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0.1 Abstract

This dissertation describes experiments performed on Rydberg atoms in order to facili-

tate the construction of an on-demand, single-photon source. We performed two-photon

excitation on atoms in a Magneto-Optical Trap (MOT) up to high n-level Rydberg

states. We developed a novel technique for measuring the linewidths of atomic transi-

tions at timescales shorter than 100 µs, and measured the linewidths of the 5S → nS, D

Rydberg transitions to be 8 MHz for Rydberg principal quantum number 28, 43, and 58.

We also employ another novel technique, a state-probe laser which stimulates atomic

emission out of the Rydberg level and allows us to observe the timescale of Rydberg

atom transitions.

By employing the state-probe laser and observing trap loss from the MOT, we are

able to determine that atoms are transferred out of the Rydberg state faster than

collisional processes and blackbody transition rates. We have developed a model of

superradiance which predicts the transition rates we observe in the experiment. Based

on this, we have concluded that superradiant emission out of the Rydberg excitation

state is a much greater factor in the µs-scale Rydberg transfer rates observed in the

literature than any other study had previously reported.

We have performed non-degenerate four-wave mixing through Rydberg states us-

ing a non-collinear geometry as a precursor to an on-demand, single-photon source.

In addition, this is among the first demonstrations of the coherent manipulations of

Rydberg atoms found in the literature. We have developed a model of four-wave mix-

ing that agrees with our observations of the phase-matched count rate and fraction of

phase-matched light to within a factor of 3. With the excitation beams detuned from

the two-photon Rydberg transition, we observe up to 50% of the emitted light radiated

into the preferred phase-matched direction.
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1. INTRODUCTION

1.1 Motivation

The goal of efficient quantum information processing has been one of the driving forces

in the field of atomic physics for some years now. It was Richard Feynman who first

conceived of using an ensemble of quantum objects (or qubits) as a type of computer,

though he envisioned using the ensemble to model physical quantum systems. Interest

has also arisen in using these ensembles for quantum computation, using the qubits as

a type of Turing machine to perform operations.

Many of the details of quantum computing are outside the scope of this work and

can be found elsewhere [Nielsen et al., 2000], but in short the interest in quantum

computation comes from the entanglement that may be exhibited by pairs of qubits.

That is, pairs of qubits may interact in such a way that the state of one object cannot

be written without referring to the state of the other. As an example, if two qubits |a〉
and |b〉 can be in state 0 or 1, then an (unnormalized) entangled state would look like

|ab〉 = |01〉+ |10〉. This quantum entanglement can be used to perform some operations

faster than with a classical computer [Shor, 1996], [Grover, 1996].

In order to produce a usable ensemble of qubits, however, a number of conditions

must be met [DiVincenzo, 2000]. To mention but a few, one must be able to initial-

ize and manipulate the quantum state of individual qubits of the ensemble, and the

interaction of the qubits with their environment must be slow enough that many state-
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changing operations can be performed on the qubits before coupling to the environment

results in decoherence of the qubits. It would also be useful to transmit entangled in-

formation from one ensemble to another using, for example, polarization states of a

photon to encode the information.

Atom traps are good candidates for quantum information protocols because the

atoms can be localized for up to a few seconds, a time much longer than the timescale

for state-changing operations (typically ∼1 µs or faster). In addition, the energy levels

of atoms in the trap provide quasi two-level systems that can be used as qubits, and

lasers tuned to the transition frequency between the two levels can be used to change

the state of the qubit. The difficulty arises when attempting to address individual

atoms by laser excitation since atom traps typically contain thousands to millions of

atoms. It is possible to reduce the atomic loading rate into the trap so that on average

only one atom is present in the trap [Yavuz et al., 2006]; however this is a statistical

average and thus the trap will often have zero, two, or more atoms confined. This is

undesirable, thus it would be expedient to be able to trap a single atom, on demand,

which could then be used as a qubit in a quantum computation of some form.

Lukin et al.,’s proposal of a dipole blockade [Lukin et al., 2001] using Rydberg

atoms has the potential to provide just such a source of on-demand single atoms for

quantum information protocols. In the dipole blockade, one atom out of an ensem-

ble of trapped atoms is excited to a high-level Rydberg state via laser excitation. The

dipole moment of this Rydberg atom causes interactions with neighboring atoms in the

ground state which shift the energy levels of these atoms. If this energy shift is large

enough, the laser which excited the initial Rydberg atom will not be resonant with the

ground-to-Rydberg transition of the surrounding atoms, and thus none of these atoms

will be excited to the Rydberg level. If the size of the ensemble is small enough that

the energy levels of all of the atoms in the ensemble are shifted out of resonance with
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the excitation laser, then we say - somewhat whimsically - that the single Rydberg

atom has established a “blockade” that prevents subsequent Rydberg atom excitation.

This effect has recently been observed between two atoms separated by 10 µm by

my colleagues in the Quantum Computing group here at the University of Wisconsin

[Urban et al., 2008]. If a second laser resonant with some other ground-to-excited state

transition is then applied to the atoms, the atoms may be “pushed” out of the trap

while only the Rydberg atom remains, thus producing, in theory, a single atom in the

trap with a high level of fidelity [Saffman and Walker, 2002]. Additionally, if this atom

can be made to radiate a photon in a pre-determined direction upon decaying from the

Rydberg state, this would produce a single-photon source.

An efficient, on-demand, single-photon source that could produce single photons

at a rate of ∼MHz would also be of great use to the goal of quantum information

processing. Using such a source, it is possible to implement potentially unbreak-

able quantum cryptographic protocols based on Quantum Key Distribution (QKD)

[Gisin et al., 2002]. In addition, in a paper by Knill et al. [Knill et al., 2001], a pro-

posal for using passive linear optics to perform quantum gates using photons with

qubit information encoded in polarization states is presented. This Linear Optic Quan-

tum Computation (LOQC) scheme requires a high-rate, single-photon source such as

that which could potentially be developed in this setup. Thus, single-photon sources

could be used in theory for many of the same applications discussed for atom-based

quantum information processing. Other possible uses include random number gener-

ation [Rarity et al., 1994], quantum information transmission, and experimental tests

of Bell’s inequalities [Pan et al., 2000].

At the moment, such experiments usually involve parametric down-conversion,

which uses a nonlinear crystal to convert a pump photon into signal and idler pho-

tons, providing a heralded source of single photons. The difficulty here is that this
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source has a Poissonian photon number distribution, so to prevent multiple photon

transmission, the fluence rate must be drastically reduced. The benefit of an atomic

source utilizing a strong dipole blockade is that a sub-Poissonian photon number dis-

tribution is guaranteed with no need to reduce the fluence rate.

1.2 Summary of Thesis

It is upon this premise of the design of a single-photon source that this thesis is predi-

cated. All of the experiments described within have been performed in order to obtain

a better understanding of Rydberg atom physics so that in the near future a single-

photon source may be implemented using this experimental apparatus. I will begin

the thesis with a description of the experimental apparatus. We use 108 Rubidium-87

atoms in a Magneto-Optical Trap (MOT) as our ensemble of quantum objects. Two

lasers, a 780 nm laser and a 480 nm laser, are used to excite atoms from the 5S ground

state in the MOT up to an S- or D-level Rydberg state. The 780 nm laser is an

external cavity diode laser purchased from Toptica, while the 480 nm laser was built

in the lab using a 960 nm diode which is amplified and then frequency doubled in a

cavity containing a periodically-poled Potassium Titanyl-Phosphate (PPKTP) crystal.

A 1015 nm diode laser is used to de-excite the atoms from the Rydberg level to the

6P3/2 state, and two photon-counting modules are used to collect the decay photons

from the 6P3/2 → 5S1/2 transition. The 480 and 1015 nm lasers can each be focused to

a 12 µm spot at the atoms, and the 39◦ angle of intersection between the 480 nm and

780 nm lasers defines the Rydberg excitation volume.

The third chapter discusses the theory and implementation of frequency doubling

used in the construction of the 480 nm laser. I present the equation for frequency

doubling of plane waves in a nonlinear crystal. Using this as a starting point, I discuss
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modifications to this equation based on the strong focusing of the 960 nm pump in

the crystal, as well as the concept of quasi-phase matching. I calculate the range of

temperatures for which the PPKTP crystal will be properly phase-matched, and then

work out the expected single pass conversion efficiency of the 960 nm pump into 480

nm light. I then discuss the design of the optical cavity containing the doubling crystal

and detail a procedure for aligning the cavity.

Next I turn to a series of two-photon excitation experiments we performed in order

to evaluate our control over the Rydberg excitation process. Surprisingly, we find that

our Rydberg transition linewidths are 8-10 MHz wide, wider than we would expect from

doppler broadening or excitation laser linewidths. I then present a novel technique for

measuring the Rydberg transition linewidths at timescales on the order of 100 µs and

shorter. The measurements using this technique verify the 8 MHz linewidths of our

two-photon Rydberg excitation. I discuss our attempts to coherently excite atoms

to the Rydberg state and then de-excite back to the ground state using stimulated

Raman adiabatic passage. These attempts were ultimately unsuccessful as decoherence

mechanisms prevent coherent de-excitation from the Rydberg state. Finally, we dressed

the Rydberg D-state with a nearby F -state using resonant microwave fields in order

to create dipole-dipole interactions among the Rydberg atoms.

The content of Chapters 5 and 6 covers the same content described in our most

recent publication [Day et al., 2008]. In this article, we excited Rydberg atoms at

lower densities than the groups that observe signatures of plasma formation. At these

densities, we found atoms were still transferred out of the Rydberg state much faster

than would be effected by blackbody radiation. We developed a “state-probe” laser to

de-excite the atoms from the excitation Rydberg state before atoms could be transferred

to another state and thus obtained information about the rate of this transfer process.

Using a simplified three level model for Rydberg atom interactions, we were able to
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quantify the transfer rate out of the excitation Rydberg state and show that collisional

processes could not be the primary cause of this transfer. In Chapter 6, I posit that

superradiant decay of Rydberg atoms from the excitation state is the cause of the

observed transfer rates. A model of collective emission from Rydberg atoms in the

MOT was developed and based on this a transfer rate was calculated which agreed well

with our observed transfer rates. Finally, I argue that blackbody ionization from these

other Rydberg states is likely to be the cause of the observed MOT trap loss.

Chapter 7 presents our experiments using phase-matched four-wave mixing in a

non-collinear geometry with intermediate Rydberg states, as described in our recently

submitted paper [Brekke et al., 2008]. This geometry provides an excellent setup for

our proposed single-photon source since photons are preferentially emitted in a narrow

cone which is not coincident with any other laser in the system. We compared the

phase-matched signal to the total amount of light radiated by the atoms and find

that as much as 50% of the light is emitted in the phase-matched direction. We then

developed a model of four-wave mixing by calculating the dipole moments of the atoms

in the sample and find that the calculated photon emission rates agree with the observed

rates for both the phase-matched and non-phase-matched light to within a factor of 3.

The final chapter looks to the future of the experiment and to the steps that re-

main before the implementation of a true on-demand, single-photon source. Although

some methods exist for obtaining sources of single photons, such as the aforementioned

parametric down-conversion [Barreiro et al., 2008], single atoms in ultra-high-finesse

cavities [McKeever et al., 2004], and other methods such as photoluminescence of car-

bon nanotubes [Högele et al., 2008], a reliable, efficient, on-demand manner of creating

indistinguishable single photons would be a great aide to the field of quantum in-

formation processing. With the work presented in this thesis, that goal is nearer to

actualization.
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2. EXPERIMENTAL SETUP

2.1 Introduction

In this chapter, I will describe the experimental apparatus used to excite and detect

Rydberg atoms in the magneto-optical trap. I begin with a brief description of the

MOT, including the generation of the trapping laser from a Titanium:Sapphire cavity,

the repumping laser, and the magnetic field. The MOT we generate contains 108 atoms

at an average density of 1010 cm−3. Next I will focus on the Rydberg excitation lasers,

both diode-laser-based, at 780 nm and 480 nm. These lasers deliver 15 mW and 5 mW,

respectively, to the MOT and have locking linewidths (as described in the text) of 200

kHz and 2 MHz respectively. The 480 nm laser is stabilized to an external reference

cavity, the length of which can be varied in order to change the frequency of the 480 nm

laser. By scanning the 480 nm laser frequency in this fashion across the 5P → nS, D

Rydberg transition, we perform spectroscopy on the Rydberg state.

I then turn to the 1015 nm de-excitation laser which is used to bring Rydberg atoms

down to the 6P3/2 state. This diode laser is similarly stabilized to an external cavity,

although the length of this cavity is stabilized to a frequency-shifted portion of the

780 nm trapping laser. By changing the magnitude of the frequency shift from the

780 nm beam, we can change the frequency of the 1015 nm laser and thus perform

spectroscopy on the nS, D → 6P transition. Two photon counting modules are used

to detect photons from the decay of the 6P state and a photodiode collects photons
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from the fluorescence of the 5P → 5S cycling transition in the MOT. Finally, I discuss

the optics trains which deliver the 480 and 1015 nm lasers to the MOT. The lasers are

each focused down to a 12 µm spot at the atoms. The position of the final focusing

lens can be changed so that the lasers are unfocused at the atoms and cover the spatial

extent of the MOT.

2.2 Magneto-Optical Trap

2.2.1 Ti:Sapph

We use 780 nm laser light to trap 108 87Rb atoms in a vacuum chamber at 10−10

torr. The main trapping laser is a Titanium:Sapphire (Ti:Sapph) laser pumped by

an 8W Argon-ion laser. This Ti:Sapph laser is frequency stabilized by means an FM-

spectroscopy-based Doppler-free spectroscopy lock, as described here [Newell, 2003].

The Doppler-free spectroscopy lock uses a vapor cell containing a small amount of

room-temperature Rubidium gas. Figure 2.1 shows the structure of the ground state

and first two excited states of 87Rb, which will facilitate the discussion of the trapping

of Rb that follows.

The light passing through the vapor cell is frequency modulated by an Electro-

Optic Modulator (EOM) and some of it is absorbed by the Rubidium vapor in the

cell when the frequency of the light coincides with a saturated absorption resonance

[Newell, 2003]. We tune the Ti:Sapph laser to the 5S-5P3/2 hyperfine manifold in order

to trap Rubidium atoms on the F=2, F ′=3 hyperfine transition. We stabilize the

Ti:Sapph laser to the crossover peak halfway between the F ′=3, and F ′=1 transitions,

212 MHz below the F ′=3 transition. 500 mW of the 1W output of the Ti:Sapph cavity

is diverted to an acousto-optic modulator (AOM). This beam is double-passed through

the AOM and frequency shifted up by 197 MHz, to 15 MHz below the 5S, F=2 to
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Fig. 2.1: Diagram of the ground state hyperfine structure of 87Rb as well as the first two

excited states and the transition wavelengths to each.
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5P3/2, F ’=3 transition. This constitutes the trapping beam for the MOT. It is divided

into four separate beams: one in the vertical direction which is retro-reflected, and

three along the horizontal plane which are not. Figure 2.2 shows a vertical view of

the vacuum chamber with the MOT lasers in the horizontal plane. The most intense

of the three horizontal beams makes a 135◦ angle with the other two beams, and the

intensities of all three beams are set so that the atoms experience an equal force in

all directions in the plane. The beams are red detuned from resonance, so the greater

an atom’s momentum in the direction of one of these beams, the greater the Doppler

shift of that beam relative to the atom. Such an atom will absorb more photons than

an atom at rest in the lab frame, since the Doppler shift brings the laser light closer

onto resonance with the atom. The end result is that the momentum of the atoms is

reduced over time by many velocity-selective absorptions and re-emissions.

Thus the trapping beams reduce the velocity of the atoms, but it is also necessary to

confine the atoms in the center of the beams with a magnetic field [Newell, 2003]. With

this in mind, current is run through a pair of coils attached to the vacuum chamber

in an anti-Helmholz configuration to produce a magnetic field in the vacuum chamber.

The coils produce a magnetic field gradient of 20 Gauss/cm at the trap.

In this way, we load 87Rb atoms from a background vapor into our trap. In steady-

state, the trap contains 108 atoms as measured from fluorescence counts (see section

2.4) and has a roughly Gaussian spatial profile with a 0.7 mm 1/e radius in each

direction. In some of our experiments it is necessary to switch off the trapping lasers

or the magnetic field, which will cause a marked reduction in the number of trapped

atoms. The trapping lasers can be toggled by turning on and off the RF signal to the

AOM that produces the trapping frequency. The magnetic field can also be switched

on and off, however, at a much slower frequency. Residual current in the coils takes 3

ms to damp out. Since we want the magnetic field damping time τB ¿TB, the period
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Fig. 2.2: A drawing of the vacuum chamber showing all lasers and relevant optics involved in

the experiment. The five-beam MOT uses three trapping beams in the horizontal

plane as well as one repumper beam. The 480 nm and 1015 nm lasers can both be

focused to 12 µm spot sizes, although only the 480 nm laser is shown at a focus

here. As discussed in the text, the CCD is used to align the 480 nm beam, the

fluorescence detector records the decay of the trapping beam excitation, and the

counters record photons from the decay of the 6P3/2 state to ground.
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of the field switching, this means that for all practical purposes we cannot pulse the

magnetic field at a rate faster than about 50 Hz (TB = 20 ms).

2.2.2 Repumping Laser

After scattering ∼ 104 photons along the F=2, F ′=3 cycling transition, the atom will

eventually decay to the 5S1/2, F=1 “dark state” which will not be trapped by the MOT.

We put the atom back into the F = 2 “bright state” by tuning a laser to the 5S1/2, F=1,

5P3/2, F
′=2 transition which half of the time decays into F = 2, allowing trapping and

cooling to continue. For this purpose, we have a separate 780 nm diode laser that

acts to repump atoms back into the bright state. The laser is locked via saturated

absorption to the crossover peak between the F ′=1 and F ′=2 transitions, and is then

shifted up 80 MHz by an AOM to be resonant with the F=2, F ′=2 transition. 1.8 mW

are delivered to the atoms, divided into a horizontal and vertical branch by a 50:50

beamsplitter.

2.3 Rydberg Lasers

2.3.1 780 nm Laser

We excite Rydberg atoms from the MOT via two-photon excitation detuned 470 MHz

above the 5P3/2, F
′=3 intermediate state. A diagram of the excitation scheme can

be seen in Fig. 2.3. The first step of this transition is a 780 nm laser produced by

an amplified diode laser system from Toptica. The Toptica laser outputs 300 mW at

780 nm and is frequency stabilized via saturated absorption to the 5S1/2, F = 2 to

5P3/2, F
′ = 3 transition. Here a frequency dither of less than 1 MHz - induced by

a piezo which sinusoidally varies the length of the laser’s external cavity - combined

with a lock-in amplifier is used to produce the dispersion signal that locks the laser in
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|5S1/2>

|5P3/2>

|nS,D>

|6P3/2>

∆ =470 MHz

780 nm

480 nm

1015 nm

420 nm 

Fig. 2.3: An energy level diagram of the stages of the Rydberg excitation involved in the

experiment. We perform a detuned two-photon excitation up to the Rydberg level

and a 1015 nm laser-induced stimulated emission process down to the 6P3/2 state,

which may decay via a 420 nm photon back to the ground state.

much the same way that the sidebands produced by the EOM are used to stabilize the

Ti:Sapph laser.

The Toptica laser is frequency-shifted up by 470 MHz by a high frequency AOM

with a first order efficiency of 17% . The resulting 20 mW of light is delivered to the

atoms with an intensity profile that has a 1/e2 Gaussian radius (which I will henceforth

refer to as the beamwaist) of 4 mm. The beamwaist is larger than the spatial extent of

the MOT because of the high Rabi frequency associated with this laser beam. At this

width and power, the 5S-5P3/2 Rabi coupling of the Toptica laser to the atoms is 12

MHz. The resonant frequency of the atoms is shifted due to the laser field by the AC

Stark Shift, Ω2/4∆ (which is 300 kHz for this setup), where Ω is the Rabi frequency

and ∆ is the detuning from resonance. Although a more tightly focused beam would
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result in a larger Rabi frequency, it would also produce a larger AC Stark shift. More

to the point, a beam with a high Rabi frequency and a waist on the order of the length

scale of the atomic sample will have an AC Stark shift which varies greatly across the

atoms. This will cause the frequency linewidth of the transition to broaden as atoms

across the sample will be on resonance for different frequencies of the excitation laser.

This is undesirable for a number of reasons that will become more apparent in Chapter

4.

2.3.2 480 nm Laser

A frequency doubled 960 nm amplified diode laser completes the two-photon transition

to the Rydberg level. Figure 2.4 shows the major components of the setup, which

are as follows: A “master” 960 nm diode in a Littrow-configured external cavity is

stabilized by means of an external, confocally spaced Fabry-Perot (FP) cavity with a

1 GHz free spectral range an a finesse of 200. The use of the Fabry-Perot cavity is

necessitated by the lack of convenient optical transitions to use for saturated absorption,

although recent work by Mohapatra, et al. [Mohapatra et al., 2007] has shown that

Electromagnetically-Induced Transparency (EIT) in room-temperature Rydberg atoms

could provide a convenient frequency standard. Difficulties arise from the Fabry-Perot

in the way of frequency drifts over time. These are due to changes in either the

temperature of the cavity or the barometric pressure in the room. The former alters

the length of the cavity to cause frequency drifts of a few MHz per mK and must be

compensated for by means of a thermo-electric cooler (TEC) and temperature controller

which act to stabilize the temperature of the cavity. The latter changes the index of

refraction of air in the cavity by a few parts in 107, which in turn results in frequency

shifts on the order of a few MHz. This problem is minimized by enclosing the FP cavity

in a sealed acrylite box with a leak rate of less than 1 torr per hour, as measured by a
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Fig. 2.4: Diagram of the major components of the 480 nm laser. The 960 nm master diode

pumps a tapered amplifier and has a portion diverted for locking purposes. The

amplifier output passes through two isolators before entering the doubling cavity in

a bow-tie configuration.
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capacitance manometer in the box. The frequency changes due to barometric pressure

at a rate of about 1 MHz per torr at one atmosphere, so temperature fluctuations will

tend to dominate the drift rate. I will return to the issue of frequency drifts in Chapter

4. As it stands, we have reduced the cavity drift to a level where the 960 nm frequency

drifts on the order of 1 MHz per minute.

When the length of the FP cavity is a half-integer multiple of the wavelength of

the incident laser light, the light matching the spatial mode of the Fabry-Perot is

transmitted through the cavity and is detected by a photodiode. By monitoring the

photodiode current while sweeping the frequency of the laser diode, we obtain a series

of peaks whenever the wavelength is resonant with the cavity. Tuning the laser to the

desired frequency range, we then stabilize the laser frequency to the side of one of these

peaks, which acts as a convenient “error signal” analogous to the type obtained from

a dither lock with a lock-in amplifier. A ring piezo attached to the FP cavity controls

the cavity length. By altering the applied voltage from a computer, we may then sweep

the frequency of the 960 nm diode, and thus of the 480 nm laser, in software.

The stabilized 960 nm laser diode has a short term linewidth of 1 MHz measured by

beating the laser against itself with a self-homodyne technique [Ludvigsen et al., 1998].

This laser is focused through a tapered amplifier purchased from Eagleyard Photonics.

With 8 mW incident on the amplifier we obtain a 370 mW output. This light is passed

through two Faraday Isolators for 70 dB of optical isolation from back-reflection, and

then incident upon a resonant cavity in a bow-tie configuration. The resonant cavity

frequency doubles the 960 nm light by means of a periodically-poled potassium titanyl-

phosphate (PPKTP) crystal purchased from Raicol, all of which are shown in Fig.

2.4. The workings of the frequency doubled system are discussed in greater detail in

Chapter 3, for now it is sufficient to note that 15 mW of 480 nm light exits the doubling

cavity, around 5 mW of which are delivered to the atoms.
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With this system, we are capable of performing excitation to Rydberg states as

low as 28D, up to 70D (as well as the nearby S-states, of course), corresponding to

a wavelength range of 479.6 to 482.6 nm. The limiting factor in this is the PPKTP

crystal temperature which goes from 100 C to 15 C at these extrema (see Chapter 3).

At temperatures higher than this range the crystal’s anti-reflection coating might be

compromised, while at lower temperatures we risk the formation of condensation on the

crystal which would scatter the laser light. Except where noted, the components for

this laser were assembled in the lab for this experiment. Similar commercial systems

are available, however at a much greater price.

2.3.3 1015 nm laser

Now that we are able to place atoms in the Rydberg state, it would be useful to have

a way to bring them down into a state with a shorter lifetime and smaller interatomic

forces (the reason for this will become more clear in Chapter 4). For this, we use a

diode laser system from Sacher Laser with a 1015 nm center wavelength to de-excite

the atoms from the Rydberg level down to the 6P3/2 state. The wavelengths used

to accomplish this vary from 1012 to 1026 nm and can access Rydberg states from

70D through 27D. At wavelengths larger than 1026 nm, the laser power drops off

significantly, making de-excitation inconvenient for levels lower than 27D, however this

does cover the full range of our Rydberg excitation states. A diagram of this laser

setup is shown in Fig. 2.5.

The Sacher laser has a typical power output of 230 mW from the diode which is

passed through an optical isolator and divided into three beams. The most powerful

is 150 mW which is put into a polarization-preserving single mode fiber and 70 mW

of which is subsequently delivered to the experiment. The second stream of 1 mW is

diverted by a pick-off slide into a fiber and passed into a wavemeter in order to facilitate
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tuning the laser to the desired wavelength. The final beam of 20 mW is passed through

a fiber and into a home-built confocal Fabry-Perot cavity with a 300 MHz free spectral

range (FSR) and mirrors that are coated to have over 99% reflectivity at both 780 nm

and at a range from 1013 to 1027 nm.

We wish to lock the Sacher laser to the Fabry-Perot cavity in much the same way as

we did with the 480 nm laser, but to perform experiments with both of these lasers we

must keep at least one of them from drifting while sweeping the other laser. With this

motivation, we put the Fabry-Perot cavity in a pressure-sealed aluminum tube with

anti-reflection coated flats covering the ends for optical access. To keep the length of

the cavity constant, we take the zero order beam from the double pass AOM setup of

the trapping laser and direct it into the Fabry-Perot with a polarization orthogonal to

the polarization of the Sacher laser (see fig. 2.5), combined on a polarizing beamsplitter

cube. Likewise, the polarizing beamsplitter cube on the output of the cavity separates

the beams once again and directs each onto a photodiode.

With the frequency-locked 780 nm beam passing through the FP, the length of the

cavity is swept by means of a ring piezo attached to one of the mirrors, producing

a signal identical to the one from ramping the 960 nm frequency in the 1 GHz FSR

cavity. We then stabilize the resonance frequency of the cavity by dither locking the

cavity to the 780 nm laser. Now that the cavity length no longer drifts, we may dither

the frequency of the Sacher laser and use a lock-in amplifier to produce an error signal

and lock the laser to the cavity. Unfortunately, the Sacher laser is not tunable if locked

in this way. To correct this, we wish to be able to adjust the frequency of the 780

nm beam incident on the Fabry-Perot cavity over one free spectral range, in this case

300 MHz. The 100 mW, 780 nm beam is first diverted through a double-passed high-

frequency AOM which shifts the frequency of the light between 340 to 490 MHz on each

pass. This range is sufficient to cover the free spectral range of the cavity while still
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producing a high enough first order conversion efficiency to deliver 1 mW of the light

to the cavity for the lock. The frequency shift of the AOM is dynamically programmed

by the same computer that controls the 480 nm laser so that either the 480 or 1015

nm laser frequency can be swept to perform spectroscopy on the Rydberg state.

2.4 Detection Devices

Now that we have a functioning MOT and a set of lasers to perform excitation and de-

excitation through a Rydberg state of our choosing, we require methods for determining

how many atoms are in the MOT, how many are in the Rydberg state, and how many

atoms are de-excited from the Rydberg down to the 6P state. Detecting the number of

atoms in the MOT is the most straight-forward: we may monitor the fluorescence of the

5P3/2, F
′ = 3 state as it decays down to the ground state. This 780 nm light is radiated

nearly isotropically, a small portion of which is collected with a lens and directed onto

a photodiode covered by a 780 nm bandpass filter to eliminate background light. The

intensity of the light collected on the photodiode is proportional to the number of

atoms in the MOT. We have previously determined the number of atoms in the MOT

in terms of experimental parameters as [Newell, 2003]:

NMOT =
V

A
× ητ

(hc/λ)peeΘ
×

[
1

0.56× 0.595× 0.5

]
. (2.1)

Here, V is the voltage measured by the photodiode from the fluorescence signal of

the MOT (a full MOT is 0.6 V), A = 9.9×106 is the gain of the current-to-voltage

converter, η = 2 W/A is the photodiode detection efficiency at a 780 nm wavelength, τ

= 27 ns is the lifetime of the 5P state, pee = 0.122 is the fraction of the MOT atoms in

the excited state, Θ = 0.006 is the fractional solid angle subtended by the photodiode,

and the quantity in the [ ] brackets takes transmission losses from three filters into
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account. This gives a value of 1.04×108 atoms in the MOT for these parameters. As

we will see in Chapter 4, we may use the change in the MOT fluorescence to measure

the loss rate from the MOT induced by the Rydberg excitation lasers and thus obtain

a measure of the number of atoms in the Rydberg state.

The decay of the 6P3/2 state also gives us a source of information on the dynamics

of the Rydberg state and the de-excitation induced by the 1015 nm laser (see Chapter

4). For the dipole blockade and single-photon source experiments that we would like to

perform, it is necessary for us to use photon counting modules in conjunction with an

IDE card which allows us to record the arrival times of the incident photons to the near-

est 100 ns time interval. For this purpose we purchased two H7360-01 photon counting

modules from Hamamatsu and a multi-channel scalar card from FAST ComTec. The

modules were chosen to have relatively low dark count rates (30 counts per second and

110 counts per second for the two counters we use) and a maximum count rate of 6×106

counts per second before saturation effects alter the signal. The modules are designed

to send out a 9 ns wide TTL pulse when a photon is detected, with a 9 ns “dead-time”

immediately following the pulse in which no pulses are transmitted.

We measured the quantum efficiencies of the photon counters at 420 nm to be 5.5%

and 5.3% for counter 1 and counter 2, respectively, as seen in Fig. 2.2. In order to

do this, we obtained a source of 420 nm photons from a white light which we passed

through a monochrometer calibrated and aligned to transmit 420 nm light. We covered

the output slit of the monochrometer with a 5 nm spectral width 420 nm bandpass

filter to remove any background light and then recorded the current produced from the

incident 420 nm light on a photodiode with a known current per unit power at that

wavelength. This allowed us to calculate the flux of 420 nm photons in the beam and

by comparing this number to the count rate of the photon counters observing the same

light we obtained the detector quantum efficiency.
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The counting modules exhibit dark-count-induced afterpulsing. When a dark count

is observed on one of the counting modules there is an increased chance of observing

a second dark count on that module over the next 10 µs. Figure 2.6(a) shows this

effect on counter 2; only dark counts are recorded in the figure. Obviously, this would

be undesirable in any photon correlation measurement. So when we wish to measure,

for instance, the second order correlation function g(2) [Loudon, 1983], we use a 50:50

beamsplitter cube to send equal 420 nm beams to both photon counters, in a setup

similar to a Hanbury Brown and Twiss experiment [Hanbury Brown and Twiss, 1956].

We then trigger a sweep with the first counter while counting subsequent pulses with

the second counter. For small count rates (∼1 count per sweep), this removes the effects

of afterpulsing from the data. A dark count measurement without afterpulsing done

in this manner is seen in Fig. 2.6(b). Both graphs were recorded over five minutes; we

would expect 1.8 total photons from dark counts during this period if dark counts were

randomly occurring during this period. Thus, not only is the concentration of after-

pulsing counts in the first 1 µs a concern, but in fact practically all of the counts seen

in Fig. 2.6(a) are afterpulsing counts that will obscure the signal of a g(2) measurement.

It is common in Rydberg atom experiments to employ an ion counter such as a

micro-channel plate (MCP) detector to ionize Rydberg atoms with an ionizing pulse

from an electric field which increases in strength over time so that one may deter-

mine the populations of Rydberg atoms at different principal quantum numbers. Ex-

amples of this can be seen in the experiments here [Walz-Flannigan et al., 2004] and

[Singer et al., 2005]. We have chosen not to implement this type of detector primarily

because this would require blocking a port from optical access in order to pass the req-

uisite electrical connections into the vacuum chamber. All ports are currently in use

in our vacuum chamber, however we do have a new vacuum chamber with additional

ports that could accommodate an MCP that may be used in the future. Instead, we are
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Fig. 2.6: Data showing the effects of afterpulsing on the counters when counting with (a) one

counter and (b) two counters. This data was taken over the course of 5 minutes

and resulted in 2408 triggered sweeps with 1830 counts in (a) and 1 count in (b). If

counts occurred randomly, we would expect 1.8 total counts in each graph.
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using the 1015 nm laser as a Rydberg state probe, which will be discussed in Chapter

5.

We also have a CCD camera from Hamamatsu with a 8.6 by 6.6 mm area and a

6.45 µm pixel size. The fluorescence from the MOT can be imaged onto the CCD

chip, or by transmitting a resonant laser pulse through the cloud of atoms we can

perform absorption imaging on the MOT. This technique was used extensively in past

experiments but very seldomly in our Rydberg atom experiments. Since the camera

is along the path of the 480 nm laser, we image the spot of the 480 nm beam on the

MOT as a measurement of the beamwaist and a check of the alignment.

2.5 Optics Train

The experimental setup shown in Fig. 2.2 shows the optics train focusing each of the

excitation lasers into the vacuum chamber as well as one of the alignments used for

the counters. In particular, this alignment will be useful for the four-wave mixing

experiments described in Chapter 7. The optics train to counter 1 is worth mentioning

since it impacts several detection devices. A pair of bi-convex lenses, with 150 mm

and 750 mm focal lengths, collimate the light emitted from the MOT and focus it at

the CCD camera 750 mm away from the second lens. A reflective low pass filter is

used to reflect the 420 nm photons from the decay of the 6P3/2 state towards counter

1 while transmitting the 780 nm fluorescence photons to the camera and photodiode.

An iris is in the path of the 420 nm photons, as we will see in Chapter 7 this iris can

be stopped down to reduce the solid angle subtended by the detector while still letting

phase-matched photons from the four-wave mixing process through.

There is a 50:50 beamsplitter cube in front of counter 1 which allows us to place

counter 2 in the path of the other half of this beam of photons to eliminate afterpulsing
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when taking photon correlation measurements. Two 420 nm bandpass filters are in this

train: one before the beamsplitter cube and another covering the aperture of the each

of the counters.

After exiting the fiber, the 480 nm laser beam curvature is reduced by (but not

collimated by) the objective lens at the output of the fiber. The beam is then collimated

at a waist of about 9 mm by a 400 mm focal length lens with a 50 mm diameter. A

second 400 mm lens focuses the 480 beam to a focused 12 µm waist at the atoms. We

measure the waist size by imaging the spot with an objective lens onto a CCD camera.

Also, we may adjust the location of the focus by moving the focusing 400 mm lens

along the axis of propagation and observing the counts produced when the excitation

lasers are on resonance. The focus will be at a local minimum for cascade counts (see

Chapter 4), which we can determine to within ± 0.5 mm.

The 1015 nm laser is focused in a manner similar to the 480 nm laser, with a pair

of 400 mm lenses that collimate and then focus the 1015 beam to a 12 µm spot at the

atoms. As the beams intersect at a 45◦ angle, the intersection volume is 17 µm long

in its longest dimension, provided that both beams are at their foci. Alternatively, we

can move the final 400 mm lenses so that the 480 nm and 1015 nm beams focus before

the atoms and then diverge to the size of the MOT cloud at the atoms, as seen in Fig.

2.7. This allows us to perform experiments at both high and low Rabi frequencies (or

as I will refer to them, focused and unfocused beams) as we will see in Chapter 4.
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Focused Beams

Unfocused Beams

MOT

Fig. 2.7: The figure shows the position of the f = 400 mm focusing lens for both the focused

beam and unfocused beam setups. For the unfocused setup, the beam is diverging

at the atoms and covers the entire MOT.
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3. FREQUENCY DOUBLING

3.1 Introduction

The design and construction of a frequency-doubled 480 nm laser is an involved process.

This chapter will explain the procedure, beginning with a brief explanation of the

physical origin of frequency doubling in nonlinear materials. Here I introduce the

equations required to calculate the amount of frequency-doubled light that is produced

when plane waves at the pump frequency pass through a nonlinear crystal. This will

result in the phase-matching condition for the crystal, which must be met to achieve

optimum conversion efficiency from fundamental to harmonic in the crystal. Next I

discuss some corrections to these equations, beginning with quasi-phase-matching and

periodic poling, which was used in the construction of our crystal in order to utilize

the strong d33 nonlinear coefficient of Potassium Titanyl-Phosphate (KTP).

Phase-matching in the crystal is accomplished by matching the index of refraction

at both pump and harmonic frequencies, and this in turn requires changing the crys-

tal temperature. Thus I present the Sellmeier equations for KTP, which model the

dependence of the refractive index on temperature and wavelength. I then calculate

the required phase-matching temperature for the wavelengths used in the experiment

and verify that this temperature is achievable in our setup. The final correction is the

strong focusing of the pump beam that is required to maximize the intensity of the

pump over the length of the crystal. This requires the use of Boyd-Kleinman theory to
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calculate the optimum waist to maximize the conversion efficiency.

I also discuss considerations required when designing a resonant cavity for the crys-

tal. In particular, the choice of the pump transmission percentage of the input mirror

into the cavity is vital for maximizing the circulating intensity in the cavity. I calculate

the optimum input coupler transmission percentage as well as the placement of the

mirrors in the bow-tie cavity using ABCD matrices. I then discuss the proper align-

ment procedure for the cavity. Using a 29 µm focused 960 nm spot in the center of

the crystal and a cavity of total length 37 cm, 12 mW of 480 nm light are produced

for a conversion efficiency of 5.4%. This number is much lower than expected, thus I

conclude the chapter by discussing possible causes and improvements.

3.2 Theory

The existence of frequency doubling in a crystal is a property arising from the non-

linearity of the response of the crystal to external fields. This, in turn, is due to

asymmetries in the crystal lattice structure which make the crystal birefringent, that

is, have different indices of refraction along its three axes. To look at the potential

energy of a valence electron in one dimension of an asymmetric crystal, one finds terms

of odd powers of the electron displacement that do not exist for symmetric crystals of

the form:

V (x) = Ax2 + Bx3 + ..., (3.1)

where A and B are coefficients whose values are determined by physical properties

of the crystal. The fact that such crystals do not possess the normal symmetry of

the electric field potential where V(-x) = V(x) means that the restoring force on the

electron (-∂V/∂x) will contain both even and odd powers of the displacement x. Now
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let us consider an oscillating electric field such as that produced by an optical frequency

laser propagating through the crystal medium. When the electric field from the laser

drives a negative displacement of the electron, the even and odd powers of x contained

in the restoring force will have opposite sign, which will make this restoring force

smaller than the force for a positive displacement. The induced polarization field in

the crystal is directly related to the displacement of valence electrons in the crystal

lattice, and the fourier transform of the polarization field will thus have frequency

components at both the fundamental and second harmonic frequencies of the driving

field. This simplistic discussion is meant to give some insight into the physics behind

the generation of frequency doubled light in nonlinear materials. Further details of the

process are largely out of the scope of this text but can be found in a standard textbook

on nonlinear optics such as [Yariv, 1971], [Sutherland, 2003], or [Dmitriev, 1997].

3.2.1 Wave Equations

What does concern us here is calculating the amount of frequency doubled light pro-

duced by a non-linear crystal given the properties of the crystal and the intensity of

the pump beam at the fundamental frequency. For this, it is necessary to look at the

propagation of electromagnetic waves in the nonlinear crystal. Such a treatment can be

found in a number of texts on nonlinear optics such as [Yariv, 1971]. For our purposes

it is sufficient to begin with the power at the second harmonic frequency produced by a

plane wave at the pump frequency passing through an optical crystal of length l. If P2ω

is the power at the harmonic frequency, Pω the power at the fundamental frequency

ω, dNL the nonlinear coefficient of the crystal, w the beamwaist, and n the index of

refraction at the pump frequency, the harmonic power produced is given by,



30

P2ω = P 2
ω

2ω2d2
NLl2

πε0c3w2n3
sinc2

(
∆kl

2

)
, (3.2)

where ∆k ≡ k(2ω) − 2k(ω) and sinc(x) ≡ sin(x)/x. From Eq. 3.2 we see that the power

of the harmonic wave is proportional to the square of the power in the fundamental

wave. This equation is often written in terms of a conversion efficiency ENL as,

P2ω

Pω

= ENLPω, (3.3)

where ENL contains all the other terms of Eq. 3.2. It is this equation that will allow

us to calculate the amount of blue light that should be produced on each pass and thus

aide in the design of our resonant cavity.

The sinc(x) function is maximized at x = 0. This means that we will maximize blue

light production when ∆k = 0, which is known as the phase-matching condition. We

can see why this is by noting that ∆k = 0 requires that k2ω = 2kω. When put in terms

of the refractive index this becomes n2ω = nω, and so the phase-matching condition is

in fact an index-matching condition. If the refractive indices differ for the fundamental

and harmonic frequencies then the waves will propagate at different group velocities

and become out of phase with one another, hence the label “phase-matching”.

3.2.2 Quasi Phase Matching

The Potassium Titanyl Phosphate crystal (KTP, or KTiOPO4) used in this exper-

iment is utilized in a type II non-critical phase matching setup [Sutherland, 2003].

Other crystals commonly used for frequency doubling in this wavelength range include

Lithium Niobate (LN, or LiNbO3). An ordinary KTP crystal could not be used for

frequency doubling in this manner, however, because dispersion effects prevent the

efficient buildup of the second harmonic beam. Instead we must use a quasi phase-
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matching scheme where our phase-matching condition is deliberately set to a non-zero

value. If the phase-matching condition is non-zero, the harmonic wave will drift in and

out of phase with the fundamental on a length scale known as the coherence length lc,

lc =
2π

∆k
=

λ0

2(n2ω − nω)
. (3.4)

When the phase difference between the two waves becomes greater than π/2, the

harmonic wave begins to transfer power back into the fundamental [Fejer et al., 1992].

This can also be thought of in terms of the stored energy in the crystal doing positive

work on the pump beam whenever the phase difference between the pump field and the

induced polarization field in the crystal is between π/2 to −π/2. To prevent this from

happening, the crystal is modified so as to flip the sign of the phase difference once it

reaches π/2. The most common method of doing this is to have many crystal slabs

each of one coherence length lc stacked end to end. Each slab is rotated 180◦ about the

propagation axis with respect to the slab preceding it, which due to the asymmetry of

the crystal lattice acts to flip the sign of the components of the susceptibility tensor.

This in turn shifts the phase of the polarization wave by π relative to the pump field.

Thus power is continuously transferred from the fundamental to the harmonic beam.

This is known as first order quasi phase matching (QPM) since there is always a

non-zero phase mismatch present in the crystal. The order of the QPM is given by

the number of coherence lengths in each slab length, thus third order QPM would

have “slabs” of three coherence lengths. The phase-matching condition must then be

modified by requiring that

∆k = k2ω − 2kω − πm

Λ
, (3.5)

where Λ is the length of the poling grating (that is, the length of each “slab”) and m is
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the mode order of the grating. We use the first order mode for the PPKTP crystal for

this experiment. The poling reduces the effective nonlinear coefficient of the crystal by

a factor

deff =
2d33

π
, (3.6)

where the d33 coefficient is the scalar component of the nonlinear coefficient used in

this experiment. For KTP, d33 = 16.2 pm/V which makes the effective coefficient

deff = 10.3 pm/V [Sutherland, 2003].

3.2.3 Sellmeier Equations

Next we must calculate how the phase matching varies with temperature. In general for

nonlinear crystals such as KTP, the index of refraction varies with temperature as well

as wavelength, and in fact the rate of change of the index of refraction with temperature

is itself wavelength dependent. To give an idea of the magnitude of the differences in

the refractive index, the index for KTP at room temperature is 1.83 at 960 nm and is

1.91 at 480 nm. This frequency and temperature dependence is parametrized for non-

linear crystals by the Sellmeier equations. The one-pole Sellmeier equation describes

the variation of the refractive index with wavelength as follows:

n2
z = az +

bz

1− cz/λ2
− dzλ

2. (3.7)

Here, we are looking at the component of the refractive index along the direction of

propagation of the field (which we will refer to as the z-axis) in terms of four parameters

that are dependent on the particular type of crystal being used. The numbers used

for these KTP calculations are taken from measurements performed by Fan et al.,

[Fan et al., 1987] and are az = 2.25411, bz = 1.06543, cz = 0.05486, dz = 0.02140.



33

Of course, the refractive index also changes with temperature, which is how our

phase-matching requirement is fulfilled. The temperature derivative of the refractive

index dnz/dT is material specific, for KTP this has been measured by Kato [Kato, 1992]

to be,

dnz

dT
= 10−5

[
2.115 +

0.3896

λ3
− 1.3332

λ2
+

2.2762

λ

]
. (3.8)

By combining Eq. 3.7 with Eq. 3.8 we get an equation which fully describes the tem-

perature and frequency dependence of the refractive index:

n′z(λ, T ) =
√

n2
z(λ) + ∆T

dnz

dT
(λ), (3.9)

where n2
z is the result from Eq. 3.7, dnz

dT
is taken from Eq. 3.8 and ∆T = T − 293.15

where T is the temperature of the crystal in Kelvin.

We can now use the refractive index calculations to calculate the ∆k phase mismatch

from Eq. 3.5 and thus map out the phase mismatch as a function of wavelength. Figure

3.1 shows the dependence of the phase mismatch on wavelength for three different

temperature curves. Experimentally, it will be more convenient to sweep the crystal

temperature and look for the highest blue power output rather than try to calculate

the appropriate phase-matching temperature, however this figure is important in that

it demonstrates that the phase-matching condition can be met for crystal temperatures

(10◦C < T < 150◦C) used in the laboratory.

3.2.4 Boyd-Kleinman Focusing

The result in Eq. 3.2 applies for plane waves propagating through a crystal. However,

it is clear from the equation that the power in the frequency doubled beam will depend

upon the square of the intensity of the fundamental beam. Thus, it is desirable to
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Fig. 3.1: Dependence of the phase-matching condition on wavelength for three temperatures.

For Rydberg atom excitation, phase matching for wavelengths between 959.5 and

964 nm is required. The figure shows that this is possible for reasonable crystal

temperatures.
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make the intensity of the fundamental as large as possible in the crystal. On the

other hand, the tighter the focus that is achieved, the faster that beam will diverge

away from the focus. It should then be clear that a balance must be struck which

maximizes the intensity of the fundamental across the entire length of the crystal. In a

paper by Boyd and Kleinman [Boyd and Kleinman, 1968], they derived conditions for

maximum frequency conversion in non-linear crystals. The Boyd-Kleinman analysis

treats the case of a tightly focused beam where the photons have nonzero angles with

respect to the propagation axis away from the focus. As a result, the sinc2(∆kl/2)

parameter is replaced by the Boyd-Kleinman integral h(z), where

h(z) =
∫ z

0
dz′

ei∆kz′

1 + i z′
zR

. (3.10)

In this equation, zR is the Rayleigh range of the pump beam given by

zR =
πn1w

2

λ
, (3.11)

where n1 is the index at the wavelength of the pump beam, and w is the beamwaist.

In the plane wave approximation, zR → ∞ and Eq. 3.10 reduces to a sinc2 function

again. By integrating across the length of the crystal, we may determine what waist

is needed at the center of the crystal in order to obtain the most efficient blue light

production over the length of the crystal. From numerical analysis, we determine that

the integral is maximized when zR = l/5.68 where l is the crystal length of 3 cm, which

implies that the conversion efficiency will be optimized when w = 29µm at the center

of the crystal. When evaluated for these parameters, the Boyd-Kleinman integral from

Eq. 3.10 will have the value,

|h̃|2 =
1.068zR

l
. (3.12)

We are now equipped to calculate the single pass blue conversion efficiency in our
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PPKTP crystal. As noted earlier, the effective nonlinear coefficient deff is 10.3 pm/V.

The index of refraction is 1.87, and the power input into the cavity is 220 mW with

a waist of 29 µm at the center of the 3 cm length crystal. Thus ENL from Eq. 3.3

is 0.067 W−1, and on a single pass we should produce 3.2 mW of 480 nm light, for a

conversion efficiency ENLPω of 1.5%. Experimentally, we measure 170 µW of 480 nm

light produced in a single pass by a 960 nm input power of 142 mW for a measured

ENL of 0.0084 W−1. Clearly to produce several mW of blue, a resonant cavity will be

required. We must now discuss the design of a resonant cavity that will produce the

Boyd-Kleinman waist in the center of the crystal so that we may utilize the intensity

build up in a resonant cavity to increase the intensity of the pump light in the crystal

and thus more efficiently produce the frequency-doubled blue light.

3.3 Resonant-Cavity Design

For our resonant cavity, we use a unidirectional bow-tie cavity to produce the desired

Boyd-Kleinman waist in the center of the PPKTP crystal. This has the advantage

that all of the blue light is coupled out of the cavity immediately after production and

does not have to propagate through additional optical elements while losing power as

it would in a bi-directional cavity. The calculations are made by using ABCD matrices

to calculate the transfer of the waist through the optical elements of the system.

ABCD matrices with gaussian beams provide a convenient method for determining

the waist and curvature of a beam after propagation through complicated optical sys-

tems. Assuming a gaussian beam with initial waist w1 and an initial radius of curvature

R1, we may fully describe the gaussian beam with the parameter q̃1 where,

1

q̃1

=
1

R1

− ı
1

z1

, (3.13)



37

where z1 is the Rayleigh range of the beam at this waist. The coefficients of the matrix

then describe the beam with parameter q̃2 after propagating through some system of

optics as follows:

q̃2

n2

=
A(q̃1/n1) + B

C(q̃1/n1) + D
. (3.14)

The matrix aspect of ABCD matrices comes about because the q̃ parameter can be seen

as a vector with real and imaginary components and A, B, C, and D the components

of the transfer matrix that transforms vector q̃1 to q̃2.

A diagram showing the propagation of laser light through the optical cavity is shown

in Fig. 3.2. The figure shows that a mode-matching lens is used to set up a resonant

mode inside the cavity. This entails forming a waist w1 at the center of the two flat

mirrors in the cavity. The first curved mirror is positioned so as to form a smaller waist

w2 at the center of the crystal, and the second curved mirror must then focus the beam

such that it reaches the same waist w1 at the center of the flat mirrors once again.

For optimum conversion efficiency, the curved mirrors should be symmetric about the

crystal so as to set up a real waist in the center of the crystal. Both curved mirrors for

this setup have a 5 cm radius of curvature and the crystal is 3 cm in length.

For the cavity to support resonant modes, the q̃ parameter must be invariant upon

a complete pass through the cavity. Values of the ABCD matrix that satisfy this corre-

spond to q̃ parameters called self-consistent q̃ values or eigen-q̃ modes [Siegman, 1986].

From these we get the condition necessary for a resonant cavity mode, (A+D)/2 ≤ 1,

and can now calculate the ABCD parameters for this bow-tie cavity.

The cavity calculations will be very sensitive to the position of the curved mirrors.

It is then convenient to define two lengths, a total cavity length L and the distance

between the curved mirrors L2 as shown in Fig. 3.2. If the crystal length is Lc, the
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Fig. 3.2: The principal optical components of the frequency doubling cavity are shown. A

mode-matching lens focuses the 960 nm beam to a 220 µm focus at w1. Then the

curved mirror C1 focuses the beam to a waist of 29 µm at the center of the crystal

at w2.
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index of refraction of the crystal nc, and the radius of curvature of the curved mirrors

R then the round-trip ABCD matrix is related to these parameters as follows:

A = D =
2(L− L2)(L2 − L′c)− 2R(L− L′c) + R2

R2
(3.15)

B =
[L2 −R− L′c][(L− L2)(L2 − L′c)−R(L− L′c)]

R2
(3.16)

C =
4(L−R− L2)

ncR2
(3.17)

where L′c = Lc
nc−1

nc
. We can now evaluate the stability parameter and determine the

range of L2’s that will work for a given total length L. In addition, we may evaluate the

q̃ parameter at the center of the crystal and determine what size waist will be produced

there. Typically this is done numerically with a symbolic manipulation program such

as Mathematica. Figure 3.3 shows such a measurement done for a total cavity length

of 37 cm and a crystal refractive index of 1.87. Figure 3.3 shows that the range of

accessible waists is a parabolic function of the curved mirror spacing L2. Recall that

the Boyd-Kleinman optimum waist we calculated was 29 µm, which is what the waist

is at the top of the parabola in the figure, corresponding to a curved mirror spacing

of L2 = 6.8 cm. Waists at the inflection point of the parabola are the most stable to

small changes in L2 and are thus desirable for the experiment.

All that remains is to calculate the larger waist w1 and calculate what mode-

matching optics will be required to create that waist between the flat mirrors. This is

once again done numerically and determined to be 220 µm for our cavity parameters.

A note of caution, the effective radius of curvature of the curved mirrors is reduced in

the horizontal plane by roughly the cosine of the angle that the beam makes with the

surface normal at the center of the mirror. Thus the bow-tie cavity should be as flat

as possible to avoid any beam asymmetry. Some of the asymmetry can be accounted

for by adjusting the mode-matching optics such that the waist at w1 is slightly larger
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Fig. 3.3: Beamwaist of the 960 nm pump at the center of the doubling crystal as a function

of curved mirror spacing L2. The plot is evaluated for a total cavity length of 37

cm. The figure indicates that the curved mirrors should be separated by 6.8 cm to

ensure the proper Boyd-Kleinman waist of 29 µm at the crystal center.

in the horizontal plane. Given the input waist of the 960 nm beam, we may calculate

what lens is needed to match the mode of the ring cavity. If the input beam has a

large, symmetric, gaussian waist of w0, then the lens needed to create a waist w1 at a

focal length f away from the lens is,

f =
πw0w1

λ
. (3.18)

Now that we have a resonant cavity design to work with, we must still know what

coatings to order for the mirrors. This is trivial for most mirrors as we want the

mirrors to be highly reflective (R > 99.9%) at 960 nm and to transmit all light at 480

nm. However, the input coupler is different in that its value must be chosen to optimize

the circulating intensity of the cavity. As it happens, the physics of resonant optical

cavities has a close analog in the physics of electronic circuits. Just as the impedance of

a voltage signal input must be matched to that of the circuit’s load to avoid reflections
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which waste power, so too must the “impedance” of the optical cavity be matched by

the input coupler so that all of the light incident on the input coupler is coupled into

the cavity when the piezo controlling the cavity length sets the cavity to be resonant

with the input wavelength. This is called the impedance-matching condition, and is

met when the input coupler (or here, the first flat mirror in Fig. 3.2) transmits as

much light as the cavity loses to absorption, scattering, and blue conversion in a single

pass. This is made more complicated by the fact that the circulating intensity of 960

nm light in the cavity will be high enough that a few percent of it will be converted to

480 nm on each pass.

Polzik and Kimble [Polzik and Kimble, 1991] analyzed second harmonic generation

using KNbO3 in an external cavity and noted that the input coupler transmission

percentage T1 is related to the doubling efficiency ε ≡ P2/P1 by

√
ε =

4T1

√
ENLP1[

2−√1− T1(2− L−√εENLP1)
]2 , (3.19)

where L is the round-trip loss rate and ENL is the single-pass efficiency from Eq.

3.3. The optimum value for T1 in an impedance-matched cavity is then,

T 0
1 =

L

2
+

√
L2

4
+ ENLP1. (3.20)

For our optical cavity, the round trip loss rate in the absence of blue light production

was measured to be 3%. At the time the cavity was designed, we did not anticipate

more than around 50 mW for P1 so the input coupler was chosen to be 5% based on

this even though for 220 mW input as we have now it would be 8%. The efficiency

calculated for the 5% input coupler from Eq. 3.19, with P1 = 220 mW is 74%. If we

were using an 8% input coupler with these same parameters, the calculated conversion

efficiency would be 83%. However, as we will see, this is not currently the limiting
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factor in the production of 480 nm light.

3.4 Alignment Procedure

Now that we have made the relevant calculations, it may be useful to provide a step-by-

step guide to setting up and aligning the doubling cavity from scratch. Before beginning

the alignment several things should have already been done. The input waist w0 should

have already been measured and the appropriate mode-matching lens put in place to

focus the pump beam to the large cavity waist w1 of 220 µm as calculated before. There

should be two mirrors set up before the first flat mirror of the cavity to act as input

couplers into the cavity. These mirrors should be located after the mode-matching lens

to prevent steering through the lens. The mirrors should all be at the same height

on their holders and there should be two aluminum alignment jigs nearby with holes

drilled at the appropriate beam height. The larger hole is around 2 mm and is used

for coarse adjustment while the smaller hole is about 400 µm and is used to fine tune

the beam alignment.

Now that the equipment is ready, place the mirrors on the table such that the waist

formed by the mode-matching lens is directly between the flat mirrors and the curved

mirrors are a distance L2 = 6.8 cm apart. Position the flat mirrors such that the total

cavity length L = 37 cm. Make sure the beam passes from mirror to mirror without

the crystal holder in the setup. The beam angle Θ as seen on Fig. 3.2 should be about

26◦ to minimize the asymmetry required in the beamwaists as noted earlier. Once the

mirrors are fastened in place, the crystal holder should be positioned symmetrically

between the two curved mirrors and the distances verified using a micrometer. Now

the following steps should be taken (mirror labels are taken from Fig. 3.2):

1) Use the input couplers to make the beam pass through the centers of flat mirrors
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F1 and F2, the couplers should be adjusted in a standard beam walk pattern. The

beam should be able to pass through the large aperture alignment jig at any position

in this path. The beam alignment jig should be used to check the beam height at each

of these steps but will not be mentioned.

2) Using the screws on the back of F2, adjust the beam such that it hits the center

of the curved mirror C1.

3) Using the screws on the back of C1, make the beam pass through the crystal and

hit the center of C2.

4) If it does not already do so, adjust the screws on the crystal holder such that

the beam enters and leaves the crystal at the the exact center of the crystal. Also

make certain that the beam goes straight through the crystal and does not reflect off

of the side of the crystal while passing through. If the alignment caused the beam to

be off-center on C2, then repeat 3) and 4) until both conditions are met.

5) Adjust C2 until the beam hits the center of F1. This should be the same position

that the beam passes through from the input coupler.

6) Place the large aperture alignment jig in the path of the beam in front of mirror

F2. Adjust the screws on F1 such that the reflection off of F1 also passes through the

jig. Provided that the cavity piezo on F2 is ramping over a large enough frequency

range, flashes should now be observed when the alignment jig is removed.

7) If no flashes are present then look for multiple spots or perhaps a single very

large spot on one of the flat mirrors. Walk mirrors F1 and C2 until the spots coalesce

into a single spot and flashes are observed. Alternatively, look at the crystal holder

and make sure the second pass of the beam goes through the crystal. Always walk F1

and C2 to preserve the alignment of the initial pass through the crystal.

8) Looking at the reflection dip signal on the oscilloscope, walk F1 and C2 to

maximize the dip. Ideally the dip should be around 50% to 60% of the total signal.
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9) With the reflection dip maximized, walk the input couplers to maximize the dip

further. The input couplers should not need to be moved much.

10) Now that the cavity is aligned, adjust the crystal temperature and record the

amount of blue light produced with a photodiode. Set the crystal temperature such that

the blue light production is maximized, keeping in mind that the blue light production

as a function of crystal temperature has many local maxima. Once the temperature

is set to the global maximum for blue light production, measure the reflection dip and

doubling efficiency.

11) Using mirrors C1 and C2, change the distance L2 symmetrically about the

crystal. This is done (for example) by moving each of the three screws on the back

of both C1 and C2 in (or out) by one turn. It is important that all the screws are

moved the same direction to keep the curved mirrors symmetrically positioned about

the crystal. This will likely misalign the cavity to the point that no flashes are observed.

Repeat steps 7) - 9) to maximize the reflection dip again. If that doesn’t help then go

back to step 3).

12) Record the blue light efficiency and reflection dip for the new L2, then repeat

step 11) to find the position of the curved mirrors that maximizes the doubling efficiency

and reflection dip.

13) Now that the cavity mirrors are at their optimum position, the position of the

mode-matching lens can be moved and the input couplers adjusted to fix the cavity

alignment. The lens should not need to be moved more than a few cm if the beamwaist

measurements were done properly.
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Tab. 3.1: Summary of numbers relevant to the performance of the frequency-doubled laser

and resonant cavity.

Parameter Value

Crystal Length (Lc) 3 cm

Nonlinear Coefficient (deff ) 10.2 pm/V

Input Power (P1) 220 mW

Single-Pass Efficiency(calculated) (ENL) 0.067 W−1

Single-Pass Efficiency(measured) (ENL) 0.0084 W−1

Cavity Finesse(calculated) (F ) 73.9

Cavity Finesse(measured) (F ) 40

Cavity Free Spectral Range (FSR) 800 MHz

Input Coupler Transmission @ 960 nm (T1) 5%

Conversion Efficiency(calculated) (ε) 74%

Conversion Efficiency(measured) (ε) 5.4%

3.5 Cavity Performance

Table 3.1 contains a summary of numbers relevant to the doubling cavity. We can now

summarize the details of the doubling cavity by calculating how much blue light we

should be able to generate given our measurements thus far. With an input coupler

transmission of 5% at 960 nm and a cavity length of 37 cm, the doubling cavity has a

calculated finesse of 73.9 and a free spectral range of 800 MHz. The calculated finesse

is the finesse that would be observed for a perfectly Gaussian TEM00 mode of the

appropriate waist and curvature input into the cavity. Experimentally we measure the

finesse to be about 40, which is not surprising given that we are using a diode laser

with an M2 value of about 1.5.
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In Section 3.3 we calculated the conversion efficiency ε to be 74%. This implies that

for a 960 nm pump power of 220 mW, we should produce 163 mW of blue light at 480

nm. This is an order of magnitude larger than the amount of blue we currently produce,

which is 12 mW. Formerly, with 250 mW input, we were able to produce 71 mW of

blue, for a conversion efficiency of 28% compared to the current 5.4 %. In addition, as

the power of the pump is increased, the reflection dip ceases to be symmetric, instead

displaying a Gaussian rise on one side of the dip, followed by a sharp drop on the other

side of the dip. This makes a using a dither lock with the reflection dip to stabilize

the cavity length to the laser impossible, so a lock to the side of the resonance must

be used as noted in Chapter 2. Since this does not lock to the highest part of the

reflection dip, we are in effect throwing away pump light that could otherwise be used

to produce additional blue power.

These observations suggest that the performance of the crystal has degraded over

time, particularly since we have employed a number of 960 nm diodes in the experi-

ment to the same effect. The calculated vs. measured single-pass efficiency numbers

are particularly troubling since this either indicates improper focusing or some form of

damage to the crystal. The latter seems the most likely, since the focus of the 960 nm

beam was carefully measured and aligned into the crystal as described in the previous

section. It is not known exactly what has caused the loss of conversion efficiency or the

reflection dip asymmetry, but there are a couple of possibilities. Thermal dephasing

could occur whereby the intensity of the pump beam caused local heating in the crystal

on a very short timescale that caused the phase-matching to be off for certain wave-

lengths. In addition, gray tracking is known to occur in PPKTP which could affect

the overall doubling efficiency. Gray tracking is a damage threshold effect where a high

circulating pump intensity affects the crystal in such a way that along the path of the

pump beam there is a track where the crystal cannot produce as much doubled light as
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before. This is usually an effect observed in pulsed applications with higher intensities

and is thus unlikely in this experiment. Nevertheless, the 5 mW of blue light currently

delivered to the atoms has been sufficient for our purposes until this point. It is clear,

however, that improvements could be made to increase the 480 nm output power
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4. TWO-PHOTON RYDBERG EXPERIMENTS

4.1 Introduction

Now I turn our focus to some basic Rydberg atom experiments designed to investigate

the properties of these atoms. First among these concerns is the linewidth of the

ground-to-Rydberg state transition, since, in order to achieve the largest blockade

volume possible, we must have very narrow linewidths. The linewidths we measured

are significantly broader than expected, 8-10 MHz for the energy levels studied in this

thesis. Some, though not all, of this broadening is due to the 2 MHz linewidth of

the 480 nm laser, thus this laser required some additional investigation. The external

cavity used to stabilize the 480 nm laser is subject to thermal and pressure drifts, thus

we examine the stability of the 480 nm lock over time.

Still not satisfied with the linewidths obtained from our Rydberg spectroscopy mea-

surements, we developed a novel technique which we refer to as intensity correlation

spectroscopy that allows us to measure the Rydberg transition linewidths at timescales

shorter than 100 µs. This is done by ramping the 780 nm excitation laser very quickly

across the two-photon 5S → nS, D Rydberg resonance and observing correlated photon

counts while the lasers are on resonance, as will be explained in the text. The linewidths

measured with this intensity correlation spectroscopy are again 8 MHz, which agrees

with our other measurements and eliminates thermal and pressure drift in the laser

cavity as possible explanations of the broadening.
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After this, we turn our attention to coherent excitation of Rydberg atoms. In a

blockade experiment, one would like to coherently transfer the atoms to the Rydberg

state and prevent any dephasing process such as decay from an intermediate state. We

thus use the process known as stimulated Raman adiabatic passage to excite the atoms

into the Rydberg state and then de-excite them back to the ground state. We looked

for a reduction in the trap loss rate upon application of the de-excitation pulses, but we

observed an increase in the trap loss rate instead, which implies that the excitation/de-

excitation process was not coherent. This experiment was unsuccessful for a number

of reasons, as would later be appreciated in Ref. [Johnson et al., 2008] which demon-

strated the dephasing of Rabi oscillations with more than one atom involved in the

excitation. Finally, we look into the possibility of increasing the strength of the atom-

atom interactions, and thus the blockade radius, by mixing the pure-D Rydberg level

with an F -state via resonant microwaves. We see a 200 MHz Autler-Townes splitting of

the Rydberg level with only 0 dBm of microwave power aimed at the vacuum chamber,

suggesting that such state-mixing is feasible.

4.2 Rydberg Atom Characteristics

In this work, most of the excitations performed will be to the 28D, 43D, 58D, or

30S states. These levels are chosen to cover a variety of atomic radii and atom-atom

interaction strengths. In choosing Rydberg levels, we must balance increased inter-

action strengths at high n-levels with smaller oscillator strengths to low-lying atomic

levels that result in smaller signal levels. In particular, the choice of the 43D state

is a common one in Rydberg atom experiments using Rubidium (see, for example

[Li et al., 2005]) because the energy of the 43D + 43D → 41F + 45P collisional pro-

cess differs by only 6 MHz from the energy required to excite two atoms along the 5P →
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43D transition, creating much stronger interactions among Rydberg atoms excited to

this state than would result from van der Waals interactions alone.

The S-state is also interesting since plasma formation takes place much more slowly

among these atoms [Li et al., 2004]. This is due to smaller interatomic forces as com-

pared to the forces between D-state Rydberg atoms of the same principal quantum

number. This difference between S- and D-states can be understood by realizing that

the S-states are only dipole coupled to (and thus interact with) the P -states, whereas

the D-states are dipole coupled not only to the P -states but also the F -states. The ad-

ditional states with which the D-state Rydberg atoms interact means a stronger total

interaction and thus a faster progression to plasma formation. The difficulty with using

S-states is that the oscillator strengths are typically 1/10 as large as the D-states of

the same n-level, making excitation to high levels difficult. When exciting to Rydberg

D-states, we have a choice between exciting the atoms to the J=5/2 or 3/2 fine struc-

ture level. For all experiments discussed here, we excite to the J = 5/2 fine structure

level because the dipole matrix element for the 5P3/2 → nD5/2 transition is 9 times

larger than for the 5P3/2 → nD3/2 transition. For our purposes, the Rydberg hyperfine

levels are degenerate due to their ∼ 10 kHz spacing for n=30, which is smaller than

our laser linewidths as we will see.

4.3 Two-Photon Excitation and Linewidth Measurements

If the linewidth of the Rydberg transition is too broad it makes achieving blockade

difficult. Consider a case where the Rydberg excitation state for an atom in the ground

state is shifted 5 MHz by interactions with a nearby Rydberg atom. If the linewidth

of the transition is equal to the natural linewidth of the 58D state of 10 kHz then a

second Rydberg atom cannot be excited at this location. However, if the linewidth of
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Fig. 4.1: Sweep of Rydberg excitation lasers across the two-photon 5S → 28D transition.

The solid line displays the loss rate from the MOT while the dashed line shows the

count rate from the decay of Rydberg atoms through the 6P → 5S transition. The

scan shows that the Rydberg transition linewidth is 8 MHz as measured by both

loss rates and count rates.

the transition is 10 MHz then the excitation laser tuned to the Rydberg resonance will

still be able to excite a second atom to the Rydberg state, albeit more weakly than

without the shift.

4.3.1 Broad Transitions

With this in mind, Fig. 4.1 shows the result of sweeping the 480 nm laser frequency

across the resonance of the 28D5/2. A detailed examination of this figure will help to

explain the excitation process. The two-photon excitation of atoms from the 5S1/2 state

in the MOT to the Rydberg state leads to a loss of atoms from the MOT, and thus a

reduction of the MOT fluorescence. In the absence of excitation beams, the number

of atoms in the MOT comes to an equilibrium when the loading rate (L) from the
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background vapor is balanced by light-induced and atom-atom collisions in the MOT

which cause trap loss (γ0). Under this equilibrium condition, the rates are balanced

like so:

dN

dt
= 0 = L− γ0N. (4.1)

The loss rate caused by the excitation lasers (which we refer to as γ1) should also be

N dependent, since having more atoms in the ground state will lead to the excitation

lasers producing more Rydberg atoms, and a greater loss rate of these atoms from

the trap will result. This induced loss rate will obviously depend on the excitation

frequency of the lasers as follows:

dN

dt
= L− (γ0 + γ1(ν))N. (4.2)

Taking the steady state value of the number of MOT atoms from Eq. 4.2 and solving

for γ1 we find,

γ1(ν) = γ0

(
N0

N(ν)
− 1

)
, (4.3)

where N0 is L/γ0, or the steady state number of atoms in the MOT with no Rydberg

excitation. Now we have an equation for the MOT loss rate induced by the excitation

lasers in terms of the number of atoms at a particular excitation frequency ν. We will

use this loss rate in this and in the next few chapters to determine what happens to

atoms in the Rydberg state.

The loss rate γ1 is displayed on the left vertical axis of Fig. 4.1 as a dashed line.

As can be seen, the peak loss rate from the MOT is 0.2 s−1. The excitation lasers are

defocused in this setup (as described in Chapter 2), and have Rabi frequencies of 1.1

MHz and 12 MHz for the 480 and 780 nm beams, respectively. Since the detuning from
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the intermediate state is 470 MHz, the two-photon Rabi frequency becomes Ω2 = 29.7

kHz. However, Fig. 4.1 shows that the 1/e2 transition linewidth (fitting to a Gaussian

intensity profile) is 8 MHz, which means that this broad linewidth will tend to lower

the effective excitation rate.

To see why this is, we must use a density matrix treatment of a two-level atom with

excited state |e〉 and ground state |g〉, as discussed here [Stenholm, 1984]. The excited

state decay rate Γ comes into the coherence terms of the optical Bloch equations as,

ıσ̇eg = −(∆ +
ıΓ

2
)σeg + Ω(ρg − ρe), (4.4)

where Ω is the Rabi frequency for the |g〉 → |e〉 transition and ∆ is the detuning of the

laser field from resonance with the transition. In the weak excitation limit (Ω ¿ Γ)

and assuming resonant excitation, the excited state population ρe becomes,

ρe =
τeNgΩ

2

Γ
. (4.5)

In this equation, τe is the lifetime of the excited state and Ng is the number of ground

state atoms. For our experiment, this equation implies an effective excitation rate of

Ω2
2/Γ, where Γ is the observed excitation linewidth calculated as noted above. For the

data in Figure 4.1, the effective excitation rate is 110 s−1.

We also observe photon counts from the decay of the Rydberg state. These count

rates will be discussed in more detail in Chapter 5, for now suffice it to say that a

fraction of the atoms that decay from the Rydberg state will make the 6P → 5S

transition. The 28D state lifetime of 24.2 µs is much faster than the scanning speed

of the excitation lasers, thus the Gaussian width of the count rate as a function of

Rydberg excitation laser frequency should be equivalent to the transition linewidth.

Figure 4.1 confirms this since the width taken from the count rate data is 8 MHz,

which agrees with the width as measured by the loss rate data.
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We will return to the implications of these loss rates in Chapter 5. For now, the

width of the Rydberg transitions is our chief concern. The linewidths for all levels

studied are routinely 8 to 10 MHz. This is much broader than the natural linewidth of

around 6 kHz for the 28D state or the even the ∼ 200 kHz Doppler broadened width

[Svanberg, 2001] assuming a mean temperature of 100 µK. The largest contribution

from the lasers to this width is the 480 nm laser where the 1 MHz short-term self-

homodyne linewidth (see Chapter 2) of the 960 nm diode results in a 2 MHz linewidth

at 480 nm. By comparison, the short-term 780 nm laser linewidth measured in the

same manner is 200 kHz. Thus even the quadrature sum of both the 780 nm and 480

nm laser linewidths is about a factor of 4 less than the observed transition linewidth.

It is possible that the 480 nm laser could drift during these scans since the scans take a

around two minutes to accomplish. The scan speed is chosen such that the time taken

to cover the Rydberg resonance is much longer than the loading rate of the MOT.

Thus, we wish to investigate the drift rate of the 480 nm laser lock.

4.3.2 480 nm Stability

As discussed in Chapter 2, the 960 nm laser diode is locked to a temperature-stabilized

Fabry-Perot reference cavity with a free-spectral range of 1 GHz and a finesse of 200.

The locking linewidth of the 960 nm laser has been measured to be an average of 1

MHz with spikes of no more than 2 MHz by observing the amplitude jitter of the

Fabry-Perot signal on an oscilloscope. However, temperature and pressure drifts in

the FP cavity could still cause broad linewidths to be observed. To ascertain what

effect these drifts have, we use the MOT itself as a frequency reference. We tune the

480 nm laser to the edge of a Rydberg transition, such that we eliminate about 1/3

of the MOT fluorescence signal. We may then use the computer control to feedback

to the blue frequency such that the MOT fluorescence remains at this level. Since the
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Rydberg transition for the MOT atoms does not drift, any frequency change required

to keep the blue laser tuned to the Rydberg resonance is a result of a change in the

length of the reference Fabry-Perot cavity. We now have a way of recording the drift

of the reference cavity length over time.

Figure 4.2(a) shows the frequency drift of the 480 nm laser with and without the

pressure seal of the acrylite box containing the Fabry-Perot. As the figure shows,

without the seal, the laser drifts by as much as 5 MHz in a minute, whereas with

the seal the drift rate is reduced to ∼ 1 MHz per minute, and is most likely caused

by temperature fluctuations in the cavity. Thus it should be clear that the 480 nm

laser cannot be responsible for our observed transition widths. However, there is some

concern that unaccounted for mechanical vibrations in the optical table holding the

diode lasers might be causing these widths. To test this, we devised a novel method of

observing the short term linewidths of these transitions.

4.3.3 Intensity-Correlation Spectroscopy

If we could sweep our lasers over the resonance much faster than the vibrational time

(∼ 10 ms) we would be sensitive only to the short-term laser linewidth. Unfortunately,

the MOT loading time is much longer than these fluctuations, and so we cannot use

MOT fluorescence as an excitation metric at these speeds. Similarly, the count rates

measured from the decay of the Rydberg state are too small to obtain a signal large

enough to be usable with a single pass over the resonance. Count rates of ∼ 104 s−1

as seen in Fig. 4.1 imply that if we sweep across the resonance on a 100 µs timescale

we are likely to get no more than a single count as a result of the sweep. This makes

it impossible to determine when the lasers are on resonance, much less how wide the

resonance is. However, since the dark count rate for the scan in Fig. 4.1 is 30 s−1,

we are 300 times more likely to observe a count from Rydberg atom production and
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Fig. 4.2: Graphs showing fluctuations of the blue laser while it is stabilized to the side of

the Rydberg transition. The frequency drift is due to a change in the length of the

Fabry-Perot cavity. Figure (a) displays the frequency drift with the acrylite box

sealed and with the valve open, allowing pressure changes in the room to cause the

frequency to drift. The 6 MHz shift at the start of the sealed box data is caused

by the laser coming into resonance with the side of the Rydberg transition. Figure

(b) shows the drift caused by turning off the temperature control. The ringing

observed in (b) is due to the high gain of the feedback loop which stabilizes the

laser frequency to the side of the Rydberg transition. With both pressure and

temperature controlled, the laser drifts no more than 1 MHz per minute.
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subsequent decay than we are from background when excitation lasers are directly on

resonance. If the excitation lasers are swept rapidly back and forth across the Rydberg

transition, any counts that result are most likely a result of Rydberg atom production.

This suggests that by recording the delay time between successive photon counts while

the excitation lasers are swept that we may probe the width of the Rydberg transition.

As we will see, the histogram of the photon delay times will be an auto-correlation

function of the Gaussian intensity profile of the Rydberg state transition.

For this purpose, we ramp the 780 nm laser with a triangle ramp at a frequency

between 30 kHz and 10 Hz. The ramp and the corresponding histogram of the photon

delay times can be seen in Fig. 4.3. The coincidence counts seen in Fig. 4.3(b) are

recorded as follows: the arrival of a count triggers a sweep on the pulse counting card.

The card then records the time taken until the next photon is observed, at which point

the sweep ends. As counts are more likely with the laser on resonance rather than

off, a sweep is generally triggered when the 780 nm laser is on resonance with the

two-photon Rydberg excitation frequency. Once the sweep begins, the fact that the

excitation beam is on resonance with the Rydberg transition means that we will see

many tightly bunched photon counts on the coincidence delay time histogram, which is

why we start off with a peak as seen the figure. The figure demonstrates that generally

counts will only be observed when the excitation lasers are sweeping over the resonance,

which explains the other six peaks observed in the figure. Due to the triangle ramp,

the “odd numbered” peaks (peaks 3, 5, and 7 counting from the left in the figure) are

produced with the ramp going in the same direction as it had been for the first peak,

whereas for the “even numbered” peaks (2, 4, and 6) the ramp is sweeping the opposite

direction than the initial peak.

As is shown in Fig. 4.3(b), the odd peaks have a larger amplitude and narrower

width than the even peaks. As the laser frequency drifts, the position of the resonance
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Fig. 4.3: Figure (a) displays the ramp applied to the current of the 780 nm excitation laser

and the detuning of the laser from the Rydberg transition. The frequency of the

ramp is 30 kHz. Figure (b) is a record of the correlated photon counts observed

during the scan. The “odd numbered” peaks are sharper and less spread out than

the “even numbered” peaks because the ramp is moving in the same direction for

these, making them insensitive to drift in the laser frequency. Note that while the

ramp is pictured with the frequency increasing at the start of the sweep, the ramp

could just as easily be decreasing initially for a given correlated photon pair.
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on the ramp will also drift. This drift occurs such that the odd numbered peaks move in

the same direction, or in a common mode, relative to the initial peak. Thus they have

the same temporal displacement (set by the ramp period) from the initial peak in the

graph and are not spread out. Likewise, the even numbered peaks move in the opposite

direction, or in a difference mode, relative to the initial peak and thus get closer to and

farther away from the initial peak as the laser drifts. This causes the even numbered

peaks to become spread out and broader relative to the odd peaks. This also means

that since the drift does not spread out the odd peaks, these peaks are insensitive to

drifts and fluctuations on timescales longer than the ramping period. We may then

measure the width of the odd peaks at a range of different ramping frequencies to get

an idea of the timescales of the thermal and mechanical fluctuations present in the

experiment. The derivation of the dependence of the width on the transition linewidth

is presented in Appendix A. The result is that the odd peaks have a Gaussian profile

with a 1/e2 width which is
√

2 larger than the transition linewidth.

Figure 4.4 displays the result of a number of linewidth scans taken with the ICS

method at different ramping frequencies. In the figure, the Rydberg linewidths are as

large as 20 MHz for the slowest ramping frequencies and reduce to 8 MHz at a 10 kHz

ramping frequency. The 10 Hz ramping frequency linewidths are much larger than that

observed by the two-photon excitation scan shown in Fig. 4.1 because the 780 nm laser

is locked to a saturated absorption transition for the data taken in the figure, whereas

in the ICS setup the 780 nm laser is allowed to drift as the frequency is swept back and

forth. Figure 4.4 was taken using the 28D state, however the ICS linewidths for the

other excitation states are still no more than the 8 MHz seen here. The linewidth ap-

pears to be coming to an equilibrium at the highest ramping frequencies, unfortunately

the ramping frequency cannot be increased any further since the effective lifetime of

the Rydberg state is around 100 µs. Ramping faster than the Rydberg lifetime means
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Fig. 4.4: A summary of ICS linewidth scans for the 43D state. The width of the transition is

measured to be over 20 MHz at small ramping frequencies because laser frequency

drift acts to spread out the linewidth on this timescale. At higher frequencies, the

linewidth reduces to 8 MHz.

that the atoms do not have time to decay before the laser is on resonance again. This

acts to reduce the contrast between the peaks and the background, and it turns out

that ramping much faster than 10 kHz reduces the signal to noise ratio too much to

get a reliable signal.

4.3.4 Other Possibilities

So it is clear that even at short timescales the transition linewidths are much larger

than we anticipate, but there is still the question of ’why’? Unfortunately, we know

very little about what causes these transitions to be so broad. On the other hand, we do

know a great deal about matters that are not a source of broadening. A key point here

is that the linewidths are about the same width regardless of the n-level to which we

excite. This means that explanations with an n-dependent effect, such as stray electric
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or magnetic fields, cannot be the cause. Atomic collisions or plasma formation are

likewise eliminated, and regardless these would not be a factor at the lowest densities at

which we perform our excitations, as we will see in Chapter 5. It is still conceivable that

some vibration in the lab that is picked up by our lasers may be causing this broadening,

but we have looked at the short term linewidth and the locking linewidth of each laser

and found no evidence of this. In the literature and from private communication, it is

clear that other groups see similar linewidths ([Singer et al., 2004], [Teo et al., 2003],

[Amthor et al., 2007]), though there are exceptions [Grabowski et al., 2005].

4.4 STIRAP

As a test of our control of the system, we would like to be able to coherently drive atoms

into the Rydberg level and then back down into the ground state. This will require that

we focus our excitation beams so that we perform the entire excitation cycle faster than

the lifetime of the Rydberg state. This is because spontaneous decay acts to dephase

the transition cycle resulting in equal populations in the excited and ground states.

However, there are numerous problems with focusing the excitation beams, not the

least of which being that focused beams will lead to larger Rydberg atom densities and

thus stronger atom-atom interactions. These interactions have been shown to result in

plasma formation in less than 1 µs [Li et al., 2004] for D-state excitations. This time

is slightly longer for S-states, but regardless it is necessary for the excitation rate to

exceed this timescale, which is difficult given that the width of the Rydberg transitions

reduces our effective excitation rate.

The focused beams lead to other problems as well, namely the differential AC Stark

shifts mentioned in Chapter 2 as well as differential excitation rates over the atomic

sample. The quoted excitation rates in these experiments are calculated for peak in-
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tensity, thus over the spatial extent of the Gaussian beam the excitation rate will vary

from the peak rate to zero. We then have a problem of demonstrating coherent exci-

tation and de-excitation from the Rydberg state. A Rabi-flopping experiment where

population oscillations between excited and ground states are observed when the ex-

citation beam is applied will not work because the differential excitation rates make

the atoms oscillate at different frequencies. These frequencies will wash out the fringes

since the frequencies drift in and out of phase with each other.

4.4.1 Theory

Stimulated Raman Adiabatic Passage (STIRAP) deals with the problem of differing

oscillation frequencies in a two photon excitation by bringing atoms around the Bloch

sphere at different speeds, but having them all reach the excited state at around the

same time. This works by using a counterintuitive sequence of pulses which serve to

change the basis state of the three levels involved. The new basis states are such that

as long as the excitation rates change adiabatically the atoms will stay in the same

“dressed” state while making a transition from the ground to the Rydberg level in the

original basis state configuration. A good review article of the STIRAP process can

be found here [Bergmann et al., 1998], I will provide here a summary of arguments

presented in more detail in the article. Consider two Rabi frequencies: Ωr represents

the 780 nm laser excitation, and Ωb represents the 480 nm laser excitation. Following

the discussion in [Bergmann et al., 1998], we may define a time-varying mixing angle

Θ between the ground |g〉, intermediate |p〉, and excited |r〉 states as follows,

tan Θ(t) =
Ωr(t)

Ωb(t)
. (4.6)

In the dressed state picture of the atomic transition, the three atomic states can be
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represented as a superposition of the three “undressed” states with new wavefunctions

|a+〉, |a0〉, and |a−〉 according to:

|a+〉 = sin Θ sin Φ |g〉+ cos Φ |p〉+ cos Θ sin Φ |r〉 (4.7)

|a0〉 = cos Θ |g〉 − sin Θ |r〉 (4.8)

|a−〉 = sin Θ cos Φ |g〉 − sin Φ |p〉+ cos Θ cos Φ |r〉 (4.9)

The other angle, Φ, is a function of the two Rabi frequencies and the intermediate

state detuning, but has no impact upon the final result. So as we can see from Eq. 4.9

the atoms begin in state |a0〉, which is equivalent to state |g〉 with Θ = 0 (as the blue

begins to turn on). Substituting Θ = 0 into Eqs. 4.8-4.9 shows that the other states

in the dressed state picture are orthogonal linear combinations of |p〉 and |r〉. The 480

nm laser comes to full power first, and as the 480 nm laser turns off the 780 nm laser

begins to turn on, making the mixing angle go from 0 to π/2. Substituting Θ = π/2

into Eq. 4.9, one can see that although the dressed state stays in the |a0〉 state, this

state now corresponds to the undressed state |r〉. The other two dressed states are

now linear combinations of |g〉 and |p〉, so the transition has occurred without ever

populating the intermediate state.

The only condition for this to occur is that the excitation has to be adiabatic,

which is satisfied when Ωeff∆t > 10, where Ωeff is the quadrature sum of the Rabi

frequencies and ∆t is the time for the excitation. If a faster excitation rate is used, the

atoms will tend to transition into one of the other state vectors |a+〉 and |a−〉, each

of which has a component of the intermediate state in it. To smoothly turn on and

off the beams, we added an AOM to the 480 nm laser setup. The voltage-controlled

oscillators (VCO) supplying RF power to the AOM’s on the 480 and 780 nm beams

were also equipped with analog switches so that we could turn the excitation lasers on
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and off in an adiabatic fashion. Most importantly, for this system it does not matter

what the Rabi frequency of the lasers on the atoms is, so long as there is enough Rabi

frequency to get the atoms into the excited state by the end of the excitation time.

4.4.2 Setup and Results

To confirm that coherent excitation via STIRAP has occurred, one must in general

show that over 50% of the atoms in the excitation beams were excited to the Rydberg

level. Georg Raithel’s group at Michigan has observed coherent excitation using the

STIRAP technique of up to 70% Rydberg excitation, using an MCP to record the

number of Rydberg atoms produced [Cubel et al., 2005]. They did not, however, ob-

serve subsequent de-excitation from the Rydberg level. As we do not have a convenient

method for determining instantaneous Rydberg state populations, we instead followed

our excitation pulse sequence with a similar counter-intuitive pulse sequence (to wit,

Ωr followed by Ωb)to drive Rydberg atoms back into the ground state. This is similar

to the application of two successive π-pulses in NMR spectroscopy. Since the excitation

of Rydberg atoms increases the observed MOT trap loss, we then searched for such

increase in trap loss when the excitation pulse sequence occurred followed by a relative

decrease in trap loss when the de-excitation sequence was applied. Figure 4.5 shows

the actual pulses that were applied to the atoms.

The intermediate state detuning for this experiment was zero, so the 780 nm laser

and 480 nm laser frequencies were tuned directly to the 5S → 5P and 5P → 43D

transitions respectively. The MOT lasers were switched off briefly during the STIRAP

process. The Rabi frequency of the 780 nm laser was 30 MHz (or a 4.77×106s−1) and

the total excitation time 3 µs (as shown in Fig. 4.5), so the adiabaticity condition for

the excitation is Ωeff∆t = 14 which is barely met for this interaction. I only include the

780 nm Rabi frequency in this calculation since the 480 nm Rabi frequency is smaller
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Fig. 4.5: Figure displays the pulses used in the STIRAP experiment. A pair of excitation

pulses followed by a pair of de-excitation pulses are applied. For the excitation

sequence, the 480 nm light (dashed line) turns on first, then is switched off adia-

batically while the 780 nm pulse (solid pulse) turns on. The pulses are temporal

Gaussians in Rabi frequency.
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for one and this excitation rate must take into account the width of the Rydberg

transition for another. Thus the quadrature sum of the effective Rabi frequency Ωeff

is dominated by Ωr.

As the figure shows, the excitation pulses are 2 µs wide and are approximately

temporal Gaussian functions in terms of Rabi frequency. The pulses appear more

sharply peaked than a Gaussian function would be because intensity is proportional to

the square of the Rabi frequency. The figure shows a set of excitation pulses followed by

a set of de-excitation pulses. We performed experiments with a range of different delays

between the peaks of the 480 nm and 780 nm pulses, but these made little difference

in the experimental results which always showed that application of the excitation and

de-excitation pulses as shown in Fig. 4.5 resulted in more MOT trap loss than the

application of the excitation pulses alone. We also varied the total excitation time

from 2 µs to as much as 10 µs by increasing the pulse widths to 4µs but with similar

results.

In summary, STIRAP excitation and de-excitation was never successfully observed

with our setup in this manner. As we now know, atom-atom interactions are strong

enough in Rydberg states that coherent excitations are dephased not only by these

interactions but also by interactions with free electrons and by superradiance to nearby

Rydberg levels as we will see in Chapter 6. The effective two-photon excitation rate is

larger for this process than for the linewidth scans owing to the lack of an intermediate

state detuning and the focused beams; thus we expect these densities to be exceeded,

and there is no great surprise in retrospect that the STIRAP process revealed no

coherent excitation.
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4.4.3 Lock-in Detection

There is still the possibility, however, that Rydberg excitation detuned slightly from

the Rydberg state could excite pairs of atoms along a repulsive potential which would

inhibit collisional processes. Collisions will tend to dephase the STIRAP process, so

excitation performed at such a detuning should exhibit a smaller loss rate when the

excitation and de-excitation pulses are applied as compared to the resonant case. The

difficulty with such a measurement is that any detuning from the Rydberg state will

necessarily reduce the observed loss rate since fewer atoms will be excited to the Ryd-

berg level. In addition, since the blue laser frequency drifts at the rate of ∼ 1 MHz per

minute, we need to determine whether or not the STIRAP process is effective at the

desired Rydberg state detuning before the laser drifts away from the desired Rydberg

state detuning. To deal with this loss in detection sensitivity, we opted to use a lock-in

amplifier to monitor the MOT loss rate for small changes while sweeping the excitation

laser frequency across the Rydberg transition.

This worked by alternating between the two-pulse excitation sequence and the four-

pulse excitation and de-excitation sequence (in other words alternating between one

π-pulse and two π-pulses) by a TTL signal from the lock-in amplifier. The pulses had

a repetition rate of 5 kHz to increase their effect on the MOT while still allowing all

Rydberg atoms produced to decay before the arrival of the next pulse sequence. The

switch from one to two π-pulses occurred with a frequency of 0.25 Hz to allow the MOT

to reload slightly between excitation and de-excitation processes. To clarify, every 200

µs the MOT was hit with the 3µs long excitation pulse sequence. This continued for 2

s, at which time the excitation pulses were followed immediately by the de-excitation

pulse sequence as seen in Fig. 4.5. The MOT was hit by the excitation plus de-

excitation pulse sequence every 200 µs for the next 2 seconds at which point the switch



68

Lock-in TTL

Excitation

Excitation +

De-Excitation

T = 4 sec

Pulse Intensity

t = 200 µs t = 200 µs

Pulse Intensity

    (close-up)

Fig. 4.6: Pulse sequence for the lock-in detection of STIRAP.

back to excitation pulses occurs. This pulse sequence is displayed in Fig. 4.6. If the

de-excitation pulses bring Rydberg atoms back into the ground state then the MOT

loss rate should decrease relative to the π-pulse sequence. This should cause a sign

change in the lock-in detector error signal when the phase is appropriately calibrated.

The result of such a scan is shown for the 43D state in Fig. 4.7. The figure

demonstrates that when the two π-pulse sequence is applied, the loss rate from the

MOT increases, regardless of the Rydberg state detuning. This implies that the process

is not coherent, and that the second π-pulse brings more atoms up to the Rydberg state

(assumedly during the brief period when both the 780 and 480 nm lasers are on) than it
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Fig. 4.7: Figure displays the lock-in error signal (solid line) along with the TTL signal (dashed

line) switching between the excitation pulses and the de-excitation pulses. When

the TTL signal (which is modified to fit on the graph) is “high”, only the excita-

tion pulses are applied. When the TTL signal is “low”, the excitation pulses are

immediately followed by a set of de-excitation pulses as shown in figure 4.5. An in-

crease in the error signal indicates an increase in the MOT loss rate, and the figure

demonstrates that the de-excitation pulses increase rather than decrease the MOT

loss rate regardless of Rydberg state detuning.
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de-excites from the Rydberg state to ground. This is a difficult measurement to make

at any rate, a computer model of the excitation process implied that at best around

60% of the atoms in the excitation beams would be excited up to the Rydberg level.

4.5 Microwave Excitation

Now that we have looked in detail at the Rydberg excitation process, we wish to look

at the issue of Rydberg-Rydberg interactions. In order to achieve the dipole blockade

necessary for any single-photon-source scheme, we must make the blockade radius as

large as possible. The blockade radius as noted here refers to the distance from a

Rydberg atom within which a second atom cannot be excited to the Rydberg level

because of an energy shift imparted by the Rydberg atom. This radius must be at

least as large as the excitation volume which is defined by the intersection of beams

with at best a 12 µm beamwaist. As we will see, dressing the Rydberg state with

resonant microwaves offers a simple way to enhance the interaction strength of the

atoms.

4.5.1 van der Waals and Dipole Interactions

Ordinarily, atoms with a pure D-state or S-state character interact via van der Waals

forces which scale as ∼ C6/R6. If we can make states with wavefunctions in opposite

parity states interact, we may instead cause the atoms to experience dipole-dipole

interactions. These interactions have the form

Vdd =
d1 · d2 − 3(R̂ · d1)(R̂ · d2)

R3
(4.10)

and are much stronger than van der Waals interactions, owing to the R−3 scaling.

In this equation, R̂ is the unit vector in the direction of the interatomic separation
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vector R, and d1 and d2 are the dipole moments of the two atoms. Another issue is

that for any given Rydberg level there exist linear combinations of magnetic sublevels

with zero interaction potential between them [Walker and Saffman, 2008]. For both of

these reasons, it becomes advantageous and in fact necessary to couple the atoms with

a pure D-state character together with F - or P -states that will produce dipole-dipole

interactions among the atoms.

4.5.2 Setup

There are various ways in which to dipole couple atomic states with microwaves.

The simplest is a directly resonant microwave beam coupling the Rydberg excita-

tion state to a nearby F or P state. An example of such a setup can be seen here

[Afrousheh et al., 2006]. A problem with such a setup is that AC Stark shifts will

act on the magnetic sublevels of the Rydberg state in differing amounts, breaking the

degeneracy and potentially broadening the transition. A different method would be

to dress the Rydberg state with two off resonant microwave beams, one tuned above

the resonance and one tuned an equal amount below it. This ensures that the AC

Stark shifts from the two beams cancel each other while still mixing the D state with

a state of opposite parity. Another method involves using the AC Stark shift of the

microwaves to shift the molecular 41F + 45P into resonance with the 43D + 43D

[Bohlouli-Zanjani et al., 2007].

For these experiments, we used the directly resonant method since it was the easiest

to implement. We coupled microwaves at 10.65 GHz into the vacuum chamber by

means of a microwave generator connected to a transmitter and horn to direct the

microwave beam. The horn was pointed in the direction of the vacuum chamber, but

no careful alignment of the microwave beam was made. The atoms are very sensitive

to microwaves and have oscillator strengths on the order of unity. Thus fine tuning
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of the system is not necessary. The Rydberg excitation state for this experiment was

the 60D state and was chosen because of the need for a high enough Rydberg state to

match the narrow (5-12 GHz) frequency range of our microwave source. This Rydberg

state was coupled to the 59F state, which is the nearest state in energy to the 60D .

The power out of the microwave generator varied from -40 dBm to 0 dBm though it

is likely that several orders of magnitude in intensity are lost before the microwaves

reach the atoms.

4.5.3 Autler-Townes Splitting

With the microwaves tuned directly to the 60D → 59F transition, the Rydberg exci-

tation lasers are swept across the two-photon 5S → 60D transition. Figure 4.8 shows

several of these sweeps for various microwave power levels as shown. For the highest

microwave power (0 dBm), the result is a 200 MHz Autler-Townes splitting of the Ry-

dberg excitation peak into a |D〉 + |F 〉 peak and a |D〉 − |F 〉 peak. This implies that

the Rabi frequency of the microwaves on the atoms is 200 MHz as well. By taking

into account the oscillator strength of the transition, we calculate that the intensity of

the microwaves at the atoms is around 3×10−6 W/cm2, smaller than the one would

expect if all of the microwaves from the generator diffracted out from the horn into

the vacuum chamber. Part of this is due to losses in the cable transmitting the mi-

crowaves, and part is due to grounding from the vacuum chamber itself. Since the

vacuum chamber port is only 5.1 cm in diameter, this means that microwaves on the

order of this wavelength (corresponding to a frequency of 5.8 GHz) and longer will be

heavily attenuated. Still, the main point to be taken from these experiments is that

it is very easy to couple these Rydberg levels to opposite parity Rydberg states with

very modest microwave intensities.

For our ongoing experiments, we have obtained a new microwave generator which
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Fig. 4.8: The figure shows sweeps of the Rydberg excitation laser frequency across the 60D

resonance with (a) the microwaves turned off, (b) -6 dBm of microwave power,

and (c) 0 dBm of microwave power at 10.65 GHz emitted from the microwave

transmitter. An Autler-Townes splitting of 200 MHz can be observed with the

microwave power at 0 dBm.
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allows us to utilize microwave frequencies as high as 40 GHz. We then excite atoms to

the 43D Rydberg level and couple the atoms, with a slight detuning, to the 42F state

using microwaves at 29.657 GHz. Though no data from this experiment is available

at the time of this writing, initial observations suggest that the detuning from the

43D → 42F transition causes one of the Autler-Townes peaks to be slightly larger

than the other. In addition, it appears as though the smaller peak has a linewidth

less than 8 MHz. A possible explanation of this observation would be that the small

detuning of ∼100 MHz from the resonant case causes one of the Autler-Townes peaks

to have more of an F -state component than the larger Autler-Townes peak. This effect,

if correct, is strange and further experimentation will be needed to determine why this

might occur. Nevertheless, a narrow linewidth transition that exhibits dipole-dipole

interactions with neighboring atoms would be very useful in obtaining a strong blockade

region.
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5. RYDBERG GAS DYNAMICS

5.1 Introduction

Now we turn our attention to the fate of the Rydberg atoms excited produced by our

excitation lasers. Experiments by other groups (e.g. [Walz-Flannigan et al., 2004] and

[Li et al., 2004]) have shown that when Rydberg atom densities approach 1×108 cm−3,

atom-atom interactions are strong enough that the atoms transfer to Rydberg levels

other than the excitation Rydberg state in hundreds of nanoseconds in the case of D-

state Rydberg atoms and a few microseconds for S-state Rydberg atoms. In addition,

Rydberg atoms at these densities are quickly ionized and produce a plasma of free

electrons which in turn ionize other Rydberg atoms. In the experiments discussed in

this chapter, we wish to observe the effects of Rydberg atom excitation at densities less

than the 108 cm−3 in the aforementioned studies in order to operate in a regime where

Penning ionization and plasma formation have a negligible effect.

We have two methods for measuring Rydberg atom populations: trap loss from the

MOT and photon decay from the 6P3/2 state. These diagnostics allow us to monitor

the dynamics of the Rydberg state, and have never been used in this manner by any

other research group. One of the motivations for performing these experiments at lower

densities is then to utilize these new diagnostic tools within a regime where the results

may be more easily interpreted than at high Rydberg atom densities with numerous

collisional processes affecting our measurements. As we will see, data from both of these
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sources imply that many atoms are transferred out of the excitation Rydberg state,

but that inelastic collisions are not a factor in this transfer process. We then employ a

“state-probe” laser, another novel method, to bring the atoms down from the excitation

Rydberg state before they are transferred out of the state by some other process. By

varying the intensity of the state-probe laser, we determine the rate of the transfer

process. We compare the transfer rates at different principal quantum numbers and

conclude that collisions and blackbody transfer cannot explain the observed transfer

rate. Finally, we develop a three level model for Rydberg state interactions which

allows us to quantify Rydberg state transfer rate.

5.2 Trap Loss Studies

As shown in Chapter 4, Fig. 4.1 shows the results of sweeping the two-photon excitation

frequency through a typical Rydberg resonance. Loss rates induced by the excitation

lasers are around 0.2/s, a rate much smaller than the 110/s Rydberg excitation rate.

We may infer from this that the probability of inelastic collisions among Rydberg atoms

occurring with sufficient energy transfer for the atoms to leave the trap is less than

1/500. For the other states studied, we find 1/50 for 43D and 58D, and 1/1000 for the

30S state.

Trap loss probabilities are significantly higher for 43D and 58D as compared to

28D; a logical hypothesis to explain this result would be that inelastic collisions are

responsible for the trap loss. To this end, we compared the trap loss rates from 41D and

43D, and found little difference. As noted in Chapter 4, the energy difference between

the 43D + 43D and 41P + 45F potentials is 6 MHz and since the van der Waals

interaction strength between 43D state atoms is inversely proportional to this “energy

defect”, the interaction strengths at this Rydberg level are anomalously large. However,
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the analogous energy defect between the 41D + 41D and 39P + 43F potentials is 196

MHz. The much larger energy defect as compared to the 43D state implies that the

interaction strength between 41D atoms would be a factor of 32 smaller, and we would

thereby expect to observe very different results between these two states were collisions

responsible for trap loss. Thus we again find no evidence that resonant energy transfer

collisions cause significant trap loss.

The following estimate supports these conclusions. The inelastic collision rate

should be a capture rate between Rydberg atoms multiplied by a probability of en-

ergy transfer among the atoms. We estimate the capture rate as ηvσ, where σ = πR2
0,

C6R
−6
0 = kT , and ηv is the Rydberg atom flux. We then deduce a capture rate of

ηvσ = ηvπ (C6/kT )1/3 ∼ 200/s (5.1)

for an n = 43 density of η = 107/cm3. This rate, already small, is further reduced by the

energy transfer probability. For states like 43D, where the van der Waals interactions

are repulsive at long range, there are no thermally accessible curve crossings and we

expect the rate to be suppressed by at least a Boltzmann factor e−∆E/kT , which even

for 43D with small ∆E is a factor of ∼ 10−2.

Since the atoms are only rarely leaving the trap due to Rydberg-Rydberg collision

or ionization, they must primarily return to the ground state by emission of one or

more photons. In the next section we introduce a direct probe of the Rydberg state

population that will give more information about the details of this process.

5.3 Cascade Fluorescence

As a complementary diagnostic to trap loss observations, we use a photon counting

module and a narrowband interference filter to detect the 420 nm decay photons from

the 6P3/2 state to the 5S1/2 ground state. These photons are only observed coming from
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the MOT cloud under conditions of Rydberg excitation. The fluorescent branching ratio

to the 6P3/2 from a high nS or nD Rydberg state is calculated to be about b6P = 0.15,

varying only slightly with principal quantum number. In order to make sense of these

count rates we must determine how many counts per second we would expect given an

equilibrium population of Rydberg atoms Nr. The decay rate An′l′,nl from a Rydberg

state |nl〉 to a lower lying state |n′l′〉 varies with the average oscillator strength f as

follows [Gallagher, 1994]:

An′l′,nl =
−2e2ω2

n′l′,nl

mc3
fn′l′,nl. (5.2)

Here, the average oscillator strength is also frequency dependent and goes as,

fn′l′,nl =
2

3
ωn′l′,nl

l>
2l + 1

| 〈n′l′| r |nl〉 |2, (5.3)

where l> is the greater of l and l′. Plugging Eq. 5.3 into 5.2 gives an ω−3 dependence of

the oscillator strength on the frequency of the radiated photon. Transitions to energy

levels of the lowest principal quantum numbers will have the highest frequencies, and

because of this ω−3 dependence, these transitions are favored despite the smaller value

of the matrix element | 〈n′l′| r |nl〉 |2 associated with them. This matrix element, or

rather the reduced matrix element associated with it, must in general be calculated

numerically, and is simply equal to the radial integral (
∫

Pn′l′rPnldr)2.

We calculate the fluorescent branching ratio by comparing the decay rate to the

individual states An′l′,nl to the total fluorescent decay rate Anl out of state |nl〉 to all

lower-lying levels. The total rate will be Anl = 1/τnl where τnl is the lifetime of the

state |nl〉. The lifetime of state |nl〉 is given by,

τnl = τ0(n− δlj)
α, (5.4)
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where n is the principal quantum number, δlj is the quantum defect of the state

|nlj〉 as calculated by [Li et al., 2003] and [Han et al., 2006], and τ0 and α are pa-

rameters dependent upon atomic species and angular momentum state, as detailed in

[Gallagher, 1994]. The branching ratio bn′l′ for the radiative transition |nl〉 → |n′l′〉 is

then,

bn′l′ =
An′l′,nl

Anl

. (5.5)

Now we would like to look more closely at the radiative decay of these Rydberg

atoms to lower-lying states, using the 28D state as an example. We calculate that

b6P = 16% of the atoms that spontaneously decay out of the 28D5/2 state go to the

6P3/2 state, with b5P = 64% going to the 5P3/2 state. A much smaller fraction of the

atoms will decay to a higher P or F state (e.g. 6% to the 7P3/2), but these atoms

must then make two transitions to the 6P3/2 state. The probability of multiple photon

cascade into the 6P3/2 state is small because the long-wavelength photons required are

disfavored. P and F Rydberg states predominantly cascade into 5S, 6S, and 4D levels,

all of which lie energetically below the 6P state. Even for states slightly above the 6P,

such as the 5D, the predominant decay channel is to states below the 6P. Thus the

cascade fluorescence is likely a reliable probe of the S or D Rydberg state populations,

and is relatively insensitive to P or F Rydberg states.

The result is that only atoms that decay directly to the 6P state contribute ap-

preciably to the observed count rate on the photon counters. It is also worth noting

that we are sensitive to the decay of the 6P1/2 to ground state at 421.67 nm, however,

since we excite to the J=5/2 Rydberg level the decay to this state is forbidden by

dipole selection rules. Photons from all other radiative transitions are blocked by the

bandpass filters in the path of the photon counting modules.
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We now wish to calculate the rate of expected photon counts per second for a given

number of Rydberg atoms and compare this rate with our observed cascade signal. The

28D Rydberg state decays at a rate of Ar = 4.1×104 s−1, however blackbody radiation

emitted from the room-temperature walls of the vacuum chamber will also transfer

atoms out of the Rydberg state at a rate of [Gallagher, 1994],

ABB =
4α3kT

3n2
, (5.6)

where α = 1/137 is the fine structure constant, T is the temperature of the blackbody

emitter, and n is the principal quantum number of the Rydberg level. This blackbody

transfer rate is comparable to the rate of radiative decay (ABB = 2.6×104 s−1 for the

28D state), and so we must factor in to our calculation the fraction of the total calcu-

lated transfer rate due to radiative decay as Ar/(Ar + ABB). These states populated

by blackbody transfer are assumed, by the argument above, not to result in detected

cascade photons. Accounting for the finite collection solid angle Θ/4π = 3 × 10−3,

η = 3.4 % detection efficiency of the photomultiplier tube, and a calculated 6P3/2–

5S1/2 emission branching ratio b5S = 0.31 we expect to observe a cascade count rate

c6 = R2Ngb6P b5Sη
Θ

4π

Ar

Ar + ABB

= 18, 000/s (5.7)

at the peak of the 28D excitation resonance. For the data seen in Fig. 4.1 we observe

10000/s, only 55% of the expected count rate. This suggests that roughly 1/2 of the

Rydberg atoms are being transferred out of the excitation state by some other process.

The ratio of expected to detected cascade counts for the other excitation states (30S,

43D, and 58D) are (0.5, 0.6, 0.6). Again, by the arguments from the previous section,

the explanation for this cannot be inelastic Rydberg-Rydberg collisions, which would

either produce an extremely large trap loss rate in contradiction to observations, or

would necessarily vary greatly with principal quantum number.
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5.4 Stimulated Emission Probe

For dipole blockade applications, one is particularly interested in the evolution of the

blockaded Rydberg state. Furthermore, in the particular applications of dipole block-

ade to single-atom and single-photon sources[Saffman and Walker, 2002], stimulated

emission is used to couple the blockaded Rydberg level to an intermediate atomic level.

As we will see in Chapter 7, it is the decay of this intermediate atomic level that will

provide the single-photon source. Thus it is natural for us to pursue the development

of a stimulated emission probe of Rydberg dynamics. The intensity dependence of the

signals produced by the stimulated emission probe allows further information to be

obtained about the population dynamics. Such a probe is non-destructive in the sense

that it does not give atoms enough energy to escape the MOT, and has inherently

high spectral resolution as compared to field ionization with an MCP. While being less

general and less sensitive than field ionization, it does have the potential to be applied

to a number of different states, subject to dipole selection rules.

As shown in Fig. 2.3, we apply a tunable diode laser in the range of 1013 to 1027

nm to perform stimulated emission probing of the Rydberg states produced by the two-

photon excitation. This “state probe” de-excites atoms from the Rydberg states to the

6P3/2 state, which subsequently decays via a 420 nm photon to the 5S ground state

with a branching ratio of 31%. The 6P3/2 state is either detected in the same manner

as the cascade light mentioned above, or by a reduction in trap loss (explained below).

As with the excitation lasers, the spatial size of the state-probe laser is comparable to

the MOT cloud size. We deliver nearly 100 mW of light to the atoms, corresponding

to stimulated emission rates from 5×105 to 5×106/s depending upon the Rydberg level

involved. The natural decay rate of the 6P3/2 level of 9.2×106/s is fast enough that

population cannot accumulate there.
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Fig. 5.1: Observed trap loss (dashed line) and photon count rate (solid line) as a function

of stimulated emission probe frequency across the 28D-6P3/2 manifold. The back-

ground cascade count rate is around 1000/s. The decreased trap loss rates which

are coincident with 6P-hyperfine-manifold resonances imply that the atoms spend

a reduced time in the Rydberg state when the probe beam is on resonance with the

6P state.
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Fig. 5.2: Loss rate dependence on stimulated emission probe intensity for the 28D state, show-

ing short residence times for the Rydberg state produced by two-photon excitation.

High probe intensities cause a reduction in the trap loss rate. The line is a fit to

Eq. 5.12 as explained in Section 5.5. For this data γ = 1.3± 0.7× 105/s.

When the stimulated emission probe is on resonance, atoms are returned to the

ground state more quickly than they would otherwise spontaneously radiate from the

long-lived Rydberg levels. This reduces the loss rate from the trap as the Rydberg

atoms do not stay excited long enough for loss mechanisms such as blackbody ionization

and inelastic collisions to remove many of them from the trap. Keeping the excitation

beams on resonance with the two-photon excitation, we can scan the frequency of the

stimulated emission probe to observe the 6P3/2 hyperfine manifold. Such a scan is

shown in Fig. 5.1. When tuned on resonance with the 6P3/2 F=3 hyperfine state, the

MOT loss rate is reduced from 0.8/s to 0.2/s, with the amount of reduction depending

on probe intensity.

Now we wish to examine the dependence of the trap loss rate on this probe intensity.

An example of this for the 28D5/2 Rydberg state is shown in Fig. 5.2. The figure
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clearly demonstrates that by using a sufficiently high state-probe intensity the atoms

can be returned to the ground state before ionization or inelastic collisions can occur,

thus reducing the loss rate of the MOT. The surprising feature of the data is that

much higher intensities are needed than would be expected if the dominant population

transfer from the Rydberg level were spontaneous decay or blackbody transfer (rates

of 4×104/s and 2×104/s, respectively). In fact, the population transfer rate from the

Rydberg state in Fig. 5.2 is about 1.3×105/s, implying a Rydberg lifetime of 7 µs.
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Fig. 5.3: Dependence of 6P3/2 decay counts on stimulated emission probe intensity for the

28D state. The line is a fit to Eq. 5.13 as explained in Section 5.5. For this data

γ = 1.2 ± 0.4 × 105/s, which is in close agreement with the result in Fig. 5.2 and

serves as a check on the consistency of the model.

Alternatively, we can measure the state probe laser effects by detecting the number

of 6P3/2 decay photons from stimulated emission from the Rydberg state. The count

rate data, scaled by the number of ground state MOT atoms, is shown in Fig. 5.3

for the 28D state. The cascade and background signal have been subtracted for this

data, thus there are no counts when the stimulated emission rate is zero. As with the
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trap-loss-reduction data of Fig. 5.2, the counts saturate at a stimulated emission rate

of around 2×105/s, as measured by the 1/e rate, which implies that the other rates out

of the excitation state must be on this order.

From the trap loss or state probe data, the residence time of the Rydberg state

varies from about 10 µs at n = 28 to about 50 µs at n = 58. Thus the population is

being transferred out of the initial Rydberg state faster than can be accounted for by

spontaneous decay and blackbody transfer (decay times of 25 µs and 50 µs at n = 28,

respectively). The transfer times increase with n, just the opposite dependence as

would be expected for energy transfer collisions between Rydberg states. These would

be expected to decrease with n due to rapid increase in van der Waals interaction

strengths. This counter trend thus implies that Rydberg-Rydberg collisions are not

the process responsible for the fast transfer out of the initial Rydberg state.

Interestingly, the 30S state has the highest transfer rate to other Rydberg states.

This again implies that atom-atom interactions do not dominate the process, as the

strengths of van der Waals interactions tend to be larger for D states than for S states,

as noted in Chapter 4.

We have checked that the transfer rates increase with increasing excitation rate; Fig.

5.4 demonstrates this for the 28D state transfer rate. This confirms that some transfer

process besides blackbody radiation is occurring since the excitation rate will increase

the equilibrium population of Rydberg atoms and there should be no dependence of

the blackbody transfer rate on Rydberg atom population.

As can be seen from Fig. 5.2, there is a non-zero loss rate at high probe intensities

where the stimulated emission laser should fully deplete the original excitation state.

There are several possible explanations for this. If there were a loss mechanism that was

being enhanced by the state-probe laser, this would produce such a behavior. However,

processes such as photoionization caused by the state-probe laser or light-induced 6P-5S
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Fig. 5.4: Dependence of the measured Rydberg state transfer rate, γ(loss), on the excitation

rate for the 28D state. The increase of the transfer rate with increasing excitation

rate suggests that blackbody transfer is not the cause of the state transfer out of

the excitation Rydberg state. The dotted line represents the rate of transfer due to

blackbody radiation (2.6×104 s−1), which should be the transfer rate in the limit of

small Rydberg populations.

collisions can be estimated to be far too weak to account for this effect.

Another possibility has to do with Zeeman precession in the nd states causing pop-

ulation to accumulate in inaccessible magnetic sublevels. The magnetic field gradient

used to confine the MOT atoms sets up a magnetic field of 1 G at the edges of the MOT,

enough that precession between magnetic sublevels of the Rydberg atoms at the edges

of the MOT occurs at a rate of several MHz, which is on the order of the stimulated

emission rate. This rate of precession can be estimated by considering the strength

of the Zeeman shift on the atoms of 2.8 MHz/Gauss. The rate of precession ωB for a

particular atom is then proportional to the magnetic field strength at the position of

the atom multiplied by the Zeeman energy level shift. This means that for atoms on
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the MOT magnetic field switched off during excitation. The line is a fit to Eq. 5.12

as explained in Section 5.5. The data imply that the loss rate goes to zero at high

probe intensities under these conditions.
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the edge of the MOT, ωb ∼ 1 G ×2π × (2.8× 106 MHz/G) = 1.8×107 s−1. The result

of this precession is that a fraction of the atoms - up to 1/3 - move to a state that is

inaccessible to the state-probe laser because of the dipole selection rules determined

by the polarization of the state-probe laser. Linearly polarized state-probe light, for

example, cannot transfer mJ = ±5/2 Zeeman levels from an nD5/2 Rydberg state to

the 6P3/2 state. This is because the 6P3/2 state contains only mJ = ±3/2,±1/2 states

and dipole selection rules require that ∆mJ = 0 for transitions induced by linearly

polarized light. Thus population that accumulates in these levels cannot be de-excited

by the state-probe laser.

This effect was verified by repeating the experiment with the MOT magnetic field

being switched off for 10 ms intervals and only switching on the Rydberg excitation

lasers during the times the field was off. This data, shown in Fig. 5.5 for n = 28

shows that Rydberg populations at high state probe intensities are markedly reduced

as compared to when the magnetic field is on. The reduced signal-to-noise for this

experiment made it possible to do this only for n = 28.

5.5 Model of Rydberg Population Dynamics

In the previous sections, we have described the basic processes that are evidently at

work under the conditions of our experiment, and their experimental signatures. To

further analyze the results, we present here a simplified model of the Rydberg dynamics

and use it to extract the values of a few simple parameters from the data. Confirming

the interpretation in the previous section, we find that some process that does not

cause trap loss nevertheless transfers population out of the excitation Rydberg state

on a time scale short compared to spontaneous or blackbody lifetimes. The lengthening

of this time scale with increasing principal quantum number leads us to believe that it
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is not inelastic collisions between Rydberg atoms.

The processes included in the model are illustrated in Fig. 5.6. We describe the

system with a three state model: A ground state |g〉 with Ng atoms, the excitation

Rydberg state |r〉 with Nr atoms, and an additional effective Rydberg state |s〉 that

accounts for other states that are populated from state |r〉.
The dynamics of the excitation state |r〉 depend on laser excitation and de-excitation,

spontaneous and blackbody radiation, and transfer to the other Rydberg states |s〉.
Population enters |r〉 by excitation from the ground state at a rate R2Ng where R2 is

the effective excitation rate calculated as described in Chapter 4. Spontaneous decay

to low-lying levels occurs at a rate ArNr. Blackbody radiation and other potential

processes that transfer atoms to other Rydberg states occur at a rate γNr. There is

also the possibility of trap loss (through ionization, for example) at a rate Γr directly

from state |r〉. Finally, de-excitation from the state-probe laser occurs at a rate R3Nr.

Thus

dNr

dt
= R2Ng − ArNr −R3Nr − γNr − ΓrNr (5.8)

is the rate equation for the excitation state population.

The other Rydberg states are produced by collisional or radiative transfer from

state |r〉 at the rate γNr and have an effective radiative lifetime As. If an atom in

one of these Rydberg states represented by the state |s〉 is transferred to a different

Rydberg state (also represented by |s〉), for the purposes of the model this atom will

have remained in state |s〉. We also assume that these states can cause trap loss at a

rate Γs due to blackbody ionization and other collisional processes. Thus they obey

dNs

dt
= γNr − ΓsNs − AsNs (5.9)

We are assuming that transfer from |s〉 back to |r〉 is unlikely.

In addition to the radiative de-excitation and excitation processes with the Rydberg
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Fig. 5.6: Diagram of the simplified model of Rydberg population dynamics.

levels, the ground state population Ng is affected by MOT loading (L) and loss (Γ0)

processes (as discussed in Chapter 4) that we assume are not materially changed when

the Rydberg excitation lasers are on. The resulting rate equation for the ground state

population is

dNg

dt
= L− Γ0Ng −R2Ng + (Ar + R3)Nr + AsNs. (5.10)

We now wish to determine the loss rate Γ from this model in order to compare with

our experimental observations. Since the Rydberg populations adiabatically follow the

slowly-varying ground-state population, we may plug in the steady-state solutions to

Eqs. 5.8 and 5.9 to get

dNg

dt
= L− Γ0Ng − ΓNg. (5.11)

The loss-rate from the trap is increased by an amount

Γ ≈ R2γ

Ar + R3 + γ

[
Γs

As

+
Γr

γ

]
, (5.12)
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where the ≈ sign is due to the assumption that all of the atoms that decay from the

|s〉 state will eventually return to the trap. Since our observed trap loss rates are much

smaller than our excitation rates, this is a decent approximation. The loss rate here is

a product of two factors. The first essentially measures the excitation rate of Rydberg

atoms, modified by the de-excitation due to the state-probe laser. The second factor

is the probability that the excited Rydberg atoms experience trap loss as opposed to

radiatively decaying back to the ground state.

The model similarly predicts the count rate of 420 nm photons produced by the

state-probe laser:

I3

Ng

=
R3R2Θηb6P b5S/4π

Ar + R3 + γ
(5.13)

Thus the state-probe-induced 420 nm count rate can also be used to determine the

transfer rate γ, with the data and fit for 28D shown in Fig. 5.3.

The results of fitting our experimental data to this model are summarized in Ta-

ble 5.1. We list there the deduced values of the primary unknowns γ and Γs, as well

as the assumed values for the input parameters Ar and As. The calculation of Ar is

straight-forward, however we must assume something about the distribution of atoms

in our other Rydberg states |s〉 to produce a value for As. As we will discuss in the next

chapter, one of these states |s〉 will be the dominant decay channel for the Rydberg

atoms in state |r〉 and it is this state for which we calculate the radiative decay rate

As. Thus for 28D this state is 27P, and for 30S this is 29P. We note that both trap loss

and 420 nm count rates can be used to extract γ, an important internal consistency

check. In fact, the two methods for determining γ agree quite well, which bolsters the

credibility of the model. The primary results then are these:

• The atoms transfer out of the excitation Rydberg state at a rate γ that is sub-

stantially faster than spontaneous decay or blackbody transfer rates.
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• The mechanism for population transfer, to an excellent approximation, does not

cause trap loss.

• The population transfer rate decreases slowly with increasing principal quantum

number, as opposed to the expected rapid increase if near-resonant energy transfer

collisions were the relevant mechanism.

• The probability of trap loss is very small; most Rydberg excitations result in

radiative repopulation of the ground state without trap loss.

These conclusions from fitting the experimental data to the model are consistent with

the simplified analyses presented in Sections 5.2–5.4. In the next chapter we will discuss

their implications.

Tab. 5.1: A summary of transfer rate data using both count rate and loss rate methods. As a

basis for comparison, the blackbody transfer rate ABB, spontaneous emission rate

Ar, the estimated mean spontaneous emission rate As from other Rydberg states,

and the inferred trap loss rate Γs are also included. All rates are in units of s−1.

State γ(counts) γ(loss) ABB Ar As Γs

28D 1.2×105 1.3×105 2.6×104 4.1× 104 3.1× 104 265

43D 7.4×104 7.2×104 1.1×104 1.1×104 2.0× 104 602

58D 2.6×104 2.0×104 6.1×103 4.8×103 7.4× 103 433

30S 3.9×105 5.0×105 2.3×104 4.4×104 3.3× 104 83
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6. SUPERRADIANCE

6.1 Introduction

In this chapter, we propose that superradiant decay from the excitation Rydberg state

is responsible for the observed transfer rates recorded in the previous chapter. We

develop a simple model for superradiance based on the work of Gross and Haroche

[Gross and Haroche, 1982] which allows us to modify our state equations from the pre-

vious chapter to include superradiant effects. In addition, we calculate a cooperativity

parameter which describes the fraction of atoms in the sample that will participate in

the collective emission from the excitation state. The calculated transfer rates that our

model predicts are within a factor of 3 of the measured state transfer rates from the

previous chapter, strongly suggesting that superradiance is the main factor in these

transfer rates. In addition, we find that only the superradiant mechanism correctly

predicts the n- and l-level dependence of the measured Rydberg transfer rates. Finally,

we proffer blackbody ionization as the cause of the observed trap loss and demonstrate

that the measured trap loss rates agree well with the blackbody ionization rates for the

Rydberg levels involved in our experiment.

6.2 Superradiant Population Transfer

We have argued in the previous chapter that the transfer mechanism responsible for

population transfer out of the excitation state in a few microseconds cannot be due to
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near-resonant energy transfer collisions between excited Rydberg atoms. L-changing

collisions between Rydberg atoms and free electrons are another possible mechanism.

Such collisions are unlikely to be energetic enough for the recoil to eject atoms from

the trap and so would agree with much of the observed behavior. However, at our low

excitation rates it is unlikely that electrons are present in sufficient quantities to cause

the observed state transfer. With blackbody ionization rates of 400/s (see Section 6.3)

acting on a population of 104 Rydberg atoms, free electrons are produced at a rate

of 4×106/s. Free electrons are typically fast-moving and dissipate at a rate of ∼104/s

[Killian et al., 1999], giving an average free electron population of ∼400, which would

not have a large impact on the 104 atoms in the excitation state. We estimate that there

is insufficient ionization to cause an electron trap [Killian et al., 1999]. In addition, the

rate of l-changing collisions should increase with principal quantum number, in contrast

with our observations.

Having argued against collisional phenomena being responsible for Rydberg energy

transfer, we need a radiative mechanism to explain our results. Recently, Wang et al.

[Wang et al., 2007] observed superradiance in the measured lifetimes of Rydberg states.

That superradiance could play an important role in Rydberg population dynamics can

be understood by the following arguments. For principal quantum numbers > 20, the

size of the MOT is less than the wavelength for radiative emission from the excitation

state to nearby dipole-allowed states. If there are N atoms initially in a particular

Rydberg state, the collective dipole moment is enhanced by a factor of N (assuming

the atom cloud is much smaller than the wavelength of the emitted light). The emission

rate is enhanced by a factor of N2, or by a factor of N on a per-atom basis. Since N

is on the order of 104 for our experiment, the superradiant decay rate will be on the
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order of

2

3

ω3Nd2

h̄c3
∼ 4N

3n5
α3Ry

h̄
(6.1)

which is 3 × 105/s for 104 n = 50 Rydberg atoms. The low emission frequency is

compensated for by the large number of cooperatively radiating atoms. The strong

n−5 dependence of superradiance suggested by Eq. 6.1 should be compared to the n−3

dependence of spontaneous decay rates. Furthermore, as described below, spatial co-

herence effects further alter the n-dependence of Eq. 6.1 so that the relative importance

of superradiance and spontaneous decay remain fairly constant for the levels studied

in this experiment.

Wang et al., [Wang et al., 2007] developed a sophisticated theory of superradiance

with application to cold Rydberg gases. Here we present a simplified model of su-

perradiance to use as a interpretive guide. We base this model on Dicke’s original

work [Dicke, 1954] as elucidated by Gross and Haroche [Gross and Haroche, 1982] and

Rehler and Eberly [Rehler and Eberly, 1971].

In considering the superradiant decay of an initial state |e〉 to a lower energy state

|l〉, the Dicke approach introduces an effective collective spin state of the 2N-level

system as |JM〉, with Ne = J + M atoms in state |e〉 and Nl = J −M atoms in state

|l〉. The radiation rate is determined by calculating the expectation value of a lowering

operator to the |JM〉 state, as in equation (2.13) in Gross and Haroche’s paper. The

radiation rate is found to be Γel(J(J +1)−M(M −1)) = ΓelNe(Nl +1) by application.

To extend the two-level case to our multi-level case, we assume that we can model

superradiance with a set of rate equations

dNe

dt
= −∑

l<e

ΓelNe(Nl + 1) +
∑

l′>e

Γl′eNl′(Ne + 1) (6.2)

where again the transition is from |e〉 → |l〉. This model reproduces the key features of

superradiance: a large initial inversion radiates at Γel (per atom) at first, then as the
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Fig. 6.1: Model simulation of the experiment by Gounand et al., [Gounand et al., 1979]. In

the experiment, Rb atoms were excited to the 12S Rydberg level and superradiant

cascade to lower levels was observed. Our model predicts superradiant population

transfer on timescales similar to Fig. 2 in the reference.

inversion is reduced the rate accelerates to a maximum of NΓel/4, occurring over a time

(ln N)/(ΓelN) ¿ 1/Γel [Rehler and Eberly, 1971]. As an additional check on the model,

we have simulated the experiment of Ref. [Gounand et al., 1979] (which was performed

at high temperatures and much smaller n) and our model reproduces the dominant

features of the data shown there, as seen in Fig. 6.1. The Gounand et al., experiment

involved excitation of Rb atoms to the 12S state. Although the model predictions

are slightly amiss regarding the relative magnitude of the atomic populations seen in

Fig. 2 of the reference, it does correctly predict superradiant population transfer from

12S → 11P after 5 ns and subsequent transfer from 11P → 9D 10 ns after excitation

to the 12S state. Since the superradiant transfer rate is the important issue here, it is

encouraging that the model so closely matches this experiment.

The emission rates Γel are the rates for spontaneous emission multiplied by a coop-
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erativity parameter Cel:

Γel = Cel
2e2ω3

el

mc3

(2Jl + 1)

(2Je + 1)
fel (6.3)

where the fel are the calculated absorption oscillator strengths. For a system of atoms

whose spatial extent is on the order of the wavelength of the transition, superradi-

ance will occur at a reduced rate. The wavelength of the transition to the nearest

lower lying Rydberg state varies from 0.17 cm for 30S-29P to 2.8 cm for the 58D-59P

transition. For low n, this is quite close to the 1 mm spatial extent of the MOT,

and lower levels will have even shorter transition wavelengths. Obviously, some factor

is needed to account for the degree to which the atoms emit cooperatively. Follow-

ing Ref. [Rehler and Eberly, 1971], the cooperativity parameter for a uniform density

system of N atoms in a volume V radiating in direction k̂ is (in the N À 1 limit)

Cel =
1

V 2

∫
d3x

∫
d3x

′
ei(~k−~k1)·(~x−~x

′
) (6.4)

=
9(sin(kelR)− kelR cos(kelR))2

(kelR)6
, (6.5)

for a spherical uniform density cloud, where kR is the product of the wavenumber and

the radius of the atomic sample. The cooperativity parameter is 1 for R ¿ λ and

decreases to 0 for R À λ. In practice, the cooperativity parameter becomes small

around n = 20 for a 1 mm MOT, which would imply that the effects of superradiance

are not significant for Rydberg atoms with a smaller principal quantum number than

20. Figure 6.2 shows how the cooperativity parameter Cel varies with the transition

wavelength for atoms in the MOT.

To account for superradiance, we replace the level |s〉 of the model of Section 5.5

with a set of levels near in energy to |r〉 that are coupled to each other and to |r〉 by

superradiance (Eq. 6.2) and blackbody radiation. We find steady-state solutions of the

resulting non-linear equations and from them deduce the effective Rydberg-Rydberg

transfer rate from Eq. 6.2 with e = r. In solving these equations we wish to include
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Fig. 6.2: Variation of the cooperativity parameter with wavelength. The parameter is effec-

tively zero for wavelengths much smaller than the MOT size, and unity for wave-

lengths much greater.

all energy levels relevant to the decay of the excitation Rydberg state. However, there

are a great many energy levels below the excitation state, so we must use a smaller

set of states to avoid cumbersome calculations. Instead of including all energy levels

then, we start by including the excitation state and the lower lying states that are

closest in energy to the excitation state. We may then solve the equations to find

the calculated transfer rate with this set of states and then repeat the process with

additional lower-lying states included. We continue adding lower-lying states until the

addition of energy levels does not affect the calculated transfer rate out of the excitation

Rydberg state. For this calculation, eight energy levels were sufficient to calculate the

transfer rate out of the excitation state, the inclusion of additional lower-lying states

did not affect the calculation.

To note another assumption of importance, we must consider the effects of black-

body state transfer in the superradiance model. Blackbody radiation at centimeter

wavelengths will have essentially a constant number of photons per unit frequency, so
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the blackbody transfer rate between individual states will depend only upon the av-

erage oscillator strength between the states. The oscillator strength falls rapidly with

increasing transition energy, so the most important states for blackbody transfer are

the four states nearest to the excitation Rydberg D-state. These states are the P - and

F -states just above and just below the D-state in energy (for S-state excitation, there

would be only two relevant states, the nearby P -states). Following the same process as

before, we begin by calculating the blackbody transfer rate to each of the nearby states.

For the D-states, the rate to the four nearby states accounts for some 80% of the total

blackbody transfer rate ABB as calculated in Chapter 5, and the inclusion of additional

states for blackbody transfer does not affect the calculated superradiant transfer rate

out of the excitation Rydberg state. Thus, as a simplifying approximation, we divide

the total blackbody transfer rate ABB by 5, and have an equal portion (20%) of the

blackbody rate going to each of the four nearby states.

Table 6.1 compares the observed Rydberg transfer rates and those predicted by

our simulation. These rates do not drop off as quickly as would be expected from

Equation 6.1. This is a result of the spatial factor approaching unity for the higher

n-levels, balancing out the decrease in natural emission rate. Additionally as a result

of this increasing spatial factor, our simulation indicates that the atoms are transferred

predominantly to f-states for the 43d and 58d levels. This transfer to f-states could

explain the higher total loss rate from the trap for these levels. We emphasize that

there are no adjustable parameters in our simplified superradiance model, and yet it

naturally predicts the order of magnitude of the Rydberg-Rydberg transfer rates. A

more sophisticated model would be expected to explain the variation seen.

An example of the effect of this spatial factor on transitions to P - and F -states

would be instructive. The energy difference between the D-state Rydberg excitation

level with the (n-2)F state is larger than that between the same Rydberg excitation
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level and the (n+1)P state, and the transition wavelength is thus shorter. Given that

the transition wavelength for the 28D → 29P transition is 0.27 mm, approaching the

size of the MOT, this means that we expect a smaller spatial factor for the 28D → 26F

transition (λ = 0.12 mm). As a means of comparison, the calculated spatial factor for

the 28D → 29P transition is Cel = 0.577 and that for the 28D → 26F is 0.02. The

result is that for this Rydberg n-level, the 29P state is the preferred decay path of the

Rydberg atoms excited to the 28D in the model. On the other hand, for the 58D state,

the 58D → 59P has a wavelength of λ = 2.77 mm and thus a spatial factor of 0.994

while the 58D → 56F transition has a wavelength of 1.21 mm and a spatial factor of

0.971. The similar spatial factors mean that the strong ω−3 dependence of the radiative

transition rates will lead this F -state to be the dominant decay channel. It is also worth

noting that in Dicke’s model each decay makes a decay along the same channel more

likely. So just as with competing frequency modes in a laser cavity, the channel with

the largest branching ratio will have the greatest population accumulation.

The model then suggests that we should have a significant equilibrium popula-

tion of Rydberg atoms at several energy levels when the excitation lasers are tuned

to resonance with the two-photon transition to the Rydberg state. To test this ex-

perimentally, we tuned the state-probe laser to the 27D → 6P transition with the

excitation lasers tuned to the 28D Rydberg level. If there were a population of over

∼ 100 atoms in the 27D state (as the model suggests) we should detect an increase

in the count rate recorded on the photon counter when the state-probe laser is swept

across the 27D → 6P transition. Unfortunately, no such increase was detected. To see

why this might be, consider that the superradiant transition rate is maximized when

the population of both the |e〉 and |l〉 states are equal. Since the state-probe induced

de-excitation rate is much larger than the superradiant transition rate, we will very

quickly de-populate the 27D state. This will reduce the superradiant transition rate to
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the 27D state which in turn will reduce the equilibrium population in the state. Thus

the state-probe laser is less sensitive to equilibrium Rydberg state populations than

one might expect when those populations are produced by superradiant decay from a

higher level Rydberg state.

Tab. 6.1: A comparison of Rydberg-Rydberg transfer rates deduced by comparing measure-

ments deduced from the model of Section 5.5 with those predicted by the superra-

diance model. As noted in the text, the model accounts for radiative lifetimes as

well as blackbody-induced l-changing transitions. All units are s−1.

State γ(calculated) γ(expt)

28D 1.7×105 1.3×105

43D 2.4×105 7.4×104

58D 1.2×105 2.0×104

30S 2.2×105 5.0×105

6.3 BlackBody Ionization

So far we have not discussed the actual mechanism for trap loss. The deduced trap

loss rates are quite modest, typically 400/s on a per Rydberg atom basis. This is

close to what would be expected from blackbody ionization. Blackbody ionization

rates were recently calculated in Ref. [Beterov et al. (2007)] for the various Rydberg

levels. Assuming Rydberg n-level distributions from our superradiance model, we find

expected photoionization rates from blackbody radiation to be as shown in Table 6.2.

For the D states, there is reasonable agreement between our deduced experimental rates

and the predicted values, suggesting that blackbody ionization probably composes a

large portion of the total loss from the trap. For the s-state, the predicted trap loss is
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greater than observed by about a factor of 3, for which we have no explanation.

Tab. 6.2: Comparison of inferred Rydberg trap loss rates with blackbody ionization rates.

ΓBBI is the rate of blackbody ionization for each of these states calculated from

Ref. [Beterov et al. (2007)]. All rates are in units of s−1.

State Γs calc ΓBBI

28D 212 322

43D 470 720

58D 329 457

30S 77 265

6.4 Discussion

Before the experiment of Wang et al.[Wang et al., 2007] the effects of superradiance

were not appreciated for the population dynamics of high density ultracold Rydberg

atoms. Superradiance can happen on very rapid time scales, especially under strong

Rydberg excitation as achieved in a number of previous experiments. In fact, superra-

diance can easily occur on sub-microsecond time scales. A key consequence of super-

radiance is that it populates Rydberg states lying energetically below the state being

excited by the laser. Indeed, in the experiments of Ref. [Walz-Flannigan et al., 2004]

and Ref. [Li et al., 2004], population clearly moves to lower lying Rydberg levels on a

fast time scale, consistent with the hypothesis of superradiant transfer.

An additional consequence of fast superradiant population transfer is that it pro-

vides a mechanism for rapid population of states of neighboring orbital angular mo-

mentum l from the excitation state. Pairs of atoms with δl = ±1 interact at long range

via the R−3 resonant dipole-dipole interaction, not the usual R−6 van der Waals inter-
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action. The much stronger collision interactions between these atoms may explain the

very rapid time scales for plasma formation in a number of experiments where resonant

dipole-dipole interactions were not purposely produced using external fields.
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7. FOUR-WAVE MIXING

7.1 Introduction

Four-wave mixing occurs when three oscillating, phase-coherent electric fields are ap-

plied to an atomic sample so that the atoms in the sample have dipole moments with

phases which cause them to add constructively in a particular direction and destruc-

tively in all others. The result is that the atoms radiate a fourth field in this so-called

“phase-matched” direction which must not only conserve energy for the four-photon

process, but also momentum. If these fields are collinear this process is known as de-

generate four-wave mixing, or if, as in this experiment, the fields are in some other

configuration, the process is termed non-degenerate. The advantage of non-degenerate

four-wave mixing in theory, is that it allows us to couple a small number of photons into

a fiber or another experiment where very few background counts are present that would

require filtering. In conjunction with a Rydberg-atom dipole blockade, this would allow

us to have exactly one atom at a time undergo the four-wave process and thus be an

excellent candidate for an on-demand single-photon source.

This chapter will begin with discussion of the setup of the four-wave mixing process

and some pertinent details in background subtraction. Following this will be our obser-

vation of four-wave mixing using Rydberg states as an intermediate step in the process.

I will discuss the alignment of the phase-matched geometry and range of angles of the

excitation beams for which we observe phase matching, which is δΘ = 1.6 mrad for the
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28D state in our geometry. We also measured the spatial extent of the phase-matched

beam and found it to be diffraction limited. Following this, I present our model of

four-wave mixing which begins with calculating the dipole moments of the atoms in

the atomic sample. Using density matrices to model the atomic populations in the

four levels, we calculate that the fraction of 420 nm light emitted in the phase-matched

direction should increase with increasing number of MOT atoms. This is then verified

by the experiment.

We then look at the relative phase matching of the hyperfine levels of the 6P3/2 state

and compare these to the model predictions, which agree well with the experiment.

Finally, we demonstrate that by tuning the excitation lasers away from the Rydberg

state transition that we may decrease the Rydberg state population and thus increase

the fraction of light in the phase-matched direction. Under optimum conditions, we

observe 50% of the light emitted in the phase-matched direction.

7.2 Experimental Details

An energy level diagram of the four-wave excitation process is seen in Fig. 7.1a. The

directions of the three laser beams for the four-wave geometry are chosen to satisfy

phase-matching conditions, as shown in Fig. 7.1b. The figure also display the k-vector

labels for the various beams, often in the course of this chapter a laser will be referred

to by k-vector rather than wavelength (thus I may write “k1” rather than “780 nm

laser” as before). In principle, a wide variety of possible geometries can be chosen, but

this particular one was chosen to give a large angle between k2 and k3, allowing for

a small spatial overlap volume if desired. (A 90◦ angle is feasible, giving the smallest

possible overlap volume, but is incompatible with our vacuum chamber.) Having a

small spatial overlap will be vital to obtaining a full dipole blockade, as it results in a
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Fig. 7.1: a) Energy levels for four-wave mixing. The k1 and k2 photons produce two-photon

excitation to an nD Rydberg level. The k3 laser couples the Rydberg level to the

6P state. Atoms in the 6P radiate coherently to the ground state to complete the

four-wave-mixing process. b) Phase-matching geometry.
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smaller volume over which a large energy-level shift is required.

This geometry results in a phase-matched direction for the exiting 420 nm photons

(k4) which is 3◦ from k2. The direction of k4 is very insensitive to the direction of k1.

One photon counter is placed along an arbitrary or “off-axis” direction, while the other

is placed along the anticipated phase-matched or “on-axis” direction. This placement

is shown in Fig. 2.2 in Chapter 2. The waists of the three beams for these experiments

were (w1, w2, w3) = (4.0, 0.58, 0.83) mm, comparable to the MOT cloud size of 0.74

mm, so that most of the MOT atoms participate in the four-wave mixing process.

Before proceeding I must mention our data analysis procedure. Any figure in this

chapter that displays the dependence of a phase-matched count rate on k2 must have

the raw count rate from the photon counters modified by subtracting the dark count

rate as well as the count rate from Rydberg cascade fluorescence as described in Chap-

ter 5. Dark count subtraction is straightforward, however the subtraction of cascade

fluorescence requires additional effort. In order to subtract the counts from cascade

fluorescence, we first sweep k2 across the 5P → nD Rydberg transition with k3 blocked

and record the cascade fluorescence signal on our photon counters. We then fit the

count rate from cascade fluorescence to a Lorentzian profile. As long as the intensities

of k1 and k2 do not change, the cascade fluorescence signal will have the same depen-

dence on k2 for all frequency sweeps and can be removed from subsequent measurements

with k3 unblocked. This is a small correction, but an important one nonetheless. Also,

all phase-matched data presented here were obtained with the MOT trapping lasers

switched off. This is because the additional 780 nm laser light from the trapping laser

was observed to dephase the four-wave process, thus reducing the phase-matched count

rate by a factor of 2.
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7.3 Observation of Non-degenerate Four-Wave Mixing

We now turn to the alignment of the four-wave geometry. Phase-matched emission

was initially observed for Rydberg principal quantum number n = 28 by moving k1

far off the phase-matched direction and confirming nearly equal k4 detection rates in

the on- and off-axis directions. This is the case since the non-phase-matched light is

radiated isotropically, thus any difference in the count rates between the counters here

should be a result of differences in detection efficiency. Next, as k1 was rotated into the

phase-matched direction a factor of 10 jump in the count rate on the on-axis detector

was observed, with no change in the off-axis count rate. The width of acceptance for

phase-matching was found to be δθ1 = 1.6 mrad, slightly larger than the expected

1.2 mrad, which can be calculated from the model that will be presented in the next

section. Figure 7.2 displays the dependence of the phase-matched count rate on the

rotation of k1. An iris placed in front of the phase matched detector reduced the solid

angle of the on-axis detector by a factor of 11 while changing the count rate by only 9%.

By reducing the iris aperture in this manner, we ensure that almost all of the counts

that are detected on the on-axis counter are a result of the phase-matched process.

When using a Rydberg excitation level other than the 28D, the frequency of k2 and

k3 are changed and thus the angles of the beams must be changed to preserve phase

matching. In fact, a change of only a few n-levels at fixed laser beam angles is enough

to move the phase-matching condition outside the angular bandwidth. After changing

the frequency of k2 and k3 to use the 58D5/2 rather than the 28D5/2, k1 was rotated

until phase matching was again attained; the rotation angle was found to be 4.4 ± 0.3

mrad. From the k-vectors involved, we calculated the necessary rotation of k1 to regain

phase matching to be 4.1 mrad, this value falls within the experimental uncertainty of

our measurement.
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Fig. 7.2: The on-axis, or phase-matched, count rate is recorded while k1 is rotated through

zero phase mismatch relative to the other two beams, k2 and k3.

Since k4 is produced from three lasers with a Gaussian intensity profile, we might

also expect k4 to have such a profile. Furthermore, if this is the case, the beam ought

to propagate and diffract just as any Gaussian beam would propagate. With this in

mind, we moved a razor blade across the phase-matched output beam and recorded

count rate as a function of position. The waist of the phase-matched light was found to

be 0.39 mm, slightly (15%) smaller than the expected diffraction limit for a Gaussian

beam with a real waist of ∼ 400µm at the MOT.

7.4 Model of Four-Wave Mixing

Before discussing more results from the experiment, it would be useful to have a model

of four-wave mixing in order to predict the number of photons emitted by the atoms

in the on-axis and off-axis directions. Neglecting propagation effects, in the absence
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of blockade we can consider the four-wave mixing process to result from the spatial

phasing of the atomic dipole moments as a result of the three driving fields:

〈di〉 = 〈d0(ri)〉ei(k1+k2−k3)·ri , (7.1)

where di is the dipole moment of the ith atom and d0 its magnitude as a function of

atomic position ri. The fields from the atomic antennae constructively interfere in the

far field to produce an electric field a large distance R away of

E(φ) =
n〈d0〉k2

4e
ik4R

R

(
πw2

2

)3/2

e−
π2w2

λ2 φ2

. (7.2)

We have assumed that the dipole moment is oriented perpendicular to the plane of

the lasers, and that the effective spatial distribution of the dipoles is Gaussian with

standard deviation w/2 and peak density n. The angle φ is measured with respect to

the phase-matched direction.

The ratio of on-axis to off-axis powers is obtained by integrating the intensity de-

duced from Eq. 7.2 over the angular distribution, and comparing to the spontaneously

radiated power Po from the 6P state:

Ppm

Po

=
N2

e 2c〈d0〉2k2
4/w

2

Neh̄ck4Γpρp

∝ Ne|σgp|2
w2ρp

, (7.3)

where Ne = n(πw2/2)3/2 is the effective number of participating atoms, ρp is the fraction

of atoms in the 6P state, and σgp is the 6P -5S optical coherence density matrix element.

From Eq. 7.3 we expect the phase-matched fraction to be dependent on the number

of atoms, since the phase-matched power is a nonlinear process. To verify this, the

percentage of light in the phase-matched direction was measured as a function of the

number of atoms in the MOT, with the results shown in Fig. 7.3. The expected

nonlinear response of the four-wave mixing can be seen as a linear increase in the
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Fig. 7.3: The fraction of light emitted in the on-axis direction increases with the number of

atoms in the MOT, as expected from the nonlinear character of four-wave mixing.

The dashed line shows the model prediction.

phase-matched fraction with number of atoms at small atom numbers. As the cloud

becomes optically thick, the phase-matched light is partially scattered due to the linear

susceptibility of the atoms, and this scattered component, up to 24% for our conditions,

is observed as additional off-axis light.

For a quantitative comparison with our observations, we have developed an effec-

tive three-level density matrix model of the four-wave mixing process. The 5S state

“g” and the Rydberg state “r” are coupled by an effective two-photon Rabi frequency

Ω1Ω2/2∆ (∼ 4 kHz) obtained by adiabatic elimination of the 5P3/2 state. The Ryd-

berg state is then coupled to the 6P3/2 state “e” with Rabi frequency Ω3 ∼ 1 MHz.

In order to simulate the effects of the substantial linewidths of the lasers used (1-3

MHz), plus other possible broadening mechanisms, we gave the σrg and σre coherences

effective homogeneous broadening factors of 6 and 2 MHz chosen to reproduce the ob-

served linewidths for two-photon excitation and non-phase-matched four-wave mixing,



112

respectively. In addition, the Rydberg state was assumed to have a shortened lifetime

due to the effects of superradiance [Day et al., 2008] as we have seen in the previous

chapter, and the 6P state was assumed to decay at its spontaneous rate. The effects

of nuclear spin were accounted for by calculating effective Rabi frequencies assuming

nuclear spin conservation in the Rydberg state. Given measured intensities and atom

numbers, the model then makes absolute predictions of the on- and off-axis count rates

observed, and is typically within a factor of 3 of the observations.

Integral to these count rate predictions is a calculation of the distribution of atoms

in the various magnetic sublevels of the 6P3/2 state. In the calculation we compute the

branching ratios for all of the possible sublevel transitions in the 5S → 5P → nD → 6P

three-photon process. The calculation is cumbersome, and will be presented in full in

Appendix B. As a result, we determine that the fraction of atoms in each of the

hyperfine levels of the 6P hyperfine manifold (F=3, 2, 1, 0) is 0.498, 0.224, 0.201, and

0.074, respectively.

The on- and off-axis count rates as a function of k3 are shown in Fig. 7.4. For off-

axis light, the F′=3 count rate is slightly higher than the other F′ levels, with the F′=2

count rate being 65% of the F′=3 rate; the model predicts 48%. The on-axis light, on

the other hand, has an observed 10:1 ratio for the two states. This is partly explained

by a factor of
√

2 greater dipole matrix element for the 6P3/2(F
′ = 3) → 5S1/2(F=2)

transition as compared to the corresponding matrix element from the F′=2 state. In

addition, there is a competition between the coherent de-excitation from the Rydberg

state and the various decoherence processes that occur in the Rydberg state. This

further favors the larger Rabi coupling to the F′=3 state. From these effects, the

model predicts a ratio of 7.7, in reasonable agreement with the observations.

Figure 7.5 shows the on-axis fraction of the emitted light as the intensity of beam k3

is varied, for two different hyperfine levels of the 6P state. The different dipole matrix
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The F′=3 produces strikingly more on-axis light than the other hyperfine levels due

to its stronger coupling to the Rydberg state and the higher branching ratio into

the F=2 ground state.
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Fig. 7.5: Fraction of on-axis light as a function of intensity, with model predictions. The

intensities and on-axis fractions for F′=2 data are scaled to reflect the reduced dipole

matrix elements. The increased on-axis efficiency at higher intensity indicates the

competition between four-wave mixing and decoherence processes.
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elements for the two hyperfine levels are accounted for by scaling the F′=2 intensities by

a factor of 0.48. The increase of the on-axis fraction with increased intensity shows that

the four-wave mixing process is competing with decoherence. This is not surprising,

since we saw in the previous two chapters that blackbody radiation and superradiance

can affect the Rydberg state populations in a way that would prevent de-excitation to

the 6P state. The model prediction is sensitive to the assumed broadening of the r-p

coherence, with the data favoring a narrower (2.5 MHz) linewidth for this coherence

than deduced from the off-axis spectroscopy.

7.5 Rydberg State Detuning

We now wish to take a closer look at the competition of these decoherence mechanisms

with the phase-matching process. The goal here is to maximize the fraction of light

that is emitted in the phase-matched direction, both to compare with our four-wave

model as well as to maximize the efficiency of single-photon generation in the preferred

direction for eventual use in quantum information experiments. In order to accomplish

this, we will vary the Rydberg state population by detuning k3 from the Rydberg state.

I will present the data from these experiments and then compare the results with the

model predictions.

If the k2 frequency is swept across the 5P → nD Rydberg transition while k3

is detuned by a frequency δr from the nD → 6P transition, two resonances result.

The first occurs when the excitation lasers are on resonance with the Rydberg state,

giving significant Rydberg atom populations. The second resonance occurs when the

three-photon process to the 6P state is on resonance, but two-photon excitation to the

Rydberg state is off resonance by δr. An example of this data with k3 tuned δr = 32

MHz above the Rydberg-6P3/2 F′=3 transition is shown in Fig. 7.6. As the figure shows,
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Fig. 7.6: Count rates in on- and off-axis counters as a function of the excitation frequency,

showing both the non-resonant 5S-nD excitation (left peak and inset) and resonant

Rydberg-state excitation with off-resonant de-excitation to the 6P state. The k3

laser was held 32 MHz above the Rydberg-6P transition. The inset scales the off-

axis count rate by the solid angle to show the total amount of light emitted. In this

case, the amount of on-axis light is approximately equal to the total amount of light

in all other directions.
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Fig. 7.7: The maximum ratio of random counts to phase-matched counts measured as a func-

tion of detuning from the Rydberg state. Here a ratio of zero corresponds to perfect

phase matching. The efficiency of the phase-matching process is optimized when

detuned from the Rydberg state.

the count rate on the off-axis counter is very small for off-resonant Rydberg excitation.

The fraction of phase-matched light reaches 50% of the total 6P -5S emission. When

the Rydberg states are resonantly produced, the fraction of phase matched light drops

to 20%.

Figure 7.7 shows the ratio of off-axis to on-axis light as a function of two-photon de-

tuning, with k3 adjusted to maintain three-photon resonance. The ratio is displayed in

this manner rather than as the phase-matched fraction because the number of detected

off-axis counts is on the order of ∼10 s−1 for detunings larger than 15 MHz. This results

in an error associated with the measurement of the off-axis count rate comparable to

the measured rate. This in turn makes displaying a phase-matched fraction problem-

atic since the error bars would be large. Instead, we display the ratio of the off-axis

to on-axis count rate, which will go to zero when all of the light is phase-matched and
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to infinity when all of the light is non-phase-matched. Again, the ratio in Figure 7.7

corresponds to a fraction of on-axis light of about 20% on resonance, increasing to 50%

off resonance. This trend is accounted for by the model as seen in the Figure.

These results point out that Rydberg decoherence mechanisms are important for

determining the on-axis emission efficiency. The data presented here are all obtained

under weak excitation conditions where blockade effects should be unimportant. Under

blockade conditions, Rydberg-Rydberg and superradiant decoherence mechanisms are

predicted to be virtually eliminated. As a step towards using phase-matched four-wave

mixing as a single-photon source, we have focused the 480 nm and 1015 nm beams to

12 µm. This results in a effective volume of ∼ 10−8 cm3, which could be blockaded

for reasonable n-levels [Walker and Saffman, 2008]. When using the focused beams,

phase-matching was again achieved for the various n-levels, with the same dependence

on F′ level, k3 intensity, and detuning from the Rydberg state. The maximum per-

centage of light achieved in the phase-matched direction was reduced to below 1%,

as expected from Eq. 7.3 since the relevant factor Ne/w
2 was reduced by a factor of

40. In the future, this could be be improved by increasing the density of the sample

[Sebby-Strabley et al., 2005], allowing both efficient phase-matching and dipole block-

ade and making a single-photon source possible.
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8. CONCLUSION

8.1 Summary

In this thesis, I have presented the results of a variety of Rydberg atom experiments de-

signed to give us a better understanding of the dynamics atomic interactions a Rydberg

levels. In particular, we have observed wider than expected two-photon Rydberg tran-

sitions of 8-10 MHz and developed a novel technique for measuring these linewidths.

The width of these transitions will make a dipole blockade more difficult, and will likely

require the D-state Rydberg levels to be mixed with nearby F -states in order to utilize

the dipole-dipole interactions that this state dressing would allow. Our attempts to

coherently excite Rydberg states using STIRAP were unsuccessful because processes

such as superradiance quickly populate other nearby Rydberg levels and dephase the

coherent excitation/de-excitation process.

We have developed a state-probe laser as an alternative to field ionization in order

to investigate the dynamics of atoms in the Rydberg state. This has allowed us to de-

termine the transfer rate out of the Rydberg state into nearby states which led to the

proposal of superradiant decay as the primary cause of this state transfer. The work

presented here was the first published that recognized the importance of superradiance

to the rapid population of other Rydberg states observed at higher Rydberg atom densi-

ties. Finally, we have accomplished coherent excitation through the Rydberg state with

four-wave mixing. Coherent manipulation of Rydberg states has been accomplished by
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only a few research groups up to this point ([Johnson et al., 2008], [Cubel et al., 2005],

[Mohapatra et al., 2007], [Reetz-Lamour et al., 2008], [Heidemann et al., 2008]) because

of the strong interactions involved. Going forward, the four-wave geometry will provide

an excellent setup for dipole blockade experiments.

8.2 Future Work

In the near future, the next phase in this experiment will be to return to the dressed

state experiments using microwaves. In our most recent microwave experiments, we

dressed the 43D Rydberg state with the nearby 42F state using strong microwave fields

that were on the order of ∼100 MHz off resonance with the 43D → 42F transition. By

sweeping the 480 nm laser across this transition, we observed an Autler-Townes splitting

similar to those seen in the experiments in Chapter 4. The difference, however, was

that because of the detuning, one of the peaks was narrower than the 8 MHz Rydberg

transition linewidths we have measured up to this point. This may have been a result of

mixing the D- and F -states such that the narrow peak had a large F -state component

and a small D-state component, but this is not entirely clear. This certainly merits

further study since a reduction of the Rydberg linewidths would be very helpful in

achieving a large blockade radius.

The difficulty with using detuned microwaves to dress Rydberg D-states with F -

or P -states is that the AC Stark shift of the microwave beam will shift the sublevels

in the excitation Rydberg state by different amounts, which should actually broaden

the Rydberg transition. However, if two microwave frequencies, one tuned ∆+ above

the D-to-F transition and one tuned ∆− below the transition, were applied to the

atoms, then the AC Stark shifts on the sublevels should be equal and opposite. This

should keep the microwave transition as narrow as possible while still providing the
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state mixing with the nearby F - or P -state that would allow for stronger dipole-dipole

interactions.

Following these microwave experiments, the next step will likely be to put the

atoms into a Far Off-Resonance Trap (FORT) produced by a 20 W Nd:YAG laser and

perform four-wave mixing with the atoms in this setup. We have used the YAG laser

in the past to produce high density traps with n = 2 × 1015 cm−3 the highest density

reported in an optical trap for incoherent matter [Sebby-Strabley et al., 2005]. With

densities of this order, we could greatly increase the collective dipole moment of the

atoms in the four-wave mixing experiment, which would allow a higher fraction of light

to be radiated into the phase-matched direction. This would be an ideal setup for a

photon anti-bunching experiment, which would entail the measurement of the second-

order correlation function, g(2) of the light emitted into the phase-matched direction.

Under strong dipole-blockade conditions, the second-order correlation function will go

to zero at small time delays. Physically, this means that only one atom can be excited

to the Rydberg level at a time because of blockade effects, and thus the probability

of observing two decay photons arriving within ∼ 100 ns of each other is vanishingly

small.

Another interesting feature of the dipole blockade is that the blockaded atoms ought

to collectively enhance the excitation of a single atom to the Rydberg state in much the

same way that atoms in the Rydberg state collectively enhance the decay rate of the

state to nearby Rydberg level via superradiance. Indeed, evidence for this effect was

recently observed by Tilman Pfau’s group [Heidemann et al., 2007], though our FORT

experiment ought to be able to produce a stronger signal since a few thousand atoms

will be blockaded in such a setup [Sebby-Strabley et al., 2005].

Finally, it would also be interesting to continue our experiments into the superra-

diant decay of Rydberg states. Although we presented strong evidence of superradiant
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transfer from the excitation Rydberg state into other Rydberg levels, we were not able

to directly observe the populations in these other states. It would be interesting to

observe the rapid increase in the population of the 29P state shortly after excitation to

the 28D Rydberg level. This might be possible using a ∼ 100 mW diode laser at 1260

nm to de-excite the 29P atoms down to the 5D state and then observing the decay

along the 5D → 5P transition at 775 nm. From our model, the 29P should have a

higher equilibrium population than the 27D state that we tried to probe with the 1015

nm state probe laser.

8.3 Design of a Single-Photon Source

In order to determine how we might construct a single-photon source, I must first

calculate what kind of photon rates we could expect from our experiment if it were

conducted with a focused-beam four-wave mixing geometry in the Far Off-Resonance

Trap. Using the FORT described here [Sebby-Strabley, 2004], we have produced optical

microtraps after evaporation and recompression with dimensions 300 nm × 300 nm ×
8 µm, where the long dimension is in the plane of the optical table orthogonal to the

480 nm laser direction (see Fig. 2.2). The center microtrap contained 2000 atoms

for an average atomic density of ne = 2×1015 cm−3. For the four-wave geometry

discussed in the previous chapter, the fraction of phase-matched light was found to go

as Ppm/Po ∝ Ne/w
2 ∝ new (see Eq. 7.3). Thus despite the factor of 40 reduction in the

sample width, the density increases by a factor of ∼200,000 ensuring that practically

all of the light emitted goes into the phase-matched direction. Similarly, the rate of

production of phase-matched photons will be ∼ new
4〈d0〉2 which amounted to a factor

of ∼1000 reduction for the 43D-state focused beam experiments (the phase-matched

count rate for the 43D focused beam experiment was 500/s). However, this will once
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again be offset by the increase in density so that our phase-matched count rate would

increase by a factor of 200 to a rate of 105/s.

Provided that we have a perfect dipole blockade, the phase-matched photon beam

should exhibit strong anti-bunching. Also, we should observe a
√

N enhancement in

the excitation rate and thus in the dipole moment d0 which determines the rate of

phase-matched photon generation [Saffman and Walker, 2002]. This would put our

total rate over 106/s and thus the 780 nm excitation laser could be switched on for the

duration of a 2π-pulse every 10 µs to produce a single photon on demand. However,

since the atomic sample has a waist of 300 nm in the vertical direction, the 420 nm

light emitted will diverge too rapidly to be completely collected by the collimating lens.

Assuming diffraction-limited propagation, the 420 nm beam would overfill the 150 mm

focal length collimating lens by a factor of 5, so some of this light would be lost. This

would affect the fidelity of the production of single photons for a particular 2π-pulse,

but would not affect the rate of photon production drastically. This could be remedied

somewhat by changing the angle of intersection of the FORT beams from 100 mrad

to 50 mrad [Newell, 2003]. In such a setup the effective microtrap size doubled, which

means that we could expect a recompressed microtrap size of roughly 600 nm × 600

nm × 16 µm. The problem with such a setup is that the long dimension would then

be longer than the 12µm beamwaist of the 480 nm excitation laser. This would mean

that the edges of the microtrap would not experience as great an excitation rate which

would mean a smaller effective number of atoms participating and a smaller phase-

matched count rate. This might allow for simultaneous excitation of Rydberg atoms

and compromise the blockade. A more permanent solution would be to use two FORT

beams intersecting at a 90◦ angle to make the trap symmetric with a trap size of about

10 µm in each direction.

We also need to consider the atomic interaction strengths here. Excitation to the
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43D-state is interesting because of the small energy defect of the 43D5/2 + 43D5/2 and

41P3/2 + 45F5/2 potential curves. By optically pumping the atoms in the MOT into

the 5S, F = 2,mF = +2 sublevel and performing Rydberg excitation with σ+ polarized

light, we can prevent the excitation of linear combinations of Rydberg sublevels with

zero van der Waals interaction [Walker and Saffman, 2008]. We can estimate the van

der Waals interactions between these atoms as VvdW ∼ C6Dφ/R
6, where for this channel

C6 = −546 GHz µm6, and Dφ = .343 [ibid.]. We need the interaction strength to be

greater than the observed transition linewidth of 8 MHz (VvdW > Γ) which will be

true for R < 5.3 µm. This is not quite strong enough to prevent double excitation

into the Rydberg state, but if we additionally couple the 43D-state to the 42F -state

via resonant microwaves this should provide dipole-dipole interactions that should be

more than enough to blockade the remainder of the microtrap with modest microwave

powers.



APPENDIX
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A. DERIVATION OF TRANSITION LINEWIDTHS FROM

INTENSITY CORRELATED SPECTROSCOPY PEAKS

We wish to determine the transition linewidth starting from the width of the peaks on

a coincidence delay time histogram as discussed in Chapter 4. Consider a triangle ramp

(such as that seen in Fig. 4.3) with period T and angular frequency ω = 2π/T that

sweeps the frequency of the Rydberg excitation lasers across the two-photon 5S → nD

resonance. The photon counter measures the intensity of incoming light f(t), which is

sharply peaked when the excitation lasers are on resonance at time ta and later, when

the ramp is moving in the opposite direction, at time tb. The photon counter measures

the intensity in discrete time bins n, so the intensity at time t will be given by:

f(t) =
∑
n

fne−inωt. (A.1)

The function f(t) will be sharply peaked at times ta and tb. Let S(τ) represent the

coincidence delay time histogram value for a delay time of τ . S(τ) will then be equal

to,

S(τ) = f(t)f(t + τ) =
∑
n

fnf−ne
inωτ . (A.2)

This is the equation that describes the data seen in Fig. 4.3(b). However, it will take

some work to see how this will relate to the transition linewidths. We may take the

inverse Fourier transform to find fn,
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fn =
1

T

∫ t

0
dt′f(t′)einωt′ . (A.3)

Substituting t = t′ − ta and t = t′ − tb since these are the times of interest, the above

equation becomes,

fn ≈
(

einωta

T
+

einωtb

T

) ∫ ∞

∞
dtσ(t)einωt, (A.4)

where we have let σ(t) represent f(t) in the transform integral. As the excitation laser

frequency sweeps across the transition resonance, the intensity will have a Gaussian

profile with respect to time:

σ(t) = Ae
−2t2

δ2 , (A.5)

where δ is the 1/e2 Gaussian transition linewidth. Now, for the purposes of determining

the transition widths, we can ignore the constants einωta/T and einωtb/T . In addition,

since the repetition period T À δ the repetition function einωt will not affect the width

either. Thus we can approximate the width of peaks on the correlated time delay

histogram as,

S(τ) = f(t)f(t + τ) ∝
∫ ∞

−∞
dtA2e

−2t2

δ2 e
−2(t+τ)2

δ2 . (A.6)

This is simply a convolution function of two Gaussians, the result is

S(τ) ∝ A2e
−2τ2

2δ2 = A2e
−2τ2

(
√

2δ)2 (A.7)

Thus the width of the peaks on the coincidence time delay histogram will be
√

2 larger

than the transition linewidths.
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B. DISTRIBUTION OF ATOMS IN THE 6P HYPERFINE

MANIFOLD

In the four-wave mixing experiments described in Chapter 7, we have a need to de-

termine the relative population of the various hyperfine levels in the 6P3/2 state. This

appendix will present the calculation that was performed in order to arrive at the num-

bers quoted in Chapter 7. In order to accomplish this we will need to begin with several

assumptions. First, we assume for the purposes of this calculation that all atoms are in

the 5S1/2, F = 2 ground state and that these atoms are equally distributed among the

five magnetic sublevels (mF = 0,±1,±2). Furthermore, we will assume that linearly

polarized light is used and that the magnetic sublevels |mF 〉 are not good quantum

numbers in the Rydberg level. We will deal with the latter by allowing the electron

spin |mJ〉 to change while the nuclear spin |mI〉 is conserved.

Now we will calculate the relative oscillator strengths between all of the relevant

sublevels along the three-photon 5S → 5P → nD → 6P transition. I will begin with

the oscillator strength averaged over the polarization states of light. For this and the

other oscillator strength formulae presented here, [Weissbluth, 1978] is an excellent

reference and all of these formulae can be found within. I will then use the oscillator

strength formula to determine the relative strength of the various sublevel transitions.

This will allow me to calculate the transfer matrix from the 5S sublevels to the 5P

sublevels. Next I will present the decomposition of the 5P3/2, |FmF 〉 state into its

|ImI〉 |JmJ〉 components. These pieces will give me all that I need to calculate the
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relative population of the 6P hyperfine levels.

The oscillator strength for a transition |nFmF 〉 → |n′F ′m′
F 〉, for linearly polarized

light, is given by

f =
2mω

3h̄(2F + 1)
| 〈F ′| |r| |F 〉 |2




F 1 F ′

−mF 0 m′
F




2

, (B.1)

where m is the electron mass, and the parentheses represent the three-j symbol cou-

pling the two hyperfine levels with the photon polarization vector. The quantity,

| 〈F ′| |r| |F 〉 |2 is the reduced matrix element for the hyperfine vectors. This in turn

can be expressed as a reduced matrix element for the total angular momentum J as

follows

| 〈F ′| |r| |F 〉 |2 ∝ (2F + 1)(2F ′ + 1)| 〈n′J ′| |r| |nJ〉 |2




F ′ 1 F

J I J ′





2

, (B.2)

where the quantity in the { } brackets is a 6-j symbol. The reduced matrix element in

terms of J will be the same for all hyperfine levels F and magnetic sublevels mF , thus

we can disregard this term. In fact, combining Equations B.1 and B.2 we may collect

the terms that affect the relative oscillator strength:

f ∝ (2F ′ + 1)




F 1 F ′

−mF 0 m′
F




2 



F ′ 1 F

J I J ′





2

. (B.3)

Now we may calculate the transfer matrix from the 5S → 5P state, S = 〈5P | r |5S〉,
using

√
f as calculated from equation B.3 for the elements of the transfer matrix. This

matrix transforms the |FmF 〉 vector of the 5S magnetic sublevel populations into the

state vector |F ′m′
F 〉 of the 5P magnetic sublevel populations.
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Since the excitation lasers are tuned above the 5P3/2, F
′ = 3 state by 470 MHz,

we must have a detuning matrix ∆ which is a diagonal matrix where the elements are

equal to 1/
√

δF where δF is the detuning of the excitation lasers from the 5P3/2, F
′

hyperfine level.

Now we must decompose the |5P3/2FmF 〉 into its |ImI〉 |JmJ〉 components. The

matrix D1 which describes this basis state transformation has components:

|5P3/2FmF 〉 = CFmF
3
2
mJImI

|5P3/2mJmI〉 , (B.4)

where the CFmF
3
2
mJImI

term represents the Clebsch-Gordan coefficients which make up

the matrix elements. We then can calculate the transfer matrix R for the 5P → nD

Rydberg transition using the |ImI〉 |JmJ〉 basis. The elements of R are as follows,

R = 〈nDJ ′m′
J | r |5PJmJ〉 ∝ C

J ′m′
J

JmJ10 (B.5)

where the Clebsch-Gordan coefficients are calculated using linearly polarized light, as

noted at the beginning of the Appendix. Calculating the transfer matrix P for the

nD → 6P transition is now straightforward as,

P = 〈6PJ ′m′
J | r |nDJmJ〉 ∝ C

J ′m′
J

JmJ10. (B.6)

Similarly, the transformation D2 from the |ImI〉 |JmJ〉 basis in the 6P to the |FmF 〉
basis goes as expected,

|6P3/2mJmI〉 = CFmF
3
2
mJImI

|6P3/2FmF 〉 . (B.7)

We now have all of the matrices required to transform the state vector of the 5S

sublevels, |5S1/2FmF 〉 = (0.2, 0.2, 0.2, 0.2, 0.2), into the state vector of the 6P3/2

sublevels. Namely,
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|6P3/2F
′m′

F 〉 = (D2 ·R ·P ·D1 ·∆ · S)2 |5S1/2FmF 〉 . (B.8)

Equipped with the 6P state vector, we may normalize the vector and sum the

sublevels of similar F -levels to give us the hyperfine state distribution of atoms in the

6P state. As noted in the text, this is,

|6P3/2F
′〉 =




F ′ = 3

2

1

0




=




0.498

0.224

0.201

0.074




(B.9)
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