2π Ω̄dd/2π Ω̄/2π P2

8 10 11 197 254 1.9× 10−6

8 20 2.2 109 115 9.5× 10−6

5.7 10 29 413 415 7.2× 10−7

5.7 20 9.2 240 252 2.0× 10−6

Table 5.2: Summary of Dipole-Dipole blockade results for various values of σ and w
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blockade could be seen in a anisotropic trap such as the HAT, as opposed to an isotropic

trap.

5.5 Conclusion

In this chapter I have discussed the demonstration of the rapid production of high

density, mesoscopic atom clouds in our Holographic Atom Trap. Using the method of

adiabatic recompression we are able to make clouds with atomic densities in excess of

1015/cm3. These densities are the highest densities attained in incoherent matter. The

method of adiabatic recompression was appended to the model discussed in Chapter

4 to predict the final densities. The model and the experiment show good agreement.

We have also derived the condition for achieving the highest density. It was with

these conditions that we were able to produce clouds with atomic densities of 2 ×

1015/cm3. These density measurements were verified three ways: direct measurement

of the number, oscillation frequency of the atoms, and the temperature of the atoms;

measurement of the 3-body recombination rate; and measurement the cloud size. All

the methods showed good agreement and provided strong validation that our measured

densities are correct.

We then described a similar experiment which produced atom clouds with a radii

of 5 - 10 µm in the largest dimension and several hundred nanometers in the shorter

dimensions. These clouds show good prospect for seeing complete dipole blockade.

In order for the blockade to be successful, there must be a low probability that two

Rydberg atoms could be excited within a single microtrap. We have calculated a

mean Rydberg-Rydberg frequency shift (see Appendix B) caused by the van der Waals

potential for n=95 s Rb atoms. From that we have estimated a probability, P2, that

two Rydberg atoms could be excited. The results were summarized in table 5.1. With

our σ = 8µm clouds, the probability of 2 Rydberg atoms being excited in π pulse of



94

duration 1 µs is less than 0.1%. This number is even more encouraging when clouds of

size σ = 5.7µm are used. These low probabilities are very encouraging and show good

prospects for seeing a Rydberg-Rydberg blockade.

To conclude the chapter I discussed the prospects of seeing dipole-dipole blockade

in a microtrap. With the addition of a static electric field, the potential between the

atoms becomes the stronger dipole-dipole potential. The difficulty with this potential is

that at certain angles the potential is weakened or even zero. This is hurdle that needs

to be overcome for the demonstration of dipole-blockade, however, in the HAT this is

less of a problem. If any atom pair is orientated such that the dipole-dipole potential

is small or even zero, the anisotropic nature of the HAT allows for a sufficiently large

enough van der Waals potential to prevent a the excitation of two Rydberg atoms. We

have estimated the frequency shifts for pairs of atoms by using the quadrature sum of

the dipole-dipole interaction and the van der Waals interaction. The results of these

estimations are summarized in Table 5.2. Using an atomic cloud with a radius of 5.7

µm, the mean blockade shift is greater than 400 MHz which results in P2 values as low

as 7 × 10−7. Furthermore we have shown a histogram for the dipole-dipole blockade

shifts seen by pairs of atoms. Only a few atom pairs have blockade shifts less than 10

MHz. According to equation (5.20), there is only a 1/N2 probability of exciting a given

pair of atoms. Thus the probability of exciting the weakly blockaded pairs is small. For

comparison, a histogram of the dipole dipole blockade shifts for an isotropic trap was

given. In this case the mean dipole-dipole shift was less than a MHz. Many atom pairs

experience a weak interaction raising serious concerns about the validity of a blockade

in a isotropic trap. Nonetheless, the estimations for the HAT are very encouraging and

indicate that observation of a high fidelity van der Waals and/or dipole dipole blockade

are possible in the HAT.

The ability to produce a completely blockaded transition is integral to the pro-
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posed quantum computing scheme of Lukin et al. Furthermore, Saffman et al. has

also suggest using blockaded states as a deterministic single photon source (Saffman

et al., 2002). Since only one atom is excited to the Rydberg state, only one photon

will be emitted from the atomic ensemble. Using the proper choice and orientation

of the laser fields, Saffman et al. showed that this single photon scheme can be both

on-demand and have directionality, both important factors for quantum manipulation

and quantum computation.
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Fig. 5.5.— A histogram for the dipole-dipole shift. The top picture is for a isotropic

trap. The bottom is for the HAT geometry.
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Chapter 6

Heating Mechanisms

6.1 Introduction and Background

In Chapter 4 I discussed forced evaporation in the Holographic Atom Trap. While

comparing our model with our experimental results, the model was unable to explain

the extra atom loss. It was suggested that a heating mechanism might have caused the

discrepancy.

Heating meachanisms which occur during evaporation manifest themselves in the

form of atom loss, rather than in the form of a temperature increase. Recall from

Chapter 4 that evaporation will occur until the temperature of the atoms is 1/10 the

trap depth. If a heating mechanism is present, evaporation will succeed in decreasing

the temperature to 1/10 the trap depth, but at the cost of greater atom loss. This

might explain our results.

Our approach to solving this problem was the following. First we needed to

answer the question: what heating rate would explain the additional atom loss that

we see? Using our model for evaporation, we were able to get a ”ball park” idea for

the types of heating rates that would cause the atom loss not predicted by our current

theory. We found that the heating rate varied as we varied the trap depth, but at
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deeper traps depths the heating rates were on the order of 10 µK/sec and at shallower

traps the heating rates were approximately 1 µK/sec. The method used to attain these

results and the more thorough explanation of the results will be discussed in Section

6.2. With this information we would measure and calculate the heating rates from

various heating mechanisms and try to draw a conclusion about the cause of the atom

loss.

In Section 6.3, I discuss two categories of heating mechanism: heating due to the

confining laser and heating do to collisions with the background gas. Heating due to the

confining laser is often a function of the trap oscillation frequencies. During evaporation

in an optical trap the oscillation frequencies are constantly changing, therefore we

are vulnerable to heating from laser noise at all frequencies. The four types of laser

induced heating that I will discuss are photon scattering, pointing stability, heating

from intensity noise, and torque heating. The group at Duke has extensively studied

heating due to pointing instability and laser noise, and I will be applying their results

when applicable. To our knowledge we are the first group to study torque heating. We

estimate the heating rates from laser intensity noise, pointing stability, and torque by

measuring power spectra of the YAG laser for various conditions. I will show that at

low trap depths, the heating rates from laser intensity noise are significant enough to

account for some of the atom loss we see. I will also shown that heating due to photon

scattering, pointing instability, and torque heating are negligible.

The second type of heating mechanisms, heating caused by collisions with back-

ground gases, will be discussed in Section 6.4. These mechanisms include quantum

diffractive collisions with background atoms and secondary collisions. Secondary colli-

sions are triggered by a primary collision with a background atom causing a trapped

atom to be ejected. As the atom leaves the trap, it undergoes secondary collisions with

another trapped atom. The energy transfer in the secondary collisions is not sufficient
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to eject the second atom from the trap, but the energy gained in the collision is dis-

tributed amongst the remaining atoms in trap as a form of heat. These mechanisms

are functions of the trap depth which also change during evaporation. So again, these

heating rates must be studied over the range of trap depths. The background that I

am referring to can be either a vacuum contaminant, such as hydrogen or helium, or

it could be the background Rubidium vapor. Since the installation of a titanium sub-

limation pump, we are confident that we have very low levels of contaminant. In our

case the majority of the background is untrapped Rubidium atoms. I will show that

both of these heating mechanisms make a significant contribution to heating rates in

the HAT. At large trap depths the dominate heating mechanism is quantum diffractive

collisions, and at shallower trap depths secondary collisions become important.

In section 6.5 we discuss a method we have developed for direct measurement of

the heating rates. The method is similar to the procedure used to produce the high den-

sity, mesoscopic samples. This measurement takes advantage of the fact that after the

recompression step T' U/10 (discussed in Chapter 5), evaporation is effectively ”shut

off”. Under these conditions we can measure the increase in temperature as a function

of time. The measured heating rates are in good agreement with the quadrature sum

of the calculated heating rates from intensity noise, quantum diffractive collisions, and

secondary collisions.

Finally in Section 6.5.2 we discuss modifications we have made to the evaporation

model to account for the presence of heating mechanisms. We show that by including

the heating due to quantum diffractive collisions and secondary collisions, the model is

able to predict the phase space density extremely well, except at the very end where

heating from intensity noise probably needs to be considered.
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6.2 Preliminary Determination of the Heating Rate

Using the model for evaporation discussed in Chapter 4, we designed an exper-

iment to estimate the heating rate that would account for the extra atom loss. The

experiment proceeds as follows. First we would preform forced evaporation to a certain

trap depth Uhold, hold that trap depth at Uhold, and measure atom loss as a function of

time. Then using the model we add in a ficticious heating rate and adjust that heating

rate to account for the atom loss that we measure. Using this method we determined

the heating mechanisms that would be needed at various trap depths to cause the atom

loss that we see. This data is shown in table 6.1.

A direct way of measuring heating rates will be given in Section 6.5, but this

method gives us a ”ball park” range of rates which could be problematic. We will

now turn to measuring various heating rates in attempts to determine the heating

mechanisms we are effected by.

6.3 Laser Induced Heating

The first category of heating mechanisms that I will discuss are those caused by

the confining laser. The four mechanisms that I will discuss are photon scattering,

intensity noise, pointing stability, and torque heating. To esimtate the heating due to

the last three mechanisms I will be presenting Fourier spectra of the YAG laser light

Trap Depth (µK) Predicted Heating Rate (µK/sec)
121 7
45 2
5 0.700

Table 6.1: Trap depths and the heating rates at that trap depth that would account

for the measured atom loss.
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using an Standford Research Systems model SR760 spectrum analyzer.

6.3.1 Photon Scattering

I will first discuss heating due to atoms scattering photons for the YAG laser.

We can express the scattering rate as

Rsc =
σrayleighI

h̄ω
(6.1)

where

σrayleigh =
8π

3
α2

0k
4 (6.2)

where ω is the frequency of the YAG light. Using this equation we calculate the rate to

be 0.57 photons/second at maximum trap depth. The energy each YAG photon imparts

to a Rb atom is given by E = h̄2k2/2m = 194 nK. Therefore the heating rate at U

= 600 µK is 111 nK/sec, and the heating rate decreases linearly with decreasing trap

depth. The heating rate at a trap depth 5 µK is 925 pK/sec. Clearly, this mechanism

is negligible.

6.3.2 Intensity Noise

Heating in a ar off resonant trap can also be the result of intensity fluctuations in

the confining laser. Fluctuations in the laser power change the trap depth and thus the

spring constant. As we have discussed in Chapter 4, if the trap depth is modulated at

twice the trap oscillation frequency, then atoms are heated and ejected from the trap.

While this is a useful tool for measuring oscillation frequencies, it can be a source of

unwanted heating. The effects of laser intensity noise on atoms in FORTs were done

by (Savard et al., 1997) and (Gehm et al., 1998). The major result of these papers was

the heating rate due to intensity noise

Ė =

〈
dEi

dt

〉

=
π

2
ω2

i Sk(2ωi) 〈Ei(t)〉 =
〈
Ėi

〉
= Γi 〈Ei〉 (6.3)
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where Sk(2ωi) is noise spectral density in units of fractional noise/
√

Hz and i is the

corresponding components in x,y, or z. The solution to equation (6.3) infers that

intensity noise causes an exponential increase in the temperature with a rate of

Γi = π2ν2
i Sk(2νi) (6.4)

where again νi refers to the oscillation frequency of the atoms in the ith dimension. The

equation for
〈
Ė

〉
is proportional to the energy because the force exerted on the atoms

as a result of the fluctuations increases as the square of the distance from the center

of the trap. The dependence on 2ν rather than ν is expected since this is a parametric

heating process. It is interesting to point out that the heating rate is proportional to

ν2. Any noise component at a high frequency can lead to an extremely high heating

rate.

Intensity noise can be eliminated or at least suppressed by the addition of a

feedback circuit or noise eater as discussed in Chapter 4. However, we have found that

our feedback loop performs differently over the course of the dynamic range of trap

depths. The intensity noise on the laser might be different for different trap depths.

To study this we have taken Fourier spectra at several trap depths. For each spectrum

the laser power was a constant 19 W; the trap depth was decreased by decreasing

the RF power sent to the AOM in the YAG optical train. From the Fourier spectra

and equation (6.4) we can estimate the heating rates. Figure 6.1 shows a typical set

of power spectra. For both of these the trap depth was 600 µK. The top spectrum

corresponds to the z-axis; the bottom corresponds to the x-axis. The data was taken

for a range of trap depths and is summarized in Table 6.2.

Comparing Table 6.1 and Table 6.2, it is clear that intensity noise is a problem.

As mentioned above, the feedback circuit performs differently for different values of the

trap depth. Therefore optimizing the circuit for the best noise suppression at one range
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Fig. 6.1.— Power Spectra for the YAG at full trap depth. Arrows designate ν = 2νx,z

of frequencies often makes the performance worse at another range. The solution for

this is to use two AOMs in the optical train. The first AOM would serve to stabilize the

intensity via a feedback loop; the second AOM would provide the means for lowering

the trap depth. This new apparatus has been constructed but not yet installed. While

this will provide excellent noise suppression, it will come at the cost of laser power and

thus will lower the maximum attainable trap depth.

Though there is work to be done on remedying the intensity noise, we have made

a great deal of progress. We have designed a better feedback circuit (see Appendix C).
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U ν Sk Γ(1/sec) 〈E〉evap (µK)
〈
Ė

〉
(µK/sec)

600 735 3.98e-10 0.002 180 0.360
600 18400 4.35e-12 0.014 180 2.52
400 600 5.3e-10 0.002 120 0.240
400 15300 2.3e-11 0.054 120 6.48
100 300 7.5e-8 0.067 30 1.99
100 7500 2.96e-11 0.016 30 0.48
50 210 1e-7 0.044 15 0.652
50 5257 1.8e-10 0.05 15 0.75

Table 6.2: Summary of heating rates from laser noise. The high heating rate at U =

400 µK demonstrates the point that noise at a high frequency can yield an exceptional

heating rate.

The regulated versus nonregulated power spectrums are shown in figure 6.2.

We have also changed how the feedback loop is implemented. In the work de-

scribed by (Newell, 2003), the feedback circuit monitored a third order beam from the

holographic diffraction grating. For reasons not understood, the noise characteristics

for each of the diffracted orders is not correlated. By monitoring the third order, the

feedback circuit was adding noise to the first and zeroth orders. To fix this, the feed-

back circuit is now monitoring the zeroth order. This does a great deal to suppress the

low frequency noise in the zeroth order beam(see figure 6.3), but still adds noise to the

first order. In figure 6.3 both spectra were taken of the zeroth order beam from the

diffraction grating. The arrow designates the spectrum taken when the stabilization

was applied to the 3rd order beam from the diffraction grating. As of now, we have no

solution for this source of intensity noise.

6.3.3 Pointing Stability

Atoms in the HAT can also be heated as a result of laser-beam-pointing noise.

This can be a problem inherent to the laser or can be a result of mechanical oscillations
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in the optical components. The equations governing the heating rates are once again

described in (Savard et al., 1997) and (Gehm et al., 1998). These papers give a heating

rate due to pointing instability to be

〈
Ė

〉
=

π

2
Mω4

xSx(ωx) (6.5)

where Sx(ω) is the power spectrum of position fluctuations of the trap center. The

heating from pointing instability is independent of energy, thus heating of this type does

not cause an exponential increase in the temperature as does heating from intensity

noise.

We measured the pointing stability of our optical train as shown in figure 6.4. We

place a slit in the focal plane of the last lens. This corresponds to the position of the

atoms. The photodiode signal after the slit is very sensitive to any movement of the

beam on the slit. Before the measurement, we moved the slit a calibrated amount to

get a relationship between movement of the beam at the focal plane and the generated

photodiode current. This calibration was used to scale the amplitudes of the power
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spectra shown in figure 6.5b). Power spectra comparing slit open to slit closed is

shown in figure 6.5 a). From figure 6.5 we would conclude that there is little pointing

instability in our set-up. The calculated heating rates are summarized in table 6.3.

The heating rates listed in Table 6.3 are much less than the estimated rates in

Table 6.1. In conclusion, the heating rates associated with pointing instability do not

account for the heating rates present during evaporation.

6.3.4 Torque Heating

After measuring the pointing stability of the optical train, we have concluded

that at the atoms, the YAG has good pointing stability. It is possible, however, for the

position of the focus to be fixed yet the beam to rotate about the focus. If this was

the case, the microtraps would also be rotating an angle, θ, about their center. This

would be another possible source of heating which we have named torque heating. A

complete derivation of torque heating is given in Appendix E, but I will give the major
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results here.

Like intensity noise, the change in energy due to torque heating is proportional

to the average energy of the sample,

〈
dE

dt

〉

=
ω4

x

2ω2
z

〈E〉
∫

cos ωzτ cos ωxτε(τ)ε(t− τ) dτ. (6.6)

Assuming that ωz ' ωx, this can be written as

〈
dE

dt

〉

=

(
ω4

x

2ω2
z

)

Sk(ωx) 〈E〉 (6.7)

where Sk(2ωi) is noise spectral density in units of radians2/Hz. As done in Gehm et

al., we define a rate, Γ as

Γ =

(
ω4

x

2ω2
z

)

Sk(ωx). (6.8)

We measured the torque heating with an apparatus similar to figure 6.4 except we

remove the lens right before the photodiode and the slit at the focal plane of the first

lens. If there is a long distance between the focus and the photodiode, the photodiode

signal is very sensitive to the change in angle.



108

Trap Depth νz Sx(ωz) µm2/Hz
〈
Ė

〉
µK/sec

600 735 5.4e-7 4
400 600 5.4e-7 1.7
100 300 5.1e-7 0.105
50 210 5.3e-7 0.026

Table 6.3: Summary of heating rates from pointing instability.

By calibrating the angular movement of the beam with the signal seen on the

photodiode and taking the power spectrum, we can apply the appropriate scaling to

the power spectrum and extract heating rates due to torque heating. The heating rates

at several values of the trap depth are given in table 6.4. A typical power spectrum

and time constants for torque heating are given in figure 6.6

From table 6.4 we can conclude that the effects of torque heating have a negligible

contribution to the heating rates seen in the HAT.

6.4 Heating from Collisions with background Rb atoms

The second source of heating mechanisms common in optical traps are those

caused by collisions between the trapped atoms and the background vapor. These

collisions can be especially troublesome in vapor cell experiments where the MOT is

loaded from a background vapor.

The condition for heating due to collisions with the background is derived in

references (Bali et al., 1999) and (Beijerinck, 2000). In general, the condition that a

collision will cause heating is that

U >
1

2
m(∆v)2 (6.9)

where ∆v = vRθµ/M is the change in the velocity of the trapped atom during the

collision. We define µ is the reduced mass, θ is the incident angle of the background

atoms prior to the collision, and vR is the relative velocity between the trapped atom
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and background atom. This equation assumes elastic collisions and a small angle

approximation has been applied. If U < (1/2)m(∆v)2 the collision would result in

atom loss rather than heating. Thus equation (6.9) limits the range of collision angles

that will lead to heating as opposed to just atom loss. If the incident angle, θ is less

than a maximum angle, θmax, then the atom will remain in the trap and will cause

heating. If θ > θmax then the atom will be ejected from the trap.

6.4.1 Quantum Diffractive Collisions

We know that the angle θ must be small to cause heating rather than atom loss.

Small angle collisions are treated with quantum diffractive theory if the maximum

energy transferred via a diffractive collision is greater than the trap depth. Hence for

shallow traps small angle collisions are often described by diffraction. The maximum

energy transferred in a diffractive collision is

Ed =
4πh̄2

Mσ
(6.10)

where σ is the classical scattering cross section. For Rb-87, Ed = 2.8 mK which is

greater than the maximum HAT trap depth of Umax = 0.6 mK, so it is valid to treat

all heat causing collisions with the background as diffractive collisions.

The result of (Bali et al., 1999) is an equation for the heating rate due to quantum

diffractive collisions

dE

dt
= 0.37× γc

U2

Ed
(6.11)

Trap Depth (µK Γ (1/sec) 〈E〉 (µK)
〈
Ė

〉
(nK/sec)

175 4.48e-5 52.5 2.3
100 5.45e-5 30 1.6
50 4.47e-5 15 0.67
10 3.37e-5 3 0.1

Table 6.4: Heating rate from torque heating for several value of the trap depth.
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where γc = γbg is the measured loss rate due to background collisions and Ed is given

above to be 2.8 mK. For this calculation we assume that the collisions are all binary

collisions between two Rb atoms (one trapped, one untrapped). Details about the

measurement of γbg for the HAT are given in Chapter 3. This number is typically

1/3.5 sec = 0.286 /sec. At maximum trap depth, heating due to diffractive collisions

is approximately 14 µK/sec. Note that this is over a factor of 5 improvement over

(Newell, 2003), yet still a substantial source of heating. A summary of heating rates

from quantum diffractive collisions at several trap depths is given in Table 6.5. At

Trap Depth (µK) Heating rate (µK/sec)
600 14.1
400 6.26
100 0.392
50 0.098
10 0.004

Table 6.5: Summary of heating rates from quantum diffractive collisions.

large values of the trap depth, the heating due to quantum diffractive collision is much

larger than the estimated heating due to intensity noise. At shallower trap depths the

estimated heating from intensity noise is larger.

6.4.2 Secondary Collisions

As discussed above, if the energy transfer in a collision is greater than the trap

depth, the collision will cause atom loss, not heating. This is not true, however, for

the case of collisionally thick clouds (Beijerinck, 2000). The impacted atom will still

leave the cloud, but as the atom leaves there is a finite chance that there will be a

secondary collision with another trapped atom on the way out. Energy is transferred

to the second atom in the collision, but the atom does not have enough energy to leave

the trap. Rather, the second atom stays in the trap and the excess energy is distributed
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amongst the other trapped atoms in the form of heat. This is of concern in the HAT

because the densities are so high.

The collisions are studied in detail in (Beijerinck, 2000). The major result of that

paper is an equation for the heating rate

dE

dt
= 153nk/s

(
100s

τ p

)
×

(
〈nl〉

1015m−2

)

×
(

87

M

)
×

(
U

1mK

)1/2

×
(

Es
ref

1.36mK

)−5/6

×
(

Ep
ref

17.5mK

)1/6

(6.12)

where τ p is the measured lifetime due to primary collisions, 〈nl〉 is the average col-

umn density, Es
ref is the energy transferred between two Rb atoms during a secondary

collision, and Ep
ref is the energy transferred between two Rb atoms during a primary

collision. The values of Es
ref and Ep

ref for Rb-Rb collisions are equal and are given in

(Beijerinck, 2000) to be 1.36 mK.

Beijerinck also discusses the appropriate column density for an asymmetric po-

tential, such as seen in the HAT. For the case that the transverse oscillation frequency

is much greater than the axial frequency,

〈nl〉 = 0.866× π

2
n(0)lr (6.13)

where lr is

lr =

√
kT

(2πνr)2M
. (6.14)

The corrected column density for a typical evaporation set and calculated heating rates

are shown in Table 6.6.

The heating rates shown in Table 6.6 are overall lower than those of diffractive

collisions in Table 6.5, except at shallow trap depths. It is important to note that the

heating rates due to secondary collisions decrease as NU1/2, while the heating rates

due to quantum diffractive collisions decrease as U2. As seen in figure 6.7, at a trap

depth of approximately 40 µK heating from secondary collisions dominate heating from

quantum diffractive collisions.
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Above I discussed possible heating mechanisms in optical traps, estimated the

heating rates for these heating mechanisms, and discussed how the measured heating

rates change during evaporation in the HAT. These heating rates were put into context

by Table 6.1. The rates in 6.1 were estimated by our evaporation model as the minimum

heating rates necessary to cause the additional atom loss measured in the experiment

but not predicted by standard evaporation dynamics. Based on Tables 6.2 - 6.6, we

can draw some conclusions about which heating mechanisms dominate. At large trap

depths, the dominate heating mechanism is quantum diffractive collisions. At low trap

depths, heating from laser intensity noise and secondary collisions in the collisionally

thick microtraps dominate.

6.5 Measuring Heating Rates via Recompression

In this section I will describe a method for direct measurement of the heating

rates in the HAT. As discussed previously, in evaporation heating mechanisms can be

disguised as a loss mechanism because the temperature will decrease until T=U/10,

but in the presence of the heating mechanism more atoms will be ejected in the process.

To directly measure the heating rates we would need to ”shut off” evaporation. This

could be achieved by creating a condition in which T' U/10. In this scenario heating

mechanisms increase the temperature until T ≈ U/10 and evaporation would be trig-

gered. This is exactly the condition that occurs after evaporation and recompression in

Trap Depth n (1/cm3) lx (nm) nl (cm−2) Heating Rate (µK/sec)
600 3.1e14 654 2.8e10 0.619
400 2.7e14 654 2.4e10 0.433
100 2.0e14 654 1.77e10 0.163
50 1.67e14 654 1.5e10 0.096
10 9.9e13 654 8.8e9 0.025

Table 6.6: Summary of heating rates for Secondary collisions
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the HAT. Recall in chapter 6 that atomic temperatures after recompression were ap-

proximately 9µK while the trap depth is 600µK. In this section we will use evaporation

followed by recompression to directly measure the heating rates in the HAT.

6.5.1 Results

We performed a number of evaporation and recompression sequences. Each trial

we would ramp the trap depth down to Ub = 5 µK then recompress to a varied value of

Ut. We then measure the temperature as a function of time and apply an appropriate

fit function to determine the heating rate.

If the heating is associated with quantum diffractive collisions or intensity noise

on the laser, the temperature will increase linearly with time and a linear fit function

is appropriate. If the heating is caused by secondary collisions a more sophisticated fit

function is necessary due to the temperature dependence in the 〈nl〉 term. I will give

the result here, but a complete derivation is found in Appendix D. The fit function

describing secondary collisions is

T (t) =

√

T 2
0 +

2

3
Q̇T0t. (6.15)

Table 6.7 shows the results of our measurements, the theoretical values for quan-

tum diffractive collisions and secondary collisions, and a reminder of the heating rates

Ut n lx 〈nl〉 Theory Theory Laser Noise Measured
(1/cm3) (nm) (1/cm2) dE/dtqd dE/dtsecond dE/dt dE/dt

600 8.8e14 240 2.9e10 14 0.642 2.5 31.5
400 1.5e15 207 4.2e10 6.26 0.758 6.48 13.2
100 3e14 334 1.4e10 0.392 0.126 1.99 0.990
50 2.4e14 414 1.35e10 .098 0.086 0.990 1.38

Table 6.7: Theoretical and measured heating rates for different trap depths and column

densities. All heating rates are in units of µK/sec.
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due to the intensity noise on the YAG laser. By comparing measured heating rates af-

ter recompression (the last column in table 6.7) with the modeled heating rates during

evaporation, (table 6.1) it seems that the heating rates during evaporation are overall

higher than after recompression. In addition to this discrepancy, a larger mystery re-

mains: we are unable to explain the large heating rate at full trap depth. At this point

the dominate heating mechanism should be quantum diffractive collisions, all other

heating mechanisms are negligible.

Table 6.8 summarizes our study of heating rates. The predicted heating rate is the

quadrature sum of the expected heating rates from secondary collisions, intensity noise,

and quantum diffractive collisions. Overall these mechanisms are able to account for our

measured heating rates. At large trap depths, quantum diffractive collisions dominate,

though we cannot explain why our measured rates are not in better agreement with the

prediction of Bali et al. At shallow trap depths the dominate heating mechanisms are

secondary collisions and intensity noise. In the next section we will use this information

to modify the model so to include heating due to these mechanisms.

6.5.2 Inclusion of Heating Rates into Evaporation Model

We can now reconfigure the model to include the heating rates from quantum

diffractive collisions and secondary collisions. This sets a lower limit on the effects of

heating in the HAT. Heating from laser noise was neglected for simplicity. Recall that

Trap Depth Predicted Measured
heating rates heating rates

600 14.2 31.5
400 9.04 13.2
100 2.03 0.99
50 0.76 1.38

Table 6.8: Summary of heating rates. All heating rates are in units of µK/sec.
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our model for evaporation was a sequence two steps: rethermalization and lowering

the potential. We will now change the model to have three steps: rethermalization,

lowering the potential, and finally addition of the heating mechanism. As before, this

three step sequence is cycled many times. The result is shown in figure 6.8. The arrows

point to the theory curve which includes heating from quantum diffractive collisions

and secondary collisions. With this modification the theory does a much better job

predicting the atom loss and thus the phase space density. The additional atom loss at

the end of the evaporation cycle is most likely a result of intensity noise on the YAG

laser.

It is important to note that with the inclusion of heating due to quantum diffrac-

tive collisions and secondary collision, the predicted phase space density never reaches

2.6, the phase transition to Bose Condensation. Based on this, we conclude that the

presence of the heating mechanisms in the current set up prevents us from attaining

quantum degeneracy.

While heating mechanisms are a problem in our experiment, we have made vast

improvements towards suppressing the heating due to intensity noise and quantum

diffractive collisions. Since the work of (Newell, 2003), we have suppressed quantum

diffractive heating by a factor of 5. This was done by improving the vacuum. We have

also done much work on improving the intensity noise on the YAG. The remaining

laser noise can be remedied by the use of a second AOM whose purpose is to solely be

a ”noise eater”. The current AOM would be used for adjusting the trap depth during

evaporation. The heating due to background collisions is a much harder problem to fix.

The possible solutions are to increase the initial number of atoms loaded into the HAT

so that during evaporation we can tolerate the additional loss due to diffractive heating,

make further improvements to the vacuum, or load the MOT from an atomic beam

rather than the background vapor. Regarding the vacuum, most of the background is
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Rb which is needed to trap large number of atoms in the MOT and the HAT. Neither

of the other two solutions are very practical at this time.

Lastly, it is important to point out that while these heating mechanisms may have

prevented us from getting BEC, they have not prevented us from producing the high

density mesoscopic clouds discussed in Chapter 6. The heating mechanisms will have

no effect on our current work with Rydberg atoms, most importantly these heating

mechanisms will not effect our ability to produce a dipole blockade.
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Chapter 7

Experiments with Rydberg Atoms

7.1 Introduction

Experiments with cold Rydberg atoms can be divided into two categories: those

which take place above the ionization limit and those that take place below the ion-

ization limit. Experiments at NIST, Rice, Michigan, and Virginia, to name a few,

have excited cold atoms to high n states then have proceeded to make a cold Rydberg

plasma. Much research has been done to understand the dynamics of the cold plasma.

As a result, many interesting results have been uncovered.

The other category of Rydberg research, experiments below the ionization limit,

has been deeply affected by the prospects of using interactions between cold Rydberg

atoms to do quantum computing and quantum manipulation (Jaksch et al., 2000)

(Lukin et al., 2001). Key to this is the concept of blockade, where a single atom at

a time is excited from an ensemble. An important current goal is to demonstrate a

complete dipole blockade. In Chapter 5 I discussed the prospects of seeing a complete

blockade in one mictrotrap of the HAT. After evaporation and recompression, the

dimensions of the HAT (5.6 µm x 250 nm x 250 nm) are ideal for demonstrating

a total blockade because it is possible to make a Rydberg atom which has a range
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(radius) of influence larger than the trap size. This means that if one atom in the

microtrap is excited to a Rydberg state via a narrowband laser, the electric field from

that atom would be sufficient to alter the energy levels of all the other atoms in the

ensemble so that the narrow band laser no longer was coupled to the Rdyberg state.

Thus, no other Rydberg atoms could be made. Total Rydberg blockade has not yet

been demonstrated.

Recently, two groups (Tong et al., 2004) and (Singer et al., 2004) have seen evi-

dence for suppression of Rydberg atom excitation. It is important to make this distinc-

tion: suppression demonstrates that fewer Rydberg atoms are excited than expected

by classical theory; blockade suggests the excitation of one, and only one, atom into a

Rydberg state. Both groups used a standard MOT as the source for making the cold

Rydberg atoms. In this case the excited Rydberg atom’s range of influence is much

less than the size of the MOT. This allows for multiple excitations, but the number of

excitations to the Rydberg state will be smaller because the range of influence around

each Rydberg atom prevents neighbors from being excited.

Before discussing our work, I will briefly report on the state-of-the-art in the field.

In section 7.1.2 I will give a summary of the experiment described in this chapter.

7.1.1 Summary of Related Work

The Conneticut group, (Tong et al., 2004), reported the Rydberg suppression by

doing the excitation via a pulse UV laser resonant with the 5s to np Rydberg state. The

suppression was caused by the long-range van der Waals potential (VvdW ∼ C6/R6).

After the Rydberg excitation a 1500 V/cm electric field was applied to ionize the

Rydberg atoms. The ions were detected by a microchannel plate detector (MCP). This

procedure was implemented for three different n states. The van der Waals coefficient

∼ n11, therefore it is expected that the suppression would be greater for high values
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of n and much less for lower n-states. This group models the Rydberg excitations by

solving the Bloch equations with the inclusion of an mean field energy level shift do to

the Rydberg-Rydberg interaction. A factor α contains the average frequency shift due

to the Rydberg interaction and the peak density of excited atoms, and alpha is scaled

to fit the experimental data to the model. As expected, this work reports on strong

suppression of excitation to n=70 and n=80 Rydberg states, and no suppression for

n=30.

Similar results were reported in the work of (Singer et al., 2004). In this work

the excitation to the Rydberg state was done using a narrow band CW laser. Atoms

were first excited from the 5S1/2F = 2 to the 5P3/2F ′ = 3 state with the MOT lasers;

a second laser, a blue laser, was tuned to the 5P3/2F ′ = 3 to nl transition. The

density of atoms in the ground F=2 state was adjusted using a depumper laser to

purposely remove atoms from F = 2 and shelve the atoms in F=1. Prior to the Rydberg

excitation, the MOT lasers are shifted to be on resonance with the 5S1/2F = 2 to the

5P3/2F ′ = 3 transition and the blue laser was pulsed on for 20 µsec. Like (Tong et

al., 2004), the detection is done by field ionizing the Rydberg atoms and detecting

ions with an MCP. The MCP is calibrated by deducing the number of atoms lost

from the fluorescence signal. The primary goal of this work was to study lineshapes

of the Rydberg transitions, and the dependence of density and power on the number

of Rydberg atoms produced. Rydberg spectra were taken for n=62 and n=82, and

for each value of n the Rydberg spectra was taken in the low blue power regime (6

W/cm2) and the high power regime (500 W/cm2). At high power the group reports

significant linebroadeing which they attributed to level shifts of the Rydberg states due

to van der Waals interactions among Rydberg pairs. They also report saturation of

the n=82 transition at a lower power than the saturation of the n=62 transition. This
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was attributed to the onset of dipole suppression.

7.1.2 Summary of this work

In this chapter I will discuss on-going research of Rydberg atom production. I

will first report on the production of 46d and 48s Rydberg atoms via both single pho-

ton excitation from the 5P3/2F ′ = 3 to np Rydberg state and two-photon excitation

from the 5S1/2F = 2 to the 46d. To our knowledge, we are the first group to generate

Rydberg atoms with a two-photon excitation. The two-photon process is preferable to

the single photon excitation because in the two photon case the affects of the interme-

diate state are negligible. In the single photon excitation case the intermediate state

has a finite lifetime allowing atoms to decay from the intermediate state without being

excited into the Rydberg state. This is a source of decoherence in the system. For

experiments such as Rabi flopping, the two photon process will be essential.

The detection of the Rydberg atoms is achieved by monitoring the MOT fluores-

cence. From the fluorescence signal, absolute loss rates, γ1, due to the Rydberg atom

excitation in the MOT can be extracted and plotted as a function of the laser power

used to excite the Rydberg atoms. Saturation of the single photon excitation into the

48 s and 46 d states was observed. Weak saturation of the two-photon 46 d transition

was also observed. The measured γ1 at saturation for the single photon excitation to

the 46 d state was approximately 25/sec which is surprisingly low given that the fun-

damental lower limit on the loss rate of Rydberg atoms from the MOT is given by the

black body ionization rate which we have calculated for n=50 to be 290/sec. We would

expect for a classical two-level system to measure a loss rate approximately half the

black body ionization rate, because classically we could excite half of the MOT atoms

into the Rydberg state. By measuring a lower loss rate than expected, it suggests that

we are not exciting as many atoms to the Rydberg state as classically possible.
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In section 7.4 I will discuss a model which has been generated to explain the

loss rate of Rydberg atoms from the MOT. Included in this model is the effect of

suppression of Rydberg excitation due to Rydberg-Rydberg interactions. We modeled

Rydberg excitation in the MOT has a four level system: a ground state (g), an excited

state (e), a Rydberg state (r), and a storage state (s). The purpose of the storage state

is to account for the atoms lost from the Rydberg state due to transitions among n

states and ionization, both a result of black body radiation. Since the excitations in the

MOT are considered to be incoherent, we were able to model the Rydberg excitation as

a set of three rate equations. At low laser power, our data closely fits the model when

no suppression is present. This is expected because at low laser power the density of

Rydberg atoms is low and the atoms are not closely enough packed to be influenced

by neighboring Rydberg atoms. At high laser powers our data deviates from the no-

suppression model. This deviation suggests that indeed, a suppression mechanism is

present. The degree of deviation is extracted from the fit function, and from that we

determined we were exciting Rydberg atoms with a range of influence of 4.8 µm, almost

50 times the classically calculated (r ∼ a0n2) size of a n = 50 Rydberg atom.

There are several features of this work which are novel compared to the previously

mentioned work of (Singer et al., 2004) and (Tong et al., 2004). These include the ability

to measure the absolute loss rate of Rydberg atoms from the MOT. By using the MOT

fluorescence rather than an ion detector to measure losses due Rydberg atoms, our

measurements are self-calibrated. As stated above, we demonstrate the first two-photon

excitation of a Rydberg state. Others have demonstrated the one photon excitation to

the Rydberg state. The two-photon transition is necessary for coherent manipulation of

atoms. This excitation method will be necessary when exciting Rydberg atoms in the

HAT since the heating due to the scattering of resonant light will eject large numbers

of atoms trapped in the HAT. And finally, our detection system is unique in that we
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use only the MOT fluorescence to detect the presence of Rydberg atoms.

The work presented here is our first efforts in making Rydberg atoms. This work

is ongoing and is carried out by my co-workers in the lab. The ultimate goal to measure

the absolute loss rate from the MOT due to Rydberg excitations for three n-states with

the expectation of seeing greater suppression of Rydberg excitations at higher n-states

because the potential scales as n11. The next step will be to generate Rydberg atoms

in the HAT in effort to produce a total van der Waals or dipole-dipole blockade.

7.2 Apparatus

The excitation to the Rydberg state is a two step process. We have demonstrated

this excitation using two methods shown in figure 7.1: a single photon transition from

the 5P3/2 F’=3 excited state, and a two photon transition from the 5S1/2F=2 state.

In the single photon excitation from the excited state, atoms are excited into the

5P3/2F = 3 state via the standard trapping beams. The excited state fraction is

approximately 0.23. For the two photon excitation, atoms are excited to a virtual level

-1.2 GHz to the red of the 5P3/2F ′ = 3 state. We use a Toptica TA-100 at 780 nm

to generate these photons. Using a Burleigh WA-1000 optical wavemeter, we use the

piezo on the diode laser grating to tune the frequency. From the WA-100 we measure

that the Toptica is stable to 98 MHz over 1 hour. Overall we have found the WA-1000

to have excellent long-term stability and no other stabilization is needed. Typically we

adjust the piezo voltage every few hours to retune the laser to the proper frequency.

The TA-100 can produce 500 mW of light at 780 nm. An IntraAction Corp. AOM is

used to pulse the laser. After the AOM we can deliver 250 mW of light to the atoms.

The Gaussian beam waist of this laser is 1.8 mm at the MOT cloud. Even though this

laser is far detuned, it has a visible depumping effect on the MOT cloud.

The one photon excitation scenario is experimentally simpler than the two pho-
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Fig. 7.1.— The left diagram shows a single photon excitation from the excited state

to the Rydberg State. On the right is the two photon excitation from the ground state

to the Rydberg state.
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ton excitation, however, it suffers the drawback that the effects of the intermediate

state are not negligible. Atoms in the excited 5P3/2F ′ = 3 state can decay back to the

ground state thus broadening the Rydberg transition and contributing to decoherence

in the system. In the two photon case, the intermediate state is a virtual state. Given

sufficient blue laser power, the two photon case can be a coherent process. The require-

ment for a coherent process is that ε2 > Γ2 where ε2 is the 2-photon Rabi frequency

and Γ2 is the linewidth of the transition. A demonstration of Rabi flopping could only

be done in a 2 photon excitation scheme.

In both the one photon and two photon cases, the n = 5p to n = 50 is ≈ λb=480

nm photon. The blue light is achieved by frequency doubling a 960 nm laser. The 960

nm laser is a Sacher Tiger Laser which can provide 500 mW at 960 nm. The Tiger laser

is frequency stabilized by the use of a homemade confocal stable cavity. The cavity

is temperature stabilized; by adjusting the temperature of the cavity, the frequency

of the red light can be adjusted which in turn adjusts the frequency of the blue light.

Typically the blue output power is 20 mW with a laser linewidth of approximately 10

MHz. The blue light is transported to the trapping chamber via an Oz Optics polarizing

maintaining (PM) fiber. We have demonstrated 14 mW of blue light delivered to the

atoms.

The optical train for the blue laser in on trapping table is shown in figure 7.2.

This imaging system is capable of producing an 11 µm Gaussian waist at the MOT

cloud. This will be useful for production of Rydberg atoms in the HAT. For studies of

Rydberg atom production in the MOT, we move the last lens so that we have a 1 mm

beam waist at the MOT cloud.

The detection of the Rydberg atoms is done by monitoring the fluorescence of

the MOT cloud. Depending on the amount of blue light used, we have seen the MOT

fluroescence decrease by almost two orders of magnitude when tuned to a Rydberg
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Fig. 7.2.— Optical Train for blue light

resonance.

7.3 n=50 Spectra

7.3.1 Single Photon 46 d state

Using the apparatus detailed above, we have produced Rydberg atoms with prin-

cipal quantum numbers of approximately n=50. We have studied the 46 d state and

the 48 s state. The 46d state was generated by both single photon excitation and two

photon excitation.

The first spectrum we studied was the single photon excitation of the 46 d-state

(see figure 7.1). A sample spectrum is shown in figure 7.3. The laser is scanned across

the resonance peak by changing the temperature of the stable cavity. The MOT cloud

fluorescence is recorded as a function of frequency. The x-axis in this figure is the

frequency of the red (960 nm) laser; the y-axis is proportional to the number of atoms

in the MOT cloud. The two peaks represent the 46 d5/2 at λIR = 960.6511 nm and the

46 d3/2 at λIR = 960.6513 nm separated by the fine structure splitting. For this state

the splitting is 120 MHz in the blue or 60 MHz in the IR. In this scan we measure 57



129

6

5

4

3

2

1

0

M
O

T 
vo

lta
ge

0.50.40.30.20.10.0-0.1
Frequency (GHz)

d3/2 d5/2

57 MHz

Fig. 7.3.— 46d spectrum

MHz (IR). We measure the linewidth of the d3/2 transition to be 9.4 MHz (IR).

We have studied the lineshape of the 46 d as a function of power as shown in

figure 7.4. Each d5/2 peak was fit to Gaussian; the respective Gaussian radii are shown

for each peak. As blue power increases we see the effects of power broadening. In the

absence of saturation, the ratio of the d5/2 to d3/2 transitions should be 9:1.

We measure the loss rate due to the Rydberg atom production. The number of

atoms in the MOT cloud is given by

dN

dt
= L− (γ1 + γ0) N (7.1)

where γ0 is the typical loss rate seen in the MOT (due to laser induced collisions or

background collisions) and γ1 is the loss rate due to Rydberg atom production. In

steady state we can write this as

1

N
=

γ0 + γ1

L
=

1 + γ1/γ0

N0
(7.2)

where N0 is the number of atoms in the MOT without any loss due to Rydberg atom

formation, or in other words, γ0 and N0 are measured under the same conditions.
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Solving for γ1,

γ1 = γ0

(
N0

N
− 1

)
. (7.3)

Figure 7.5 uses the above method to normalize the change in fluorescence due to Ryd-

berg production in the 46 d single photon excitation case.

The linewidth of the spectrum in figure 7.5 is 12 MHz. Notice the doublet splitting

inside both the d5/2 and d3/2 peak. It is a feature that we have not been able to account

for its origins. The peaks emerge as blue power is increased; the space between the

two doublets (13 MHz and 21 MHz respectively) does not change as a function of blue

power. Since the frequency splitting is not a function of blue power, Autler-Townes

(Teo et al.,2003) and laser induced AC stark shifts from the blue laser can be eliminated

because both of those effects would show an increase in the frequency splitting as a

function of increasing blue laser power. I can only speculate that the cause of these

doublets is a misalignment of a laser field. It might be possible that the MOT lasers

are misaligned so that some atoms have larger stark shifts than others which causes the
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appearance of two sets of peaks. We have checked for stray electric fields by tuning the

blue laser so that it would be resonant with a dipole forbidden transition such as the

47 p-state. In the presence of an electric field, this state might be allowed. Evidence

of this was discussed in reference (Singer et al., 2004). We were unable to observe an

p to p or p to f Rydberg transitions, thus the present of a stray field is unlikely.

We have also studied the loss rate, γ1, as a function of blue power. This is shown

for the single photon excitation of the 46 d state in figure 7.6. We see a maximum loss

rate of 25/sec.

We can calculate the Rabi frequency which causes this saturation. At a blue laser

power of 5 mW and a blue beam waist of 1 mm, the intensity is Ib = 0.31 W/cm2. The
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Fig. 7.6.— Loss rate due to Rydberg atom production for the singly excited 46d vs

Blue power

Rabi frequency associated with the blue transition is

ε2 =
παa0λfIb

h
(7.4)

where α is the fine structure constant and f is the oscillator strength of the 5 p to

50 d transition. The oscillator strength for the 5 p to 50 d is 2.71 × 10−5 (Walker,

private communication). The ratio of the d5/2 to d3/2 is 9:1, so the oscillator strength
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of the 9/10× 2.71× 10−5. Using Ib = 0.3 W/cm2 and λ = 480nm, we calculate a Rabi

frequency of 680 kHz = 0.13Γ.

7.3.2 Single Photon 48 s state

We have also studied the one photon excitation of the Rydberg 48 s-state. A

spectrum is shown in figure 7.7. We have studied the linewidth of the transition as as a

function of blue laser power (figure 7.8). Again, at large laser powers we see broadening

of the transition. As seen for the 46 d transition, we see the appearance of an extra

peak emerging at higher blue powers. It is frequency split 16 MHz from the original

peak.

Using equation (7.3) we have calculated the loss rate due to Rydberg atom for-

mation, and we have studied this as a function of blue laser power. This is shown in

figure 7.9. As seen with the one photon 46 d transition, we are able to saturation the

48 s transition. The saturation power is about the same as with the 46 d, but the 48s
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saturates at a lower γ1, γ1 ≈ 12/sec. The Rabi frequency at saturation for the 48 s

transition is smaller because the oscillator strength is smaller (f = 3.84 × 10−6). For

P = 5 mW and w = 1 mm, hence, I = 0.3 W/cm2, we can using equation (7.4) to

calculate a Rabi frequency of εb = 270 kHz = 0.045Γ.

7.3.3 2 photon Excitation of the 46 d state

We have also demonstrated 2 photon excitation of Rydberg atoms (see figure

7.1) from the ground F=2 state to the Rydberg state. The two photons come from

the blue laser and an extra 780 nm laser which we call ”Big Red”. Big Red is tuned

-1.2 GHz from the 5P1/2 F=2 to 5P3/2 F=3 transition. To ensure that the formation

of the Rydberg atoms is due to the 2 photon transition from the ground state and

not from a single photon excitation from an excited state, Big Red is pulsed on with

a duty cycle, d. When Big Red is on, the trapping laser is turned off. Also, the

Rydberg resonance occured 1.2 GHz from where it occured in the one photon case,

giving the ultimate evidence that we are producing these Rydberg atoms via a two

photon process. We leave the repumper on so to keep the F=2 level populated. If
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Rydberg atoms spontaneously decay into the F=1 state this could mistakenly look like

atom loss from the trap. Leaving the repumper on prevents this from happening.

We have studied the 2 photon 46 d transition as a function of both Big Red

power and blue laser power. First I will show the functionality on Big red laser power.

The Big Red laser has a 1.8 mm Gaussian beam waist at the atoms. The power can

be varied from 30 mW to 268 mW. Sample spectra at various Big Red powers are

shown in figure 7.10. Scaling all the γ1 values in figure 7.10 to a blue laser power of 14

mW and a duty cycle of 1, we can summarize the results as shown in figure 7.11. We

choose to scale to 14 mW because that is the maximum amount of blue laser light that

we have available after taking into account the loss from the fiber and other optics.

From figure 7.11 the maximum loss rate is approximately 15/s which is lower than the

maximum loss rate measured in the one photon excitation of the 46d, γ1 = 25/s. Also

note the absence of the unexplained doublet that was present in the one photon 46d

and the one photon 48 s. It is possible that we are not sensitive enough to detect this.

Another possibility is that the MOT lasers are slightly misaligned and are responsible

for Stark shifting some of the atoms more than others, causing the appearance of the

two resonances.

The Rabi frequency associated with this transition is the two photon excitation

given by

ε2 =
εrεb

∆
(7.5)

where εr and εb are the Rabi frequencies of the red and blue lasers respectively and ∆

= 1.2 GHz. Using a Big Red power of 200 mW and a Gaussian beam waist for 1.8

mm, the intensity is given by Ir = 3.9 W/cm2. Likewise for 14 mW and a Gaussian

beam waist of 1 mm, the intensity is Ir = 0.9 W/cm2. From this we can calculate a two

photon Rabi frequency, ε2 = 590 kHz = 0.1 Γ. We have also studied the dependence of
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rates are scaled to a blue power of 14 mW and a duty cycle of 1

the loss rate on blue power while the Big Red power is 270 mW. The data is shown in

figure 7.12. For this data set we had insufficient blue power to saturated the 2 photon

transition.

The Rabi frequencies at which we see saturation of the 46d state are approxi-

mately 700 kHz, regardless of the excitation method. The reason we measure a lower

γ1 for two photon excitation versus one photon excitation is most likely because the

fundamental linewidth of the transition is narrower for the two photon case than the

one photon case. In the two photon case, the fundamental linewidth of the transition

given is

Γ2 =
ε2
r

∆2
Γ = 0.265Γ. (7.6)

Experimentally, this means that the linewidth of the two photon transition is the

linewidth of the blue laser. And since the linewidth of the blue laser is approximately

1.6 Γ, only a fraction of the blue photons are actually at the proper frequency to excite

the two photon transition. Furthermore, since the linewidth of the 2-photon transition

is greater than the 2-photon Rabi frequency, 1.6Γ > 0.1Γ, the two photon transition is
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incoherent. In our case, if the two photon linewidth was truly the linewidth given in

equation (7.6) then our two-photon process would be close to being coherent.

For experiments in the MOT it is necessary to have large beams so that all atoms

in the MOT see the same Rabi frequency. In the HAT, however, we can focus the

blue laser to 11µm providing a large enhancement in our Rabi frequencies. This will

increase the blue laser intensity to 7.4 × 103 W/cm2. The 2-photon Rabi frequency

is now 7.3 MHz = 1.2 Γ which shows promise for being able to coherently drive the

transition.

7.4 Model

While this data is very interesting, it raises a very fundamental questions: why

are the measured loss rates so low? What is causing the saturation? Another key to

be answered is: are we seeing any evidence of dipole suppression? Since this is work

in progress, the answers to these questions and many other questions change daily.

Nonetheless, we did attempt to model the loss dynamics that occur when Rydberg
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atoms are produced in the MOT and compare this with the loss rates we have measured.

Below I will give the details for the model specifically designed to explain the saturation

data for one photon excitation of the 46d state. We chose to apply the model to this

set because of the significant level of saturation seen for this transition compared to

the data for the two photon excitation which was only weakly saturated.

In the literature (Teo et al.,2003), (Singer et al., 2004), and (Tong et al., 2004),

it is commonly suggested that the dominate loss mechanism is ionization from black

body radiation. For n=50, the black body ionization rate is γbbi = 290/sec. Naively,

for a classical two level system (ground state and Rydberg state) we should be able to

transfer half of the MOT population into the Rydberg state, Nryd = 1/2 NMOT . From

this, one would expect that we would measure a loss rate half the value of the black

body ionization rate, or in other words, in excess of 100/sec. This is surprising given

that the maximum loss rates we have measured are approximately 25/sec. If other

loss mechanisms are present, such as Rydberg-Rydberg loss mechanisms, our measured

rates should be even higher. By considering only the effects of black body radiation

we are putting a fundamental lower limit on the Rydberg loss rate. Considering the

low loss rates that we have measured, the measurements would suggest that we are

not exciting as many Rydberg atoms as we would classically expect and a suppression

mechanism could be present.

As an attempt to understand the discrepancy in the measured loss rates and the

expected loss rates, we have modeled the trap loss from Rydberg production via either

the single photon excitation or the two photon excitation. As done previously in the

literature, we have included the effects of dipole blockade as a factor limiting Rydberg

excitation.

In the model the following assumptions were made. First, we assumed that the

Rydberg density was low enough that the dominate loss mechanism is black-body
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ionization from the black-body background radiation. Though other loss rates may be

present, this loss rate represents a lower limit. Our second assumption is that we can

model the system as a four level system. Figure 7.13 shows the four levels we use in

our model. R1 is the rate at which atoms are excited from the ground state, g, to the

excited state, e; Rr is the rate at which atoms are excited from the excited state, e, to

the Rydberg state r. The third assumption is that in the MOT transitions between the

ground, excited, and Rydberg state are basically incoherent and can be described by

rate equations. A formal treatment of the Bloch equations is not necessary. The fourth

assumption is that once an atom has been excited to the Rydberg state, three processes

are possible: spontaneous emission (at rate γ), stimulated emission, or ionization by

black body radiation. The fifth assumption is that black body radiation can also cause

transitions to other Rydberg state at a rate γbb (Gallagher, 1994). At this point it

is important to distinguish between γbb and γbbi. γbb is the rate at which black body

radiation shuffles atoms amongst n states; γbbi is the rate at which Rydberg atoms

are photoionized from black body photons. When atoms are photonionized by black

body radiation, we see atom loss. The value of γbbi at n=50 was given above as 290/sec

(Walker, private communication). The value of γbb can be calculated from the following

equation in (Gallagher, 1994) in atomic units,

γbb =
4α2T

3n2
(7.7)

where α is the fine structure constant and T is the temperature of the background

taken to be 300K. The excited Rydberg states can spontaneously decay to the ground

state at a rate similar to γ (see figure 7.13). This is a good assumption because

according to (Gallagher, 1994), transitions to other Rydberg states caused by black

body radiation are typically to close lying n states. The lifetime of a Rydberg state

is given in (Gallagher, 1994) to be τ = 1/γ = 2.09nsec ×n2.85. While there is some n
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dependence, in the limit that only mixing of nearby n states is allowed, the correction

in γ is small. All nearby n states will be modeled as a single ”storage” state, labeled s

in figure 7.13. Lastly, we have included the effects of dipole blockade. We assume that

dipole blockade reduces the rate at which atoms are excited from the the excited state

to the Rydberg state. The stimulated emission from the Rydberg state to the excited

state is unaltered by the interaction. We therefore assume the suppression appears in

the following manner:

Pe → Pe (1− ηPr) = Pe

(
1− nr

nmax

)
= Pe

(
1− nMOT

nmax
Pr

)
(7.8)

where nmax is the maximum allowed Rydberg density assuming no dipole blockade,

nr is the actual Rydberg density, and nMOT is the MOT density. In our model η is

the only free parameter. Once η is determined, we can determine nmax and then the

effective range (radius) of influence of a single Rydberg atom.

We can write three rate equations which describe the populations in the s, e, and

r states.

dPr

dt
= −RrPr + RrPe (1− ηPr)− γPr − γbbPr (7.9)

dPs

dt
= γbbPr − γPs (7.10)

dPe

dt
= R1Pg −R1Pe + RrPr −RrPe (1− ηPr) + γPr + γPs − ΓPe (7.11)

and finally in a closed system the sum of the populations in all three states needs to

equal unity: Pr + Pe + Ps + Pg = 1. We solve this set of differential equations for

the loss rate for 1/(Ps + Pr) because the measured Rydberg loss rate from the trap is

γ1 = γbbi (Ps + Pr). The solution is long and not very enlightening so will not be given

here.

It would be convenient to fit our data of γ1 as a function of blue light power.

To do this we need to express the above rates in terms of known values. We already
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Fig. 7.13.— Trap loss model due to Rydberg excitation in a MOT.

have numerical solutions for γbb and γbbi. R1 is 0.46Γ given that we have an excited

state fraction of 0.23 which can be calculated knowing the trapping laser intensities

and detunings. The excitation rate from the excited state to the Rydberg state, Rr is

Rr = σI/h̄ω. σ is the scattering cross section given by

σ =

√
πrefc

νL
(7.12)

where re is the classical electron radius, f is the oscillator strength, f = 0.9(2.7× 10−5

[Walker, 2004], and νL is the laser linewidth defined by I(ν) = I0 × e−δν/νL/
√

πνL.

I0 can be calculated given the experimentally measured blue power and the measured

beam waste of 1.0 mm. We take the laser linewidth to be 8 MHz.

Using these known values in the rate equations above, we can fit our measured

loss rates as a function of blue power and extract the parameter η. Given the value of η

and the MOT density, we can determine the maximum density of Rydberg atoms that
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Fig. 7.14.— Model fit for γ1 as a function of blue laser intensity for 46 d data.

are allowed to be excited. From this we can determine the effective range of influence

(radius) of the excited Rydberg atom.

We have applied the fitting function to the graph shown in figure 7.6, the measured

loss rate, γ1, as a function of blue laser power for the one photon excitation to the 46

d state. The fit is shown in figure 7.14 and gives a value of η = 23. Also plotted is

the case of η = 0, the case of no dipole suppression. At low blue laser powers, our

data and the η = 0 curve are in good agreement. This is what we expect because at

low blue laser powers there will be no effects from suppression because the density of

excited Rydberg atoms is to small to cause suppression. It is encouraging that our data

agrees with the η = 0 line of the model. At higher blue laser power, both curves begin
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to saturate, but the data saturates at a lower blue power than the η = 0 curve. The

η = 0 curve saturates because at high enough blue power we approach the classical

limit that half of the MOT population is in the Rydberg state. The deviation of our

data from the η = 0 line signifies that we are not transferring half the MOT population

to the Rydberg state because a suppression mechanism is limiting the excitations into

the Rydberg state.

7.5 Extracted Effective Rydberg Radius

Given the value of η from the fit function derived above, we can calculate the

effective radius of our Rydberg atoms. The physical relevance of this radius is that

atoms within this radius of influence are suppressed from being excited into the Rydberg

state due to a Rydberg-Rydberg excitation (most likely van der Waals interaction). The

parameter η is is given in equation (7.8),

η = 23 =
nMOT

nMAX
. (7.13)

Using the fluorescence image of the MOT we have determined the density of the MOT

to be 5×1010/cm3. From this we calculate nmax to be 2.2×109/cm3. We then calculate

the blockade volume of one Rydberg atom

1

nmax
= 4/3πr3

eff (7.14)

which gives reff = 4.8µm. The actual radius of the Rydberg atom is less than 0.1 µm.

According to our model, the excited Rydberg atoms have a range of influence 50 times

their actual size.

7.6 Discussion of Future Work

This work is being continued by my coworkers in the lab. Currently, they are

measuring loss rates of n=30 Rydberg atoms in the MOT. At this principal quantum
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number we expect 30 times less suppression, or in other words no suppression, since

the van der Waals interaction scales as n11. The plan is then to study a higher n state

where the suppression should be substantial. The group is also experimenting with

different methods of taking the above measurements, specifically, they are measuring

γ1 as a function of blue power and taking extra care to ensure that the density of the

MOT is constant for all points. This is accomplished by altering the duty cycle of the

blue laser to keep the number and size of the MOT constant.

After the conclusion of the studies of loss rates in the MOT, the group plans on

producing Rydberg atoms in the HAT. Using the method of evaporation followed by

recompression, the atomic densities discussed in this work will serve as an excellent

foundation for the studies of lineshape broadening, pressure shifts, and the formation

of trilobite molecules. Also, as we have discussed previously, the mesoscopic clouds

attained through the evaporation and compression method will be excellent candidates

for seeing a high fidelity complete blockade due to van der Waals interactions or with

the addition of an electric field, dipole-dipole interaction.
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Chapter 8

Conclusion

8.1 Conclusion

This section concludes the dissertation with a summary of the major results

presented in this thesis and an outlook for the future of this experiment. The primary

goal of this thesis was the development of high density, mesoscopic atomic samples for

use in Rydberg experiments.

This dissertation began with a description of a novel far off resonant optical trap,

the Holographic Atom Trap. The HAT is formed from the interference of 5 beams,

forming clusters of small traps, microtraps, each with dimensions of 10 µm x 10 µm x

100 µm in size. The benefit of this trap geometry is that atoms in the HAT have high

oscillation frequencies yet many atoms (36,000) can be stored in a single microtrap. The

results is high initial atomic densities (1014 atoms/cm3) and high phase space densities

(1/200). The HAT has been characterized with two imaging systems: absorption

imaging and spatial heterodyne imaging. Spatial Heterodyne is a novel interferometric

nondestructive imaging system capable of imaging cold atoms with a signal to noise of

1/10 while only scattering 0.0004 photons per atom.

Forced evaporation has been preformed in the HAT to increase the phase space
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density from an initial value of 1/200 to a final a phase space density of 1.1. The

high initial densities attainable in the HAT are largely responsible for the success of

forced evaporation. At initial densities of 2× 1014/cm3, atom in the HAT rethermalize

quickly allowing for rapid evaporation. We have developed a model to understand

the dynamics of evaporation. By including the heating due to quantum diffraction

collisions with background Rubidium atoms and secondary collisions occuring within

the dense HAT microtraps, the model’s predicted phase space density closely agrees

with the measured phase space density.

A method for producing high density (1015/cm3) mesosopic samples (5 to 10 µm

in radius) have been demonstrated in the HAT. Atoms in the HAT are evaporated

to a phase space density of 1, then the cloud is recompressed by rapidly increasing

the trap depth. The result is atomic clouds with densities of 2 × 1015 atoms/cm3,

the highest atomic densities achieved in incoherent matter, and cloud radii of 5.6 µm.

The demonstration of these mesoscopic clouds represent significant progress towards

the first observation of a complete dipole blockade because the radius of these clouds

is less than the range of influence of an excited Rydberg atom. The estimated mean

blockade shift over the entire cloud is approximately 30 MHz. This gives a probability

that two Rdyberg atoms could be excited in a single microtrap to be less than 0.001.

Discussion of using a static electric field to induce stronger interactions was discussed.

In the presence of an electric field, mean dipole-dipole blockade shifts in excess of 400

MHz are possible.

Finally this dissertation described the production of Rydberg atoms in a Magneto

Optical trap (MOT). Ryberg atoms were excited in two ways: single photon excitation

from the 5P3/2 state or two photon excitation for the 5S1/2 state. This work is the first

demonstration of two photon excitation of Rydberg atoms in the MOT and represents

progress towards coherent manipulation of Rydberg atoms. This dissertation also dis-
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cusses the first measurements of the absolute loss rates due to Rydberg atom excitation

in the MOT. Our measurements are over a factor of 3 less than expected. We have

developed a model to understand the loss rates and built into the model affects due

to dipole suppression of Rydberg excitation. From the model we conclude that we see

preliminary evidence of suppression of excitation due to interactions among Rydberg

atoms. Efforts are underway to further validate this observations. Currently loss rates

are being measured at different principle quantum numbers to study the dependence

on the suppression of Rydberg atom excitation. The next step is to produce Rydberg

atoms in the HAT with the goal for observing a complete dipole blockade.
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Appendix A

Fitting Function for 3-Body

Recombination

The change in number resulting from 3-body recombination is (for the time we will

neglect losses due to background collisions)

dN

dt
= −K3

∫
n3 d3x (A.1)

= −K3n
3
0

∫ (
e−(x2+y2/σ2

x)e−z2/σ2
z

)3
dxdydz (A.2)

= −Kn3
0

√
πσ2

x

3

πσ2
y

3

πσ2
z

3
. (A.3)

Recall that N = n0

√
πσ2

x

√
πσ2

y

√
πσ2

z so

dN

dt
=
−Kn2

0N

33/2
− ΓN (A.4)

where now we include the losses due to background collisions, Γ.

Let β = K/33/2 and n = Nf making

dN

dt
= −βf 2N3 − ΓN (A.5)

.
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To solve the differential equation we let U = 1/N and dN = -dU/U2. We rewrite

(A.5) in terms of U

−1

U2

dU

dt
=

−βf 2

U3
− Γ

U
(A.6)

U
dU

dt
= βf 2 + ΓU2 (A.7)

UdU

βf 2 + ΓU2
= dt. (A.8)

The solution is βf 2 + Γu2 = Ae2Γt. To solve for A, we can use the boundary

condition that at t = 0, u = u0.

βf 2 + Γu2
0 = A (A.9)

βf 2 + Γu2
0 = βf 2e2Γt + Γu2

0e
2Γt. (A.10)

Now, solve for u.

u =

√√√√
(

βf 2

Γ
+ u2

0

)

(e2Γt − 1) + u2
0 (A.11)

Recalling that u = 1/N

N(t) =
N0√(

βf2N2
0

Γ + 1
)

(e2Γt − 1) + N0

(A.12)

Equation (A.12) is the proper fitting function in the absence of heating mech-

anisms. In the presence of a heating mechanism there are two reasons the density

decreases: three body loss and heating. The effects of heating need to be added.

Recall that f ∼ n ∼ 1/T 3/2 so in equation (A.12) replace f 2 with



 f2

1 + 1
T0

dT
dt δt




3

(A.13)
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where T0 and is the temperature immediately after recompression and dT/dt is the

measured increase in the temperature as a function of time.. After including the effects

due to heating rates, the appropriate fit function is

N(t) =
N0√√√√√√



 βf2N2
0

Γ
(

1+ 1
T0

dT
dt δt

)3 + 1



 (e2Γt − 1) + N0

. (A.14)

It is convenient to make the following substitutions in the fitting function (these

will be used again in Appendix II), let

A = βf 2 (A.15)

B = N0 (A.16)

C = Γ. (A.17)

Note that the losses due to background collisions can also be determined with this fit.

The three-body recombination rate can be calculated as

K3 = 33/2A
(

N0

n0

)2

(A.18)

where N0 and n0 are the number and density (repectively) in the center microtrap and

t=0.
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Appendix B

Calculation of the Probability of Double

Excitation of Rydberg Atoms in the

Compressed Microtrap

In this appendix, we will derive an equation to estimate the probability of producing two

Rydberg atoms in the complicated geometry the HAT. We assume that it is impossible

to produce three Rydberg atoms.

The Hamiltonian for the system is

H =
∑

i

εi

2
|ei〉〈g| +

∑

i,j

εj

2
|eiej〉〈ej| +

∑

i(j

Ωij|eiej〉〈eiej| (B.1)

where the first term in the Hamiltonian is from the ground state, the second term is

from the singely excited state, and the third term is from the doubly excited state. We

let εi be the Rabi frequency for the ith atom and Ωij is the frequency shift caused by

the Rydberg-Rydberg interaction. The wave function for the assembly is

|ψ〉 = cg|g〉+
∑

i

ci|ri〉+
∑

i<j

cij|rirj〉. (B.2)

The Schrodinger equations for the ith atom for the ground, singly excited, and doubly
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excited state, respectively, are

iċg =
∑

i

εi

2
ci (B.3)

iċi =
εi

2
cg +

∑

j

ε∗j
2

(cij + cji) (B.4)

iċij = Ωijcij +
εj

2
ci +

εi

2
cj (B.5)

First we assume perfect blockade, cij = 0 to solve the ground and singly excited

equations. This leaves

iċg =
∑

i

εi

2
ci (B.6)

iċi =
εi

2
cg. (B.7)

Taking the second derivative of the ground state equation and substituting in ċi,

ic̈g = −icg

∑

i

|εi|2

4
(B.8)

= −icg
|εN |2

4
(B.9)

where
∑

i

εi =
√

Nε0 (B.10)

. We define εN as the effective Rabi frequency. The solution to (B.9 is the familiar

equation for Rabi flopping

cg(t) = cos εN t/2. (B.11)

Using this solution we can solve the case where a single atom is excited to the Rydberg

state

iċi =
εi

2
cg (B.12)

ici =
εi

2
sin

εt

2

(
2

ε

)
(B.13)

ci = −i
ε1

εN
sin

εN t

2
. (B.14)
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And finally we can solve for the case where two atoms have been excited to the

Rydberg state, equation (B.5). Plugging in the solutions for ci and cj into (B.5)

i
dcij

dt
= Ωijcij − i

εiεj

εN
sin

(
εN t

2

)
. (B.15)

The solution to the differential equation is

cij = − εiεj

2εN

[
2iΩij sin εN t

2 − εN cos εN t
2

Ω2 − ε2
N/4

]

. (B.16)

Assuming that Ωij ( εN then we can approximate

cij ≈ −i
εiεj

εNΩij
sin

εN t

2
. (B.17)

To make the Rydberg atoms, we will use a π-pulse, or εNt=π

cij = −i
εjεi

εΩij
. (B.18)

The probability of exciting two atoms is

P2 =
∑

i<j

|cij|2 =
∑

i<j

∣∣∣∣∣
εiεj

Ωij

∣∣∣∣∣

2
1

|εN |2
. (B.19)

We need now to determine εN . We assume that the Rydberg producing laser has

a Gaussian distribution with a beam waist, w, εi = ε0e−x2/w2
where ε0 is the Rabi

frequency at the center of the of the beam. Recall that ε2
N =

∑
i |εi|2, we assume a

Gaussian distribution of atoms in the microtrap with radius σ to describe N, N(z) =

Ne−z2/σ2
/
√

πσ2. We can describe the effective rabi frequency as the sum over both the

Gaussian distribution of atoms and the Gaussian shaped laser beam,

ε2
N =

∫
dxN

e−x2/σ2

√
πσ

ε2
0e
−2x2/w2

=
Nε2

0√
1 + 2σ2/w2

. (B.20)

In the limit that w ( σ the ”effective” number of atoms is Ne = N/
√

1 + 2σ2/w2, or

in other words all the atoms in the microtrap are effected if the beam waist is larger
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than the atomic cloud. On the other hand if w ' σ only the atoms in the beam waist

are affected, Ne ≈ Nw/
√

2σ.

Plugging (B.20 into (B.19) for the case of a π-pulse, εNT = π, the doubly excited

probability is

P2 =
ε2 (1 + 2σ2/w2)

N2

∑

i<j

e−2(x2
i +x2

j )/w2

Ω2
ij

(B.21)

=
π2 (1 + 2σ2/w2)

T 2N2

∑

i<j

e−2(x2
i +x2

j )/w2

Ω2
ij

. (B.22)

Of interest is that the probability is ∼ 1/Ω2; atom pairs with the smallest dipole-dipole

shifts are most heavily weighted in the sum. We therefore define a mean Rydberg-

Rydberg blockade shift Ω via

1

Ω
2 =

2(1 + 2σ2/w2)

N2

∑

i<j

e−2(x2
i +x2

j )/w2

Ω2
ij

. (B.23)

In terms of the blockade shift, the double excitation probability is

P2 =
π2

2T 2Ω
2 =

ε2
N

2Ω
2 . (B.24)

For s-states the dipole-dipole shift is approximated by

Ω(R) =
δ

2
+

√
4U3(R)2

3
+

δ2

4
(B.25)

where δ is the energy for the s + s → np + (n− 1) p defect and U3(R) = C3/R3 =

e2〈ns||r||np〉〈ns||r||(n − 1)p〉/R3, C3 van der Waals coefficient (Walker et al., 2004).

Using (B.25) as the interaction term in equation (B.23) we can perform the sum over

all positions between pairs of atoms to find Ω
2

and then P2.

The results for the HAT with n=95 and T = 1 µs are summarized in Table B.1.
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σ(µm) w (µm) Ω̄/2π(MHz) P2

8.0 10 10.5 1.1× 10−3

8.0 20 2.09 0.029
8.0 ∞ 0.92 0.148
5.7 10 28 2× 10−4

5.7 20 8.8 1.6× 10−3

5.7 ∞ 5.1 4.9× 10−3

Table B.1: Summary of the dipole-diople shifts and probabilities of doubly excited

states in the HAT for various σ and w values.
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Appendix C

Feedback Circuits for Intensity Stabilizer

In this Appendix I will give the circuit diagram for two integral components of the

YAG intensity stabilizer. The first circuit is the differential amplifier. We have found

that the noise present on a single analog output is correlated with noise found on the

other ananlog outputs. This noise can then be eliminated with the aid of a differential

amplifier. The circuit shown here is updated from (Newell, 2003) in that a second

filtering stage has been added. The new bandwith is 530 Hz.

The second circuit is the feedback circuit for the intensity stabilizer. In (Newell,

2003)] the feedback circuit had only integral gain. We have added an proportional gain

to the circuit. With this circuit addition we made progress towards getting rid of the

V out
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Fig. C.1.— Additional of filter stage to differential amplifier.
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intentisy noise and increasing the bandwidth of the feedback loop. The current circuit

has a bandwith of 22 kHz, almost an order of magnitude improvement to the former

circuit.
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Appendix D

Fit Function for Secondary collision

In this Appendix I will derive the fit function to describe heating due to secondary

collisions. This fit function takes into account the temperature dependence in the 〈nl〉

term.

The temperature dependence in 〈nl〉 is

〈nl〉 ≈ Nν3

T
≈ 1

T
. (D.1)

The change in energy due to heating can then be described as

dE

dt
=

α

T
(D.2)

where α is a coefficient to be determined later. Relating the energy to the temperature

for a 3-dimension harmonic oscillation, E = 3NT and thus

dT

dt
=

1

3

α

T
(D.3)

3T
dT

dt
= α (D.4)

3

2

dT 2

dt
= α (D.5)

3

2

(
T 2 − T 2

0

)
= αt (D.6)

T 2 − T 2
0 =

2

3
αt. (D.7)
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We will now determine the coefficient α. We can write the change in energy in

terms of Q̇, the heating rate, as

dE

dt
= Q̇

nl(t)

nl(t = 0)
. (D.8)

Substitution of the temperature dependence in the column density and the relationship

between E and T,

3
dT

dt
= Q̇

T (0)

T (t)
= Q̇

T0

T
(D.9)

dT

dt
=

Q̇

3

dT

dt
=

1

3

α

T
(D.10)

therefore

α = Q̇T0. (D.11)

Substituting in for α, the fit function to describe the temperature as a function

to time due to secondary collisions,

T (t) =

√

T 2
0 +

2

3
Q̇T0t. (D.12)
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Appendix E

Torque Heating

In this appendix we will derive an equation for the heating rate caused by the rotation

of the microtraps about their center. We call this torque heating. In our model for

torque heating we consider a 2 dimensional harmonic oscillator.

mr̈ = −kxx
′x̂− kzz

′ẑ (E.1)

The mictrotraps are allowed to rotate about their center by an angle θ. We apply the

rotation matrix to transform to angular coordinates.

x′ = x cos θ + z sin θ (E.2)

z′ = z cos θ − x sin θ (E.3)

The force in the x direction is

mẍ = −kx (x cos θ + z sin θ) cos θ − kz (z cos θ − x sin θ) (− sin θ) (E.4)

= −
(
kx cos2 θ + kz sin2 θ

)
x + (kz − kx) z sin θ cos θ. (E.5)

Using a small angle approximation we can write the following equations of motion

mẍ ≈ −kxx + θ (kz − kx) z (E.6)

mz̈ ≈ −kzz + θ (kz − kx) x. (E.7)
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z

x

θ

Fig. E.1.— Torque Heating

The change in energy is

dE

dt
= 2F · 2v = θ (kz − kx)

(
z
x

)

·
(

ẋ
ż

)

(E.8)

= −θ(∆k) (zẋ + xż) . (E.9)

Let z = z0 + z1 and x = x0 + x1 where subscripts 0 are the positions at θ = 0.

Substituting in these definitions, the nonzero terms are

dE

dt
= −θ∆k [z0ẋ1 + z1ẋ0 + x0ż1 + x1ż0] . (E.10)

We assume that the velocities and positions can be described as follows

x1 =
∫ t

0

sin ωx (t− t′)

ωx

(
−θ∆kz0

m

)

dt′ (E.11)

ẋ1 =
∫ t

0
cos ωx (t− t′))

(
−θ∆kz0

m

)

dt′. (E.12)



165

A similar set of equations can be written for the z terms. Let x0 = Ax cos ωxt and

z0 = Az cos ωzt. We will now set out to solve for each of the terms in equation (E.10).

The first term we will solve for is 〈−θ∆kz0ẋ1〉.

〈−θ∆kz0ẋ1〉 =
1

m

∫ T

0

1

T
Az cos ωzt(−θ(t)∆k) dt

∫ t

0
cos ωx (t− t′) (−θ(t− t′)∆kAz cos ωzt

′) dt′.

(E.13)

Let τ = t− t′, then the above equation can be written as

=
(∆kAz)

2

m

∫ T

0

1

T
cos (ωzt) cos (wz(t− τ))θ(t− τ)θ(t) dτ

∫ t

0
cos (ωxτ) dt. (E.14)

We can separate the average into two averages

〈cos (ωzt) cos (wz(t− τ))θ(t− τ)θ(t)〉 = 〈cos (ωzt) cos (wz(t− τ))〉 〈θ(t− τ)θ(t)〉 .

(E.15)

The first term simplifies to

〈cos (ωzt) cos (wz(t− τ))〉 =
1

2
cos ωzτ (E.16)

We introduce the first-order correlation function

〈θ(t)θ(t− τ)〉 =
1

T

∫ T

0
θ(t)θ(t− τ) dt. (E.17)

With these substitutions, this simplifies to

〈−θ∆kz0ẋ1〉 =
(∆kAz)2

2m

∫ ∞

0
cos (ωxτ) cos (ωzτ) 〈θ(t)θ(t− τ)〉 dτ. (E.18)

We will now solve for the 〈−θ∆kż0x1〉 term again using that τ = t−t′ and the definition

of the correlation function.

=
(∆kAz)

2

m

(−ωz

ωx

) ∫ ∞

0
sin (ωxτ) sin (ωzt) cos (ωz(t− τ))θ(t)θ(t− τ) dτ. (E.19)

This can be simplified to

〈−θ∆kż0x1〉 =
(∆kAz)

2

2m

(−ωz

ωx

) ∫ ∞

0
sin (ωxτ) sin (ωzτ) 〈θ(t)θ(t− τ)〉 , dτ. (E.20)
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The other two terms follow in a similar manner. I will write their results.

〈−θ∆x0ż1〉 =
(Ax∆k)2

2m

∫ ∞

0
cos (ωxτ) cos (ωzτ) 〈θ(t)θ(t− τ)〉 dτ (E.21)

〈−θ∆kz1ẋ0〉 =
(Ax∆k)2

m

ωx

ωz

∫ ∞

0
sin (ωxτ) sin (ωzτ)θ(t) 〈θ(t)θ(t− τ)〉 dτ (E.22)

Substituting these results into equation (E.10) and collecting terms, we get

〈
dE

dt

〉

=
∆k2

2m

[(
A2

z + A2
x

) ∫ ∞

0
cos (ωzτ) cos (ωxτ) 〈θ(t)θ(t− τ)〉 dτ

]

− ∆k2

2m

[(
ωz

ωx
A2

z +
ωx

ωz
A2

x

) ∫ ∞

0
sin (ωzτ) sin (ωxτ) 〈θ(t)θ(t− τ)〉 dτ

]
.(E.23)

From the equipartition of energy theorem we can write the total energy as

〈E〉 =
1

2
kx

〈
x2

〉
+

1

2
m

〈
v2

x

〉
+

1

2
kz

〈
z2

〉
+

1

2
m

〈
v2

z

〉
. (E.24)

As we assumed before, let x = Ax cos (ωxt) and z = Az cos (ωzt). Then 〈x2〉 = A2
x/2

and 〈v2
x〉 = A2

xω
2
x/2 and likewise for the z terms. Substituting these in for the energy

equation yields

〈E〉 =
1

2
mω2

x

A2
x

2
+

1

2
m

A2
xω

2
x

2
+

1

2
mω2

z

A2
z

2
+

1

2
m

A2
zω

2
z

2

=
1

2
mω2

xA
2
x +

1

2
ω2

zA
2
z

= 2kbT

where kb is Boltzman’s constant. We can now solve for the constants Ax and Az.

A2
x =

2kbT

mω2
x

=
〈E〉
mω2

x

(E.25)

A2
z =

2kbT

mω2
z

=
〈E〉
mω2

z

(E.26)

To simplify the notation, let

Ic =
∫ ∞

0
cos (ωzτ) cos (ωxτ) 〈θ(t)θ(t− τ)〉 dτ (E.27)
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and

Is =
∫ ∞

0
sin (ωzτ) sin (ωxτ) 〈θ(t)θ(t− τ)〉 dτ (E.28)

so that we can write

〈
dE

dt

〉

=
(∆k)2

2m

(
〈E〉
mω2

x

+
〈E〉
mω2

z

)

Ic −
(∆k)

2m

(
〈E〉

mωzωx
+

〈E〉
mωxωz

)

Is. (E.29)

Recall that ∆k = kx − kz. In the HAT the atoms are much more tightly confined in

the x direction so we can make the approximation that ∆k ≈ kx = mω2
x. Likewise,

ωz ' ωx so the first term equation (E.29) is dominated by the 1/ω2
z term. Equation

(E.29) can be simplified to

〈
dE

dt

〉

=
m2w4

x

2m

[
〈E〉 Ic

mω2
z

− 2 〈E〉 Is

ωxωz

]

. (E.30)

Again, the 1/ω2
z term will dominate leaving

〈
dE

dt

〉

≈ ω4
x

2ω2
z

∫ ∞

0
cos (ωzτ) cos (ωxτ) 〈θ(t)θ(t− τ)〉 dτ 〈E〉

≈ ω4
x

2ω2
z

∫ ∞

0

1

2
[cos ((ωz + ωx)τ) + cos ((ωz − ωx)τ)] 〈θ(t)θ(t− τ)〉 dτ 〈E〉

≈ ω4
x

2ω2
z

∫ ∞

0
cos (ωxτ) 〈θ(t)θ(t− τ)〉 dτ 〈E〉 (E.31)

where we have once again used the approximation that ωx ( ωz. We will define the

power spectrum (as done in [Gehm et al., 1998])

Sk(ω) =
2

π

∫ ∞

0
cos(ωτ) 〈θ(t)θ(t− τ)〉 dτ. (E.32)

Substituting this into equation (E.31) we get

〈
dE

dt

〉

=
ω4

x

2ω2
z

Sk(ωx) 〈E〉 . (E.33)

Equation (E.33) is the major result of this derivation. Analogous to heating from laser

intensity noise, the heating due to rotation of the microtraps is proportional to the
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energy. This is consistent with our physical picture of torque: the further the atoms

are from the center of the trap, the more they will be effected by the fluctuations.

Furthermore we can see that the heating is proportional to the frequency component

at the sum of the x and z oscillation frequencies, but this can be approximated as just

the x frequency. The time constant for the heating is defined by

〈
dE

dt

〉

= Γ 〈E〉 (E.34)

and thus

Γ =

(
ω4

x

2ω2
z

)

Sk(ωx). (E.35)

Equation (E.35) is applied in chapter 7 to determine the heating rates in the HAT

due to Torque heating.
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Appendix F

Signal to Noise for Spatial Heterodyne

Imaging

In this appendix I will derive the signal to noise ratio for spatial heterodyne imaging. I

will also derive the figure of merit for a nondestructive imaging system which is really

the signal to noise per absorbed photon.

The signal seen per pixel for spatial heterodyne is given by

Nr + Np + 2
√

NrNp cos (χ− φ(x)). (F.1)

If we assume that χ = π
2 and that φ(x) is small, then

Nr + Np + 2
√

NrNp sin φ(x) ≈ Nr + Np + 2
√

NrNpφ (F.2)

After substraction of the probe and reference beams the number of photons striking

the camera per pixel (signal) is:

Ns = 2η
√

Nr + Npφ (F.3)

where η is the quantum efficiency of the CCD camera. The noise contribution is given

by
√

(Nr + Np)η + b2 (F.4)
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where b is the technical noise of the camera. S/N ratio is given by

S

N
=

2η
√

NpNrφ
√

(Nr + Np)η + b2
. (F.5)

Assuming that Nr ( Np and Nr ( b2/η the S/N is

S

N
=

2φ
√

NpNrη

Nr
= 2φ

√
Npη. (F.6)

Herein lies the true power of spatial heterodyne: Nr can be made arbitrarily large so

as to make the technical noises negligible. The result gives that in order to maintain

a certain signal-to-noise, there is a minimum amount of probe photons that must be

scattered. Nonetheless, too be completely nondestructive we want to minimize the

number of probe photons scattered. The real figure of merit for spatial heterodyne is

the signal-to-noise per absorbed probe photon which is given by:

S/N

A
=

2φ
√

ηNp

αNp
. (F.7)

Using the relation that φ/α ≈ ∆/Γ gives

S/N

A
≈ 2

∆

Γ

√
η

Np
. (F.8)

By using a large detuning and a low fluence, the greatest signal to noise ratio per

absorbed photon can be achieved.
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