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0.1 Abstract

Rydberg atoms have many novel properties that make them appealing, most noticeably

their long lifetimes and very strong dipole interactions. This dissertation describes

experiments involving the optical detection and manipulation of ultracold Rydberg

atoms using a novel stimulated emission probe.

This stimulated emission probe was first used to explore the dynamics of ultra-

cold Rydberg atoms. Two-photon excitation creates Rydberg atoms which can be

observed via loss of atoms from the MOT, or by fluorescent emission. The addition of

a stimulated-emission probe enabled further measurement of the rate of transfer from

the Rydberg state. A model was developed to better understand the data, revealing

that superradiant transfer is an important mechanism in the atom dynamics at these

densities.

We have further performed non-degenerate four-wave mixing through the Rydberg

states using the stimulated emission probe, causing preferential emission into a diffrac-

tion limited direction. This result can be optimized by detuning the excitation lasers

from the Rydberg resonance, resulting in up to 50 percent of the light emitted in a

diffraction limited direction.

The final experiment described in this dissertation is the investigation of atom-atom

interactions within a small excitation volume. We have shown that these interactions

can be enhanced through the application of resonant microwaves. Suppression of Ry-

dberg atom excitation was qualitatively observed and quantitatively analyzed using a

universal scaling law. This gave a measure of the atom-atom interaction strength in

agreement with the theoretical prediction. This represents a large advance in the under-

standing of Rydberg atom interactions, and their possible use in quantum computing

or single photon applications.
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1. INTRODUCTION

1.1 Background and Motivation

The study of Rydberg atoms in cold atomic clouds is one of the most exciting areas

in atomic physics today. Their unique properties, especially their extremely large

interaction strengths and long lifetimes, make Rydberg atoms an intriguing area for

a number of applications. While Rydberg atoms were first detected in the Balmer

series of Hydrogen in 1885, recent advances in laser technology have provided more

efficient means for their production and control. Especially since the first generation

of Rydberg atoms in a cold atomic sample in 1998 [Anderson et al., 1998], interest

in and pursuit of Rydberg atom physics has increased dramatically. The primary

results of this dissertation are the extension of the base of knowledge regarding the

properties of ultracold Rydberg atoms and the development of a new tool for use in

their manipulation: the stimulated emission probe.

Since the first production of ultracold Rydberg atoms, many groups have been

investigating their properties and interactions. For instance, understanding Rydberg

atom dynamics has led many groups to investigate the onset of ionization and the

formation of cold plasmas [Li et al., 2005] [Walz-Flannigan et al., 2004], leading to a

better understanding of the interaction properties. The existence of novel ultralong

range Rydberg molecular states was first proposed in 2000 [Greene et al., 2000] and

recently observed [Bendkowsky et al., 2009]. In addition to the importance of long
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range interactions, the small energy differences between Rydberg levels also result in

interesting phenomenon. The recent results of [Wang et al., 2007] and the results of the

experiments in this dissertation indicate that superradiance plays an important role in

the dynamics of Rydberg clouds, including the enhancement of atom-atom interactions

and the speed-up of ionization.

Samples of Rydberg atoms have many possible applications, but perhaps the most

intriguing is the development of successful strategies for quantum computation and

quantum manipulation [Jaksch et al., 2000]. While the details of quantum computa-

tion can be found elsewhere [Nielsen et al., 2000], its appeal lies in the ability to make

use of quantum bits (“qubits”), allowing better modeling of quantum mechanical sys-

tems and improvement in computation through several new algorithms [Grover, 1996]

[Shor, 1996]. The proposal of [Lukin et al., 2001] uses the strong dipole interaction of

Rydberg atoms to accomplish single atom control for quantum computation. If the

atom-atom dipole interactions have energies larger than the transition linewidth, exci-

tation of more than one atom will be prohibited, a feature called the ’dipole blockade’.

Towards this goal, a number of groups have demonstrated the related phenomenon of

suppression of Rydberg excitation in large atomic clouds [Singer et al., 2004]

[Tong et al., 2004] [Cubel Liebisch et al., 2005] [Vogt et al., 2006] [Vogt et al., 2007]

[Heidemann et al., 2007], and recently this concept has been successfully implemented

to blockade coherent excitation of single atom qubits [Urban et al., 2009]

[Gaëtan et al., 2009].

In addition to blockade between two isolated atoms, coherent control between

ground and Rydberg atoms has begun to be realized, using isolated atoms

[Johnson et al., 2008], atomic clouds [Reetz-Lamour et al., 2008] [Weatherill, 2008], and

Bose-Einstein Condensates [Heidemann et al., 2008]. An intriguing result of dipole

blockade in samples of spatially confined cold atoms [Sebby-Strabley, 2004] is collec-
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tive excitation, which has recently been observed [Heidemann et al., 2007].

The properties of dipole blockade raise further interest when combined with four-

wave mixing [Bloembergen, 1996]. If the proper phase-matching is accomplished, pho-

tons are emitted into a diffraction-limited solid angle. Thus, the dipole blockade be-

tween ultracold Rydberg atoms combined with a phase-matched geometry could be

used to produce a source of single photons on demand with extremely high collection

efficiency [Saffman and Walker, 2002].

The experiments described in this dissertation represent significant advances in the

field. We have introduced a novel method for detecting and studying the dynamics of

Rydberg atoms in the stimulated emission probe [Day, 2008] and used it to generate

phase-matched emission [Brekke et al., 2008]. In addition, the enhanced atom-atom

interactions resulting from resonant microwave coupling between nearby Rydberg states

have been observed in a pulsed excitation scheme. Combining the four-wave mixing

scheme of our stimulated emission probe with these strong atom-atom interactions

would provide an excellent system for the generation of a single photon source.

1.2 Summary of Thesis

This dissertation discusses experiments involving the exploration and manipulation of

ultracold Rydberg atoms excited from a Magneto-Optical Trap (MOT). The primary

novel feature which was developed for the work in this dissertation is a stimulated

emission probe of the Rydberg state. This probe has been applied to perform three

major experiments: the study of Rydberg atom dynamics leading to the realization of

superradiance, the generation and optimization of four-wave mixing resulting in photon

emission into a preferential direction, and the investigation of microwave enhanced

atom-atom interactions in a small volume.
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The beginning of the dissertation is dedicated to a summary of the apparatus used

in generating and observing ultracold Rydberg atoms. We trap and cool 1 x 108 atoms

in a standard MOT with a ∼1 mm radius giving a density of 2 x 1010 atoms/cm3. We

exploit a two-photon transition to excite atoms in the MOT into the Rydberg state,

avoiding intermediate population and allowing for the narrow transition linewidths

necessary for effective dipole blockade. Using this two-photon excitation we can access

|s〉 or |d〉 Rydberg levels from n=28 to 58, encompassing a wide range of atom-atom

interaction strengths. We have demonstrated two effective means of Rydberg detection.

In the first the measured loss rate from the MOT is compared to the loss rate without

Rydberg population. This technique gives an excellent idea of the relative Rydberg

population, but not an exact calibration of the number of Rydberg atoms without

further information on the loss rate per Rydberg atom. The second method detects

decay photons from the 6P3/2 state. Information about the exact number of atoms can

then be extracted from the excitation rate and detection efficiency of the system. The

number of Rydberg atoms created in our apparatus can be varied tremendously, from

∼ 10 to ∼ 104.

Chapter 3 of this dissertation describes the experiments performed to obtain an

understanding of Rydberg atom dynamics in the limit of weak excitation. Variation of

the frequency of the excitation lasers allows for a measurement of the linewidth of the

Rydberg transition. This width is consistently larger than expected, and a number of

possible causes are explored and discussed. These measurements also give us a good

understanding of the loss rate following Rydberg excitation, revealing that only ∼1:500

of the excited atoms is lost from the MOT.

The focus of Chapter 3 is the introduction of our novel means of exploring Rydberg

populations, the stimulated emission probe. As opposed to field ionization techniques,

the intensity of this probe can be varied to control the rate at which atoms are re-
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moved from the Rydberg state, giving an important new means of optical detection

of Rydberg atoms. This is used to measure the rate that atoms leave the Rydberg

state, revealing that atoms leave on a timescale faster than spontaneous emission or

black-body radiation would allow. The exact value depends on the Rydberg level used,

but is typically ∼7µs. In order to better understand why atoms are leaving the Ry-

dberg state at this fast rate, we introduce a model of the population dynamics. This

model allows us to obtain an experimental measurement of the transfer rate out of the

Rydberg state, as well as the total rate of loss from the MOT per atom. The MOT loss

rate is in agreement with the expected loss from black-body ionization. The transfer

rate out of the Rydberg state, however, suggests a yet unexplored mechanism causing

rapid population transfer.

In Chapter 4 I explore the likely mechanism for the fast transfer rate, superradiance.

It begins with a brief introduction to the principles of superradiant transfer, and the

important distinction of emission proportional to N2 when the atoms are confined to a

size smaller than the wavelength of emitted light. These principles are implemented in

a simulation of superradiance developed to duplicate the conditions of our experiment.

Due to the abundance of decay channels from the Rydberg state, this simulation is ex-

panded until the addition of Rydberg states does not affect the outcome. The accuracy

of the simulation was verified by comparison to known features of superradiance and

previous experimental observations. The expected transfer rate can be extracted from

the simulation, typically giving values of order 105 s−1, in agreement with the experi-

mental observations of Chapter 3. Our work is the first to emphasize the importance

of superradiance for understanding the features of Rydberg gas dynamics.

Chapter 5 of this dissertation discusses an important means of attaining high detec-

tion efficiency for a single photon source. When the excitation and stimulated emission

lasers are oriented in a proper phase-matched geometry, the Rydberg atoms emit into a
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diffraction limited direction in a process known as four-wave mixing. To our knowledge,

this is the first work to demonstrate four-wave mixing through a Rydberg state, and

this represents one of the primary goals of this dissertation. We have verified our four-

wave mixing in three ways: by measuring the spatial profile of the emitted photons,

the dependence of the output beam on the laser geometry, and the dependence of the

percent of the total light emitted in the phase-matched direction versus the number of

atoms in the MOT. The process was optimized by detuning the excitation lasers from

the Rydberg resonance, and up to 50% of the total emitted light was contained in a

diffraction limited beam.

In order to pursue the study of atom-atom interactions in our system, it was nec-

essary to develop a number of new experimental techniques. Chapter 6 describes the

methods that were used in these experiments, and represents a “toolbox” that will be

drawn from to accomplish the future investigations. The first technique discussed is our

method for using microwaves to couple nearby Rydberg states, which can be verified

through the observation of the Autler-Townes splitting. Next, I discuss our method for

limiting the volume using perpindicular excitation beams, including spatial selection

using the large ac Stark shift resulting. Finally, I will explain the method of pulsed

Rydberg excitation, allowing the determination of the number of Rydberg atoms and

the excitation rate. This pulsed scheme also revealed the importance of ionization,

motivating the use of |s〉 states rather than |d〉 states. These techniques have been

presented separately to allow the reader an uninterrupted discussion of the important

results discussed in Chapters 7 and 8.

A driving motivation for the study of Rydberg atoms is their very strong atom-

atom interactions, the origin of which is discussed in Chapter 7. These interactions

result in a complicated dependence for the number of Rydberg atoms produced. Here

I derive the expected scaling of the Rydberg excitation to examine the regime where
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these interactions first become significant. This enables not only a qualitative under-

standing of the expected behavior, but also a quantitative measure of the interaction

strength. In addition, two particular cases of atom-atom interactions will be examined:

The van der Waals interaction and the first order dipole-dipole interaction resulting

from resonant microwave coupling. Microwave coupling can significantly increase the

interaction strength, making this an attractive alternative to relying simply on the van

der Waals interaction to achieve blockade.

Evidence for the suppression of excitation is examined in Chapter 8 for both the

van der Waals and resonant microwave cases. By monitoring the number of Rydberg

atoms created while varying the density and excitation rate, we observe a deviation from

linear dependence in the case of resonant microwave coupling. This is an indication that

the increased atom-atom interactions are suppressing excitation. In addition, we can

analyze the onset of suppression using the scaling developed in Chapter 7, which shows

excellent agreement. The fit is used to obtain a value for the interaction strength of C3β

= 270±120 MHz µm3 and 300±120 MHz µm3 for the density and intensity dependence,

respectively. While the uncertainty is quite high, these values are in agreement with

the theoretical prediction, suggesting a good understanding of the system.

The dissertation concludes in Chapter 9 with a summary of the work presented

here and a discussion of its importance in the field. The research conducted in this

dissertation is ongoing, with several planned improvements and exciting future pursuits.
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2. EXCITATION APPARATUS

2.1 Introduction

In this chapter I will discuss the means by which we create and observe Rydberg

atoms. One of the goals in the development of this system was to develop an excitation

scheme whose parameters can be easily adjusted to investigate different regimes. Thus,

we have created a system where the volume of excitation, density of Rydberg atoms,

and interaction strength between atoms can be controlled independently.

I will begin with a very brief description of our source of ultracold atoms: the

Magneto-Optical Trap (MOT). Since MOTs have become commonplace in today’s

atomic physics experiments and many excellent references exist on their fundamental

properties [Metcalf and van der Straten, 1999], the physics behind a MOT will not be

discussed here. Instead, only the properties of our MOT which are important to our

experiments will be discussed. Typically we trap and cool 1 x 108 atoms with a ∼1

mm radius giving a density of 2 x 1010 atoms/cm3.

Next I will discuss the lasers used in creating and manipulating Rydberg atoms. For

our experiments we use three lasers: two for the excitation and a stimulated-emission

probe. The first step of excitation from the ground 5s state detuned from the 5p state

at 780 nm is accomplished with a commercial amplified diode system and can deliver

up to 18 mW to the atomic cloud. The second step from 5p to the Rydberg state is

generated by frequency doubling a 960 nm diode, giving up to 10 mW at the atomic
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cloud, and is tuneable from 479-483 nm. Finally, the stimulated-emission laser transfers

the atoms to the 6p state. It is a commercial diode system, giving up to 100 mW of

light at the atoms, and is tuneable from 1013 to 1027 nm.

The effective control of the atoms requires precise frequency stabilization. Thus,

I will next discuss our means of stabilizing both the excitation lasers and stimulated

emission laser. Using a combination of saturated absorption and a novel technique of

dual-cavity stabilization we are able to stabilize all lasers to better than 1 MHz.

Finally, I will discuss our means of Rydberg atom detection. We employ two com-

plimentary techniques, which combine to give excellent understanding of the system.

First, we observe the loss of atoms from the MOT, which indicates an additional loss

undergone by atoms in the Rydberg state. In addition, we also observe decay fluo-

rescence from the 6p state, which is present from both spontaneous and stimulated

emission from the Rydberg state. The primary components of this optical train are a

dichroic mirror, several frequency filters, and lenses which image the atom cloud onto

a sensitive photo-multiplier tube.

2.2 Magneto-Optical Trap

The MOT is an effective tool for a variety of atomic applications. We use it here as a

source of ultracold atoms to be excited to the Rydberg state. Atoms are first cooled

and spatially confined to a volume of 1 mm in radius using standard MOT technology.

From there they can be transferred to the Rydberg state using the excitation lasers.

The primary components of our MOT include a vacuum chamber, primary trapping

and cooling laser, hyperfine repumping laser, and the coils necessary for generation of

magnetic fields. An energy level diagram of the Rubidium 5s and 5p states is given in

Figure 2.1 as an aid for understanding the trapping process.
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Fig. 2.1: 5s and 5p states of Rubidium 87.
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The trapping light is provided by a Titanium:Sapphire laser pumped by a Coherent

Innova-310 Argon Ion Laser, and is tuned 15 MHz below the cycling transition, 2S1/2

F = 2 to 2P3/2 F
′

= 3. In addition, a homebuilt diode laser is used to“repump”

atoms from 2S1/2 F = 1 to 2P3/2 F
′
= 2 if they have undergone an infrequent Raman

transition into the F = 1 ground state. The details of this trap, including these lasers,

the ultra-high vacuum system, and the magnetic field coils, are well described elsewhere

[Sebby-Strabley, 2004].

These components are necessary to achieve a “bright” MOT, with all atoms in the

F = 2 ground state. While this is often all that is needed, creating a “dark” MOT with

atoms in the F = 1 state has several benefits. As a result of radiation pressure and

multiple photon scattering [Walker et al., 1990] there is a fundamental density limit

to a “bright” MOT. By imaging an opaque object onto the center of the MOT and

employing a depumping laser which removes atoms from the F = 2 to F = 1 state the

density can be increased [Ketterle et al., 1993], though this increase is not significant

in our experiment.

The main reason “dark” MOT is used in our experiment is to allow access to a

different ground state hyperfine level. For the purposes of Rydberg excitation, this

can be important to prevent detuned excitation resulting from the trapping laser as

opposed to the first excitation laser. Accessing the F = 1 atoms also provides a wide

range of possible detunings from the intermediate state. As a result, we gained control

over the magnitude and sign of the AC stark shift from the first excitation beam, the

importance of which will be seen more fully in Chapter 6.
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Fig. 2.2: Relevant energy levels for the production and observation of ultracold Rydberg

atoms.

2.3 Rydberg Lasers

In this section I will provide an overview of the lasers used for the production of

Rydberg atoms from the MOT and their manipulation. A diagram showing the relevant

energy levels is shown in Figure 2.2. It is possible to create Rydberg atoms using the

atoms in the 5P3/2 F ′ = 3 excited state populated by the trapping laser, and this has

been observed in our lab. However, this process populates the intermediate state, and

its decay back to the ground state effectively broadens the Rydberg transition and

contributes decoherence to the system. In order to avoid this, we use a two-photon

transition which is detuned from the intermediate state. By using this excitation

scheme, it is possible to have a narrow transition linewidth and a coherent process.
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2.3.1 780 nm Laser

The first step in this two-photon excitation is done with a Toptica TA-100 external

cavity diode laser and tapered amplifier system at 780 nm. The Toptica is frequency

stabilized using saturated absorption spectroscopy and locked to the 5s1/2, F = 2 to

5p3/2, F
′ = 3 transition. In order to detune from the F ′ = 3 state, a high-frequency

acoustic-optical modulator (AOM) is used to shift the frequency up 470 MHz. The

efficiency of the AOM is 17%, resulting in 20 mW of light being delivered to the atoms.

We have two possible means of delivering this light to the atoms. The first is useful

for exciting the maximum number of Rydberg atoms, and is oriented in a geometry to

allow four-wave mixing (as described in Chapter 5). Thus it is used for the majority

of the experiments described in this dissertation. In this orientation, the laser has

an intensity profile that has a 1/e2 Gaussian radius (henceforth referred to as the

beamwaist) of 4 mm. The beamwaist is larger than the spatial extent of the MOT to

allow uniform excitation and avoid spatially dependent AC stark shifts. Loss of power

is not a concern because of the high Rabi frequency associated with this transition.

Typically when using this orientation, we excite from the F = 2 ground state, so the

first step is blue detuned 470 MHz.

As an alternative setup, we can also input this 780 nm beam perpendicular to the

second excitation beam. In this case the laser can be focused to a beamwaist of 11 µm

at the atomic cloud. This orientation allows for the selection of a very small volume

for excitation, and also results in a very large ac Stark shift of the ground energy level.

This will be an important point when attempting to attain maximum containment of

the atoms as discussed in Chapter 8. Both of these setups can be seen in Figure 2.3.
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Fig. 2.3: Complete experimental setup for the creation of ultracold Rydberg atoms. The

orientation of all lasers can be seen, including the two alternate locations for the

first excitation step at 780 nm .
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2.3.2 480 nm Laser

The second step in the two-photon process is done with a home built frequency doubled

diode laser system that operates from 479 to 483 nm, often referred to as the blue

laser. With this tuning range we can populate Rydberg states from n=28 to n=58.

The blue light is achieved by frequency doubling an amplified 960 nm Toptica diode

in a homebuilt casing. The diode produces 30 mW of 960 nm light. After going

through an optical isolator, a small part of this goes into a frequency stabilized cavity

locking system, which will be fully described in Section 2.4. The rest goes into an

Eagleyard tapered amplifier. This amplifier follows the exact frequency spectrum of

the seeded 960 nm light, giving good (<1 MHz) linewidth. However, the spatial mode

is of lower quality, with M2 > 1.5. Using this amplifier we are able to achieve 13.5 dB

of amplification, resulting in 450 mW of output light at 960 nm.

This 960 nm light is the input for a bow-tie cavity designed to optimize frequency

doubling. This cavity contains a periodically-poled potassium titanyl-phosphate (PP-

KTP) crystal purchased from Raicol. When optimally focused and aligned, 10 mW of

480 nm light exits the cavity, with 6 mW typically reaching the atomic cloud. The

setup for both the amplified master laser and the doubling cavity can be seen in Figure

2.4.

Since the full details of the doubling system have been well described elsewhere

[Day, 2008], only the basic concepts will be given here. Frequency doubling in a crystal

arises when asymmetries in the crystal lattice make the crystal birefringent. This

results in a nonlinearity of the response of the crystal to external fields that does not

exist for symmetric crystals. The induced polarization field in the crystal will have

frequency components at both the fundamental and second harmonic frequencies of

the driving field. The power at the second harmonic frequency produced by a plane
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Fig. 2.4: Diagram of the major components of the 480 nm laser. The 960 nm master diode

pumps a tapered amplifier and has a portion used for frequency stabilzation. The

amplifier output is frequency doubled in a bow-tie cavity.
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wave at the pump frequency passing through an optical crystal of length l is shown in

Equation 2.1. Here, P2ω is the power at the harmonic frequency, Pω the power at the

fundamental frequency ω, dNL the nonlinear coefficient of the crystal, w the beamwaist,

and n the index of refraction at the pump frequency.

P2ω = P 2
ω

2ω2d2
NLl2

πε0c3w2n3
sinc2

(
∆kl

2

)
, (2.1)

The sinc function is maximized when ∆k = 0, which is known as the phase-matching

condition. Effectively, this means that the index of refraction must be equal for the

fundamental and harmonic frequency so the waves will travel in phase with each other

and frequency doubling can continue. The index of refraction in the PPKTP crystal

varies with temperature, and this variation is dependent on the wavelength involved.

Thus we achieve the phase-matching condition by controlling the temperature of our

crystal. This in fact sets the limit on what Rydberg levels can be accessed, as extreme

temperatures risk damage of the anti-reflection coating on the crystal or formation

of condensation. More detailed information about frequency doubling theory can be

found in standard textbooks on nonlinear optics [Yariv, 1971].

The optical train for the blue laser entering the atom cloud is shown in Figure

2.5. The system is designed to both allow for a very tight focus of 12 µm and to

easily alternate different configurations. The train is built in a Thorlabs cage system,

providing excellent stability and control. After exiting the fiber with a waist of 3 µm,

the divergence is reduced by a Thorlabs C240TM-A asphere with a focal length of

8.0 mm. In order to attain minimal beamwaist at the atoms, the laser not collimated

by this lens, but instead continues to expand to a beamwaist of 6.2 mm, where it is

then collimated using a Thorlabs AC508-400-A achromatic doublet. After an arbitrary

distance, an identical AC508-400-A then focuses the laser to a beamwaist of 12 µm at
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the atoms. This allows for small excitation volume and high Rabi frequencies.

As an alternative to a small focused beamwaist at the atoms, we have two methods of

exciting the entire atomic cloud. The easiest to switch to from the focused configuration

requires simply intentionally moving the last AC508-400-A achromatic doublet so that

the atoms are not at the focus of the beam, but rather in a divergent portion where

all of the atoms are illuminated. Since this lens is positioned on a translation stage

within the cage system, it is easily adjusted to either position. As an alternative to this

scheme, we can also remove both doublet lenses, and adjust the achromat to collimate

the laser beam exiting the fiber, resulting in a beamwaist of 575 µm. This also allows

excitation of all atoms, but the collimated beam reduces the distribution of k-vectors in

the beam. As we will see in chapter 5, this is an important consideration for four-wave

mixing.

2.3.3 Stimulated Emission Probe

The final laser used in the manipulation of the Rydberg atoms is a 1015 nm laser, which

is often referred to as the stimulated emission probe. The Sacher Tiger laser used is

tuneable from 1013 to 1027 nm, and is able to access all of the Rydberg levels we

create. This laser transfers atoms from the Rydberg state to the 6P3/2 state, enabling

control of the rate at which atoms are removed from the Rydberg state. The Sacher

laser outputs 300 mW of light, which is transported in three different directions after

isolation. A very small amount is used to measure the laser frequency in a wavemeter,

some is used for laser stabilization, and the rest is fiber coupled to the experiment.

The full setup is shown in Figure 2.6. Using this setup up to 90 mW of 1015 nm light

can be delivered to the atoms. Just like the situation for the 960 nm light, there are

no convenient transitions for saturated absorption locking of the 1015 nm laser, and so

again a more complex scheme is necessary. This is fully described in Section 2.4.
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Option 1: Focused Beam

Option 2: Diverging Beam

Option 3: Collimated Beam

Fig. 2.5: This figure shows the three options for the optical train of the 480 nm or 1015 nm

laser. The position of the focusing lens can be varied to either have the focus at the

atoms or have all of the atoms within a diverging beam. In addition, all lenses can

be removed to have a simple collimated beam. The 480 nm laser train does not have

the initial concave lens shown, and instead the collimation lens can be positioned

to allow beam divergence.
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Fig. 2.6: Diagram of the major components of the 1015 nm laser. Light from the diode is

diverted into three beams for locking, wavelength measurement, and the experiment.

The laser is locked to a Fabry-Perot cavity which is in turn locked to the 780 nm

laser.
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The optical train for the stimulated emission probe is nearly identical to that of

the blue laser seen in Fig. 2.5. The main difference is that in this case the laser beam

is collimated after exiting the fiber in all cases by an A397TM-B f=11 mm asphere to

a beamwaist of 825 µm. This adaptation to the scheme allows for faster and easier

transition between the focused beam and the collimated beam. In this case a Thorlabs

ACN254-040-B f=-40 mm lens causes the beam to diverge to a large waist. After this,

f=400 mm achromats are again used to collimate and focus the beam, resulting in a

focused beamwaist of 13 µm. Similar to the 480 nm light, this beamwaist can also be

positioned to allow illumination of the entire atomic cloud. For the stimulated emission

probe, almost all experiments to date have been done with a collimated beam. As the

excitation volume can be controlled using the other two lasers, and this laser has more

power than necessary, there is no need to bring it to a focus for most of our applications.

2.4 Laser Stabilization

Controlling the frequency of the lasers used to create and manipulate the Rydberg

atoms is essential to understanding the important features of Rydberg atoms. Much

of the data that will be discussed in this dissertation requires slowly scanning one

of the Rydberg lasers across resonance. In order for this data to be meaningful, all

laser frequencies must remain stable during the length of a scan, and we must have

a controlled way of adjusting the laser frequencies. In addition, the data collected in

Chapter 8 requires averaging the signal over long periods of time, making it essential

to have a system without any laser frequency drift.

In most atomic experiments, laser frequency stabilization is accomplished by using

Doppler-free FM-spectroscopy and saturated absorption. This technique is well known

and used in a variety of experiments, with a full description given in [Newell, 2003].
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While this technique is very powerful, it relies upon having a ground state transi-

tion near the desired laser frequency. As a result, it is a very convenient technique

for the trapping or repumping lasers as well as the first step in Rydberg excitation.

However, the frequencies of light needed for the second step in Rydberg excitation

and the stimulated emission probe are not conveniently located near transitions, and

this technique cannot be used. Recent work by [Mohapatra et al., 2007] has shown

that Electromagnetically-Induced Transparency (EIT) in room-temperature Rydberg

atoms could provide a convenient frequency standard, but this has not been pursued

by our lab.

Another alternative to a saturated absorption locking scheme that is available at any

frequency is locking to a temperature controlled Fabry-Perot cavity. When the length

of the cavity is a half-integer multiple of the wavelength of the incident laser light, the

light is transmitted through the cavity and detected by a photodiode. Then the laser

is locked to stabilize the transmission through the cavity. In fact, this technique was

originally used to stabilize the lasers used in this experiment. However, problems arise

due to drifts over time in the temperature of the cavity or the pressure inside, which

change the length of the cavity or the index of refraction inside. Either of these can

change the frequency by a few MHz. Even with temperature control of the cavity and

a pressure sealed box, these drifts could not be minimized to better than a MHz per

minute. As a result, further development was required to address this problem.

Our current scheme uses both the ideas of an atomic transition as a completely

stable frequency reference and the frequency flexibility of a Fabry-Perot cavity, sim-

ilar to [Bohlouli-Zanjani et al., 2006]. Instead of relying on having a passively stable

Fabry-Perot cavity that will maintain a constant frequency reference, we actively feed

back to the cavity. This is accomplished by putting a 780 nm laser (that is already

stabilized by a saturated absorption setup) into the cavity as a “control” laser. The
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Fig. 2.7: Diagram showing the dual laser locking scheme. The cavity is stabilized to a 780 nm

“control” laser, and the 960 or 1015 nm “variable” is then stabilized to the cavity.

cavity piezo undergoes feedback to keep the 780 nm light resonant with the cavity,

completely stabilizing the cavity as a frequency reference. At this point, either the

960 nm or 1015 nm light can be used as an additional “variable” laser input to the

cavity, with its polarization orthogonal to the “control” laser so it can be seperated

by a polarizing beamsplitter cube. Feedback to the piezo of the “variable” laser then

optimizes the transmission through the cavity, stabilizing this laser to the cavity. The

complete scheme of locking the cavity to a stable “control” laser, and then locking the

“variable” laser to the cavity is seen in Figure 2.7. Since both the blue laser and stim-

ulated emission probe must be controlled independently, two identical schemes were

constructed using this technique.

There are several complications to this scheme which must be overcome when

putting it into practice. Most of these complexities revolve around the properties

of a Fabry-Perot cavity, which will only be described briefly here. The details can be

found in any standard textbook on lasers and cavities, such as [Svelto, 1998]. For our

purposes it is sufficient to see that the full width at half maximum (FWHM) for the

transmission peak will limit the precision of the lock. The quality of a cavity in terms
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of the distance between transmission peaks (free spectral range (FSR)) compared to

their FWHM is defined as the finesse of the cavity, and is dependent on the reflectivity

of the mirrors used according to Equation 2.2.

F =
π
√

R

1−R
, (2.2)

Thus, in order to achieve a small FWHM for both the “control” and “variable”

lasers, the reflectivity must be excellent at both frequencies. This was achieved by

ordering special made mirrors from Lambda Optics, with reflectivity of better than

97% for both lasers used in the respective cavities. The FSR was chosen to be its

smallest reasonable value at 300 MHz. As a result, we were able to achieve a FWHM

of 5.2 MHz for the 960 nm cavity and 6.0 MHz for the 1015 nm cavity.

In addition to having a stable laser, we also need the laser to be tuneable in order to

find the resonance or scan the laser across it. The easiest way to adjust the frequency of

the “variable” laser is to move a FSR away, resulting in a 300 MHz change in frequency.

However, finer adjustment is available due to the fact that different wavelengths are

used in the cavity. Eq. 2.3 shows that the needed change in length of the cavity to

move a FSR depends upon the wavelength of light used.

∆LFSR =
λ

2
, (2.3)

As a result of this wavelength dependence, moving the cavity length a FSR for the

“control” laser will only move a fraction of a FSR for the “variable” laser. This allows

us to select a different transmission peak for the “control” laser and have the absolute

frequency of the “variable” laser shift by ∼60 MHz due to the difference in wavelength.

This feature allows excellent frequency selection for the “variable” laser, but it is

still necessary to fine tune and scan the frequency. A high-frequency AOM can be used
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to tune the frequency of a laser over a range of ∼150 MHz, and if double passed the

range of tuning can approach 300 MHz. However, most high-frequency AOM’s only

have ∼20% efficiency per pass, and this greatly reduces the power available. Since

power is essential to both the blue laser and stimulated emission probe, we instead

put the double pass AOM on the 780 nm “control” laser, and adjust the frequency

that the cavity is locked to. A computer control adjusts the frequency shift of the

AOM, with which we can continuously scan over 200 MHz. This setup allows the

complete independent control of the frequency of both the blue laser and stimulated

emission probe while simultaneously providing frequency stability within 1 MHz. A

detailed discussion concerning the measurement of these laser linewidths in relation to

the observed transition linewidths is found in Chapter 3.

2.5 Rydberg Detection

Having the tools to create and manipulate ultracold Rydberg atoms, I will now discuss

the means by which we detect the presence and state of these Rydberg atoms. Our

ultimate goals require the manipulation of Rydberg states with optical fields, giving a

motivation to develop a system of detection which also relies upon this optical field.

As a result, we have developed a novel technique of Rydberg atom detection which

has features unavailable in the common detection schemes. Many groups doing Ryd-

berg physics make use of an electric field to ionize the atoms and collect the ions on

a micro-channel plate (MCP)[Walz-Flannigan et al., 2004] [Singer et al., 2005]. Most

noticeably our technique both allows optical manipulation and eliminates the need for

stray electric fields. In addition, the resolution of the system is improved, with the

ability to exactly select single Rydberg levels for detection. Finally, we are also able

to obtain information about the Rydberg atom dynamics, the importance of which we
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will see in Chapter 3.

2.5.1 Loss Rate

The first means by which we detect the presence of Rydberg atoms is by observing

the MOT fluorescence. This fluorescence is emitted isotropically from the MOT, and

part of it collected onto a photodiode with known efficiency after a bandpass filter to

eliminate background. The number of atoms in the MOT is then proportional to the

light collected, and has previously been determined [Newell, 2003] to be

NMOT =
V

A
× ητ

(hc/λ)peeΘ
× [6.1] . (2.4)

where, V is the voltage measured by the photodiode from the fluorescence signal of the

MOT, A = 9.9×106 is the gain of the current-to-voltage converter, η = 2 W/A is the

photodiode detection efficiency at a 780 nm wavelength, τ = 27 ns is the lifetime of the

5P state, pee = ∼ 0.122 is the typical fraction of the MOT atoms in the excited state,

Θ = 0.006 is the fractional solid angle subtended by the photodiode, and the quantity

in the [ ] brackets takes transmission losses from three filters into account.

To determine how the presence of Rydberg atoms effects the number of atoms in

the MOT, we examine the MOT dynamics, given by

dN

dt
= L− (γ1 + γ0)N, (2.5)

where γ0 is the standard loss rate from the MOT (due to background collisions and

laser induced collisions) and γ1 is the additional loss rate due to Rydberg population.

In steady state, this can be solved for γ1 to find

γ1 = γ0(
N0

N
− 1), (2.6)

where N0 is the number of atoms in the MOT without Rydberg atom production. While

this loss rate does not give an exact calibration for the number of Rydberg atoms due to
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an unknown loss rate per atom in the Rydberg state, it does give an effective measure

of the relative Rydberg population. Trap loss is in fact a very sensitive measurement,

and it is easy to observe a 0.1 s−1 change in the loss rate from the MOT. Thus, even

with very low Rydberg excitation rates of 10 s−1, a 1% inelastic or ionization channel

can easily be detected.

2.5.2 Decay Photons

As a second means to gain even more information about the presence of Rydberg

atoms, we collect decay photons from the intermediate 6p3/2 state. If a Rydberg atom

is produced, it will spontaneously decay to the 6p3/2 state with a probability that can

be determined by the frequencies and matrix elements involved. Thus, the observation

of these decay photons at 420 nm is a direct result of Rydberg population.

In order to observe these photons, we use two H7360-01 photon counting modules

from Hamamatsu and a multi-channel scalar card from FAST ComTec. A 5 nm band-

pass filter is placed in front of the photon counting modules which blocks photons

from radiative transitions other than 6p to 5s. While the 6p1/2 to 5s1/2 would also

be transmitted, this transition is forbidden by selection rules when we excite to nd5/2.

Having two counters allows the simultaneous observation of decay photons in multiple

directions, and the FAST ComTec card has an arrival resolution within 100 ns. The

need for these features will be seen in Chapters 5 and 8.

Collecting these decay photons allows for a calibrated measurement of the number

of Rydberg atoms if the branching ratio, decay rate, and collection efficiency are all

precisely known. The most difficult to measure is the quantum efficiency of the photon

counters. To do this, we obtained a source of 420 nm photons using a white light

which we passed through a monochrometer calibrated and aligned to transmit 420 nm

light. We covered the output slit of the monochrometer with a 5 nm spectral width
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420 nm bandpass filter to remove any background light and then recorded the current

produced from the incident 420 nm light on a photodiode with a known current per

unit power at that wavelength. This allowed us to calculate the flux of 420 nm photons

in the beam. By comparing this number to the count rate of the photon counters we

determined their quantum efficiencies to be 5.5% and 5.3%. Combining this fact with

the known solid angles and transmission of the various optics allowed a determination

of the collection efficiency.

Only a small fraction of the Rydberg atoms will decay to the 6P3/2 state, and only

some of these will decay from here to the 5S1/2 ground state resulting in observable 420

nm photons. To understand the branching ratio we must investigate the various decay

rates out of the Rydberg state. Following [Gallagher, 1994], the decay rate An′l′,nl

from a Rydberg state |nl〉 to a lower lying state |n′l′〉 varies with the average oscillator

strength f as follows:

An′l′,nl =
−2e2ω2

n′l′,nl

mc3
fn′l′,nl. (2.7)

where the average oscillator strength fn′l′,nl is defined as

fn′l′,nl =
2

3
ωn′l′,nl

l>
2l + 1

| 〈n′l′| r |nl〉 |2, (2.8)

where l> is the greater of l and l′. Plugging Equation 2.8 into Equation 2.7 reveals a

ω3 dependence of the decay rate on the frequency of the radiated photon. As a result,

transitions to the lowest energy levels will be favored due to their large frequencies.

While these transitions will have a smaller value of the matrix element | 〈n′l′| r |nl〉 |2,
the frequency dependence more than compensates for this reduction, making the ground

state highly favored. These matrix elements must be calculated numerically, with the

reduced matrix element evaluated as (
∫

Pn′l′rPnldr)2, as described in Appendix A

To obtain the branching ratio, this decay rate must be compared to the total decay

rate from the Rydberg state. The total rate will be Anl = 1/τnl where τnl is the lifetime
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of the Rydberg state |nl〉. The lifetime of state |nl〉 is given by,

τnl = τ0(n− δlj)
α, (2.9)

where n is the principal quantum number, δlj is the quantum defect of the state |nlj〉
as calculated by (Li,2003) and (Han,2006), and τ0 and α are parameters dependent

upon atomic species and angular momentum state, as detailed in [Gallagher, 1994].

The branching ratio bn′l′ for the radiative transition from the Rydberg state |nl〉 to

|n′l′〉 is then,

bn′l′ =
An′l′,nl

Anl

. (2.10)

For most of the Rydberg states produced in this dissertation, the branching ratio is

around 0.15 into 6P3/2. The branching ratio from the 6P3/2 to 5S1/2 can be found in a

similar way to be 0.31. It is unlikely that population would make multiple transitions

into the 6P3/2 state, as the long-wavelength photons required for multiple transitions

are not favored.

Using this information and the count rate (C6) of 420 nm decay photons we can

obtain an estimate of the Rydberg atom number Nr:

Nr =
c6P

b6P b5Sη Θ
4π

Ar

(2.11)

where η is the detection efficiency including filters and beamsplitters, and Θ
4π

is the

fractional solid angle.

The situation becomes more complicated as we consider that mechanisms other

than spontaneous decay can transfer atoms from the Rydberg state. However, these

two methods of Rydberg atom detection serve as an excellent diagnostic of the Rydberg

state, especially when combined with the stimulated emission probe, as we will see in

Chapter 3.



30

3. RYDBERG DYNAMICS

3.1 Introduction

In this chapter I will discuss our observations of Rydberg atom dynamics. A great

amount of information about the dynamics of Rydberg atoms can be obtained simply

by observing the populations after excitation. These observations show the important

role of collisional phenomena [Farooqi et al., 2003] [Carroll et al., 2006], including res-

onant [Afrousheh et al., 2004] [Afrousheh et al., 2006] [Bohlouli-Zanjani et al., 2007]

[Vogt et al., 2006] and near-resonant [Li et al., 2005] [Amthor et al., 2007] energy trans-

fer. Since surprisingly fast spontaneous conversion of Rydberg clouds into plasmas at

high densities has been observed [Robinson et al., 2000] [Li et al., 2004] [Li et al., 2005]

[Walz-Flannigan et al., 2004], there is a large amount of interest in understanding the

main processes governing Rydberg dynamics. Our experiments here focus on the novel

regime of relatively low Rydberg densities ( 107 /cm3), with densities several orders of

magnitude lower than those studied elsewhere.

I will begin with a brief discussion of the Rydberg states to which we excite. Our

method of two-photon excitation gives several possibilities for the final state. The

particular characteristics of these states will be discussed, including the rate at which

we are able to excite Rydberg atoms. In addition, there will be a brief explanation of

the important interactions associated with our choice of state. This will be expanded

upon later in Chapter 7.
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Varying the frequency of our excitation lasers allows spectroscopic observation of the

excitation linewidth of the Rydberg state. These linewidths are consistently larger than

expected, which could make successful blockade more difficult. Numerous techniques

have been used to verify the linewidth and attempt to examine the causes of broadening.

Though these transition linewidths are still not well understood, these experiments have

led to a better understanding of the excitation techniques used. These measurements

also give excellent insight into the extent of trap loss during Rydberg excitation.

Next I will illustrate how our novel Rydberg detection technique provides new

insight into the rate of transfer from the Rydberg state. The common method of

Rydberg detection used by other groups (MCP ion detection), is limited to observing

the binding energy of the atoms, and it is complicated to extract dynamic information

from this process. In contrast, since the intensity in our stimulated emission probe

controls the rate of removal from the Rydberg state, it is quite easy to gain information

about competing transfer rates in the system. Using this, our measurements indicate

that the atoms are leaving the Rydberg state faster than would be expected from

spontaneous decay or black-body transfer.

Finally I will discuss a model which we have created to help better understand the

system. This model of the Rydberg population dynamics allows us to quantify the rate

at which atoms leave the Rydberg state, and compare this to various explanations. We

can then use both our experimental data and calculations using this model to make

important conclusions about the possible mechanisms affecting the Rydberg state.

3.2 Rydberg Level Properties

Using the lasers and excitation scheme described in Chapter 2 we can effectively excite

atoms to s and d Rydberg levels from n=28 to n=58. In order to decide which state
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is most beneficial to excite, a number of factors must be considered. Essential to any

blockade experiment is a strong atom-atom interaction. In the absence of an external

field, the atoms have definite parity, and no permanent dipole moment. In this case

the dominant long range interaction is the van der Waals, which normally scales as

n11. As a result, a higher principal quantum number makes a great difference in the

interaction strenth.

Currently the temperature of the frequency doubling crystal (described in Chapter

2) sets a hard limit on the highest Rydberg state that can be reached. However, even

without this, there are several reasons that a lower Rydberg state is desirable. These

result from the fact that the matrix element coupling the 5p3/2 state to the Rydberg

state is strongest for the lowest lying states.

To see the importance of this, we will now examine the rate of excitation to the

Rydberg state. The coupling between two states is often given in terms of the Rabi

frequency, defined by:

ε =
−eE0

h̄
〈e| r |g〉 , (3.1)

which depends critically on the matrix element 〈e| r |g〉. This is solved by using the

Wigner-Eckart theorem to take the angular components into account. The radial com-

ponent of the matrix element can be solved numerically, either by using quantum defect

theory or by generating a pseudo potential that gives the correct energy levels. The

full details of how this Rabi frequency is calculated for our Rydberg levels can be found

in Appendix B. Since we use a two photon transition to the Rydberg state, the two

photon Rabi frequency is:

ε2 =
εrεb

∆
, (3.2)

where εr and εb are the single-photon Rabi frequencies for the 780 nm and 480 nm

lasers, and ∆ is the intermediate state detuning. When the transition linewidth Γw is



33

larger than the excitation Rabi frequency, the effective excitation rate will be reduced

[Stenholm, 1984]. The effective excitation rate is then given by

R2 =
ε2
2

Γw

. (3.3)

As can be seen, the excitation rate varies as the square of the matrix element,

decreasing by an order of magnitude from |28d〉 to |58d〉. In fact, this large variation

has dual significance for our experiment. First, since we are limited in the amount of

power deliverable, the rate of Rydberg atom creation decreases with principal quantum

number. In addition to this, the rate at which the Rydberg atoms return to the 6p

state is also reduced, inhibiting our ability to detect them. As a result of this fact,

many proof of principle experiments or alignments are done at lower principal quantum

number due to excellent signal, while experiments requiring strong interactions are done

at higher principal quantum number.

It is also necessary to mention at this point that the Rydberg state 43d has very

unique properties which often make it of particular interest for excitation. Two atoms

at 43d5/2 + 43d5/2 have nearly identical energy to 41p3/2 + 45f7/2, differing only by

6 MHz. As a result of this near degeneracy, near resonant energy transfer leads to

1
R3 dipole-dipole interactions in the absence of an external field, instead of relying

on 1
R6 van der Waals interactions. The fact that excitation to 43d actually results in

higher interactions than higher principal quantum levels while still having higher matrix

elements makes it an attractive candidate for many experiments. A more detailed

discussion of this effect and consideration of several other methods for increasing the

interaction strength will be discussed in Chapter 7.

Since we excite through the intermediate 5p3/2 state, we have several final Rydberg

states allowed by dipole selection rules: ns1/2, nd3/2 and nd5/2. Exciting to an s state

allows investigation of states where the interatomic forces are weaker, and plasma
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formation is significantly slowed due to the limited coupling to nearby states from the

s levels [Li et al., 2004]. While this is an interesting check on the importance of these

forces, the oscillator strength to the ns1/2 state is typically 10 times weaker than that

to the nd5/2 state, preventing effective excitation at high principal quantum numbers.

Similarly, the oscillator strength to the d3/2 state is 9 times weaker than the d5/2 state,

so almost all excitation in the experiments described here is done to the nd5/2 state. It

is also important to note that for our purposes the hyperfine splitting of the Rydberg

state is negligible [Li et al., 2004].

3.3 Linewidth Studies

Using the methods described in Chapter 2, we have both an effective means of observing

Rydberg state population and precision control of the frequency of the excitation lasers.

This makes it possible to slowly vary the frequency of an excitation laser across the

Rydberg resonance, and observe its transition linewidth. Understanding the linewidth

of the transition is essential to the eventual use of Rydberg atoms in a dipole blockade.

As discussed in Chapter 7, the energy shift caused by the interaction must exceed the

linewidth of the transition to effectively limit subsequent excitation. A minimal tran-

sition linewidth is then desired to make dipole blockade possible at smaller interaction

strengths.

An example of the data taken as the 780 nm beam is scanned across the 28d5/2

resonance is shown in Figure 3.1. As can be seen, the transition linewidth is quite

broad, with 8.4 MHz a typical representation of the linewidths observed. The linewidth

of this transition does not show strong dependence on principal quantum number, and

in all cases is significantly broader than expected. The natural transition linewidth is

6 kHz, and Doppler broadening would only result in ∼200 kHz linewidths. In order to
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Fig. 3.1: Observed trap loss (dashed line) and photon count rate (solid line) as a function of

the 780 nm laser excitation frequency at the 28d Rydberg resonance. The observed

linewidth is significantly larger than expected at 8.4 MHz.

determine if this transition linewidth represented a fundamental physical limit it was

important to investigate possible sources of broadening.

It is possible that either short-term laser linewidth or frequency locking instabilities

would appear as an effective broadening of the transition. The short-term linewidth of

external cavity diode lasers is usually excellent, with several hundred kHz being typical

for integration times of ∼ µs. However, this can depend on proper cavity alignment,

mode selection, and diode quality. In order to measure and characterize the exact

linewidth of the lasers used in our experiment, we have used a modified version of the

self-homodyne technique [Ludvigsen et al., 1998]. In this scheme frequency fluctuations

are measured through the use of a Mach-Zehnder type interferometer, as shown in

Figure 3.2. One branch of the interferometer contains a 1 km optical fiber, which

results in a ∼3 µs delay of the laser light. The other branch contains an acousto-optic

modulator that shifts the frequency up by 80 MHz. After combining the two paths

onto a photodiode, fluctuations in the phase of the laser field are seen as intensity
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Fig. 3.2: Setup for delayed self-heterodyne interferometer. The laser field is combined with a

delayed replica of itself on a fast photodiode. The laser linewidth is deduced from

the interference power spectrum.

fluctuations centered around the AOM frequency, giving a means of observing the laser

linewidth on the µs timescale.

This technique has been shown to be very successful in measuring the linewidth of

our lasers. In fact, the commercial laser originally used in this experiment was deter-

mined to have ∼5 MHz linewidths, and this helped us identify and replace this laser

(960 nm) with the homebuilt system described in Chapter 2. Since that replacement,

we have verified that all of our lasers have linewidths less than 1 MHz over a ∼ µs

timescale. Combined with the various locking mechanisms necessary and taking fre-

quency doubling into account, we calculate that the total width that can be attributed

to laser linewidth is 3.2 MHz. This was determined by examining the dither and locking

stability in Fabry-Perot cavities.

Another possible contribution to our transition linewidth is due to different Zeeman

shifts of the magnetic sublevels in the Rydberg state. Although the MOT is formed

at a magnetic field zero, the gradient of the field is 20 Gauss/cm, and would result

in the atoms at the edge of the cloud being at magnetic fields of ∼1 Gauss. For a

D5/2 level, this would be enough to produce a transition linewidth approaching that
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Fig. 3.3: Observed transition linewidth as a function of the rate of laser frequency ramping.

The linewidth exceeds 6 MHz even for short timescales.

which we observe. However, this possibility was tested by both reducing and pulsing

the confining magnetic field and no reduction in transition linewidth was observed,

indicating this is not the limiting factor for the linewidth. Stray electric fields in the

chamber could also broaden the transition through Stark shifts. However, these Stark

shifts should have a strong dependence on the principal quantum number, resulting in

variation of the transition broadening with principal quantum number. Since this is

not the case, it appears stray electric fields are not the dominant mechanism either.

As a final investigation technique, we developed a means of determining if fast

variation or frequency drift is present in the system. To do this, we applied a frequency

ramp to the 780 nm excitation laser, scanning across the resonance in ∼100µs. In this

case only a few photons are collected as the frequency crosses resonance. However, as

the laser scans back and forth across the resonance, the arrival times of these photons

are correlated. By triggering on a photon (most likely resulting when the laser is on

resonance), and recording subsequent photons, we can measure the transition linewidth
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immune to variations on a timescale faster than the frequency ramping period. This

technique of Intensity Correlation Spectroscopy (ICS) is described in full elsewhere

[Day, 2008], with the results shown in Fig. 3.3. Again, we were unable to observe

transition linewidths under 6 MHz.

After all of our experiments, we are still unable to determine the cause of broad tran-

sition linewidths. However, several other groups [Teo et al., 2003] [Singer et al., 2004]

have seen broad transitions consistent with our results. As a result of the many exper-

imental observations of broad transition linewidths, there has been a recent theoretical

simulation of linewidth broadening in Rydberg gases [Sun and Robicheaux, 2008]. This

simulation examined two key features which could cause transition broadening: Fluc-

tuations in the atomic spacing, and “diffusion” of the excitation pairs across a sample.

Interestingly, it noted that the small number of atom pairs with small separation dis-

tances can make a large impact on the transition linewidth. It was calculated that

the resulting linewidths could be 20-30 times bigger than those calculated assuming

the average interaction strength. For a sample of |43d〉 atoms with a density of 108

/cm3 the average interaction strength would be ∼100 kHz, as discussed in Chapter 7.

Due to pair fluctuations, this could result in transition linewidths as high as 3 MHz, a

significant contribution to the observed value.

However, there are still several features of the linewidths which are still not well

understood. In particular, a noticeable change in the transition linewidth was not

observed at different principal quantum numbers (and hence very different interactions

strengths). While it is possible that the hypothesis of atomic distance fluctuations may

explain some of our results, the full details of our broad transition linewidths are still

not well understood. In all likelihood, this broad linewidth implies that even greater

interaction strength will be needed for the demonstration of a successful blockade.
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3.4 Trap-Loss and Cascade Fluorescence

In addition to gaining information about the transition linewidth, data such as that

shown in Figure 3.1 also gives important information about the rate at which atoms

are lost from the trap. This rate is deduced from the number of atoms remaining in the

MOT as discussed in Section 2.5. In the case shown at 28d5/2, the loss rate induced by

the excitation lasers was 0.2 s−1, a rate much smaller than the 110 s−1 excitation rate.

From this it is possible to infer that a very small percentage of the atoms excited to

the Rydberg state actually leave the trap, in this case only 1:500. This percentage of

atoms that leave the trap has been measured for several different Rydberg levels, with

the results shown in Table 3.1.

There are several different processes which would result in loss from the trap follow-

ing Rydberg excitation. Black-body ionization, photoionization by the applied lasers,

and sufficiently ineslastic collisions between Rydberg atoms and ground-state atoms

would either ionize the atoms or give the atoms sufficient (> 10 K) kinetic energy to

leave the trap permanently even if they radiatively return to the ground state. It can

be seen from Table 3.1 that the trap-loss probabilities are significantly higher at 43d

and 58d as compared to 28d, which could be a result of higher inelastic collisions.

In order to investigate the possibility that inelastic collisions play an important role,

we additionally studied the trap loss from 41d and compared it to 43d. As explained

in Section 3.2, we expect anomalously large van der Waals interactions at 43d, and

hence drastically different collisional properties than at 41d. However, no difference

was found in the trap-loss probability between these two states. Combined with the

very small fraction of atoms lost from the trap after excitation overall, we conclude

that collisions do not cause significant trap loss.

To verify that these conclusions match with theory, we made a simple calculation
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State Fraction Lost Count Ratio

28D 1 : 500 .55

43D 1 : 50 .6

58D 1 : 50 .6

30S 1 : 1000 .5

Tab. 3.1: Both the fraction of excited atoms that are lost from the trap and the ratio of

observed to expected cascade counts are shown for various Rydberg levels. The

small fraction of atoms lost from the trap following excitation indicate that collisions

do not play a major role. However, the small fraction of observed to expected

cascade counts indicates that some other transfer process removes atoms from the

Rydberg state.

of the inelastic collision rate. The inelastic collision rate should be a capture rate

multiplied by a probability of energy transfer. The capture rate will depend on the

collisional cross section, given by:

σ = πR2
0 (3.4)

where

R6
0 =

C6

kT
. (3.5)

The capture rate is then the Rydberg atom flux, ηv, times the cross section σ. For the

43d state at our typical Rydberg density of η=107 cm−3, we calculate a capture rate

of 200 s−1. The inelastic collision rate is further reduced by the probability of energy

transfer. For states such as 43d the van der Waals interactions are repulsive at long

range. Since there are no thermally accessible curve crossings we expect the rate to

be suppressed by at least a Boltzmann factor e−∆E/kT , which is a minimum of ∼10−2

at 43d. Thus, we expect no more than a 2 s−1 inellastic collision rate, in agreement

with the data suggesting these collisions are not a major factor in the dynamics of the
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system. Instead, the loss from the trap is dominated almost exclusively by black-body

ionization, and this only affects a very small fraction of the atoms excited. This will

be explained more fully after the introduction of a model to our data in Chapter 4.

Since the atoms rarely leave the trap due to Rydberg-Rydberg collisions or ion-

ization, they must primarily return to the ground state via emission of one or more

photons. As explained in Section 2.5, we have an excellent complimentary method to

trap-loss observation in the detection of cascade 420 nm decay photons. Looking at

fig. 3.1, the cascade signal has a background of 250 s−1, mainly from dark counts, and

reaches a peak signal of about 10,000 s−1. In order to gain a better understanding of

the dynamics of the Rydberg atoms, we can compare these observed rates with the

expected rates. In Equation 2.11 we developed a means of determining the number of

Rydberg atoms from the cascade rate. In equilibrium conditions, this number should

also be equal to the rate of Rydberg creation divided by the rate of Rydberg loss. If we

assume only spontaneous emission and black-body radiation, the number of Rydberg

atoms can be written as:

Nr =
R2Ng

Ar + Abb

(3.6)

where R2Ng represents the rate of excitation of Rydberg atoms, Ar the spontaneous

decay rate, and Abb the rate of black-body radiation causing transitions to nearby

Rydberg states.

It is assumed that only decay that goes directly to the 6p level will be seen by our

detection system. To see why this is, we can examine the probability of a multi-step

decay into the 6p. As a result of the ω3 dependence of the decay rate, long wavelength

transitions are disfavored, and p and f Rydberg states primarily decay to states lying

below the 6p level: 5s, 6s, and 4d. Even if decay does occur into a state above 6p,

the dominant decay channel is then again to states below the 6p. Thus the cascade
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fluorescence is a reliable measurement of the s or d Rydberg populations, and insensitive

to p or f populations. Since the first black-body transition would take the atoms to

states that cannot be observed by our system, these will not result in detected cascade

photons.

Using this assumption that only spontaneous decay and black-body radiation re-

move atoms from the Rydberg state, we can then combine eqns. 2.11 and 3.6 to predict

the total detected photons.

Co = R2Ngb6P b5Sη
Θ

4π

Ar

Ar + Abb

(3.7)

For the data shown in Figure 3.1, this would predict 18,000 ± 4,000 s−1, while only

10,000 s−1 are observed, 55% of this rate. While not a conclusive measurement, this

suggests that our assumption that the only mechanisms responsible for atom transfer

are spontaneous decay and black-body radiation may be false. Instead, it is possible

that up to 50% of the Rydberg atoms are being transferred out of the excitation

state by some other process. This ratio of expected-to-detected cascade counts was

also calculated for the other excitation states. All these results are similar, as shown

in Table 3.1. By the arguments given earlier, the explanation cannot be inelastic

Rydberg-Rydberg collisions. Thus it appears possible that there is a mechanism for

population transfer which does not result in trap-loss. In order to investigate this

idea more thoroughly, in the next section I will introduce our final tool for Rydberg

detection.

3.5 Stimulated Emission Probe

Since the evolution of the Rydberg state is of central importance to dipole block-

ade experiments, there is great benefit to obtaining a better understanding of the

mechanisms for possible population transfer in this state. In addition, the particular
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application of dipole blockade to single-atom and single-photon sources discussed in

[Saffman and Walker, 2002] uses stimulated emission to couple the blockaded Rydberg

state to an intermediate atomic level. Thus it is natural to pursue the development

of a stimulated emission probe of Rydberg dynamics. As described in Sec. 2.3.3, we

apply a tuneable diode laser to perform stimulated emission from the Rydberg state

to the 6p3/2 state.

The maximum attainable stimulated emission rate out of the Rydberg state varies

from 5× 105 to 5× 106 s−1, depending on the principal quantum number. This rate is

significantly faster than the spontaneous or black-body radiation rates, which are on

the order of 1 × 104 s−1. The natural decay of the 6p3/2 level of 9.2 × 106 s−1 is fast

enough that population cannot accumulate there. While being less general than field

ionization, this technique does have the potential to be applied to a number of different

states, provided that the transition is allowed by dipole selection rules. In addition, the

probe is nondestructive in that it returns the atoms to the ground state without loss,

and has inherently high spectral resolution. Most importantly for our purposes here,

the intensity dependence of the signals produced by the stimulated emission probe give

additional information about the population dynamics of the Rydberg states.

When the stimulated emission probe is on resonance with the Rydberg state, two

important effects can be seen. First, the rate of 420 nm photon detection increases

greatly since the atoms are returned to the 6P3/2 state much more quickly than by only

spontaneous emission. The second important effect is a reduction in the amount of trap

loss. Quick removal of atoms from the Rydberg state reduces the trap loss as atoms

do not stay excited long enough for ionization or collisions to remove them from the

trap. Keeping the excitation beams on resonance with the two-photon excitation, we

can scan the frequency of the stimulated emission probe to observe the 6P3/2 hyperfine

manifold. Such a scan is shown in Figure 3.4.
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Fig. 3.4: Observed trap loss (dashed line) and photon count rate (solid line) as a function

of stimulated emission probe frequency across the 28d-6p3/2 manifold. The back-

ground cascade count rate is around 1000/s. The decreased trap loss rates which

are coincident with 6p-hyperfine-manifold resonances imply that the atoms do not

spend enough time in the Rydberg state to undergo loss when the probe beam is on

resonance with the 6p state.
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One method of measuring the effect of the state probe laser is by detecting the rate

of 6p3/2 decay photons as a function of the stimulated emission rate from the Rydberg

state. An example of the count rate data, scaled by the number of ground state

atoms, is shown in Figure 3.5 for 28d. This figure demonstrates that for sufficiently

high stimulated emission rates the count rate can be saturated, implying that the rate

of stimulated emission has overcome any competing mechanisms which remove the

population to states other than 6p3/2. Surprisingly, the necessary stimulated emission

rates are much higher than expected, with the counts saturating at 1×105 s−1 for 28d.

This allows us to make an estimate of the rate at which population is transferred out of

the Rydberg state, γ. If the only population transfer mechanisms competing with the

stimulated emission were spontaneous decay or black-body transfer (rates of 4 × 104

s−1 and 2× 104 s−1, respectively) [Gallagher, 1994], this transfer rate would be much

slower. Instead, our measurements imply an effective 28d lifetime of ∼7 µs.

As an additional measure of the tranfer rates, we can similarly observe the reduction

in trap-loss as a function of stimulated emission rate, as seen in Figure 3.6. Again, the

figure demonstrates that by using sufficient stimulated-emission probe intensity the

atoms can be removed from the Rydberg state before the dominant loss mechanism

removes them from the trap. This process thus reduces the total loss rate of the MOT.

As with the data obtained from the count rate, we again see a faster than expected

loss from the Rydberg state, with the population transfer being about 1.3× 105 s−1.

As can be seen from Fig. 3.6, there is a non-zero loss rate at high probe intensities

where the stimulated emission laser should fully deplete the original excitation state.

There are several possible explanations for this. If there were a loss mechanism that was

being enhanced by the stimulated emission probe, this would produce such a behavior.

However, processes such as photoionization caused by the stimulated emission probe

or light-induced 6p-5s collisions can be estimated to be far too weak to account for this



46

500x10
-6

400

300

200

100

0

C
o
u
n
ts

/G
ro

u
n
d
 S

ta
te

 A
to

m
s

2.0x10
6

1.51.00.50.0

Stimulated Emission Rate (1/s)

Fig. 3.5: Dependence of 6P3/2 decay counts on stimulated emission probe intensity for the

28D state, showing short residence times for the Rydberg state produced by two-

photon excitation. The line is a fit to Eq. 3.13 as explained in Section 3.6. For this

data γ = 1.2± 0.4× 105/s.

effect.

Another possibility has to do with Zeeman precession in the nD states causing pop-

ulation to accumulate in inaccessible magnetic sublevels. The magnetic field gradient

used to confine the MOT atoms sets up a magnetic field of 1 G at the edges of the

MOT, enough that precession between magnetic sublevels of the Rydberg atoms at

the edges of the MOT occurs at a rate of several MHz, which is on the order of the

stimulated emission rate. This rate of precession can be estimated by considering the

strength of the Zeeman shift on the atoms of 2.8 MHz/Gauss. The rate of precession

ωB for a particular atom is then proportional to the magnetic field strength at the

position of the atom multiplied by the Zeeman energy level shift. This means that for

atoms on the edge of the MOT, ωb ∼ 1 G ×2π× (2.8× 106 Hz/G) = 1.8×107 s−1. The

result of this precession is that a fraction of the atoms (up to 1/3) move to a state that
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Fig. 3.6: Loss rate dependence on stimulated emission probe intensity for the 28D state. High

probe intensities cause a reduction in the trap loss rate. The line is a fit to Eq. 3.12

as explained in Section 3.6. For this data γ = 1.3 ± 0.7 × 105/s, which is in close

agreement with the result in Fig. 3.5 and serves as a check on the consistency of

the model.

is inaccessible to the state-probe laser because of the dipole selection rules determined

by the polarization of the state-probe laser. Linearly polarized state-probe light, for

example, cannot transfer mJ = ±5/2 Zeeman levels from an nd5/2 Rydberg state to

the 6p3/2 state. This is because the 6p3/2 state contains only mJ = ±3/2,±1/2 states

and dipole selection rules require that ∆mJ = 0 for transitions induced by linearly

polarized light. Thus population that accumulates in these levels cannot be de-excited

by the state-probe laser.

This effect was verified by repeating the experiment with the MOT magnetic field

being switched off for 10 ms intervals and only switching on the Rydberg excitation

lasers during the times the field was off. This data, shown in Fig. 3.7 for n = 28 shows

that Rydberg populations at high state probe intensities are markedly reduced as com-
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Fig. 3.7: Loss rate dependence on stimulated emission probe intensity with the MOT mag-

netic field switched off during excitation. The line is a fit to Eq. 3.12 as explained in

Section 3.6. The data implies that the loss rate goes to zero at high probe intensities

under these conditions.

pared to when the magnetic field is on. The reduced signal-to-noise for this experiment

made it possible to do this only for n = 28, but this verified our understanding of the

transfer rate measurements.

As an additional means of verifying that a transfer rate besides black-body radiation

was occurring, we investigated the dependence of the transfer rate on excitation rate.

The results are shown in Fig. 3.8, and shows that there is a dependence of the transfer

rate on excitation rate. Thus it appears that the rate of transfer out of the Rydberg

state depends on the population of that state. This confirms that some transfer process

besides back-body radiation is occurring.

Studies of the dependence of the trap-loss and decay photons as a function of

stimulated emission rate was done at 28D, 43D, 58D, and 30S. In all cases, the data

implied that the population is being transferred out of the initial Rydberg state faster
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Fig. 3.8: Dependence of the measured Rydberg state transfer rate, γ(loss), on the excitation

rate for the 28D state. The increase of the transfer rate with increasing excitation

rate suggests the transfer rate depends on the population in the Rydberg state.

Thus, black-body transfer is not the cause of the state transfer out of the excitation

Rydberg state. The dotted line represents the rate of transfer due to black-body

radiation (2.6×104 s−1), which should be the transfer rate in the limit of small

Rydberg populations.

than can be accounted for by spontaneous decay and black-body radiation. In order to

obtain quantitative detail about this transfer rate, we developed a model of the system.

3.6 Model of Rydberg Population Dynamics

In the preceding section, we observed that transfer from the Rydberg state happened on

a faster timescale than expected. In order to obtain a more quantitative understanding

of the dynamics, it was necessary to develop a model of the system. In this section

I will describe our simplified model of Rydberg dynamics, and how it can be used to

extract the important parameters of transfer rate and loss rate from the data.
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The processes included in the model are illustrated in Fig. 3.9. We describe the

system with a three state model: A ground state |g〉 with Ng atoms, the excitation

Rydberg state |r〉 with Nr atoms, and an additional effective Rydberg state |s〉 that

accounts for other states that are populated from state |r〉.
The dynamics of the excitation state |r〉 depend on laser excitation and de-excitation,

spontaneous and black-body radiation, and transfer to the other Rydberg states |s〉.
Population enters |r〉 by excitation from the ground state at a rate R2Ng where R2 is

the effective excitation rate calculated as described in Section 3.2. Spontaneous decay

to low-lying levels occurs at a rate ArNr. Black-body radiation and other potential

processes that transfer atoms to other Rydberg states occur at a rate γNr. There is

also the possibility of trap loss (through ionization, for example) at a rate Γr directly

from state |r〉. Finally, de-excitation from the state-probe laser occurs at a rate R3Nr.

Thus

dNr

dt
= R2Ng − ArNr −R3Nr − γNr − ΓrNr (3.8)

is the rate equation for the excitation state population.

The other Rydberg states are produced by collisional or radiative transfer from

state |r〉 at the rate γNr and have an effective radiative lifetime As. If an atom in

one of these Rydberg states represented by the state |s〉 is transferred to a different

Rydberg state (also represented by |s〉), for the purposes of the model this atom will

have remained in state |s〉. We also assume that these states can cause trap loss at a

rate Γs due to black-body ionization and other collisional processes. Thus they obey

dNs

dt
= γNr − ΓsNs − AsNs (3.9)

We are assuming that transfer from |s〉 back to |r〉 is unlikely.

In addition to the radiative de-excitation and excitation processes with the Rydberg

levels, the ground state population Ng is affected by MOT loading (L) and loss (Γ0)
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Fig. 3.9: Diagram of the simplified model of Rydberg population dynamics used to extract

the parameters for transfer rate and trap loss rate.

processes (as discussed in Section 2.5.1) that we assume are not materially changed

when the Rydberg excitation lasers are on. The resulting rate equation for the ground

state population is

dNg

dt
= L− Γ0Ng −R2Ng + (Ar + R3)Nr + AsNs. (3.10)

We now wish to determine the loss rate Γ from this model in order to compare with

our experimental observations. Since the Rydberg populations adiabatically follow the

slowly-varying ground-state population, we may plug in the steady-state solutions to

Eqs. 3.8 and 3.9 to get

dNg

dt
= L− Γ0Ng − ΓNg. (3.11)

The loss-rate from the trap is increased by an amount

Γ ≈ R2γ

Ar + R3 + γ

[
Γs

As

+
Γr

γ

]
, (3.12)
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where the ≈ sign is due to the assumption that all of the atoms that decay from the

|s〉 state will eventually return to the trap. Since our observed trap loss rates are much

smaller than our excitation rates, this is a decent approximation. The loss rate here is

a product of two factors. The first essentially measures the excitation rate of Rydberg

atoms, modified by the de-excitation due to the state-probe laser. The second factor

is the probability that the excited Rydberg atoms experience trap loss as opposed to

radiatively decaying back to the ground state. Eq. 3.12 is used to determine the

transfer rate γ and the trap loss Γs. An example of the data and fit for 28D is shown

in Fig. 3.6.

In addition to predicting the increase in trap loss, the model similarly predicts the

count rate of 420 nm photons produced by the state-probe laser:

I3

Ng

=
R3R2Θηb6P b5S/4π

Ar + R3 + γ
(3.13)

Thus the state-probe-induced 420 nm count rate can also be used to determine the

transfer rate γ, with the data and fit for 28D shown in Fig. 3.5.

The results of fitting our experimental data to this model are summarized in Ta-

ble 3.2. We list there the deduced values of the transfer rate γ using both the trap

loss and photon count rates. The extracted values for γ agree quite well, which is an

important internal consistency check and further bolsters the credibility of the model.

Also included are the input parameters Ar and As. The calculation of Ar is straight-

forward, however we must assume something about the distribution of atoms in our

other Rydberg states |s〉 to produce a value for As. We calculated this distribution of

states using the method described in Chapter 4, and used a value for As equal to the

average of this state distribution.

In addition to the transfer rates, the deduced trap-loss rate Γs and the calculated

black-body loss rate Γs calc are also included in 3.2. The deduced trap-loss rates, Γs,
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State γ(counts) γ(loss) ABB Ar As Γs Γs calc

28D 1.2×105 1.3×105 2.6×104 4.1× 104 3.1× 104 265 325

43D 7.4×104 7.2×104 1.1×104 1.1×104 2.0× 104 602 877

58D 2.6×104 2.0×104 6.1×103 4.8×103 7.4× 103 433 548

30S 3.9×105 5.0×105 2.3×104 4.4×104 3.3× 104 83 266

Tab. 3.2: A summary of the information involved in Rydberg population dynamics. The

transfer rate γ using both count rate and loss rate methods is given, along with the

black-body transfer rate ABB, spontaneous emission rate Ar, and the estimated

mean spontaneous emission rate As from other Rydberg states. The deduced trap

loss rate Γs is shown along with the calculated black-body loss rate Γs calc are also

shown. All rates are in units of s−1.

are quite modest for the data, with typical rates of order 400 s−1 on a per Rydberg

atom basis. In fact, this is quite close to what would be expected from black-body

ionization. The black-body ionization rates were recently calculated for s, p, and d

Rydberg states in Rubidium by [Beterov et al. (2007)], and additional private commu-

nication gave further information of f states. In order to compare our deduced loss

rate with these calculations, it was again necessary to have a better understanding of

the final distribution of population among various Rydberg states |s〉, as there is a

strong dependence of the ionization rate on the angular momentum of the state. Again

assuming the distribution of states |s〉 calculated as described in Chapter 4, and assum-

ing black-body ionization, we calculated the expected trap-loss rate Γs calc. For the d

states, there is reasonable agreement between our deduced experimental rates and the

theoretical calculation. This suggests that black-body ionization probably composes a

large portion of the total loss from the trap. For the s state, the calculated loss rate

is greater than our experimental observation by a factor of 3, for which we have no
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explanation.

3.7 Conclusion

The combination of the information that can be obtained by trap-loss observations,

detection of 420 nm decay photons, and the application of a stimulated emission probe

provides an excellent means of understanding the Rydberg state dynamics. Using the

evidence obtained using these tools, we are able to make several important conclusions

about the population dynamics in the Rydberg states. The primary results then are

these:

• The atoms transfer out of the excitation Rydberg state at a rate γ that is sub-

stantially faster than spontaneous decay or black-body transfer rates.

• The mechanism for population transfer, to an excellent approximation, does not

directly cause trap loss.

• The rate for population transfer depends upon the population of the Rydberg

state.

• The population transfer rate decreases slowly with increasing principal quantum

number, as opposed to the expected rapid increase if near-resonant energy transfer

collisions were the relevant mechanism.

• The probability of trap loss is very small; most Rydberg excitations result in

radiative repopulation of the ground state without trap loss.

These conclusions are consistent with our experimental data and simplified analysis,

and give insight into the probable transfer mechanism. One possibility that fits the
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conclusions drawn here is superradiant emission from the Rydberg state. An in depth

study of this possibility will be pursued in the next chapter.
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4. SUPERRADIANCE

4.1 Introduction

In Chapter 3 I discussed our observations of fast transfer of Rydberg populations. In

considering the features of the mechanism for this transfer, it appears that a radiant

transition is occuring on a timescale faster than spontaneous or black-body radiation

could occur. Recently, [Wang et al., 2007] observed superradiant transfer of atomic

populations in Rydberg atoms. In this chapter, I will build on these observations,

arguing that the evidence strongly suggests superradiance to be the transfer mechanism

for our atoms.

I will begin with an introduction to the basic principles of superradiance as devel-

oped by [Dicke, 1954]. Since the Rydberg level energy spacing is so small, cooperative

effects can become important in this regime. A simplified calculation can be used to

show that the superradiant decay rate will be on the order of the transfer rates seen in

Chapter 3.

To advance our understanding of the exact effects of superradiance and compare

them to our experiment, I have developed a simulation of superradiance in Rydberg

states. In Section 4.3 I will describe the workings of this model. A sophisticated and

complete theory was developed by [Yelin et al., 2005], but the complexity of this theory

made it difficult to apply to our experimental results. To obtain a better understanding

of our results, I expand upon the theory developed by [Gross and Haroche, 1982] to
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calculate the decay rate into nearby states. Since our system consists of a very large

number of possible transitions, the model is expanded to include all Rydberg levels

until further additions do not affect the final result.

It was important to verify that this model correctly reproduces the major features

of superradiance. The initial inversion, maximum rate of transfer, and timescale of

radiation were all tested and reproduced the key features expected. As an additional

test, we have simulated the result of the experiment in ref. [Gounand et al., 1979]

(which was performed at very low lying Rydberg states) and our model reproduces the

features of the data shown there.

Finally, I will discuss how this model simulates the results of our experiments. It

can be used to extract an expected value for the transfer rate, as well as the resulting

distribution of resulting Rydberg states. Typically these simulations result in an ex-

pected transfer rate of 2×105 s−1. Although there are no adjustable parameters in the

model, it naturally predicts Rydberg-Rydberg transfer rates on the order seen in our

experimental data, indicating that this is likely the transfer mechanism observed.

4.2 Superradiance Theory

The possible importance of coherence in spontaneous radiation processes was first

demonstrated by Dicke in 1954. Since that time excellent summaries have been com-

piled [Rehler and Eberly, 1971], and more complicated models of this theory developed

[Yelin et al., 2005], but much can still be learned from the basic principles.

The most simple discussion of supperradiance begins with the assumption that

the spatial dimension of a sample is small compared with the wavelength of emitted

radiation. If this is true, there are several important effects upon the sample. The

individual atoms in an atomic cloud of N atoms for example, would be indistinguishable
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by this emitted light. Thus, instead of behaving as individual dipoles, the system can

be considered a single quantum mechanical system. Once put into an excited state, the

system would evolve in a state that is invariant to atom permutation. This evolution

results in strong correlations between the atomic dipoles, or a spontaneous phase-

locking of the dipoles. A global radiating dipole proportional to N develops as a result,

such that the radiated intensity is proportional to N2.

The reasons why our sample of Rydberg atoms fulfills the conditions for superra-

diance can be seen from simple arguments. The size of our atomic cloud is on the

order of ∼1 mm. For the atomic transitions discussed previously in the production and

manipulation of Rydberg atoms, the wavelengths are on the order of 1 µm. These tran-

sitions clearly have a wavelength much smaller than the spatial extent of the sample,

and would not be enhanced by superradiance, as expected.

However, it is important to consider the close spacing of the Rydberg energy levels.

For example, the transition from 58D to 59P has a wavelength of 2.8 cm. This transition

then clearly falls in the regime where the sample is small compared to the transition

wavelength. Although this transition has a very low spontaneous decay rate due to the

small frequency involved, superradiant transfer will then occur on this transition. The

emission rate will be proportional to N2, or enhanced by a factor of N on a per-atom

basis. If further complications of superradiant emission are ignored, the superradiant

decay rate will be on the order of

2ω3Nd2

3h̄c3
∼ 4Nα3Ry

3n5h̄
. (4.1)

For our experiment, with N = 104 n = 50 Rydberg atoms, this is equal to 3×105 s−1.

The low spontaneous decay rate is compensated for by the large number of cooperatively

radiating atoms. Since this expected superradiant decay rate is very similar to the
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transfer rates seen in Chapter 3, it seems like this is an excellent candidate for the

transfer mechanism observed.

4.3 Rydberg Superradiance Simulation

In order to further explore the possibility of superradiant transfer, there was a need

for a more detailed model of how superradiance would occur in Rydberg states. In the

development of Equation 4.1, a very simplistic view of superradiance was given. Though

the general principle of superradiance appears with relative simplicity, it remains an

active theoretical area due to underlying complexity.

There are several complex aspects of superradiance which we have ignored up un-

til now. First, superradiance has a sharp dependence on the transition wavelength

in the regime where this wavelength is on the order of the confinement size. Second,

the introduction of multiple channels of superradiant decay could result in competi-

tion or interference between nearby energy levels. Third, superradiant light propagates

through an inverted medium, and exhibits strong nonlinear propagation and diffrac-

tion characteristics which can compete against the interatomic correlation. Finally,

we have ignored atom-atom interactions, and in particular the competition between

superradiance and dipole-dipole dephasing.

Taking all of these aspects into a model of superradiance poses a significant theo-

retical challenge and demands large numerical computational power. There have been

several attempts to understand superradiance at this level of complexity, including

the recent model created for superradiance in Rydberg states [Yelin et al., 2005]. Un-

fortunately, the level of complexity necessary in these attempts can inhibit the easy

extraction of simple parameters.

As an alternative to this complex modeling, we have developed a simplified version
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which still includes the basic properties of superradiance. Here we allow for transitions

to all nearby Rydberg states, and also incorporate the importance of the relative size

of the wavelength. Clearly this will not result in exact solutions, but it does allow an

excellent test of the experimental observations.

The model is expanded upon that developed by [Gross and Haroche, 1982] which

considers superradiant decay of an initial state |e〉 to a lower energy state |l〉. In this

case, as in Dicke’s original work, the effective collective spin state of the system is

defined as |JM〉, with Ne = J + M atoms in the state |e〉 and Nl = J −M atoms in

the state |l〉. The radiation rate is then γel(J(J + 1) −M(M − 1)) = γelNe(Nl + 1),

where γel is the spontaneous radiation rate from |e〉 to |l〉.
To generalize this two-level model to our system requires expansion of this general

rate equation to incorporate all possible superradiant decay channels both into and out

of a particular state |e〉. This results in a set of rate equations

dNe

dt
= −∑

l<e

γelNe(Nl + 1) +
∑

l′>e

γl′eNl′(Ne + 1). (4.2)

To fully simulate superradiance in the Rydberg levels, we must incorporate all levels

below the excitation state that population could eventually transfer into. In addition,

we must take into account the other known processes which will also play an important

role in population transfer, particularly spontaneous decay to the ground states (An),

black-body radiation (Abb), and stimulated emission from the Rydberg State Probe

(R3). Because of the abundance of possible superradiant channels, especially at high

principle quantum number, this can become complicated quite quickly. An example

showing the equations to be solved for the case of excitation to 28d can be seen below

in Equations 4.4 - 4.8:
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dNg

dt
= L− Γ0Ng −R2Ng + R3N28d

+A28dN28d + A29pN29p + A26fN26f + A29sN29s + A27dN27d (4.3)

dN28d

dt
= R2Ng −R3N28d − A28dN28d − AbbN28d +

Abb

5
(N29p + N26f )

−γ28d 29pN28dN29p+1 − γ28d 26fN28dN26f+1 (4.4)

dN29p

dt
= −A29pN29p − AbbN29p +

Abb

5
(N28d + N29s + N27d)

+γ28d 29pN28dN29p+1 − γ29p 29sN29pN29s+1 − γ29p 27dN29pN27d+1 (4.5)

dN26f

dt
= −A26fN26f − AbbN26f +

Abb

5
(N28d + N27d)

+γ28d 26fN28dN26f+1 − γ26f 27dN26fN27d+1 (4.6)

dN27d

dt
= −A27dN27d − AbbN27d +

Abb

5
(N29p + N26f )

+γ29p 27dN29pN27d+1 + γ26f 27dN26fN27d+1 (4.7)

dN29s

dt
= −A29sN29s − AbbN29s + γ29p 29sN29pN29s+1 +

Abb

5
N29p (4.8)

Here, for simplicity of view, only five Rydberg levels are included. So far we have

not discussed the extent to which superradiant transfer continues and how many levels

are necessary to include in any simulation. The exact extent to which collective be-

havior occurs for wavelengths near the size of the MOT requires careful examination,

as superradiance will begin to occur at a reduced rate as wavelengths decrease. This

is taken into account by the introduction of a cooperativity parameter Cel, which can

reduce the effective spontaneous decay rate for small wavelengths. The cooperative

decay rates used in eqs. 4.4 - 4.8 are then the spontaneous emission rate multiplied by

a cooperativity parameter Cel,

γel = Cel
2e2ω3

el

mc3

(2Jl + 1)

(2Je + 1)
fel (4.9)

where the fel are the calculated absorption oscillator strengths. Following Ref.

[Rehler and Eberly, 1971], the cooperativity parameter for a uniform density system of
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Fig. 4.1: Variation of the cooperativity parameter with wavelength. The parameter is effec-

tively zero for wavelengths much smaller than the MOT size, and unity for wave-

lengths much greater.

N atoms in a volume V radiating in direction k̂ is (in the N À 1 limit)

Cel =
1

V 2

∫
d3x

∫
d3x

′
ei(~k−~k1)·(~x−~x

′
) (4.10)

=
9(sin(kelR)− kelR cos(kelR))2

(kelR)6
, (4.11)

for a spherical uniform density cloud, where kR is the product of the wavenumber and

the radius of the atomic sample. The cooperativity parameter is 1 for R ¿ λ and

decreases to 0 for R À λ. Figure 4.1 shows how the cooperativity parameter Cel varies

with the transition wavelength for atoms in the MOT.

The wavelength of the transition to the nearest lower lying Rydberg state varies from

2.8 cm for the 58D-59P to 0.17 cm for 30S-29P transition. As a result, superradiance

is reduced at lower wavelengths, serving to balance the very strong n−5 dependence

expected from eq. 4.1 and make the relative effects of superradiance and spontaneous

decay approximately constant for the Rydberg levels used in our experiments. Though

reduced by the cooperativity parameter, at least one superradiant channel would occur
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down to n∼21, and all states until this point should be included for fullness. However,

at each lower level along the descent of Rydberg states, superradiance again competes

with spontaneous emission and black-body decay.

In order to solve the series of differential equations and determine how many levels

are necessary to include, I have written a program in Igor which numerically integrates

these equations and displays the population in the various states as a function of time

following excitation. To determine the number of Rydberg states necessary to include, I

have simply continued adding states until further additions did not appreciably change

the steady-state population in the original excitation state. In general, this requires

approximately eight Rydberg levels included in the simulation.

4.4 Tests of the Simulation

Before attempting to draw conclusions about the Rydberg state dynamics, it was nec-

essary to verify that the simulation is working as expected. These comparisons are

made slightly more complex due to the fact that we are the first group to consider su-

perradiance in a steady-state scenario. Both previous theory development and previous

experiments have been done studying the decay following a brief excitation pulse.

Thus, in order compare our simulation with these expectations, we slightly adjusted

the program. Instead of having continuous excitation from the ground state, the exci-

tation laser was removed from the simulation, and instead the simulation began with

a given population in the uppermost Rydberg state. The results of this simulation did

in fact reproduce the key features of superradiance. The large initial Rydberg popu-

lation radiates at the natural emission rate Γel at first, then gradually accelerates to

a maximum rate NΓel/4. The time at which this emission rate maximum occurs at

depends upon the number of atoms initially in the Rydberg state, occuring at a time
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Fig. 4.2: Model simulation of the experiment by Gounand et al., [Gounand et al., 1979]. In

the experiment, Rb atoms were excited to the 12s Rydberg level and superradiant

cascade to lower levels was observed. Our model predicts superradiant population

transfer on timescales similar to Fig. 2 in the reference.

(ln N)/(ΓelN), much faster than 1/Γel. Thus, all of the main properties of superradi-

ance [Rehler and Eberly, 1971] are correctly simulated.

As a further test for the program, we simulated the experiment performed by

[Gounand et al., 1979]. In the first experimental observation of superradiance, Gounand

et. al. excited atoms to the 12S state of Rubidium, and observed fluorescent decay from

the various levels with a grating monochromator. While this experiment was done with

hot atoms at very high densities and low principal quantum numbers, it can still pro-

vide a good test of our simulation. The result of our simulation is shown in fig. 4.2.

Although the absence of several experimental parameters made it impossible to exactly

simulate their conditions, the dominant features of the experiment are reproduced cor-

rectly. The decay from the 12S state occurs on the order of 5 ns, with population

cascading through the 11P and 9D state before accumulating in the 7F state.

The fact that our simulation correctly generates the key features of superradiance
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Fig. 4.3: The simulation results for excitation to the 28d Rydberg state. Fast superradiant

transfer to lower states can be seen, resulting in large equilibrium populations in

lower lying P and S states.

and duplicates the results seen experimentally gives strong evidence for its validity.

When moving forward to the steady-state conditions used in our experiment, there are

no direct known comparisons. Despite this, the resulting population dynamics reveal

population buildup followed by radiation at an enhanced rate, and minor population os-

cillations resulting. All of these features agree with the superradiant picture, indicating

the program is running successfully.

4.5 Simulation Results and Discussion

With confidence that the program is correctly simulating the known aspects of super-

radiant decay, we can simulate the various Rydberg excitations performed in Chapter

3. The results of this simulation for 28d are shown in Fig. 4.3, and for 58d in Fig. 4.4.

The simulation gives a prediction for the steady state population in the Rydberg

levels near the excitation state. For the case of excitation to 30s and 28d the majority
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Fig. 4.4: The simulation results for excitation to the 58d Rydberg state. Fast superradiant

transfer to lower states can be seen, resulting in large equilibrium populations in
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of population cascades through p and s states, while the 43d and 58d the majority

of population cascades through d and f states. The population distributions obtained

from the simulations were used to determine the effective As and Γs calc as described

in Section 3.6.

To understand the population distributions, we must consider the balance between

the natural decay rate and the cooperativity parameter. The natural decay rate from

|nd〉 to |nf〉 is faster than that from |nd〉 to |np〉 due to its shorter wavelength. However,

this shorter wavelength also results in a decreased cooperativity parameter. At small

principal quantum numbers where the wavelength is smaller than the size of the MOT,

the sharp cooperativity parameter dependence dominates, and the long wavelength

transition to P states is favored. Higher principal quantum numbers represent the

opposite scenario. Here the wavelength becomes larger than the MOT even for |nd〉 to

|nf〉 transitions, and the cooperativity parameter is close to unity for either transition.
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As a result, the transitions to f states are favored at high principal quantum numbers

due to their larger spontaneous decay rate, and transitions to P states are favored

at low principal quantum numbers due to their larger cooperativity parameter. This

transfer to f states at higher principal quantum numbers could explain the higher total

loss rate from the trap for these levels.

State γ(calculated) γ(expt)

28d 1.7×105 1.3×105

43d 2.4×105 7.4×104

58d 1.2×105 2.0×104

30s 2.2×105 5.0×105

Tab. 4.1: A comparison of the experimental Rydberg-Rydberg transfer rates deduced using

the model of Section 3.6 with those predicted by the superradiance simulation. As

noted in the text, the simulation accounts for radiative lifetimes as well as black-

body induced l-changing transitions. All units are s−1.

Important for comparison to our experiment is the deduction of a transfer rate from

the simulation. By looking at the steady state number of atoms remaining in the orig-

inal excitation state, and knowing the excitation rate, the effective transfer rate can be

determined. We can compare this to the experimental measurements of the transfer

rate γ from Section 3.6. Table 4.1 shows this comparison for the Rydberg levels excited

in our experiment, indicating excellent agreement with the experimental results. It is

worth noting that there are no adjustable parameters in the superradiance simulation.

Despite this, it does an excellent job of predicting both the order of magnitude of the

Rydberg transfer rates, and the dependence on quantum numbers. While a superra-

diance model including all pertinent effects might better explain the variation from

experiment seen here, our simulation provides a good general understanding of the
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system, revealing the essential properties of the superradiant decay channels involved.

Some attempt was made to directly observe population in lower lying Rydberg levels

after excitation, as this is a key prediction of superradiant transfer. After excitation to

28d, the Rydberg State Probe was tuned to the 27d → 6p transition. Unfortunately,

we were not able to observe population in this state. To consider why this might

be, remember that superradiance depends upon population in both states, as seen

in eq. 4.2. Since the stimulated emission probe would remove population from the

27d state very quickly, it would effectively shut off the superradiant decay into this

state. Attempting to observe these populations via a different means has not yet been

attempted, but population is expected to be present.

Before the experiment of [Wang et al., 2007] the effects of superradiance were not

appreciated for the population dynamics of high density ultracold Rydberg atoms.

Superradiance can happen on very rapid time scales, especially under strong Rydberg

excitation as achieved in a number of previous experiments. In fact, superradiance

can easily occur on sub-microsecond time scales. A key consequence of superradiance

is that it populates Rydberg states lying energetically below the state being excited

by the laser. Indeed, in the experiments of Ref. [Walz-Flannigan et al., 2004] and

Ref. [Li et al., 2004], population clearly moves to lower lying Rydberg levels on a fast

time scale, consistent with the hypothesis of superradiant transfer.

An additional consequence of fast superradiant population transfer is that it pro-

vides a mechanism for rapid population of states of neighboring orbital angular mo-

mentum l from the excitation state. Pairs of atoms with δl = ±1 interact at long

range via the R−3 resonant dipole-dipole interaction, not the usual R−6 van der Waals

interaction. The much stronger collision interactions between these atoms may explain

the very rapid time scales for plasma formation in a number of experiments where

resonant dipole-dipole interactions were not purposely produced using external fields.
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The effects of superradiance are thus an essential aspect of Rydberg state dynamics,

and necessary to take into account in many experimental situations.
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5. FOUR-WAVE MIXING

5.1 Introduction

Having now gathered a large amount of information about Rydberg atom production

and dynamics, we turn our attention to more direct application of their manipulation.

An intriguing consequence of mesoscopic blockade would be the collective emission of

single photons. This phenomenon could be used to produce a directional single-photon

source [Saffman and Walker, 2002] or for fast quantum-state detection or transmission

[Saffman and Walker, 2005]. The development of our stimulated emission Rydberg

state probe allows for fast population of the 6P state, and the generation of 420 nm

photons which could be the source of single-photons.

Assuming successful mesoscopic blockade, this scheme has an additional challenge

to address in collection efficiency. Since the 420 nm photon in this scheme would be

spontaneously generated, it would have an equal probability of emission in any direction

in 4π. In an ideal single-photon source a photon could be obtained on demand, without

some probability of not obtaining a photon. However, this spontaneous scheme would

be limited by the fractional solid angle collection of a lens system, at best currently

around 2% of the photons for our vacuum chamber. In order to make this scheme

appealing, a means of increasing this collection efficiency beyond this limit must be

developed.

In Section 5.2 I introduce the nonlinear process of four-wave mixing. This process
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results in the 420 nm decay photons being emitted into a diffraction limited solid angle,

providing the possibility of near unity collection efficiency. The theory behind four-

wave mixing will be discussed, including two helpful physical interpretations of this

effect.

The first step in the development of this technique was to confirm our understanding

of the phenomenon involved. Theory predicts several strong dependencies which can be

easily examined experimentally. I will discuss our methods of verifying the appearance

of four-wave mixing and its predicted dependence in Section 5.3. Without further

optimization, the efficiency of the process was limited to about 20% of the light being

emitted into the desired direction.

To go beyond simply understanding the basic behavior of four-wave mixing, it was

necessary to make a more detailed model of the system. To this end, a density matrix

model was developed which simulates the populations and conditions of our experiment.

This model is described in full in Section 5.4 and its implications explored. The model

allows better understanding of the details of the process, and in addition gives insight

into how to improve the efficiency of the four-wave mixing process.

Having already observed some of the important effects that can occur in the Rydberg

state in Chapters 3 and 4, we can suppose that other processes may compete against

the coherent process of four-wave mixing. In combination with the predictions of our

model, this knowledge led us to explore the means of optimizing the four-wave mixing

process. In Section 5.5 we show that excitation which is detuned from the Rydberg

state results in increased four-wave mixing efficiency. Up to 50% of the light was seen

emitted into a diffraction limited solid angle in this configuration, showing excellent

promise for a single-photon source.
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5.2 Four-Wave Mixing Theory

The field of four-wave mixing is now well developed within the nonlinear optics commu-

nity [Bloembergen, 1996] [Yariv, 1971], and has been used in a number of applications

including phase-conjugate mirrors [Cronin et al., 1982] and generation of coherent VUV

or IR sources [Sorokin et al., 1973]. This process can be understood by considering a

material’s response to an electric field. The traditional way of modeling a material’s

response is to examine the induced polarization as a power series in the electric field

strength:

~P = χ(1) · ~E + χ(2) · ~E ~E + χ(3) · ~E ~E ~E + ... (5.1)

where χ(n) are the nonlinear susceptibilities of the material. The lowest order nonlinear

susceptibility χ(2) is essential to frequency doubling [Day, 2008], but vanishes for ma-

terials with inversions symmetry, such as our ultracold gas. The third order nonlinear

susceptibility χ(3) is responsible for four-wave mixing, and in our case is dependent

upon the electric dipole matrix elements coupling the four states and the transition

detunings and linewidths. This susceptibility results in a polarization induced in the

atomic gas, which can be considered to result in a spatial phasing of the atomic dipole

moments as a result of the three driving fields:

〈~di〉 = 〈~d0(~ri)〉ei(~k1+~k2−~k3)·~ri , (5.2)

where ~di is the dipole moment of the ith atom and d0 its magnitude as a function of

atomic position ~ri.

If this induced dipole moment is used as a driving term in Maxwell’s Equations, a

set of four coupled wave equations will result for the fields. At this point, we assume

that the loss of power from the input lasers is negligible, resulting in a simple equation

for the gain in the fourth spontaneously generated field. If absorption from the medium
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is ignored, gain is proportional to sinc2(∆kL
2

), where

∆k = (~k1 + ~k2 − ~k3 − ~k4). (5.3)

Setting ∆k = 0 in Equation 5.3 is known as the phase matching condition, with the

system being phase-matched when ∆k = 0. This is the essential condition for four-wave

mixing to occur, and its importance can be seen in a number of ways. Perhaps the

simplest is to consider the energy and momentum of the system. If ω4 = ω1 + ω2 − ω3

and ~k4 = ~k1 + ~k2 − ~k3 both energy and momentum are conserved in the process, and

there will be efficient coupling between the four fields. Since we are returning to the

ground state, energy is necessarily conserved, and the correct laser orientation will

result in momentum conservation. That is, if the incoming laser fields are oriented

geometrically such that the fourth field can be emitted in a direction that conserves

momentum, this process will be highly favored over the random emission of photons.

Another equivalent way of understanding the phase matching condition is to con-

sider the atomic dipoles as an antennae. If all four waves maintain a constant phase

relationship to each other the fields will interfere constructively in the phase matched

direction. If the phase matching condition is met, this will result in an electric field at

a large distance R away of

E(φ) =
n〈d0〉k2

4e
ik4R

R

(
πw2

2

)3/2

e−
π2w2

λ2 φ2

. (5.4)

We have assumed that the dipole moment is oriented perpendicular to the plane of

the lasers, and that the effective spatial distribution of the dipoles is Gaussian with

standard deviation w/2 and peak density n. The angle φ is measured with respect to

the phase-matched direction.

The expected power emitted into the phase-matched direction can then be obtained

by integrating the intensity deduced in Eq. 5.4 over the angular distribution

Ppm = N2
e 2c〈d0〉2k2

4/w
2. (5.5)
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This can be compared to the spontaneously radiated power from the 6P state

P0 = Neh̄ck4Γpρp. (5.6)

From this, it can be seen that the ratio of power emitted in the phase-matched direction

to the power emitted in all other directions should be:

Ppm

Po

∝ Ne|σgp|2
w2ρp

, (5.7)

where Ne = n(πw2/2)3/2 is the effective number of participating atoms, ρp is the popu-

lation of atoms in the 6P state, and σgp is the 6P -5S optical coherence density matrix

element. Thus, with the correct orientation of the input lasers, and a high density

sample, we expect that a large portion of light should be emitted into a diffraction

limited direction.

In addition to the phase-matched four-wave mixing, there are several other impor-

tant nonlinear effects which we have considered. Stimulated hyper-Raman scattering

[Cotter et al., 1977][Sorokin et al., 1973] and parametric four-wave mixing

[Wunderlich et al., 1990] have been experimentally demonstrated and known for quite

some time. If present, these effects would compete with the desired directional pho-

ton emission. However, they are predicted to be relatively negligible due to the small

Rydberg matrix elements and thin optical depth. The dominant process should be

phase-matched four-wave mixing, resulting in directional emission of the photons, and

present a necessary step in developing a single photon source.

5.3 Experimental Observations of Four-Wave Mixing

In order to establish the presence of four-wave mixing in our experiment, it was neces-

sary to orient the three input laser beams in directions which would satisfy the phase

matching condition of Eq. 5.3. In principle, a wide variety of possible geometries can
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be chosen that satisfy this condition, but there are several constraints which were taken

into account. Most importantly, it is desirable for future blockade and single photon

experiments to have a small excitation volume. In order to establish this, it is desir-

able to have a large angle between ~k2 and ~k1, allowing for the possibility of a small

spatial overlap volume. Unfortunately, we are also limited by the accessible angles in

our vacuum chamber windows. Certain geometries are either completely incompatible,

or conflict with our trapping beams or observation.

The direction of the laser beams eventually selected as optimal given our limitations

is shown in Fig. 5.1. A 39◦ angle separates ~k2 and ~k1, allowing a small overlap volume.

This results in a phase-matched direction for the exiting 420 nm photons (~k4) which is

3◦ from ~k2. While still satisfying the phase-matching condition, the direction of ~k4 is

very insensitive to the direction of ~k1.

This orientation of lasers created some challenge in experimental implementation

due to the required angles involved in the phase matching process. The vacuum cham-

ber used in our experiment has windows in the necessary locations, but several of those

ports were previously used for other optics, most importantly the trapping and cooling

beam. While it is possible to overlap the trapping beams with the four-wave mixing

lasers, this puts limitations on available focusing parameters and polarizations. To

avoid this, we have instead changed the standard six beam MOT into a five beam

MOT. Here the essential physics is the same, with the intensities altered to preserve a

balanced force while simultaneously allowing the ideal phase-matching geometry.

In order to confirm the presence of four-wave mixing, we now use two Hamamtsu

photon counters. One is placed along the the anticipated phase-matched direction (on-

axis), while a second is placed along an arbitrary direction (off-axis). Initially ~k1 was

moved far off of the phase-matched direction, and nearly equal 420 nm detection rates

were confirmed in the on- and off-axis directions. Then as ~k1 was rotated into the
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Fig. 5.1: a) Energy levels for four-wave mixing. The k1 and k2 photons produce two-photon

excitation to an nD Rydberg level. The k3 laser couples the Rydberg level to the

6P state. Atoms in the 6P radiate coherently to the ground state to complete the

four-wave-mixing process. b) Phase-matching geometry.
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Fig. 5.2: The on-axis, or phase-matched, count rate is recorded while ~k1 is rotated through

the phase-matching geometry. A large gain is seen while phase-matched, while no

gain is seen on the off-axis counter.

phase-matched direction a factor of 10 jump in the count rate on the on-axis detector

was observed, with no change in the off-axis count rate. As seen in fig. 5.2, the width

of acceptance for phase matching when the angle of ~k1 was rotated was found to be

δΘ1 = 1.6± .2 mrad. The expected width can be found from examining the intensity,

which is proportional to
∫∞
−∞ dxei∆kxn(x). Using the known distribution of atoms, we

expect an acceptance width of 1.2 mrad, only slightly smaller than the observed value.

When exciting to a different n-level Rydberg state, different frequencies are involved,

so the phase-matched geometry will vary slightly. In fact, a change of only a few n levels

at fixed laser beam angles is enough to move the phase-matching condition outside the

angular bandwidth. After changing from 28d5/2 to 58d5/2, ~k1 was rotated until phase

matching was again attained, and the rotation angle was found to be 4.4 ± 0.3 mrad.

This is consistent with the theoretical value of 4.1 mrad, calculated using the k-vectors
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Fig. 5.3: The Count Rate in the on-axis direction as a razor blade is moved across the detec-

tion area. We have calculated the waist at the atoms by using Gaussian propagation

through the imaging system before this razor blade. The observed .39 ± .06 mm

waist is consistent with a diffraction limited beam.

involved.

In order to determine if the four-wave mixing process in fact resulted in a diffraction

limited beam of 420 nm photons, we scanned a razor blade across the phase-matched

output and recorded the count rate as a function of position. The results of this scan

are seen in Fig. 5.3. The waist measured is consistent with a diffraction limited beam

with a waist of 0.39 ± .06 mm at the atoms. An iris can be placed in front of the

phase-matched detector to reduce the solid angle of the on-axis counter by a factor of

11 while changing the count rate by only 9%. As this allows for examination of only

the phase-matched signal and a reduction of background noise, the further data in this

section is taken with this iris in place.

From Equation 5.7 we expect the phase-matched fraction to depend linearly on

the number of atoms involved in the process. As an additional means of verifying
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Fig. 5.4: The fraction of light emitted in the on-axis direction increases with the number of

atoms in the MOT, as expected from the nonlinear character of four-wave mixing.

The dashed line shows the model prediction, taking rescattering at large optical

depths into account.

the predicted four-wave mixing behavior, we examined the efficiency of the four-wave

mixing process as a function of the number of atoms in the MOT. Figure 5.4 shows

the results of this measurement in terms of the fraction on-axis. To calculate this

fraction, the filters and efficiencies of the two counters were taken into account, and

the signal off-axis divided by the fractional solid angle to incorporate the total expected

spontaneous radiation. The expected nonlinear response of the four-wave mixing can

be seen as a linear increase in the phase-matched fraction with the number of atoms

at small atom numbers, but deviates from this linear increase at high atom numbers.

Up until this point, we have assumed negligible absorption of the 420 nm photons

from the MOT. However, in reality this is not a good assumption, as the optical depth

of the MOT for photons at this wavelength is ∼0.3 at large N. As a result of this

increasing optical thickness, the phase-matched light is partially scattered due to the
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Fig. 5.5: Count rates as a function of k3, showing the hyperfine manifold of the 6p3/2 state.

The F′=3 produces strikingly more on-axis light than the other hyperfine levels due

to its stronger coupling to the Rydberg state and the higher branching ratio into

the F=2 ground state.

linear susceptibility of the atoms. This scattered component, up to 24% for large N, is

then observed as additional off-axis light. This results in a limitation on the fraction

seen on-axis, and can be seen in the saturation in Fig. 5.4. Our analysis takes this effect

into account by multiplying the percent phase matched by the average transmission of

5s1/2 → 6p3/2 photons given the optical depth of our sample. This results in a slight

modification to Equation 5.7 which can be seen in the model prediction in fig. 5.4.

To begin to gain a more detailed understanding of the four-wave mixing process,

we can examine the full hyperfine manifold of the 6p3/2 state. To do this, we again

scan the frequency of the k3 laser while recording the on- and off-axis count rates, as

shown in fig. 5.5. For off-axis light, the F′=3 count rate is slightly higher than the

other F′ levels, with the F′=2 count rate being 65% of the F′=3 rate. The on-axis light,

on the other hand, has an observed 10:1 ratio for the two states, suggesting that the

four-wave mixing process is strikingly stronger for the F′=3 level than the others. In
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order to understand this difference and the total amount of four-wave mixing possible,

it was necessary to develop a rigorous model of the system.

5.4 Four-Wave Mixing Model

Four-wave mixing is a coherent process, depending not only on the populations, but

also the coherences of the various states as seen from Equation 5.7. Thus, in order

to obtain a better understanding of the system, and be able to calculate the expected

fraction emitted into the phase-matched direction, it is necessary to develop a density

matrix model of the system. To do this, we use the model shown in Fig. 5.6. Here we

have adiabatically eliminated the intermediate 5p3/2 state and characterized the system

as a three level problem, with ground state |g〉, the Rydberg state |r〉, and the 6p3/2

state |p〉.
Solving for the coherence and population using this three-level density matrix ap-

proach results in the following set of differential equations:

iρ̇r =
ε2

2
σgr − ε2

2
σrg +

ε3

2
σpr − ε3

2
σrp − iρr

τr

(5.8)

iρ̇g =
ε2

2
σrg − ε2

2
σgr +

iρr

τr

+
iρp

τp

(5.9)

iρ̇p =
ε3

2
σrp − ε3

2
σpr − iρp

τp

(5.10)

iσ̇rg = −(δ2 +
iγr

2
)σrg +

ε2

2
(ρg − ρr) +

ε3

2
σpg (5.11)

iσ̇pr = (δ3 +
iγpr

2
)σpr +

ε3

2
(ρr − ρp)− ε2

2
σpg (5.12)

iσ̇pg = −(δt +
iγp

2
)σpg − ε2

2
σpr +

ε3

2
σrg (5.13)

The 5s state “g” and the Rydberg state “r” are coupled by an effective two-photon

Rabi frequency ε2 = ε1ε2/∆ (∼ 4 kHz) obtained by adiabatic elimination of the 5p3/2

state. The Rydberg state is then coupled to the 6p3/2 state “p” with Rabi frequency
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Fig. 5.6: Three level system used to model the four-wave mixing process. The various ex-

citation and spontaneous decay rates are included, with an additional decoherence

mechanism allowed. This decoherence mechanism is adjusted to match the experi-

mentally observed transition broadening.
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ε3 ∼ 1 MHz. In order to simulate the effects of the substantial linewidths of the lasers

used (1-3 MHz), plus other possible additional broadening mechanisms, we gave the

σrg and σrp coherences effective homogeneous broadening factors of γr = 6 MHz, γrp

= 2 MHz. These were chosen to reproduce the observed linewidths for two-photon

excitation and non-phase-matched four-wave mixing, respectively. In addition, the

Rydberg state was assumed to have a shortened lifetime (τr=8 to 40 µs depending on

n-level) due to the effects of superradiance [Day, 2008], and the 6P state was assumed

to decay at its spontaneous rate (τp = 121 ns).

Since the hyperfine coupling in the Rydberg state is negligible [Li et al., 2003], the

effects of nuclear spin were accounted for by calculating effective Rabi frequencies

assuming nuclear spin conservation in the Rydberg state. Calculating the branching

ratios in the 5s → 5p → nd → 6p three-photon process allows for the calculation of

the populations in the various hyperfine levels of the 6p3/2 state. The details of this

calculation are shown in [Day, 2008], and show that the fraction of atoms in each of

the hyperfine levels of the 6p hyperfine manifold (F=3, 2, 1, 0) is 0.498, 0.224, 0.201,

and 0.074, respectively. This calculation also shows that the effective de-excitation rate

into the F = 2 level is 48% of the F = 3 rate.

Given measured intensities and atom numbers, the model then makes absolute

predictions of the on- and off-axis count rates observed, and is typically within a factor

of 3 of the observations, limited mainly by uncertainty in the absolute atom number

and effective excitation rate. By examining the ratio of the on- and off-axis counters

information can be gathered which is less sensitive to these uncertainties.

With this model now at our disposal, we can do a more careful analysis of the data

revealed in Fig. 5.5. The random off-axis light in this case shows a slight dependence

on F level, with the F′=2 count rate being 65% of the F′=3 rate. The model predicts

that it be 48%. This reasonable agreement is most likely limited by the estimates
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Fig. 5.7: Fraction of on-axis light as a function of intensity, with model predictions. The

intensities and on-axis fractions for F′=2 data are scaled to reflect the reduced dipole

matrix elements. The increased on-axis efficiency at higher intensity indicates the

competition between four-wave mixing and decoherence processes.

made of the decoherent processes in the Rydberg state. The on-axis light in this figure

has an observed 10:1 ratio for these two F levels. This is partly explained by a factor

of
√

2 greater dipole matrix element for the 6p3/2(F
′ = 3) → 5s1/2(F=2) transition

as compared to the corresponding matrix element from the F′=2 state. Further ac-

centuating this difference is the reduced deexcitation rate into the F′=2 state. There

is a competition between the coherent deexcitation from the Rydberg state and the

various decoherence processes that occur in the Rydberg state, and this further favors

the larger Rabi coupling to the F′=3 state. From the combination of these effects the

model predicts a ratio of 7.7, in reasonable agreement with the observations.

The large difference in phase-matched light on the 6p3/2 hyperfine peaks suggests

there should be a strong dependence on the intensity of k3. Figure 5.7 shows the

on-axis fraction of the emitted light as the intensity of the k3 laser is varied, for two
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different hyperfine levels of the 6p state. The different dipole matrix elements for the

two hyperfine levels are accounted for by scaling the F′=2 intensities by a factor of 0.48

and the on-axis fraction by 2. The fraction of light emitted into the phase-matched

direction increases with increasing intensity, reaching a maximum of around 15% for

n = 43d and the intensities attainable here. This also shows that the four-wave mixing

process is competing with decoherence, suggesting at higher k3 powers the atoms are

removed from the Rydberg state before they can undergo any decoherent process.

Included in Fig. 5.7 are two different model predictions. One for the observed

transition broadening of γrp = 6 MHz, the other for a narrower broadening of γrp =

1.25 MHz. Clearly the model prediction is quite sensitive to the assumed broadening of

the r−p coherence, and in fact favors a narrower linewidth than was deduced from the

off-axis spectroscopy. This discrepancy could suggest a narrower transition linewidth

than observed, a larger number of atoms or smaller interaction region than calculated,

or a fault of the model in its treatment of the broadening mechanisms. Despite this

discrepancy, the model is shown to reproduce the key features of the four-wave mixing

process. Additionally, the development and testing of this model has given us additional

insight into how the four-wave mixing process can be optimized.

5.5 Detuned Four-Wave Mixing

Both our model of the four-wave process and our examination of the effectiveness

of four-wave mixing suggest that decoherence processes in the Rydberg state are an

essential factor in the system evolution. The coherent process of four-wave mixing must

be competing against some decoherence mechanisms present in the Rydberg state. It

follows that the reduction of these mechanisms in the Rydberg state should result in

an increased amount of the light being emitted into the phase-matched direction.
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One means of attempting to reduce the decoherence is by lowering the population

in the Rydberg state. There are several decoherence processes, such as superradiance

or atom-atom interactions, whose rate would vary with the population of the Rydberg

state. Thus, reducing the population of the Rydberg state should effectively limit

decoherence and increase the efficiency of the four-wave mixing process.

In order to test this hypothesis, we reduced the Rydberg population by detuning

the excitation from the Rydberg state. A process that is on resonance with the three-

photon transition to the 6p3/2 state while detuned from the Rydberg state should

reduce the decoherence while maintaining the four-wave mixing process. Fig. 5.8

shows the results from our experimental procedure used to investigate the dependence

on Rydberg state detuning. Here the stimulated emission probe k3 was detuned 32

MHz above the 28d5/2-6p3/2 F′=3 transition and stabilized at a constant frequency.

Then the k2 frequency is varied across the Rydberg state.

This process results in two seperate resonant processes. The first, labeled A, occurs

when the excitation lasers are on resonance with the Rydberg state, giving significant

Rydberg populations. In this case the Rydberg atoms are transferred off-resonantly

to the 6p3/2 state at a slow rate. A large amount of off-axis light is produced in this

process, but very little phase-matched light. The second case, labeled B and examined

further in the inset, occurs when the excitation lasers are detuned from the Rydberg

state, but a three-photon process is on resonance to the 6p3/2 state. Here there is

very little Rydberg population, and hence only a small amount of off-axis light, while

the fraction of phase-matched light increases dramatically. The laser frequencies and

detunings involved in these two processes are also illustrated in Fig. 5.9.

For the case of 32 MHz detuning, as shown in fig. 5.8, the fraction of phase matched

light reaches 50% of the total 6p−5s emission. This experiment was repeated for various

two-photon excitation detunings, always adjusting the frequency of the deexcitation
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Fig. 5.8: Count rates in on- and off-axis counters as a function of the excitation frequency,

showing both the non-resonant 5s-nd excitation (left peak and inset) and resonant

Rydberg state excitation with off-resonant deexcitation to the 6p state. The k3

laser was held 32 MHz above the Rydberg-6p transition. The inset scales the off-

axis count rate by the solid angle to show the total amount of light emitted. In this

case the amount of on-axis light is approximately equal to the total amount of light

in all other directions.
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Fig. 5.9: Illustration of the two excitation processes resulting from our detuned four-wave

mixing scheme. The frequency of the deexcitation laser is kept constant while the

excitation frequency is varied. In A) the excitation lasers are on resonance to the

Rydberg state, creating a large Rydberg population, while the deexcitation laser is

detuned. in B) the excitation lasers are detuned, but the three-photon process is on

resonance to the 6p3/2 state.
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Fig. 5.10: The ratio of off-axis counts to on-axis count rate measured as a function of detuning

from the Rydberg state. Zero on this plot corresponds to perfect phase matching.

The efficiency of the phase-matching process is optimized when detuned from the

Rydberg state.

laser to maintain three-photon resonance. The resulting ratio of off-axis light to on-

axis light is shown in Fig. 5.10. When near resonance with the Rydberg state, the

fraction of light emitted into the phase-matched direction is about 20%, while detuning

from the resonance increases this fraction to up to 50% of the total light. This trend

is matched well by the model, as shown in the figure.

5.6 Discussion

We have demonstrated continuous wave phase-matched four-wave mixing using Ryd-

berg states. The directional emission is promising for studying novel quantum effects

in blockaded atom clouds. The dependence of the phase-matched light on geometry,

power, and detuning is well explained by a simple density matrix model, demonstrating
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a good understanding of the system. With the process of four-wave mixing having been

shown to be experimentally realizable, it represents an excellent means to generate a

single photon source.

In order to generate an ideal single photon source, there are still several consid-

erations that need to be addressed. As was observed in the experimental data and

the model, there is a decoherence in our system that limits the effectiveness of the

four-wave mixing process. This was improved upon by detuning from the Rydberg

state, but it remains unclear what this mechanism is. The data presented here was

all obtained under weak excitation conditions where Rydberg-Rydberg effects should

be minimal. While it has been shown in Chapter 4 that superradiance will cause ad-

ditional decoherence, this still does not provide the amount of decoherence we have

observed, indicating there is an additional source of decoherence which we do not fully

understand.

Effective Rydberg blockade requires the excitation to be on-resonant with the Ryd-

berg state. This would prevent the possibility of using our detuned scheme to optimize

the efficiency of the process. However, this efficiency problem should be eliminated

when single atom excitation is achieved. Under blockade conditions Rydberg-Rydberg

and superradiant decoherence mechanisms are predicted to be virtually eliminated.

Thus efficient four-wave mixing should be possible even while resonantly driving the

excitation process.

Finally, using phase-matched four-wave mixing as a single photon source will even-

tually require efficiency while exciting a very small region. In order to observe the

phase-matched process in a small volume, we have focused the 480 nm and 1015 nm

beams to 12 µm. This results in a effective volume of ∼10−8 cm3, which could be

blockaded for reasonable n-levels [Walker and Saffman, 2008]. When using the focused

beams, phase-matching was again achieved for the various n-levels, with the same de-
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pendence on F′ level, k3 intensity, and detuning from the Rydberg state. The maximum

percentage of light achieved in the phase-matched direction was reduced to below 1%,

as expected from Eq. 5.7 since the relevant factor Ne/w
2 was reduced by a factor

of 40. In the future, this could be improved by increasing the density of the sam-

ple [Sebby-Strabley et al., 2005], allowing efficient phase-matching while also making

possible a full dipole blockade, leading to a single photon source.
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6. EXPERIMENTAL TECHNIQUES

6.1 Introduction

One of the most interesting properties of Rydberg atoms is their very large atom-atom

interactions leading to the concept of blockade. In order to understand and explore the

effect of these interactions on optical excitation of Rydberg atoms, it was necessary to

develop a number of new experimental techniques. In order to help the reader follow

the important results presented in the next two chapters without digressions, I will first

present here the necessary background information on the methods used. This chapter

can be thought of as a “toolbox”, containing descriptions of the important tools which

will be used in Chapters 7 and 8.

The first tool is the application of microwaves to the Rydberg atoms, which I will

discuss in Section 6.2. These microwaves are used to excite Rydberg atoms from their

initial state to a nearby state. Verification and optimization of the microwave coupling

can be accomplished by examining the resulting Autler-Townes splitting of the Rydberg

state. We typically see microwave Rabi frequencies of ∼25 MHz, completely mixing the

Rydberg states. With this technique we can allow first order dipole-dipole interactions,

the importance of which we will see in Chapter 7.

Section 6.3 will discuss our method for limiting the volume of Rydberg excitation

to a very small size. By crossing the excitation beams we can potentially limit our

excitation volume down to ∼ 8 ·103 µm3. This volume is nearly small enough to enable
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a complete blockade (as discussed in Chapter 7), though we currently work with larger

volumes for better signal to noise. With the reduction of the excitation beam sizes

the Rabi frequencies are drastically increased. Included here is the importance of this

effect as a spatially selective ac Stark shift.

Essential to any attempt to investigate the effects of atom-atom interactions on

Rydberg excitation is an accurate measurement of the number of Rydberg atoms and

their excitation rate. Section 6.4 describes our technique of pulsed Rydberg excitation.

This pulsed scheme gives us an experimental measure of the excitation and stimulated

emission rates, with the photon count rate proportional to the number of Rydberg

atoms. In addition, the pulsed excitation allows investigation into the importance of

collisional and ionization effects. Ionization is observed to be a significant problem for

|nd〉 states, motivating the use of |ns〉 states for further investigations.

6.2 Microwave Coupling

Microwave coupling between Rydberg states is an emerging tool in ultracold atomic

physics. Microwaves have recently been used to induce resonant energy transfer through

the ac Stark shift [Bohlouli-Zanjani et al., 2007], and directly couple nearby Rydberg

states [Afrousheh et al., 2004] [Han and Gallagher, 2009]. Rydberg atoms have very

large oscillator strengths for nearest neighbor transitions (∼ -10 to 10 for the principal

quantum numbers accessible in our lab), and hence are very sensitive to microwaves.

Since microwaves are stable and easily attained, they have become an excellent possi-

bility for the enhancement of Rydberg-Rydberg interactions.

In our lab we make use of an HP 83640A synthesized sweeper, which can output

microwave frequencies up to 40 GHz. Since the spacing between adjacent Rydberg

levels increases at smaller principal quantum number, this frequency sets a lower limit
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on the Rydberg levels which can be coupled using our microwave source. The energy

spacing from an ns state to an np state is larger than from nd to (n−1)f , so the lowest

levels which we can couple are the 47s → 47p, or the 40d → 39f . The approximate

frequencies necessary can be determined from the Rydberg level energies (described in

Appendix A), and optimized by maximizing the Autler-Townes splitting as described

later in this section.

The microwave generator is able to output up to 5 mW of power, but it is compli-

cated to determine what fraction of that power reaches the atoms. The microwaves are

transmitted to a horn which is pointed at the vacuum chamber. A large loss in power

results from the microwaves being unable to enter the vacuum chamber, as there is

significant attenuation due to the comparable size of the vacuum chamber windows (5

cm) and the incident microwave wavelength (1-4 cm). Since the exact loss in power is

difficult to determine, the most accurate measure of how much power actually reaches

the atoms can be obtained from the observed Autler-Townes splitting, as discussed

below. The wavelength and oscillator strength for the transition are well known, so the

intensity of the microwaves can be determined from the observed Rabi frequency. Esti-

mating the waist to be the radius of the entrance window, the Autler-Townes splitting

would correspond to only ∼0.1 mW of power reaching the atoms. From the geometry

and the propagation of the microwaves from the horn to the chamber, we could expect

as much as 1 mW of power to reach the atoms. This has not been a concern due to

the small amount of power needed, but could most likely be improved with a different

transmission cable and more careful alignment of the emission horn.

If the microwave frequency is set very close to an atomic transition with a Rabi

frequency very large compared to the detuning, an Autler-Townes splitting can be

observed. This process has been well described elsewhere [Autler and Townes, 1955],

and only an overview is given here. At high intensities, it is most appropriate to consider
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the atom and microwaves in a dressed picture. When the coupling is very large, this

results in the appearance of two states which are superpositions of the initial states:

|Ψ〉 =
|s〉 ± |p〉 e−iωt

√
2

. (6.1)

These states are separated in energy by twice the microwave Rabi frequency, 2εµ. This

process is depicted in Fig. 6.1 for the case of ns → np. Since both of the new coupled

states |Ψ〉 = |s〉 ± |p〉 e−iωt (labeled |s + p〉 and |s− p〉) have some component of the

|s〉 state, they can be excited by light from the intermediate |5p〉 state.

|5p3/2>

|ns>

|np>
µ-wave

480 nm

|5p3/2>

|ns-p>

480 nm

|ns+p>
∆ = 2εµ

a) b)

Fig. 6.1: a) Microwaves are applied on resonance from the ns Rydberg state to the np state.

b) Showing the dressed states after coupling, where now the states |s + p〉 and |s− p〉
are split by twice the microwave Rabi frequency, εµ.

Tuning of the microwaves into resonance can be done by maximizing the splitting

of the two states, and is accurate to within a few MHz using this technique. Figure 6.2

shows a typical scan of the excitation frequency across the Rydberg resonance at 60d

for several microwave power levels. The splitting between the two peaks of |d + f〉 and
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Fig. 6.2: The experimental observation of the Autler-Townes splitting for microwaves on res-

onant from the |60d〉 to |59f〉 levels with a) no microwaves, b)weak microwaves, and

c) full microwave power. Here the two states |d + f〉 and |d− f〉 are split by the

microwave Rabi frequency of up to 200 MHz. The fine structure of the |d〉 state can

just be observed.
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|d− f〉 can be easily measured, giving an excellent measurement of the microwave Rabi

frequency. In this case the Rabi frequency was 100 MHz for the highest power level.

This splitting decreases at lower principal quantum numbers, as the coupling strength

between these levels goes down as ∼ n2 and the power is more heavily attenuated by

our apparatus. For the data shown in Chapter 8, the microwaves were resonant with

47s → 47p. This resulted in a ∼25 MHz splitting, which is still excellent coupling of

the Rydberg states.

The use of microwaves to couple Rydberg atoms is fairly simple in both theory and

implementation. As we will see in Chapter 7, this provides a way to adjust the strength

of atom-atom interactions over a large range, giving us an excellent means by which to

observe any effect that these interactions may have upon Rydberg excitation.

6.3 Small Volume Excitation

The atom-atom interaction energy discussed in Chapter 7 will decrease with the sep-

aration of the atoms. In light of this, if all atoms involved in the excitation process

are to see a significant interaction from any one atom excited, they must exist in a

tightly confined spatial region. The simplest way to achieve small excitation volume is

to orient the two excitation lasers perpendicular to each other with very small waists.

Unfortunately, this scheme is not compatible with four-wave mixing as phase-matching

is not possible. However, in order to make the proof of principle experiment, we have

temporarily switched to this geometry, as shown in Fig. 6.3. In the future, we can

return to a four-wave mixing geometry and still accomplish blockade.

In the geometry used here, the 480 nm beam can be focused to as small as 13

µm, and the 780 nm beam to as small as 12 µm. In order to align these two beams

optimally, there are three important steps. First, the blue beam is centered on the
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From 480 nm

      Laser

MOT Beams

From 1015 nm

       Laser
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      Laser

Fig. 6.3: The experimental setup used to establish very small volumes of excitation. The 480

nm and 780 nm excitation beams are temporarily oriented perpendicular to each

other, and can be focused as tightly as 12 µm waists, allowing an excitation volume

as small as 7.8 · 10−9 cm3, though typically larger volumes are used for increased

signal to noise.
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MOT cloud, and the position is imaged directly with a CCD camera. Next, the 780

nm beam is aligned onto the blue beam to maximize the photon count rate, optimizing

their overlap. Finally, the position of the focusing lens for the two beams is scanned

using a micrometer, and the counts minimized, making the overlap region at the focus

of the two beams. This should allow an excitation volume as small as 7.8 · 103 µm3,

calculated simply by 4π
3

ω2
780ω480. This is approaching a size that could be blockaded

for the interaction strengths discussed in Chapter 7 assuming a transition linewidth

of 5 MHz. For the purpose of increasing signal to noise during the proof of principle

experiments, we have moved the focusing lens in the 780 nm laser optical train to

overlap the 480 nm beam at a larger waist of ∼50 µm.

With the beams focused to small waists, the Rabi frequencies are large, and calcu-

lated to be ε480 ∼ 10 MHz and ε780 = 550 MHz at the waists used with the maximum

powers available. A consequence of the large Rabi frequencies of the focused beams is

that the ac Stark shift caused by the 780 nm beam becomes significant. The 780 nm

beam is still locked ∆=470 MHz above the 5s1/2F = 2 to 5p3/2F = 3 transition, so the

ac Stark shift, given by ∆AC = ε2

∆
can reach hundreds of MHz.

For atoms in the F=2 ground state the 780 nm laser is 470 MHz blue detuned,

and the atoms see a spatial distribution of very large ac Stark shifts and a repulsive

potential. We also have the ability to put atoms into the F=1 ground state through

the use of a spatial Dark SPOT MOT, as described in [Sebby-Strabley, 2004]. Atoms

in the F=1 ground state are 6.3 GHz red detuned, and have a much smaller ac Stark

shift and an attractive potential. We have the ability to create Rydberg atoms from

either of these ground states, and do so based on the desired excitation rates and ac

Stark shifts.

For excitation to a |d〉 Rydberg state, we excite from the dark F=1 ground state,

and thus have a low scattering rate and an attractive potential. Here we use the
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full power available in the 780 nm beam, giving a 550 MHz Rabi frequency. The

maximum ac Stark shift is then 48 MHz, and the two-photon Rydberg Rabi frequency

ε2 = ε480ε780
∆

∼ 1 MHz. However, as will be discussed in Section 6.4, excitation to |d〉
Rydberg states results in high collision and ionization rates, which makes understanding

the system more difficult. As a result, we have focused our attention on the |s〉 states.

Unfortunately, these states have |5p〉 → |ns〉 oscillator strengths almost an order of

magnitude lower than the |d〉 states. In order to keep our two-photon Rabi frequency

close to 1 MHz, we instead excite out of the F=2 ground state, with a highly attenuated

780 nm laser power.

Here, we have measured that ε480=600 kHz and ε780=183 MHz by observation of

the ac stark shift of 71 MHz and a two-photon Rabi frequency of 225 kHz (see Section

6.4). Using the measured powers, the waist of the beams can then be extracted, giving

50 µm for the 780 nm beam and 75 µm for the 480 nm beam. The 780 waist is quite

close to the expected value, but the 480 waist is significantly larger than expected.

Further work will be needed to assure this waist size through external measurement,

and a new optics train is being designed. Using the values for the waists estimated

here, this would give an interaction volume of 2πω2
780ω480 = 1.9 · 105 µm3.

Using the F=2 ground state creates two sources of possible concern. The first is the

large scattering rate Γs of the 5p3/2 state. This scattering rate is approximately given

by:

Γs =
ε2
780

∆2
Γ6p, (6.2)

where Γ6p is the natural linewidth of the 6p state. With our Rabi frequency and

detuning, this scattering is ∼6·106 /s. While this is a high scattering rate, it would

still not dominate the decoherence of the system, with measured transition widths of

∼5 MHz. This fast scattering does optically pump the ground state atoms out of the
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F=2 ground state. To make this optical pumping negligible, we have overlapped a

repumping beam on the 780 nm optical train which scatters from the F=1 state at

∼1·107 /s.

The second concern is the large repulsive potential created by the 780 nm beam,

as this could decrease the density of atoms inside the excitation volume. This effect is

reduced by pulsing the 780 nm beam with low duty cycles. For the pulse lengths of

∼20 µs used in our experiment, the maximum movement of the atoms is calculated to

be only ∼2 µm during a pulse. This is followed by 500 µs without the potential, and

so the excitation region should not be significantly depopulated. As we will see later

in this section, there are other important benefits of pulsed excitation.

One important advantage of the ac Stark shift is that it can be used as an additional

spatial selection for the atoms, similar to the recent proposal of [Yavuz et al., 2009].

A typical scan for excitation from the F=2 ground state to the 47s state (with and

without microwave coupling) as the 480 nm laser frequency is varied is shown in Fig.

6.4. In this case the ground state energy is shifted up by the ac Stark shift, and so

a lower frequency is needed to excite Rydberg atoms in the most intense portion of

the beam. Due to the distribution of intensities across the Gaussian profile of the 780

nm beam, atom frequencies are shifted based upon their location in the beam. Thus,

choosing a particular frequency of excitation gives spatial selection inside the 780 nm

beam. For example, selection from the area labeled “Deep” would excite only those

atoms with an ac Stark shift greater than ∼60 MHz assuming a 5 MHz transition

linewidth. This corresponds to selecting only the middle ∼20 µm from a 50 µm waist.

This will allow an even smaller excitation volume for dipole blockade in the future if

the waist of the 780 nm beam is further reduced.
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Fig. 6.4: Rydberg atoms are created over a large range of 480 nm frequencies due to the

spatial variation of the ac Stark shift from the 780 nm beam. This gives extra

spatial selection by choosing the largest shift, and hence the most intense part of

the 780 nm beam. This effect is seen a) without microwaves, and b)with microwave

coupling.
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6.4 Pulsed Excitation Technique

I now turn our attention to the means by which we calculate the excitation rate and

the number of Rydberg atoms created. In order to experimentally determine these

parameters, we turn to a pulsed excitation scheme. Here the 780 nm excitation laser is

pulsed at a 2 kHz repetition rate with a variable duty cycle by control of an AOM. The

photon counter is triggered with the start of each pulse with excellent timing stability,

and so the counts collected from many of these pulses can be averaged together. The

result of averaging 300,000 such scans at |47s〉 is seen in Fig. 6.5.

47s

time(s)

Fig. 6.5: The photon count rate is recorded vs the time after the start of the excitation pulse,

and averaged for many cycles. The number of Rydberg atoms is proportional to

the equilibrium count rate, and the rise/fall times of the signal are experimental

measures of the excitation and stimulated emission rates.

The rise and fall time of the photon count rate gives an experimental measure of

the excitation and stimulated emission rates. In the absence of blockade, the three

level system can be described by:
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dNg

dt
= R2(Nr −Ng) + ΓN6p

dNr

dt
= R2(Ng −Nr)−R3(Nr −N6p)

dN6p

dt
= R3(Nr −N6p)− ΓN6p, (6.3)

and can be simplified since the decay rate from the |6p〉 state is much faster than R3.

Solving the resulting two level system results gives:

Nr =
R2

R3

(1− e−(2R2+R3)t). (6.4)

The observed rise time is then equal to 1
2R2+R3

and fall time (in the absence of excitation

light) is equal to 1
R3

. This model is accurate in the absence of blockade, so low densities

of ground state atoms are used. We have examined these rates both with and without

microwave coupling, and seen that the microwave coupling reduces the effective rates

by ∼2, consistent with our expectations. The stimulated emission Rabi frequency can

be determined from the rate and the transition linewidth, and agrees reasonably well

with the calculated value. However, the excitation Rabi frequency is more than a factor

of three lower than calculated. Since the 780 nm Rabi frequency can be verified by

the ac Stark shift observed, the Rabi frequency of the 480 nm transition is lower than

expected. This could be due to poor spatial alignment of the beams, or a larger waist

than expected in the overlap region. Further work will be needed in the future to verify

the waist size and spatial overlap.

The number of Rydberg atoms created can be determined from the observed photon

count rate using the solid angle, collection efficiency, and stimulated emission rate. The

420 nm photon count rate is proportional to the number of Rydberg atoms created, giv-

ing excellent means to observe blockade effects. However, there are two main concerns
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which could affect our ability to easily understand the resulting data: superradiance

and collision induced ionization.

We have already seen from Chapter 4 that superradiance can be an important effect

in considering Rydberg atom systems. We have now significantly altered the excitation

volume and Rydberg atom number, and so we must investigate anew the possibility

of superradiance under these conditions. The reduced size of the excitation region

will greatly increase the spatial factor shown in Eqn. 4.11, as the condition for the

wavelength to be much larger than the sample size is satisfied for wavelengths as small

as ∼30 µm. This would allow superradiance down to principal quantum numbers of

n∼16, and could allow superradiance to play a critical role. However, the superradiant

rate is enhanced by the number of atoms involved, as seen from Eqn. 4.2. In the small

excitation volume used here, only ∼500 atoms are excited, as opposed to the ∼ 105

atoms in the excitation scheme used in Chapters 3 to 5. As a result, superradiant

rates are predicted to be an order of magnitude slower than spontaneous decay and

black-body, which would not greatly effect the system.

Collision induced ionization and subsequent electron trapping have been shown

to greatly affect the Rydberg population in a number of experiments [Li et al., 2004]

[Walz-Flannigan et al., 2004]. The effect of ionization is often difficult to differentiate

from a blockade signal [Vogt et al., 2007], and so it is important to look for this effect

in our sample. For excitation to |d〉 states, the photon count rate decreases after an

initial rise, as seen in Fig. 6.6. After verifying that depletion of the number of atoms

in the MOT is not responsible, this suggests that the production of Rydberg atoms is

being inhibited by another process at times greater than ∼2 µs.

One possible explanation for this decrease is the accumulation of ions in the exci-

tation region. It is possible that there is sufficient ion production to cause an electron

trap [Killian et al., 1999], causing avalanche ionization and preventing further Rydberg
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Fig. 6.6: The number of Rydberg atoms during the excitation pulse for the |40d〉 state. Here

the number of Rydberg atoms declines from its initial value, an indication of ion-

ization which is absent during excitation to the |47s〉 state.

excitation. In addition, it was recently shown that |d〉 states ionize on a significantly

faster timescale than |s〉 states [Li et al., 2005]. Thus, to further illuminate this effect,

we compared the ionization signatures from the |s〉 and |d〉 states, and saw no sign of

the inhibited Rydberg atom production at long times for the |s〉 states, which resulted

in a steady state Rydberg level as seen in Fig. 6.5. Coupling the |40d〉 to |39f〉 with

microwaves caused the effect of ionization to be even more pronounced, as shown in

Fig. 6.7. The dropoff in Rydberg number for the |d− f〉 state is remarkable, most

likely due to dipole interactions increasing the collisional ionization rate.

The effect of ion formation was further investigated by varying the time between

excitation pulses. Free electrons are fairly fast moving, but would take ∼ 100 µs to

dissipate [Killian et al., 1999]. Figure 6.8 shows the creation of |d− f〉 Rydberg atoms

for several different dissipation times between excitation pulses. As can be seen, the

initial Rydberg population decreases after an initial rise with a long dissipation time,

while for small dissipation times the population is consistently lower. This gives further
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Fig. 6.7: The number of Rydberg atoms during the excitation pulse for the |40d− 39f〉 state.

Here the number of Rydberg atoms declines dramatically after ∼10 µs, though

the excitation pulse continues for 50 µs. This is most likely a result of increased

ionization rates.

evidence that stray ions are prohibiting excitation, as the signal is permanently reduced

if there is insufficient time to allow ions to dissipate and neutral atoms to repopulate

the excitation region.

To eliminate possible effects from ionization, we have chosen to perform excitation

to the |s〉 Rydberg states, and limit our excitation time to 20 µs with a 480 µs between

pulses. Under these conditions, we see no evidence of ionization effecting the number

Rydberg atoms. A similar choice of the |s〉 states was made in a similar experiment at

even higher densities to avoid ionization [Heidemann et al., 2007].

Using the techniques described in this chapter, we now have the ability to microwave

couple nearby Rydberg states, localize excitation to a small volume, and characterize

the excitation rate and number of Rydberg atoms in the sample. All of these tools will

be essential in examining the effects of atom-atom interactions in Chapter 8.
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Fig. 6.8: After excitation to the |d− f〉 state, the time between excitation pulses is varied.

For long delay times, a large initial Rydberg population is achieved, followed by a

reduction. For smaller times between pulses, the overall Rydberg population be-

comes smaller and approximately level, indicating that ions formed have insufficient

time to dissipate between excitation cycles.
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7. ATOM-ATOM INTERACTIONS

7.1 Introduction

The presence of large dipole moments, and hence large atom-atom interactions repre-

sents one of the major motivations driving the study of Rydberg atoms. The concept

of using the Rydberg dipole-dipole interaction to prevent subsequent excitation was

first proposed by [Jaksch et al., 2000]. The premise depends upon the idea that if the

energy shift due to atom-atom interactions is larger than the excitation linewidth, the

excitation of one atom will result in nearby atoms being too far off-resonant with the

laser light to be excited. The basic physics of this idea is shown in Fig. 7.1, where the

excitation of a second atom is detuned from resonance, and hence suppressed. This

Chapter will give an overview of the subject of Rydberg blockade and investigate the

particular expectations for excitation scaling and interaction strengths relevant to our

experiment.

The distinction between the more general term “suppression” and the very specific

“blockade” is an important one, and sometimes overlooked in the field. Even with a

very large excitation volume, large atom-atom interactions and high atom densities will

result in suppression. Let us assume that for a particular atom, there are other atoms

whose spatial separation from the excited atom results in a large energy shift. However,

there would also exist atoms far enough away from the initial atom that the shift in

their excited energy would be quite small, allowing their excitation. As a result, the
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Fig. 7.1: The energy levels of two atoms being excited to Rydberg states are shown. Here

the excitation of the first atom is on resonance, but excitation of the second atom

is detuned by the interaction energy Udd.

overall number of atoms excited would be fewer than in the absence of interactions,

but many atoms could still be excited overall. By definition, the excitation of these

atoms would be “suppressed”, but the term “blockaded” is reserved for the regime

where only one atom could be excited within the sample. In addition, it is possible

to have interactions with certain “zeros”, which would result in an ineffective blockade

[Walker and Saffman, 2005]. This distinction is important because promising applica-

tions such as quantum computation or single photon sources would require “blockade”,

and not merely “suppression”.

Related to the idea of blockade is the commonly used term “blockade radius”. This

refers to the distance away from an excited atom the second atom would need to be

for the energy shift to become smaller than the transition linewidth. The excitation of

atoms at distances closer than this radius would be greatly suppressed. Thus, a large

sample with suppression can be thought of as a collection of individually blockaded

spheres, each with a radius Rb. The number of atoms within this locally blockaded

volume will determine the level of suppression in the sample as a whole.

Since the time of Lukin’s proposal, this scheme has been investigated by sev-



111

eral groups, with many promising advances. In particular, suppression of excitation

in a large Rydberg sample has been shown in several contexts [Singer et al., 2004]

[Tong et al., 2004] [Cubel Liebisch et al., 2005] [Vogt et al., 2006] [Vogt et al., 2007]

[Heidemann et al., 2007], and recently a genuine blockade between two nearby single

atoms has been shown [Urban et al., 2009], [Gaëtan et al., 2009]. A complete blockade

of a large number of atoms in a single site remains to be observed, but several promising

realizations of this are being pursued, including the future work of this experiment, as

discussed in Chapter 9.

As the work presented in Chapter 8 will involve a regime where suppression, but

not blockade, is expected, Section 7.2 will develop the expectations for Rydberg atom

excitation in this regime. The expected scaling of the Rydberg excitation in the limit

of strong van der Waals blockade and large samples has recently been investigated by

[Löw et al., 2009]. I expand upon these universal scaling ideas, and generalize them

the unique regime of our experiment covering where the atom-atom interactions first

becomes significant. Our general theory allows a quantitative understanding of the

interaction strength, which had not previously been considered.

The theory of atom-atom interactions will be explored in detail in Section 7.3.

Since only a single Rydberg state is typically excited in our experiments, the dipole-

dipole interaction is zero to first order. However, due to the large dipole moments and

small energy defects, the Van der Waals interaction can still produce large interaction

strengths. I will discuss the expected van der Waals interactions in our sample, and

the expected blockade parameters for our experiment. Since these are often smaller

than desired, I will also discuss a technique for creating larger atom-atom interactions

using microwaves: resonantly coupling the initially excited state to a nearby state.

This coupling to nearby Rydberg states enables a first order dipole-dipole interaction,

and so increases our atom-atom interactions.
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7.2 Scaling Laws

Understanding the expected scaling of Rydberg atom production under conditions of

a strongly interacting, large volume gas is more complicated than it may appear upon

initial consideration. The work of [Löw et al., 2009] has recently described the expec-

tations for a universal scaling law in this regime. Here I will clarify and expand upon

these ideas for the case of microwave coupled states, where the atom-atom interactions

are predicted to be large and will have a 1
R3 dependence. Additionally, the scaling law

is generalized to be valid in the realm of weak interactions.

Essential to an understanding of the scaling laws in a strongly interacting gas is the

idea of collective excitation [Heidemann et al., 2007], where the effective Rabi frequency

is enhanced by the number of atoms in a blockaded region according to

ε2eff =
√

Nbε2 =

√
η
4π

3
R3

bε2 (7.1)

where Nb is the number of atoms in the blockaded region, which is equal to the blockade

radius Rb times the ground state density η.

In the strongly interacting gas described in [Löw et al., 2009], it is assumed that

a large number of atoms are inside a blockade sphere, resulting in power broadening

dominating the linewidth of the transition. In this case, to be blockaded the atom-atom

interactions must be equal to the effective Rabi frequency. For a three dimensional

sample with resonant microwave coupling, this can be written:

C3β

R3
b

=

√
η
4π

3
R3

bε2, (7.2)

where β is a correction factor resulting from angular momentum degeneracies, as dis-

cussed in Section ??. The important consequence of eqn. 7.2 is that the size of the

blockaded volume in fact depends upon the density of ground state atoms and the
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excitation rate according to

Rb =

(
C2

3β
2

ε2
2η

4π
3

)1/9

. (7.3)

Equation 7.3 shows that as the density or excitation rate is increased, the effective

blockade radius will decrease, enabling more Rydberg atoms overall to be excited. This

increase in Rydberg atom number does deviate significantly from a linear increase, with

the number of Rydberg atoms produced equal to the number of blockade spheres within

the excitation volume,

Nr =
V

4π
3

R3
b

=
V η1/3ε

2/3
2

(4π
3

)2/3C
2/3
3

. (7.4)

Unfortunately, we cannot currently attain high enough densities to verify this

scaling over a large range, but this has been observed in a beautiful experiment by

[Löw et al., 2009]. However, several important aspects have been left out of considera-

tion in that investigation. This scaling has been derived entirely with the assumption

of a strongly interacting gas, and gives no insight into a gas with weak or zero neg-

ligible interactions. This is especially important to our experiment, which covers the

very interesting transition between a weakly and strongly interacting gas. As we will

see in Chapter 8, for low ground state densities the atom-atom interactions appear too

small to noticeably suppress excitation. However, as the density is increased we tran-

sition into a regime where these interactions appear to suppress excitation. As such,

the experiments conducted represent a “transition” regime between weak and strong

interactions, and a more general scaling law which encompasses this transition regime

is necessary.

Due to the large natural transition linewidth observed in our experiment and the

relatively small number of atoms expected in a blockade volume (see Section 7.3),

the minimum atom-atom interaction shift necessary for blockade in this case is not

determined by the effective excitation Rabi frequency, but by the linewidth. When the
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interaction strength between nearby atoms becomes larger than the effective linewidth

of the transition, excitation will effectively cease. This would result in an increase in

the number of Rydberg atoms with increasing density or excitation rate up to a certain

maximum number (determined by the interaction strength), and then a steady state

value regardless of further increases. In this case, the condition for blockade becomes:

C3β

R3
b

= Γ, (7.5)

where Γ is the transition linewidth.

Here the blockade volume, and hence the number of possible excitation sites, will

be independent of the density or excitation frequency:

Ns =
V

4π
3

R3
b

=
V Γ

4π
3

C3β
, (7.6)

where Ns is the number of excitation sites in the volume V. This equation will hold

provided that the interaction strength is larger than the transition linewidth and the

effective excitation Rabi frequency is not yet large enough to put us into the realm of

a “strongly interacting” gas.

To generalize the idea of universal scaling laws for the transition between the realm

where there is no blockade (Ns ∝ η) and the onset of blockade (Ns constant), we use

an interpolation for the number of excitation sites that is valid in the known extreme

cases of negligible and strong blockade:

Ns =
ηV√

1 + (
η 4π

3
C3β

Γ
)2

. (7.7)

It can be seen that this generalized equation for the Rydberg atom number obeys the

correct scaling for the limits of the blockade. It is possible to find other interpolation

functions that also agree with the known scaling at the limits. This particular function

was chosen as a simple function which agreed well with the experimental data. Several
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other functions with the appropriate limiting dependence have also been used, and

resulted in less than a 20% change in the extracted parameters.

The relationship between the actual number of Rydberg atoms created and the

number of available excitation sites depends upon the relative rates of the excitation

and stimulated emission. This will be discussed in more detail in Section 8.3. The

number of Rydberg atoms in this case is given by:

Nr =
R2eff

2R2eff + R3

Ns. (7.8)

The effective excitation rate R2eff can similarly be generalized as

R2eff =

√√√√1 +

(
η 4π

3
C3β

Γ

)2

R2, (7.9)

so eqn. 7.8 can be simplified to:

Nr =
R2V η

2R2

√
1 +

(
η 4π

3
C3β

Γ

)2

+ R3

. (7.10)

We now have a generalized equation for the number of Rydberg atoms excited which

is valid for for all regimes with the effective Rabi frequency less than the transition

linewidth. The number of Rydberg atoms expected can be determined for a particular

set of η, R2, R3, V, C3β. This will give us a means to quantitatively examine the

number of Rydberg atoms created as a function of several experimental parameters.

Being able to vary several parameters provides an excellent check on our understanding

which has been absent in many of the experiments to date. In Sections 8.2 and 8.3 the

atomic density and excitation rate, respectively, are varied. As we will see, this allows

the extraction of the expected interaction strength C3β given the stimulated emission

rate.

It is also worthwhile to consider the scaling of the change in Rydberg atom number,

dNr

dt
, at small times. Following the line of thought described above, we can write this
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rate as

dNr

dt
= NsR2eff , (7.11)

which in the most general case can be written

dNr

dt
=

ηV√
1 +

(
η 4π

3
C3β

Γ

)2

ε2
2eff√

Γ2 + ε2
2eff

, (7.12)

where the linewidth of the determined by the larger of the transition linewidth or

excitation rate. As already discussed, for the densities available in our experiment

Γ > ε2eff . This results in the simplification of eqn. 7.12 to

dNr

dt
=

ηV ε2
2

Γ
, (7.13)

which would scale linearly in both the ground state density and the 480 nm power. If

we were in the “strongly interacting” regime described earlier in this section, we would

instead see a dependence that went as:

dNr

dt
=

ηV ε2
2

Γ

1√
1 +

η2/3( 4π
3

)2/3ε
4/3
2 (C3β)2/3

Γ2

. (7.14)

Observing dNr

dt
can verify the regime of atom-atom interactions, as we expect a

linear scaling with both density and excitation intensity. An additional consistency

check is provided by the excitation volume extracted from the linear fit.

The ability to perform a quantitative investigation of the interaction strengths rep-

resents an excellent advance in the experimental understanding of atom-atom interac-

tions. This improvement beyond observing qualitative agreement with the scaling laws

can serve as a further check on our understanding in a variety of systems.

7.3 Van der Waals Interactions

Now having an idea of the expected behavior of the atomic excitation, we wish to have a

theoretical estimate of the atom-atom interactions with which to compare the results of
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our data. The basic theory of two interacting dipoles has been well understood through

classical theory for quite some time [Jackson, 1999]. These two dipoles interact and

produce an energy shift of

U(R)dd =
~p1 · ~p2 − 3(n̂ · ~p1)(n̂ · ~p2)

4πε0|R1 −R2|3 , (7.15)

where ~pi is the dipole moment of atom i, n̂ is the unit vector along the axis of atomic

separation, and |R1 −R2| is the separation of the atoms.

The first order dipole-dipole interaction requires states of opposite parity, which are

absent in the case of excitation to a single Rydberg state. One way of mixing parity

is by the application of an electric field [Gallagher, 1994]. Our current chamber is not

equipped to apply electric fields at the atoms, and there are several other concerns

which make implementing this scheme non-ideal. The introduction of electrodes near

the atoms would make the presence of stray electric fields hard to eliminate and control.

In addition, these dipole-dipole interactions still go to zero at an orientation angle of

54.7◦, as seen from Eqn. 7.15.

An alternative to first order dipole-dipole interactions arises from the van der Waals

interaction. These interactions can have comparable strength to the dipole-dipole in-

teractions when there exists a pair of nearly degenerate two atom states. As seen in

Fig. 7.2, the ns states of high lying Rydberg levels are close to symmetrically located

between the np and (n + 1)p states. Similarly, the nd states lie between (n− 1)f and

(n + 1)p. The resonant energy transfer processes:

ns + ns → np + (n− 1)p, (7.16)

nd + nd → (n + 1)p + (n− 1)f (7.17)

are characterized by a small energy defect, δ. This defect is defined by the energy levels
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Fig. 7.2: Energy level spacing near n=47 Rydberg states. Pairs of atoms can be nearly de-

generate with atoms in nearby states, resulting in large Van der Waals interactions.

of the initial and final states,

δ = Ef1 + Ef2 − 2Ei (7.18)

where Ef1, Ef2, and Ei are the energies of the two final states and the initial state.

If other possible channels are ignored, the Rydberg potential energy curves are then

given by

U(R)vdW =
δ

2
+

√
DφC3C ′

3

R6
+

δ2

4
, (7.19)

where C3 = e4< ns||r||np >2 C ′
3 = e4< ns||r||(n− 1)p >2 [Saffman and Walker, 2005].

The term Dφ in eqn. 7.19 is the factor correcting for the angular momentum

properties of the interaction, about which a detailed analysis can be found elsewhere

[Walker and Saffman, 2008]. While this factor is fairly straightforward for excitation

to the |s〉 states, it becomes more complicated for |d〉 states. Here there exist particular

sublevels with very small interactions. For a complete blockade, these would be the

limiting factors where excitation would occur. In calculating an average interaction

strength for quantifying the suppression, I have taken the average of the blockade radii

for each excitation channel.
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State C6(MHz µm6) Rb (µm) Nb

30s 22.6 1.35 .2

47s 3.81 · 103 3.17 2.6

60s 1.2 · 105 5.63 15

28d 119 1.33 .2

43d 5.4 · 105 5.44 13.5

58d 3.2 · 105 5.86 16.9

Tab. 7.1: The van der Waals interaction strengths, blockade radius, and blockaded number

for various Rydberg levels accessible to our experiment. The transition linewidth

is assumed to be 5 MHz.

At large interatomic spacing, when
C3C′3
R6 << δ2, eqn. 7.19 can be simplified to

U(R)vdW =
C6

R6
, (7.20)

where C6 =
DφC3C′3

δ
.

The van der Waals shift is isotropic, which is advantageous for any attempt at

blockade. The strength of this interaction depends upon the energy defect δ and the

radial matrix elements 〈r〉. The strength of the Rydberg-Rydberg interactions can be

seen to vary strongly with principal quantum number. The radial matrix element 〈r〉
scales as n2, so C6 scales as n8. In addition, the energy defect δ scales as n−3, so the

van der Waals interactions U(R)vdW scale as n11. As a result, increasing the principal

quantum number can drastically affect the range of the Rydberg blockade. The details

of how the energy defect, δ and the radial matrix elements 〈r〉 are calculated are

discussed in Appendix A. The results of evaluating the strength of these interactions

for the Rydberg levels accessible in our lab can be seen in Table 7.1.

To qualify how effective our blockade will be, we also define an effective blockade

radius, Rb. Any atoms inside a blockade sphere would have atom-atom interactions
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larger than the effective linewidth of excitation, ΓL, and their excitation would be

suppressed. The effective blockade radius can be found for Van der Waals interactions

while taking the angular momentum properties into account by:

ΓL = U(R)vdW =
C6

R6
b

. (7.21)

The calculated values for the effective blockade radius using our experimental linewidth

of 5 MHz are shown in Table 7.1, along with Nb, the expected number of atoms within

each blockaded region given our maximum ground state atomic densities.

7.4 Microwave Coupled Dipole-Dipole Interactions

While the interaction energy from van der Waals can be quite large for attainable

Rydberg levels, it is still beneficial to consider alternative means of increasing the

interaction energy. One mechanism which would accomplish this goal is resonant cou-

pling from the initial Rydberg state to nearby Rydberg states of opposite parity using

microwaves. This was described in Section 6.2, and results in a wavefunction:

|Ψ〉 =
|s〉+ |p〉 e−iωt

√
2

. (7.22)

In this case first order dipole-dipole interactions would be allowed, as the wavefunc-

tion contains a component of both the |s〉 and |p〉 states. For the simplified case of a

single angular momentum state, averaging this interaction over time gives:

U(R)dd =
C3

R3

1

2
(3 cos2 Θ− 1), (7.23)

where C3 = e2< nl||r||n′l′ >2 and Θ is the angle between the interatomic separation

and the microwave field polarization.

An additional level of complexity occurs when there are degenerate angular momen-

tum states available which modify the effective dipole-dipole interaction. In general,
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Fig. 7.3: The interaction energy as a function of the angle between the two dipoles for the

possible angular momentum states for microwave coupling on |s1/2〉 → |p1/2〉. A

state exists with zero interaction energy, which would prevent blockade to the single

atom level, though multiple excitations would still be suppressed. The |s1/2〉 →
|p3/2〉 coupling does not have this zero, and could be used in pursuit of a blockade.

these additional channels can be quantified by a correction factor β, which denotes

the average interaction strength for the allowed channels over π. An example of the

calculated correction factors for the eigenstates of the |s1/2〉 → |p1/2〉 interaction as a

function of Θ are shown in fig. 7.3. The details of this calculation are left to Appendix

B, but give an average value of β = 0.076.

Despite the reduced and anisotropic interactions of the various angular momentum

states, microwave coupled interactions can still be quite large, as seen in Table 7.2

for the Rydberg levels accessible in our experiment. Since the interaction will now be

anisotropic, the blockaded volume will be a more complex shape than a sphere, but

a spatial average can be made to obtain an effective blockade radius. Included in the
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State C3(MHz µm3) Rb (µm) Nb

30s 684 2.3 1.0

47s 4.75x103 4.4 7.2

60s 1.33x104 6.2 20

28d 920 ∼2.5 ∼1.3

43d 5.35x103 ∼4.6 ∼8.1

58d 1.81x104 ∼6.9 ∼27.2

Tab. 7.2: The dipole-dipole interaction strengths, blockade radius, and blockaded number for

various Rydberg levels accessible to our experiment using microwave coupling of

adjacent Rydberg states. The transition linewidth is assumed to be 5 MHz.

table are this blockade radius and the expected number within a blockade sphere. The

effective blockade radius is now defined where the average dipole-dipole interaction is

equal to the effective linewidth

ΓL = U(R)dd =
C3β

R3
b

. (7.24)

The |d〉 states should give suppression of excitation for the MOT densities available

in our lab, but these states provide additional complication. It has been shown that

|d〉 states ionize on a timescale much faster than the |s〉 states [Li et al., 2005], and

we have seen that this ionization causes difficulties in observing excitation suppression

in Section 6.4. As a result of this complication, the |d〉 states are not suitable for the

investigation of excitation suppression and are not used in the suppression experiments

of the next chapter. In the absence of an experimental motivation, a full theoretical

treatment of the microwave dipole-dipole interaction for |d〉 states has not yet been

given. The numerical values in Table 7.2 are approximations assuming the same β

factor as for |s1/2〉 → |p1/2〉.
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Since with |s〉 states ionization should not be a problem, they represent an excel-

lent means to investigate excitation suppression. For the |47s〉 state, we can change

from van der Waals interactions where the suppression is expected to be minimal to

resonant microwave coupling where we expect to see noticeable suppression. This will

be explored in Chapter 8, and presents an excellent means to investigate suppression

in light of the scaling laws presented in Section 7.2.
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8. RYDBERG SUPPRESSION

8.1 Introduction

In this Chapter I will describe the experiments which make use of the experimental

techniques described in Chapter 6 to investigate the effects of atom-atom interactions

on Rydberg excitation. Here I will explore the dependence of Rydberg excitation

under a variety of conditions. The theoretical predictions of Chapter 7 suggest that

the observation of excitation suppression should be possible with the experimental

parameters available in our lab.

The simplest way to investigate the presence of atom-atom interactions is to mea-

sure the number of Rydberg atoms created as a function of the density of atoms in the

MOT. Section 8.2 will describe experiments which investigate this scaling at |47s〉, with

and without applied microwave coupling. It can be seen that without microwave cou-

pling the number of Rydberg atoms scales linearly with density, an indication that the

interactions are not large enough to significantly suppress excitation. With microwave

coupling to the |47p〉 state however, we see a distinct fall off from this linear scaling

at high atom densities. This can be fit using the expected scaling discussed in Section

7.2 to obtain a measurement of the interaction strength, C3β = 270±120 MHz µm3 in

reasonable agreement with theory. Additionally, we have observed the dependence of

dNr
dt

, which is in reasonable agreement with the linear dependence expected.

We have also investigated the dependence of the number of Rydberg atoms cre-
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ated versus the power of the 480 nm laser, and hence the excitation rate, in Section

8.3. Similarly, at high excitation rate we would expect the number of Rydberg atoms

to be suppressed. This effect is clearly absent from the Van der Waals interaction

case. When the microwaves are applied, we again see evidence for suppression. This

data is again fit to the expected scaling law, giving C3β = 300±120 MHz µm3. This

value is in agreement with that obtained from the density dependence, suggesting good

understanding of the interactions.

The Chapter concludes in Section 8.4 with a discussion of the importance of these

results for the future. The correlation between successful demonstration of excitation

of suppression and the ability to obtain single atom blockade is in fact not automatic,

and this is a reality that is often misunderstood in the field. Microwave coupling

provides an excellent example of the distinction between suppression and blockade,

giving important insight for future applications.

8.2 Density Dependence

The analysis of Section 7.4 suggests that for the atomic densities present in our MOT,

we should be able to create locally blockaded volumes with as many 20 atoms per

blockade region using the |60s〉 state with microwave coupling. In order to increase the

available Rabi frequencies and see a more dramatic effect from microwave coupling,

we have chosen to perform proof of principle experiments at |47s〉. At this Rydberg

state, we can still attain two-photon excitation frequencies of ∼ 500 kHz, and expect

to see noticeable suppression of Rydberg excitation with the application of microwave

coupling to at |47p1/2〉.
Using the technique of pulsed excitation described in Section 6.4, we will now look

directly for experimental evidence of suppression. As a first investigation, we will
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vary the density of ground state atoms. We reduce this density from its maximum

value by placing an iris in the MOT trapping beam before it is split. This technique

enables variation of the number of atoms without significantly altering the volume of

the MOT. An exact determination of the change in MOT volume is not available at

the time of this dissertation. However, observation of the approximate MOT size on a

CCD camera reveals no noticeable change. Previously the volume has been measured

while the atom number was varied with this technique, and was seen to change less

than 15% for reducing the number by an order of magnitude. For our current purposes

the volume is assumed to stay constant over the reduction in atom number presented

here. This will provide some uncertainty to the data, in addition to the standard factor

of two uncertainty in the total number of atoms in the MOT.

At this point it is necessary to clarify a few complexities involved in the acquisition

and analysis of our data. For a yet undetermined reason, the total number of Rydberg

atoms created for a particular set of parameters (ground state density, excitation rate,

stimulated emission rate, location in ac Stark shift) can vary by up to a factor of two.

The timescale for this change appears irregular, but can happen on as little as a few

minute timescale. Obviously, this is a problem for accurately comparing the number of

Rydberg atoms created. In order to correct for this effect, we have developed a method

of taking “control” points around surrounding each data point. The control points are

taken with full density and laser powers, and the number of Rydberg atoms for a data

point is scaled according to the control points on either side. While this still allows

for errors resulting from an uneven rate of change, it greatly reduces the effect of this

uncertainty. Currently, we are working on eliminating the source of drift. It is believed

this comes from a few percent change in the intensity of the 780 nm laser. While

the change in excitation rate is not significant, it also changes the ac Stark shift, and

hence the depth of the shift compared to our excitation point. An intensity stabilizer
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is currently being constructed to fix this issue, and hopefully eliminate the fluctuations

in the future. For the present, our method of correcting for this problem still enables

investigation of the Rydberg atom production.

If no microwaves are applied, theory suggests that only ∼2 atoms are present in the

blockaded volume at maximum density. Hence, only a very small amount of suppression

is expected, and this presents an excellent means of verifying our ability to control and

understand the environment. Figure 8.1 shows a series of scans taken with various

ground state atom densities, while the excitation and stimulated emission rates were

maintained at their maximum value: ε2 =200 kHz and ε3 =225 kHz. This data was

taken at what we call the “deep” portion of the ac Stark shift, exciting from ∼-65

MHz from the natural frequency, where the full depth is ∼-71 MHz. The number of

Rydberg atoms is also plotted versus the ground state density in Fig. 8.1. A linear

dependence is observed, supporting the estimate that atom-atom interactions do not

effect the excitation in this regime.

The situation changes as microwaves are applied, as now ∼7 atoms are predicted

to be within a blockaded volume at maximum density. Figure 8.2 again shows a se-

ries of scans taken with various ground state atom densities, while the excitation and

stimulated emission rates were maintained at their maximum value, this time with mi-

crowaves on resonance to the |47p1/2〉 state. At high ground state densities, the number

of Rydberg atoms produced ceases to grow linearly, as can be seen in Fig. 8.2. This

deviation from a linear dependence suggests that the increased interactions between

atoms have started to suppress further Rydberg excitation as the density is increased.

We can further fit the data using Eqn. 7.10, showing good agreement with the

expected scaling. From the fit to the density dependence, we obtain an excitation

volume of 1.7 ± .5 · 105 µm3 and an effective interaction strength C3β of 270±120

MHz µm3. The excitation volume is consistent with the estimate given from the laser
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Fig. 8.1: An examination of the Rydberg production with only van der Waals interactions.

a)The Rydberg atom population resulting from a pulsed excitation scheme at differ-

ent ground state atom densities. b) A plot of Rydberg atom number versus ground

state density shows a linear dependence, and indicates that atom-atom interactions

do not limit excitation.
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Fig. 8.2: An examination of the Rydberg production with microwaves coupling the |47s〉 and

|47p1/2〉 states. a)The Rydberg atom population resulting from a pulsed excitation

scheme at different ground state atom densities. b) A plot of Rydberg atom number

versus ground state density shows a clear deviation from linear dependence, and

indicates that atom-atom interactions begin to suppress Rydberg atom excitation.

The data is fit using Equation 7.10, giving C3β = 270±120 MHz µm3.
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production rate versus ground state density with van der Waals interactions b) A

plot of Rydberg atom production rate versus ground state density with microwave

coupling. Here the expected dependence is linear in both cases.
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beam waists of 1.9 · 105 µm3, as discussed in section 6.3. The interaction strength

indicates a β value of 0.056±0.026. This value is slightly lower than the theoretical

value of .076, but reasonable considering the uncertainty of the measurement and the

incomplete theoretical understanding of the system, especially the question of blockade

radius when there are multiple potentials.

We can also gain information about the initial Rydberg atom production dNr

dt
. As

discussed in Section 7.2, this is expected to have a linear dependence on the density

in the regime where the transition linewidth is significantly larger than the effective

excitation rate. Figure 8.3 shows this initial change in Rydberg number versus the

ground state density for both the Van der Waals and microwave coupled case. The fit

allows the extraction of the excitation volume, which gives 2.4±.4·105 µm3 and 1.5±.3·
105 µm3, respectively with and without microwave coupling. These values are consistent

with the value determined from the fit to the number of Rydberg atoms. While this

data is consistent with a linear dependence, it is possible that we are beginning to see

the dependence of the strong interaction regime at high densities. If higher densities

are achieved in the future, it will be interesting to further examine this transition.

8.3 Intensity Dependence

As an secondary means of examining the Rydberg atom excitation, it is possible to vary

the Rydberg atom density by changing the excitation rate. This can be done through

simple attenuation of the 480 nm laser power, and provides an additional means of

investigating suppression. However, the effects from altering the excitation rate are

slightly more complicated than simply adjusting the atomic density.

The equilibrium number of Rydberg atoms depends upon the ratio of the excitation

rate compared to the other important rates in the system. If the excitation rate is
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small compared to rates out of the Rydberg state (spontaneous decay, blackbody, or

stimulated emission), the number of Rydberg atoms should grow linearly with the

excitation rate. In contrast, in a sample where the excitation rate is much greater than

the other rates in the system, the number of Rydberg atoms should simply go to half

of the atoms in the excitation volume, and be independent of the excitation rate (aside

from a slight growth due to the excitation volume expanding with saturation). The

experiments described here were done in an intermediate regime where the excitation

rate was approximately equal to the stimulated emission rate. For a region without

blockade, this can be expressed as:

Nr =
R2effNtot

2R2eff + R3

. (8.1)

At this juncture it is worth discussing the balance of excitation and stimulated

emission rates. In order to create the highest densities of Rydberg atoms, the highest

possible excitation rate is desired, but the selection of the stimulated emission rate is

more complicated. A very low stimulated emission rate lowers our photon detection

rate, and can make signal to noise levels unacceptably low. Our current laser powers

would allow for stimulated emission rates several orders of magnitude higher than

the excitation rate if tightly focused beams were used. However, while this would

result in the highest possible photon count rates, it would also “short-circuit” any

blockade effect, as no equilibrium Rydberg population could be achieved. A planned

experiment investigating this effect is discussed in Section 9.2. For now, we have chosen

the intermediate regime, where good signal to noise is accomplished while still allowing

blockade.

Having relatively balanced excitation and stimulated emission rates results in a

slight, but non-linear dependence, on the excitation rate. A set of pulse sequences

taken to investigate this dependence can be seen in Fig. 8.4, along with the the Rydberg



133

atom number plotted versus the 480 nm laser power. Here a simple fit using Eqn. 8.1

is included to demonstrate the expected behavior in the absence of interactions.

The effect of adding strong atom-atom interactions to this already non-linear de-

pendence is slightly less obvious than a deviation from the clear linear scaling of Section

8.2. Nonetheless, it can still be qualitatively observed as a faster saturation in the num-

ber of Rydberg atoms. Figure 8.5 shows the excitation pulse data and dependence of

the Rydberg excitation versus the power of the 480 nm laser for the case of microwave

coupling between the |47s〉 and |47p〉 states. Included is the data and fit taken without

microwave coupling for easy comparison.

The data is again fit using Equation 7.10, showing good qualitative agreement.

From the fit we obtain an excitation volume of 1.9 ± .6 · 105 µm3 and an effective

interaction strength C3β of 300±120 MHz µm3. Both of these values are consistent

with the results of the density dependence, giving further evidence of our understanding

of the behavior. The dependence of dNr

dt
on the 480 nm power is shown in Fig. 8.6,

again showing a linear dependence. The data with and without microwave coupling

gives gives a volume of 1.5 ± .3 · 105 µm3 and 2.0 ± .3 · 105 µm3, respectively. Again

this is in reasonable agreement. The data presented here gives further support that

the atom-atom interactions are increased by resonant microwave coupling.

8.4 Discussion

Despite fairly large systematic uncertainties in our system, we have been able to observe

a distinct onset of suppression when microwaves are applied on resonance with the

|47s〉 → |47p〉 transition. This is the first experiment to show evidence for suppression

of excitation resulting from resonant microwave coupling. In addition, we are able to

make quantitative evaluations of the strength of these interactions by examining the
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scaling of the excitation behavior.

The application of microwave coupling to increase interaction strengths in Rydberg

gases for future applications such as quantum computing or single photon sources is

worth careful consideration. For these applications, it is necessary to obtain a complete

blockade of the sample, with only one atom excited at a time. It is important to

emphasize that the observation of suppression in large volumes does not guarantee the

effectiveness of blockade on a single atom level.

An excellent example of this distinction can be seen in the case of microwave coupled

|s1/2〉 → |p1/2〉 states. As can be seen in fig. 7.3, there exists a particular angular mo-

mentum state of these two atoms which results in zero dipole-dipole interaction. This

state would eliminate the possibility of single atom blockade, and make this coupling

critically flawed for application in a quantum computer or single photon source. De-

spite this, in a many body sample there could still exist an average interaction strength

resulting in the suppression of excitation, as we saw in Sections 8.2 and 8.3.

Fortunately, the |s1/2〉 → |p3/2〉 interactions do not contain such “zero states”, and

all channels have a finite interaction strength. This coupling will then provide a better

choice for the pursuit of any application which requires blockade at the single atom level.

At the time of the experiments in this chapter, the effect of the angular momentum

states had not been considered, and so the microwaves were chosen for experimental

convenience to couple the |s1/2〉 → |p1/2〉 states. In the future, we will switch to the

|p3/2〉 to examine the difference the “zero state” makes. A complete understanding of

the effect of this angular momentum coupling is yet to be achieved, and remains an

interesting theoretical field.

Going forward, microwave coupling can significantly enhance the blockade volume

at small principal quantum numbers. At higher principal quantum numbers, the gain

in blockaded volume in fact becomes quite small, due to the fact that the van der
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Waals interactions scale as n11 while the microwave interactions only scale as n4. This

noticeably reduces the advantage of microwave coupling even at n=60, as seen in Tables

7.1 and 7.2. At high principal quantum numbers it remains unclear if the small gain in

interaction strength is worth the loss of excitation rate involved. Further experiments

are underway to continue to investigate this possibility, as will be discussed in Section

9.2.
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9. CONCLUSION

9.1 Summary of Dissertation

In this section I will conclude the dissertation with a summary of the major results.

The primary goal of this dissertation was the implementation of a stimulated emission

probe for the study of ultracold Rydberg atoms, which has allowed the exploration of

three important areas of Rydberg atom physics.

First, we were able to observe the Rydberg atom dynamics with a tool unavailable

to any other group, the stimulated emission probe, allowing the determination of the

transfer rate out of the Rydberg state. This transfer rate was an order of magnitude

larger than could be expected from spontaneous decay or blackbody transfer, revealing

the presence of another process. We were able to observe from the loss rate and depen-

dence on principal quantum number that collisions and ionization were not responsible

for this transfer, eventually leading us to the conclusion of superradiance. A simple

model of the process agrees well with the experimental data, and this work was the

first to emphasize the importance of superradiance for the evolution of a Rydberg atom

cloud.

The examination and optimization of a phase-matched four-wave mixing process

through the Rydberg state represents the second main contribution of this dissertation.

This demonstrates a coherent excitation through the Rydberg state, one of only a

few experiments to accomplish this due to the strong Rydberg-Rydberg interactions.
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In addition, we have demonstrated that by detuning the process from the Rydberg

resonance, up to 50% of the light was emitted into a diffraction limited direction. This

increase in collection efficiency is an essential component of a useful single photon

source.

Finally, we have begun investigations of the interactions between Rydberg atoms,

and developed resonant microwave coupling as a viable strategy to increase the atom-

atom interactions. Our technique demonstrated the suppression of excitation resulting

from resonant microwave coupling, and gave an experimental measure of the interaction

strength in agreement with theory. This opens the way to a successful demonstration

of photon anti-bunching and the implementation of a single photon source.

9.2 Ongoing Experiments

The experiments described in this thesis are ongoing, and several experiments are

planned for the future. In the short term, several improvements have been planned to

verify the suppression of excitation resulting from resonant microwave coupling and to

improve the ease of our data taking and analysis. In addition, a yet unexplored variable

in our exploration of suppression is the Rabi frequency of the stimulated emission

probe. It is expected that with stimulated emission rates significantly higher than the

excitation rate, there would be no suppression. Since no Rydberg population could

accumulate with a high stimulated emission rate, the blockade would effectively have

a “short circuit”.

Following the current experiments, a major goal is to increase the ground state

atom densities. This would enable the observation of suppression for van der Waals

interactions, and allow further investigation into their strength and characteristics. In

addition, higher densities would enable the verification of the scaling laws in the strong
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interaction regimes. Higher density is also a necessity to accomplish phase-matched

four-wave mixing in a small volume which could be blockaded.

Previously, we have used a 20 W Nd:YAG laser to produce a Far Off-Resonance

Trap (FORT) with densities as high as 2x1015 cm3 [Sebby-Strabley et al., 2005]. The

next step in our lab will be to again establish a FORT, enabling these experiments at

densities orders of magnitude higher than the experiments described in this dissertation.

While it is possible to use the Holographic Atom Trap described in detail elsewhere

[Sebby-Strabley, 2004], this has the drawback of creating an array of microtraps, which

would complicate our ability to manipulate and understand the excitation. Instead, a

simple FORT should enable densities of ∼ 1013 cm3.

This increased density would provide the ability to pursue evidence for the complete

blockade of a small volume by the observation of photon anti-bunching. If only one atom

was excited at a time, only one photon could be emitted at a time. This would result

in a finite delay between photon emissions, which could be observed in a measurement

of the second-order correlation function, g(2) of the emitted light. When combined with

phase-matched emission to give high collection efficiency, we have the means to pursue

a realistic implementation of a deterministic single photon source.
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A. EXPLANATION OF CALCULATION OF RYDBERG ENERGY

LEVELS AND WAVEFUNCTIONS

We have two Igor programs which are used to calculate the energy levels and matrix ele-

ments for Rydberg atoms. This appendix will be a brief explanation of the background

for these calculations, followed by an explanation of how the program is run. This is

meant more as a guide to future use of the programs than a thorough explanation of

the physics involved.

A.1 Energy Levels

Our calculation of the Rydberg energy levels is based on energy defect theory. In

considering the Rydberg states of alkali atoms, they will be essentially similar to the

Hydrogen atom. However, there will be slight differences due to the fact that the

nucleus has a finite size that the Rydberg electron can penetrate or polarize. Both of

these effects lead to an increased binding energy. The energy can be given by

E =
−Ry

(n− δnlj)
. (A.1)

where Ry is the Rydberg constant of Rubidium, n the principal quantum number,

and δnlj is the quantum defect. The quantum defects are best determined through

experimental measurement of the Rydberg level energies. This has been done in two

main ways: standard optical spectroscopy from low lying states and rf spectroscopy

between nearby Rydberg levels. The most recent and accurate measurements can be
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found here [Li et al., 2003] [Han et al., 2006]. In general, the defect is given by:

δnlj = δ0 +
δ2

(n− δ0)2
+

δ4

(n− δ0)4
+

δ6

(n− δ0)6
+

δ8

(n− δ0)8
+ .... (A.2)

The program which uses this to calculate the energy levels can be found on the

computer “Zoom” at E: \datavault\wavelengths − new. The command line “lam-

calc(F,n,l,j)” will give the energy of the n, l, j Rydberg level above the 5P3/2 state,

following several steps. First, the F level of the 5P3/2 state is used to determine the

original binding energy.

This value is then added to the output of “ecalc(qn,ei,a,b,c,d,e)”

= ei− eis− −ryrb

(qn− a + b
(n−a)2

+ c
(n−a)4

+ d
(n−a)6

+ e
(n−a)8

)
. (A.3)

This equation calculates the energy of the Rydberg state using eqn. A.1 with the

quantum defect from eqn. A.2, where δ0, δ2, δ4, δ6, δ8 have been labeled a,b,c,d,e. The

term ei-eis in the program corrects for the different ionization potential based upon the

l,j state. This program is quite accurate, and can be used to locate the transition to

Rydberg levels within ∼100 MHz.

A.2 Matrix Elements

The evaluation of Rabi frequencies as discussed in Appendix B, will depend on the

evaluation of the matrix element 〈Le| |r| |Lg〉2. This can be found from the numerical

integration,

〈r〉 =
∫

rdrPnele(r)Pnglg(r), (A.4)

provided that the Rydberg wavefunctions Pnglg are known. There are several techniques

which can be used to calculate these wavefunctions, but the program used in our lab

is based upon the model potential scheme developed by [Marinescu et al., 1994]. The
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details of this calculation are quite involved, and so this Appendix will merely give the

general principals of the method and explain the proper functioning of the program.

The method used in the program operates through the generation of a model po-

tential. Radial wavefunctions are then obtained by the numerical integration of the

Schrödinger equation over this potential. The energy levels resulting from this poten-

tial are then compared to those known through quantum defect theory. An iterative

process adjusts the parameters of the potential involved until the wavefunctions give

the correct values for the Rydberg levels.

The program which uses this model potential technique can be found on the com-

puter “Zoom” at E: \datavault\matrixelem. The operation of the program is fairly

straightforward. The command “eigencalc(n,l)” will use the model potential method

to generate the wavefunction for the n,l state, generated as “Psi”. This state must then

be stored as Psi0 for later integration. Again, run the command “eigencalc(n′, l′)” to

obtain the wavefunction for the coupled state. The evaluation of
∫

rdrPnele(r)Pnglg(r)

is then performed with the command “print matrixelem”. The output of this command

will be the value 〈r〉 in units of Bohr radii, and is used as explained in Appendix B.
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B. THADLAB RABI FREQUENCY

The calculation of Rabi frequencies, and from them excitation rates, is an important

aspect of many problems described in this dissertation. It deserves particular attention

resulting from the fact that Thadlab defines and uses the term slightly differently than

the conventional method. In most textbooks, the Rabi frequency is defined as:

Ω

2
= 〈e| e~r ·

~E

h̄
|g〉 . (B.1)

As a result of this definition, the evolution of atomic populations goes as

dCe

dt
∝ Ω

2
Cg. (B.2)

In order to avoid carrying this factor of 1
2

throughout long problems, and as a matter

of convenience, traditionally Thadlab members have defined the Rabi frequency as

ε =
Ω

2
= 〈e| e~r ·

~E

h̄
|g〉 . (B.3)

This is the way Rabi frequency is used throughout this dissertation and various

calculations, and it is important to keep in mind. The effect of this definition on

the most common calculated values is shown in table B.1. This problem is made

even more complicated by differing standards on the definition of electric field. Many

textbooks define the electric field (for example, [Metcalf and van der Straten, 1999]

[Loudon, 2000]) as E = E0 cos(kz − ωt) = E0

2
eikz−ωt + c.c., while Thadlab is based off
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Parameter Standard notation Thadlab notation

Rabi Frequency Ω ε = Ω
2

Two-photon Rabi Ω1Ω2

2∆
ε1ε2
∆

AC Stark Shift Ω2

4∆
ε2

∆

Excitation Rate Ω2

Γ
4ε2

Γ

Tab. B.1: The definition of various parameters using both the standard notation and the

“Thadlab” notation for easy comparison.

the definition E = E0e
ikz−ωt + c.c.. As a result, the equation for Rabi frequency found

in these textbooks appears consistent with the Thadlab definition, but is not. This

issue has been the source of numerous difficulties in previous calculations, and should

always be dealt with carefully.

With an understanding of this distinction, I now turn our attention to the way in

which this is typically calculated in the lab. A more convenient expression than eqn.

B.3 is desired, which can then be calculated fairly quickly using the program described

in Appendix A.

Assuming z polarized light, and averaging over the m levels gives

ε2 =
e2E2

h̄2

1

2Jg + 1

∑
m

〈Jeme| z |Jgmg〉2 . (B.4)

At this point it is convenient to introduce the average oscillator strength,

f̄ =
2mω

3h̄(2Jg + 1)

∑
m

〈Jeme| z |Jgmg〉2 . (B.5)

Substituting eqn. B.5 into eqn. B.4, we find that

ε2 =
e2E2f̄

2h̄mω
, (B.6)

which can be put into a more convenient form of

ε2 =
πα2a0If̄λ

h
. (B.7)
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This can be easily calculated if the intensity, transition wavelength, and average

oscillator strength are known. This is generally the starting point for calculating Rabi

frequencies. The main calculation is then the average oscillator strength, which re-

quires careful calculation of the matrix element. If we begin with the general oscillator

strength between two levels, |nFmF 〉, this is expressed as:

f =
2mω

3h̄(2Fg + 1)

∑
mgme

| 〈Feme| r |Fgmg〉 |2. (B.8)

Using the Wigner-Eckart Theorem [Sakurai, 1994], the dependence on magnetic

quantum numbers and light polarization can be taken into account by 3j symbols,

which here sum to one. As a result,

f =
2mω

3h̄(2Fg + 1)
〈Fe| |r| |Fg〉2 . (B.9)

This can be further put in terms of a matrix element without hyperfine structure,

since

〈Fe| |r| |Fg〉2 = (2Fe + 1)(2Fg + 1)





Fe 1 Fg

Jg I Je





2

〈Je| |r| |Jg〉2 (B.10)

giving

f =
2mω

3h̄(2Jg + 1)
〈Je| |r| |Jg〉2 (2Fe + 1)(2Fg + 1)





Fe 1 Fg

Jg I Je





2

= fJgJe


(2Fe + 1)(2Fg + 1)





Fe 1 Fg

Jg I Je





2
 . (B.11)

For excitation to the Rydberg states, we must sum over the excited state hyperfine

states, since the hyperfine manifold cannot be distinguished. The sum of the term in

[] over the hyperfine excited states gives one, resulting in a oscillator strength which is
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independent of Fg. Similarly to eqn. B.12, we can write

〈Je| |r| |Jg〉2 = (2JFe + 1)(2Jg + 1)





Je 1 Jg

Lg 1/2 Le





2

〈Le| |r| |Lg〉2 , (B.12)

giving

f =
2mω

3h̄(2Lg + 1)
〈Le| |r| |Lg〉2 (2Je + 1)(2Jg + 1)





Je 1 Jg

Lg 1/2 Le





2

. (B.13)

Finally, since the program described in Appendix A calculates

〈r〉 =
∫

rdrPnele(r)Pnglg(r), we wish to express the oscillator strength in terms of this.

The final evaluation of the oscillator strength can be written as

f =
2mω

3h̄

L>

(2Lg + 1)
〈r〉2 (2Je + 1)(2Jg + 1)





Je 1 Jg

Lg 1/2 Le





2

. (B.14)

This is evaluated for the particular states of interest in our experiment, and is then

used to obtain the Rabi frequencies involved using eqn. B.7.



150

C. CALCULATION OF MICROWAVE COUPLED ATOM-ATOM

INTERACTIONS

The purpose of this Appendix is to explain the means in which the atom-atom interac-

tions strengths for microwave coupling were calculated. It will begin with a simplified

picture assuming only one mJ level. Following this calculation will be an explanation

of the calculations that arrive from the presence of multiple mJ levels, and the method

used to calculate the average interactions factor β.

We begin with the wavefunction of |ns1/2〉microwave coupled to |np1/2〉, as discussed

in Section 6.2. It is assumed that these microwaves are linearly polarized on the z-axis.

This is again written as

|Ψ〉 =
|s〉 ± |p〉 e−iωt

√
2

. (C.1)

In general, the dipole-dipole interaction can be written as:

Vdd = − e2

R3
(3(~r1 · R̂)(R̂ · ~r2)− ~r1 · ~r2), (C.2)

where r1, r2 are the orientation of the two dipoles and R̂ is the unit vector along the

axis of atomic separation.

If it is assumed the atom must remain in a single mJ level, no procession around

the z-axis is possible. This gives

Vdd = − e2

R3
(3 cos Θ2〈z̃〉2 − 〈z̃〉2), (C.3)

with

〈z̃〉 =
1

2
(eiωt 〈p| z |s〉+ e−iωt 〈s| z |p〉 . (C.4)
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Taking the time average of 〈z̃〉2 eliminates the terms of order e±2iωt, and results in:

Vdd = − e2

R3

1

2
(3 cos Θ2 − 1) 〈p| z |s〉2 . (C.5)

This is nearly identical to the case of steady state electric fields, but differs by the

factor 1
2

due to the time dependence of the microwave field.

The situation becomes much more complicated when multiple mJ levels are taken

into account. The Hamiltonian for the microwave coupling can be written:

Hµ =




0 µ

µ† 0


 (C.6)

where µ is a 2x2 diagonal matrix coupling the mJ levels of the |ns1/2〉 and |np1/2〉 for

linearly polarized microwaves. Solving this system gives

Ψp =
µΨs

E
, (C.7)

where E is the eigenvalue, E =
√

µ†µ.

We are interested in the dipole-dipole interaction between two such coupled atoms,

〈Ψ1Ψ2|Vdd |Ψ1Ψ2〉, which can be written from Eqn. C.1 as

1

4
〈(Ψ1s + Ψ1pe

−iωt)(Ψ2s + Ψ2pe
−iωt)|Vdd |(Ψ1s + Ψ1pe

−iωt)(Ψ2s + Ψ2pe
−iωt)〉 . (C.8)

The dipole-dipole interaction requires each atom makes transitions between states

of opposite parity. Using this fact, Equation C.7, and eliminating the oscillating terms

gives:

1

4
(〈Ψ1s

µ

E
Ψ2s|Vdd | µ

E
Ψ1s Ψ2s〉+ 〈 µ

E
Ψ1s Ψ2s|Vdd |Ψ1s

µ

E
Ψ2s〉). (C.9)

At this point, the problem can be more easily solved through the use of spherical

tensor algebra. Using [Varshalovich et al., 1988] equations {3.2.1.19} and {5.2.8.40},
Equation C.2 can be written

Vdd = − e2

R3

√
24π{{r1 ⊗ r2}2 ⊗ Y2}0, (C.10)
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where Y2 represents the spherical harmonics and ⊗ the Kronecker spherical tensor

product for matrices. In addition,

{r1 ⊗ r2}2M =
〈p1/2| |r| |s1/2〉2

3
[{T sp

1 ⊗ T ps
1 }2M + {T ps

1 ⊗ T sp
1 }2M ] (C.11)

and

{T sp
1 ⊗ T ps

1 }2M =
∑
n

C2M
1n 1M−n T sp

1n ⊗ T ps
1M−n. (C.12)

Calculating the matrix element as described in Appendix B and incorporating the

microwave coupling µ =
√

2T j
101/2, µ† = (−1)j− 1

2

√
2T

1/2j
10 leads to the expression:

Vdd = (−1)j+ 1
2
e2〈r〉2

R3

√
24π(2j + 1)

36

{
({µ†T j 1

2
1 ⊗ T

1
2
j

1 µ}2 + {T
1
2
j

1 µ⊗ µ†T
j 1

2
1 }2)⊗ Y2

}

0
.

(C.13)

Here j has been left general for either the 1/2 or 3/2 state.

The 4x4 matrix C.13 is diagonalized in Mathematica to give the eigenvalues of the

system, which are discussed in Section 7.4 and shown in Figure 7.3 for coupling to p1/2.

In this case the average interaction strength was β = .076, though one channel had

zero microwave coupled interaction, and would only be limited by the van der Waals

interaction. The p3/2 was also calculated, which did not have this zero channel, with β

= .091.
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