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Chapter 1

Introduction

This thesis covers the research we have done to produce a working neutral atom quan-

tum logic gate which is an essential component of a neutral atom quantum computer.

To achieve this goal many diverse techniques and innovative ideas were combined to

reach the first demonstration of a quantum Controlled-NOT (CNOT) gate using neutral

atoms. These include elements from the fields of quantum mechanics, optics, lasers, ra-

dio frequency (RF) devices, electronic feedback and control, and are accompanied with

theoretical work in all these areas to understand the many interactions that we see in

our experiment on a daily basis. This chapter will discuss the motivations of our work

and include summaries of other work done in developing working quantum computers.

The second chapter covers the necessary theoretical background to understand the inter-

actions we use between neutral atoms, lasers, and the environment. The third chapter

covers the experimental apparatus we use to manipulate and control the target atoms.

The final chapter covers the results we have achieved to this point and will also describe

the focus of our future work.
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1.1 Quantum Computing

1.1.1 What is Quantum Computing

Quantum Mechanics has led to many revolutions in physics and technology over

the last century. Developments over the last 30 years have led to direct observation of

macroscopic quantum effects such as those seen in Bose-Einstein Condensates and super-

conductors. Quantum mechanics has become ever more important as researchers push

technology and devices to smaller sizes. This means that quantum mechanical descrip-

tions are required to explain many of the effects seen in these new technologies. How-

ever only recently have any of these effects been directly used to try to make a quantum

computer. A quantum computer uses some quantum system to store information in a

quantum state called a qubit. The quantum nature of these states allows them to be in

superpositions of the computational states usually labeled |0〉 and |1〉. This effectively al-

lows quantum computers to perform parallel operations because all possible states can be

represented during a calculation. This parallelism enables a quantum computer to solve

certain problems far more efficiently than a classical computer. For example algorithms

have been developed that allow impressive speed improvements in searching unsorted

lists [Grover, 1997] and factoring very large numbers [Shor, 1994]. Also quantum com-

puters allow for simulations of quantum systems which is valuable as these simulations

become intractable on classical computers as the number of simulated particles increases.

All these plus the high likelihood of future applications are driving the extremely rapid

developments in quantum computing and quantum information processing.

The requirements for a quantum computer were formally put together in [DiVincenzo,

2001]. There are five criteria a system needs to meet:

1. Scalable system with well characterized qubits

2. Ability to initialize the qubits to some simple state

3. Decoherence times longer than any relevant gate times

4. Universal set of quantum gates
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5. Qubit specific state measurement

The first point relates to the physical system that will be chosen to represent the |0〉

and |1〉 states used in computations. The system chosen needs to be able to scale to large

numbers of qubits without putting any exponential demand on necessary resources. If

this is not possible then the benefits of quantum computation may be cancelled by the

costs to implement a system large enough to perform the desired computations. Points 2,

3, 4, and 5 all relate to the operations performed on the qubits. To perform computations

it is necessary to setup a desired input state followed by operating a set of gates that

implement the quantum algorithm and finally perform a measurement of the system to

record the output of the algorithm. Initialization is done by first putting all the qubits into

some initial state, usually |0〉 or |1〉, followed by individual single qubit gates to put each

qubit into the desired initial state. Next the quantum algorithm is implemented, which

requires a universal set of gates. A universal set of gates can be made from just a two

qubit gate, such as the CNOT gate, and from single qubit gates. There are other sets as

well which allow the implementation of any quantum algorithm or provide advantages

by reducing the total number of gates needed to be performed in an algorithm [Nielsen

and Chuang, 2000]. The long decoherence time implies that multiple gate operations can

be performed without loss of the quantum information so that it can either be readout or

corrected using error correction schemes after performing some algorithm. Finally any

computation needs to have a way to record the output. So a procedure that can measure

a specific qubit state, either |0〉 or |1〉, is needed. Then the algorithm is repeated several

times or run in parallel on many qubits to measure the probability for the qubit to be in

each state.

It is likely that a quantum network of some type will be beneficial, if not necessary,

to scale a specific quantum computer to sizes that can perform the computations needed

for some quantum algorithms. This is essentially the same thing that is done with current

classical computers where many individual computing cores are connected to a memory

system or network effectively combining the computing ability of each core to make a
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single much larger computer or supercomputer. There are two additional criteria given

by DiVincenzo related to implementing a quantum network. These are:

6. Ability to convert stationary qubits to “flying” qubits

7. Ability to transfer “flying” qubits to a specific location

A “flying” qubit is a qubit that can be moved between two areas. Producing a “fly-

ing” qubit could be done either using one of the quantum computer’s qubits such as has

been suggested for ion quantum computing in segmented ion traps [Home et al., 2009]

or by copying the information of a qubit onto a different physical qubit such as a pho-

ton and then transfer that between the quantum computers. This also implies that the

ability to convert the information in this “flying” qubit back to information stored in a

computing or memory qubit is necessary. The basics of such a quantum network have

been demonstrated in various teleportation experiments [Olmschenk et al., 2009]. Many

different physical implementations exist which satisfy some or all of these quantum com-

puting criteria to some degree. Each system has its own strengths and weaknesses in

regards to these criteria. Some of the leading systems will be briefly described in the next

section.

1.1.2 Overview of current QC implementations

Many quantum systems have been pursued in the search for a quantum computer. Ini-

tially molecules manipulated using nuclear magnetic resonance (NMR) techniques were

used to demonstrate many of the control schemes necessary for quantum computing.

Other systems followed quickly such as: ions, neutral atoms, quantum dots, supercon-

ducting circuits, defects in certain crystals, linear optics, etc. When looking at a specific

system to implement, important aspects to balance include how to create or trap a qubit,

what resources are needed to manipulate the internal states and reduce external pertur-

bations, what the timescales for gate operations are, what can be done to reduce the de-

coherence mechanisms, how the qubit states are measured, and what the associated costs
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are for each of these decisions. Each of the systems have their own advantages and dis-

advantages. For example: scalability is well understood for quantum dots and supercon-

ducting circuits, ions have shown the highest fidelities for state detection and preparation

and have also demonstrated gates above 99% fidelity [Benhelm et al., 2008], and neutral

atoms and ions have shown long coherence times due to their small interactions with the

environment [Langer et al., 2005]. At this point no single system has been shown to have

complete advantage over the others. Each system has weaknesses that need to be reduced

before a fault-tolerant quantum computer can be built.

In the ion and neutral atom qubits, the computational basis is represented using spe-

cific electronic levels in the atoms. These are usually the hyperfine ground states or other

long lived states. Many different ions and atoms can be used and each provides some

advantage but also some disadvantage. These electronic states are manipulated using

lasers or microwave radiation. Several implementations for both ions and atoms have

shown that gate speeds can be on the order of 103 times faster than the decoherence time

[Yavuz et al., 2006] [Langer et al., 2005]. This means that many gate operations should be

possible before needing to readout and re-initialize the qubits or perform error correction.

Both ions and atoms have shown the ability to perform nearly perfect state detection. For

example the Boulder group has achieved readout fidelities of 99.94% with ions by using

a repeated quantum non-demolition measurement [Hume et al., 2007]. In addition ions

have been used to perform high fidelity quantum gates and to perform several quantum

gates in sequence while maintaining good fidelity [Hanneke et al., 2010] [Benhelm et al.,

2008].

Superconducting qubits have more recently become successful due to improved fab-

rication techniques. Superconducting qubits rely on Josephson junctions but can operate

in several different modes depending on their design. These different modes are related

to charge, flux, or phase and each type has a different circuit design. The charge qubit

uses an island of superconductor called a Cooper Pair Box that is connected to a nearby
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relatively large superconductor called a resevoir by a Josephson junction. Nearby elec-

trodes change voltages or bias magnetic fields to control the tunneling of Cooper pairs

into or out of the Cooper Pair Box. To measure the charge state a single electron transis-

tor is used after a readout pulse is applied to move the Cooper pair from the box to the

measurement electrode [Pashkin et al., 2009]. The flux qubit is based on the quantized

flux in a superconducting loop that contains one or more Josephson junctions. Here other

loops nearby vary magnetic fields to manipulate the flux in the qubit loop. This flux in the

qubit loop is usually measured using a SQUID device located near the qubit [Friedman

et al., 2000]. The phase qubit is based on an inductor-capacitor resonator but adds in a

Josephson junction to allow for non-linear behaviors. This non-linearity provides a shift

to the energy levels causing the spectrum to be anharmonic. This way the resonator can

be an effective two level system as long as the anharmonicity is large enough [Martinis,

2009]. In addition attempts to combine the best characteristics of these basic qubits have

led to new designs. For example, a design based on a charge qubit but taking some of

the good behaviors from phase qubits was introduced and called a transmon qubit. This

name comes from the fact that the qubit sits in a transmission line. This design nearly

eliminates the sensitivity to charge noise and also improves the coupling of the qubit to a

photon due to the qubit being part of a transmission line [Koch et al., 2007].

A transmon qubit has been used to perform a two qubit gate and even to implement

a simple quantum algorithm [DiCarlo et al., 2009], and a phase qubit has been used to

generate entanglement with a fidelity of 88% and show the violation of Bell’s inequality

[Ansmann et al., 2009]. All of these superconducting Josephson qubits have decoherence

times that are on the order of 1 µs and gates times that are about 20 ns. The ratio of these

timescales gives a figure of merit of current implementations on the order of 102. This

does not yet match the ion or neutral atom qubits’ figure of merit of better than 103 but is

still high enough to demonstrate simple quantum algorithms.

Reasearch into other solid state systems is also showing significant progress. Some

examples are quantum dots and defects in crystal structures [Hanson and Awschalom,
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2008]. Quantum dots attempt to isolate a single electron in a specific location and ma-

nipulate the spin using lasers or nearby electrodes. Systems using defects use techniques

from NMR and lasers to manipulate the spin of unbound electrons around a location

where a different element has replaced an atom in a crystal lattice causing a defect. Both

single and two qubit gates have been shown in these systems, but typically these solid

state systems have short coherence times that are currently limiting the gate fidelities.

Just as for the Josephson qubits new designs and fabrication techniques are making very

rapid progress and other candidates are being found which may lead to better systems.

Specifically the nitrogen vacancy centers in diamond look promising as they have very

long coherence times compared to other solid state systems and have already been used

for single and two qubit gates [Jelezko et al., 2004].

The last major system being pursued for quantum computing is in optics [Kok et al.,

2007]. In this system the spatial or polarization states of photons are used to carry the

qubit information. Through the use of phase shifters, waveplates, and beamsplitters all

of the single qubit gates are fairly straightforward to implement. The difficulty lies in

making a 2 qubit gate. Photons interact very weakly with each other making 2 qubit gates

difficult. Two major approaches have been suggested. One uses a non-linear effect in a

crystal to directly produce the phase shifts necessary to make a controlled phase or similar

quantum gate. The second method relies on the quantum behavior of photons to perform

a quantum gate probabilisticly and make measurements on ancilla qubits to know when

the gate operation succeeded. The problem with the direct method is that a system with

a non-linear effect large enough to be practical has not been found yet. The probabilistic

method has been used to perform controlled phase and controlled NOT gates but there

are still concerns with the costs of scaling this to a large number of qubits. Another dif-

ficulty with optical quantum computing is the on demand production of qubits. Single

photon sources exist but they do not always produce a photon on demand in the desired

mode. A recent result demonstrated ameasured efficiency of .72 and that can theoretically

reach >.9[Claudon et al., 2010]. So very soon this problem may no longer be important.
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Another problem is the losses inherent to the many optical elements needed to run a large

scale calculation may be too high to have a practical success rate when scaling to a large

number of qubits.

As each of these various quantum systems are developed work is being done to find

ways to combine the best aspects of each system into a single computer that may actually

allow for faster implementation and better scaling of quantum computers. For instance a

computer taking advantage of the very fast gate times of superconducting qubits could be

combined with the long lifetimes of ions or atoms to store information until it is needed

similar to the differences between processor caches and RAM in current classical com-

puters. It would also be possible to build a quantum network between smaller quantum

processors to combine them into a single super quantum computer [Kim and Kim, 2009].

For example: a superconducting qubit coupled to a microwave cavity can transfer that

information to an ion or atom which then transfers the information to an optical photon

with the aid of an optical cavity. This photon is sent through an optical fiber where the

reverse process can transfer the information to a separate quantum processor.

These diverse approaches to quantum computing show the very broad interest in

achieving quantum computation. This research has given many techniques to other re-

searchers just as techniques found in other experiments have been adopted by quantum

computing groups. The current progress towards a fault-tolerant quantum computer will

allow simple quantum simulations and algorithms in the near future and these should

grow ever more complex as devices and techniques improve.

1.2 Error Correction

Quantum computers all have sources of error that cannot be completely removed.

In classical computers and information processing many different methods of correcting

these errors have been developed. These methods do not directly translate to the quan-

tum world due to the differences between quantum and classical mechanics. However,

some methods can be adapted to a quantum system and many ideas from classical error
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correction are helpful in designing quantum error correction. The basic goal for quantum

error correction is to be able to correct any errors accumulated during a computation so

that the final result is reliable. To perform error correction it is necessary to encode the

information. This usually involves storing the information for a single logical qubit in

multiple individual qubits. With this a measurement of the individual qubits can be used

to guess the correct state and if the error rate is low enough this guess will be accurate. A

good introduction to this can be found in [Nielsen and Chuang, 2000] with more recent

developments [Steane, 2003, Knill, 2005, Aliferis et al., 2008, Aliferis and Preskill, 2009].

Many versions of error correcting codes exist. A simple code that can correct for ar-

bitrary single qubit errors uses nine qubits to encode a single logical qubit and was in-

troduced in [SHOR, 1995]. This code actually looks like a double encoding. One layer

encodes an initial qubit as three qubits to allow for corrections of phase flip errors, where

the phase of a single qubit is flipped e.g. from |0〉+ |1〉 to |0〉 − |1〉. Then each of these

encoded qubits are also encoded into another set of three qubits to allow for correction

of bit flip errors where the state of a qubit is flipped. This encoding scheme is shown in

Figure 1.1 and results in logical qubits given by the states

|0〉|0〉|0〉 phase encoding
−−−−−−−−−−−→

(|0〉+ |1〉) (|0〉+ |1〉) (|0〉+ |1〉)
2
√
2

≡ |+++〉

|+〉|0〉|0〉 bit flip encoding
−−−−−−−−−−−→

(|000〉+ |111〉) (|000〉+ |111〉) (|000〉+ |111〉)
2
√
2

≡ |0〉L

|1〉L ≡
(|000〉 − |111〉) (|000〉 − |111〉) (|000〉 − |111〉)

2
√
2

.

The error correction is performed by first correcting the bit flip errors in the second layer

and then correcting any phase flip errors in the first encoding layer. To see how an error

can be detected and corrected, we can look at just the bit flip correction. A logical qubit

of the bit flip code is represented in this code as |000〉+|111〉√
2

. A bit flip error would flip

the state of a bit i.e. |000〉+|111〉√
2

⇒ |010〉+|101〉√
2

if the second bit was flipped. To detect

this a measurement of Z1Z2 and Z2Z3 where Z is the Pauli matrix σz =



 1 0

0 −1



 is
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performed. These measurements written as an operator are

Z1Z2 = (|00〉〈00|+ |11〉〈11|)⊗ I − (|01〉〈01|+ |10〉〈10|)⊗ I

Z2Z3 = I ⊗ (|00〉〈00|+ |11〉〈11|)− I ⊗ (|01〉〈01|+ |10〉〈10|)

which just compares the state of the first and second qubits or the second and third qubits.

If the states are the same then this measurement is equal to 1 if they are opposite then the

result is -1. From this it is easy to find the bit that flipped and to correct the error by

flipping the state of that bit. The phase errors are checked using X1X2X3X4X5X6 and

X4X5X6X7X8X9 and corrected by applying a phase rotation to the appropriate group of

qubits. There are many different encodings using many different numbers of qubits to

encode a logical qubit. A seven qubit encoding originally described in [Steane, 1996] is

one of the most popular. It turns out that five qubits are the minimum number needed to

encode a logical qubit that is able to correct all single qubit errors [Nielsen and Chuang,

2000].

Another question for error correction is how well it can perform. It turns out that ap-

plying the same error correction code inmultiple layers allows an arbitrary precision to be

reached assuming that the individual gates exceed a certain error threshold [Nielsen and

Chuang, 2000]. What the actual value for this threshold is depends on the encoding used,

calculation capabilities, and noise assumptions that are used. Converting an operation to

a fault tolerant model requires adding error correction after every step in a calculation.

This includes steps where the qubit is just stored for some time. The qubit encoding and

operations to perform error detection and correction add a significant number of opera-

tions to a quantum algorithm. So it is important to ensure that this additional overhead

needed to reach the desired accuracy is reasonable. It is found that the number of gates

needed to simulate an algorithm requiring p (n) gates with a precision of ε is on the order

O

(
poly

(
log

(
p (n)

ε

)
p (n)

))

where poly means a polynomial scaling. Therefore, the number of gates only scales poly-

logarithmically [Nielsen and Chuang, 2000]. Recent results suggest that the minimum
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error threshold for a scalable architecture lies between 10−4 and 10−2 [Steane, 2003, Knill,

2005, Aliferis et al., 2008, Aliferis and Preskill, 2009]. The final threshold really depends

on what is considered scalable. Handling gate errors above 10−3 requires a very large

number of qubits to encode the multiple levels of error correction needed which may

make this high error rate impractical. For example using the scheme in [Knill, 2005], a

computation needing 108 gates for a perfect quantum computer needs: four levels of en-

coding, about 105 times more quantum gates to perform a fault tolerant computation,

and about 105 physical qubits for every logical qubit if using maximum parallelism. For-

tunately if the computational system used has a good quantum memory so that only a

moderate amount of parallelism is needed then the number of qubits can be reduced to

be only about 400 per logical qubit. If the gate error is reduced to 10−4, then only a level

3 encoding is needed, the gate overhead is drops to 10−3, and the minimum number of

qubits is about 100. If the error per gate is lower there are more efficient schemes than this

one in terms of the required overheads.

Unfortunately current experiments are only capable of holding enough qubits for one

or two logical qubits. Even so, error correction and some simple quantum algorithms

have been successfully demonstrated [Cory et al., 1998, Chiaverini et al., 2004, Gulde

et al., 2003]. As new ideas and techniques are found, these systems will steadily improve,

and the future looks very promising for quantum computing.
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Chapter 2

Neutral Atom Quantum Computing

2.1 Neutral atom qubit

Many options exist for the states to use to represent a qubit in neutral atoms. Many

different choices need to be weighed to choose what parameters are most important for

a certain experiment. Some are based purely on the element and specific isotope chosen

such as the number of ground states, laser wavelengths and linewidths needed to cool

the atoms and manipulate the electronic states, and how easily that isotope can be cooled

and trapped. At the moment the alkali’s are the most commonly chosen elements due to

their single valence electron and well developed cooling techniques, but many propos-

als and some work has been done on many other elements that offer their own specific

advantages [Saffman and Molmer, 2008]. Once the isotope has been chosen, the specific

electronic states that will be used to represent the computational basis need to be selected.

This leads to balancing things such as field sensitivites, lifetimes, and resources needed

to perform state manipulations. An example of this kind of analysis can be found in

[Saffman and Walker, 2005].

In the alkalis the qubits are generally a pair of states in the ground state hyperfine

manifolds. A common choice is a set of states that have no first order Zeeman shift. This

leads to choosing between the mF = 0 clock states which have no shift at zero magnetic

field, and states that have ∆mF = 1 or 2 work at various bias magnetic fields. The criteria

used to choose between these possibilities depends on how the single and multiple qubit

gates will be implemented. For example coherent Rabi oscillations can be performed by
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Figure 2.1 87Rb ground state hyperfine level structure. The two computational states we
have used in our experiments are circled.

two photon Raman transitions up to ∆mF = 2, but single photon excitation can only be

used for ∆mF = 0 or 1 transitions. It is not necessary to limit the choice to these insensi-

tive states, but work to shield the qubits from the environment or encode the qubits into

decoherence free subspace will probably be necessary to allow high fidelity gates and

qubit storage.

In our system we have used two different computational basis states from the 87Rb

ground states: the clock states |F,mF〉 = |1, 0〉 and |2, 0〉 and the stretched states |1, 1〉

and |2, 2〉. These states are shown in the Rb level diagram in Figure 2.1. For some time

we used the stretched states because initializing the qubit to the |2,±2〉 state is simple

and relatively insensitive to slight experimental errors in polarization or bias magnetic

field. This basis allowed for studies of single qubit gates between the two ground states

and also with studies of coherent excitation and blockade of Rydberg levels which we use

for our two qubit gate [Johnson et al., 2008, Urban et al., 2009]. However when trying

to actually perform a two qubit gate in our system, the stretched state is too sensitive

to small magnetic field fluctuations which leads to decoherence and prevented us from

seeing any significant gate operation. Therefore we changed to the clock states where we

were able to demonstrate a CNOT gate [Isenhower et al., 2010].
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2
depicted in the Bloch

sphere representation. b) The red dashed circle shows a rotation of a state about the
polar axis of the Bloch sphere which is equivalent to a phase gate.

2.2 Single Qubit gates

Now that we have defined our qubit, we will discuss how we manipulate the states of

a single qubit. Our qubit can be modeled well as a two level system. To help understand

the evolution of quantum states in a two level system the concept of the Bloch sphere was

introduced. The Bloch sphere places the |0〉 and |1〉 states at the south and north poles of

a unit sphere. Then a vector pointing to a point on the surface can represent all possible

quantum states of the system. Single qubit quantum gates then simply become rotations

around some axis of this sphere. Several methods exist to perform these rotations. The

rotations can be driven directly with electromagnetic radiation at the transition frequency

or can be driven through higher order processes such as two photon Raman transitions. In

both cases control of the phase, intensity, and length of a manipulation pulse are needed

to generate an arbitrary quantum state.

Furthermore any arbitrary rotation can be broken down into two rotations about spe-

cific axes which can simplify the system used to manipulate the qubit. One rotation is
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about the polar axis which is usually labeled the z axis and is performed by changing the

relative phase between the two qubit states. A rotation by an angle φ about this axis can

be written in matrix form as

Uz (φ) =



 1 0

0 eiφ





in this representation the state of the qubit is represented by a vector |ψ〉 = a|0〉+ b|1〉 ≡

 a

b



. The second rotation can be considered a rotation about an axis pointing through

the equator of the Bloch sphere. A rotation by an angle θ is given by

UR (θ) =



 cos (θ) −i sin (θ)

−i sin (θ) cos (θ)



 .

Fortunately instead of needing to perform two arbitrary single qubit rotations, any arbi-

trary rotation can be made from a set of only two discrete rotations [Nielsen and Chuang,

2000]. An example set of two rotations is the so called π/8 gate and the Hadamard gate

which are represented as

Uπ/8 =



 1 0

0 ei
π
4





H =
1√
2



 1 1

1 −1



 .

The Hadamard gate can be made by performing first a rotation UR (π/4) followed by a

phase rotation of Uz (π/2). So if we can demonstrate these two gates we can implement

any arbitrary single qubit rotation.

To implement these two rotations we take advantage of the interaction between light

and a two level system. The system evolution is given by the Schrodinger equation

ih̄
∂

∂t
|ψ (t)〉 = Ĥ (t) |ψ (t)〉

where |ψ (t)〉 = c0 (t) e−iω0t|0〉+ c1 (t) e−iω1t|1〉 is the wavefunction for a two level system

and Ĥ (t) = Ĥ0 + V̂d (t) is the system Hamiltonian plus a perturbation due to the light.
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These two terms are written as

Ĥ0 = h̄ω0|0〉〈0|+ h̄ω1|1〉〈1|

V̂d (t) = −d̂ · !E (t) |0〉〈1|− d̂ · !E (t) |1〉〈0|

where h̄ωi is the energy of the ith state, d̂ is the dipole operator, and !E (t) is the electric

field of the light. We assume the light interacting with the two level system only has a

single frequency

!E (t) =
E0
2
!εe−iωt +

E∗
0

2
!εeiωt

Putting these into the Schrodinger equation we find

ċ0 = i
d01E0
h̄

e−iω10tc1

ċ1 = i
d10E0
h̄

e−iω01tc0

where we defined dij = 〈i|d̂ ·!ε|j〉 with !ε the polarization vector of the electric field and

ωij = ωi−ωj. We now put in the electric field andmake the rotating wave approximation

to find

ċ0 = i
Ω∗

2
c1e

i∆t

ċ1 = i
Ω
2
c0e

−i∆t

whereΩ∗ =
d01E∗

0
h̄ is the Rabi frequency and ∆ = ω − ω10 is the detuning of the light from

the transition frequency between the two states. This set of differential equations can be

solved to find the evolution matrix c (t) = U (t− 0) c (0)

U =



 e
i∆t
2

(
cos

(
Ω′t
2

)
− i ∆

Ω′ sin
(

Ω′t
2

))
ie
i∆t
2 Ω∗

Ω′ sin
(

Ω′t
2

)

ie−
i∆t
2 Ω

Ω′ sin
(

Ω′t
2

)
e−

i∆t
2

(
cos

(
Ω′t
2

)
+ i ∆

Ω′ sin
(

Ω′t
2

))





where Ω′ =
√
|Ω|2 + ∆2. If we rewrite this when ∆ = 0 we find

U∆=0 =




cos

(
|Ω|t
2

)
i sin

(
|Ω|t
2

)

i sin
(
|Ω|t
2

)
cos

(
|Ω|t
2

)




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which is a rotation in the opposite direction of UR shown earlier. So by controlling Ω and

t we can actually perform arbitrary rotations about this axis.

To perform a phase gate we need to change the relative phase of the two qubit states.

Recalling the wavefunction |ψ (t)〉 = c0 (t) e−iω0t|0〉 + c1 (t) e−iω1t|1〉 we can move to a

frame rotating with the |0〉 state to get eiω0t|ψ〉 = c0|0〉+ c1e−i(ω1−ω0)t|1〉. This shows that

the |1〉 state rotates with a frequency ω1 − ω0 relative to the |0〉 state. If we perturb the

energy difference between the two states then this frequency would become ω1 − ω0+ δ.

So controlling the perturbation allows for a known phase shift to be introduced. This

energy shift can be performed by letting light interact with the system to produce an AC

Stark shift given by |Ω|2
4∆ .

Unfortunately for our chosen qubit, the hyperfine ground states of 87Rb, the transition

frequency is at ~6.8 GHz. This microwave radiation has a large wavelength of 4.4 cm so

it cannot be focused in a way to give site specific rotations at spacings that are relevant

to our experiment. So some other method is needed to spatially select which qubit will

interact with the light. One method is to use some other field to shift just a single qubit

into resonance at a time. This could be done by applying a gradient magnetic or electric

field to the whole trapping region or by using a laser beam to selectively Stark shift a

single qubit [Schrader et al., 2004]. Another option, which is our chosen method, is to

use a higher order process such as a two photon Raman process where the ground states

are coupled using radiation that is slightly detuned from some third level. This allows

optical wavelengths to be used which gives the high resolution needed to resolve single

sites at reasonable separations. Unfortunately, this method does introduce an error due

to spontaneous emission from the excited state. To minimize this error the radiation from

the Raman beam is detuned far enough from the excited state to reduce the probability of

spontaneous emission to an acceptable level.

The changes due to using a two photon excitation require revisiting the earlier deriva-

tion. We need to use a third level to couple our chosen qubit states. Since we want to

use light with optical wavelengths this third level is at higher energy than the two qubit
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states, which is called aΛ system. Here I will give a brief review of a full derivation of the

interaction between a Raman beam and an atom which can be found in [Pedersen, 2006].

The relevant levels, laser fields, and detunings are shown in Figure 2.3. The Raman beam

is a laser with two frequencies, ωa andωb, that are separated by approximately the hyper-

fine splitting. These frequencies are detuned from the excited state by ∆a and ∆b giving a

two photon detuning of ∆ab = ∆a − ∆b when ignoring any AC Stark effects. We start the

derivation for this system just as we did for the two level system. First we write out the

Hamiltonian for this system with the Hamiltonian split into two parts H = H0+Vd (t)

H0 = h̄ω0|0〉〈0|+ h̄ω1|1〉〈1|+ h̄ωp|p〉〈p|

V̂d (t) = −d̂ · !Ea (t) |0〉〈p| − d̂ · !Ea (t) |p〉〈0| − d̂ · !Eb (t) |1〉〈p| − d̂ · !Eb (t) |p〉〈1|.

This perturbation comes from the light field

!E = !Ea (t) + !Eb (t) =
Ea
2
!εae

−iωat +
E∗
a

2
!εae

iωat +
Eb
2
!εbe

−iωbt +
E∗
b

2
!εbe

iωbt.

Since this system has three levels the wavefunction becomes

|ψ (t)〉 = c0 (t) e
−iω0t|0〉+ c1 (t) e−iω1t|1〉+ cp (t) e−iωpt|p〉.

Again these are put into the time dependent Schrodinger equation to give a set of differ-

ential equations

ċ0 = i
d0pEa

h̄
e−iωp0tcp

ċp = i
dp0Ea

h̄
e−iω0ptc0 + i

dp1Eb

h̄
e−iω1ptc1

ċ1 = i
d1pEb
h̄

e−iωp1tcp

where dij = 〈i|d̂ ·!ε|j〉 with !ε the polarization vector for the light and ωij = ωi − ωj. Just

as for the two level system we defineΩa =
Eadp0
h̄ and ∆a = ωa − ωp0 as well as the similar

terms. Making these substitutions and applying the rotating wave approximation leads

to

ċ0 = i
Ω∗
a

2
ei∆atcp
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ċp = i
Ωa

2
e−i∆atc0 + i

Ωb

2
e−i∆btc1

ċ1 = i
Ω∗
b

2
ei∆btcp

To simplify the solutions we change to writing the equations in matrix form and rotate to

a new frame where c̃ = Rc with

R =





e−i
∆ab
2 t 0 0

0 ei
δ
2 t 0

0 0 ei
∆ab
2 t





where ∆ab = ∆a − ∆b and δ = ∆a + ∆b. To rewrite the differential equation in this new

frame we find
d

dt
c = Ac⇒ d

dt
(Rc) = RAR−1Rc

⇒ ˙̃c = RAR−1c̃− dR

dt
c

where A is the coefficient matrix for the set of differential equations. This rotation gives a

new coefficient matrix which is time independent.

Ã = RAR−1 − dR

dt
R−1 =





− i∆ab
2

iΩ∗
a
2 0

iΩa
2

iδ
2

iΩb
2

0
iΩ∗

b
2

i∆ab
2





We would like to remove the intermediate level from the calculation so we assume that

∆a,∆b , Ωa,Ωb which means that cp will always remain near zero. This allows us to

say that ċp = 0. This is sometimes called adiabatic elimination of the intermediate state

or slaving the intermediate state. This assumption allows us to write cp = −Ωa
δ c0 −

Ωb
δ c1

and reduce the system to an effective two level system

Ã
′ =



 − i∆1
2 − iΩ∗

R
2

− iΩR
2

i∆2
2




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where ∆1 = ∆ab +
|Ωa|2

δ , ∆2 = ∆ab − |Ωb|2
δ , and ΩR =

ΩaΩ∗
b

δ . This system can be solved to

find the evolution matrix in the rotating frame

Ũ = e−i
|Ωa |2+|Ωb|2

4δ t ×



 cos
(

Ω′t
2

)
− i ∆′

Ω′ sin
(

Ω′t
2

)
−iΩ

∗
R

Ω′ sin
(

Ω′t
2

)

−iΩR
Ω′ sin

(
Ω′t
2

)
cos

(
Ω′t
2

)
+ i ∆′

Ω′ sin
(

Ω′t
2

)





where we defined Ω′ =
√

∆′2 + |ΩR|2 and ∆′ = ∆ab +
|Ωa|2−|Ωb|2

δ . Finally this solution

can be rotated back to the normal frame using U (t, 0) = R (t)−1 Ũ (t, 0)R (t = 0) giving

U = e−i
|Ωa |2+|Ωb|2

4δ t

×



 ei
∆abt
2

(
cos

(
Ω′t
2

)
− i ∆′

Ω′ sin
(

Ω′t
2

))
−iei

∆abt
2

Ω∗
R

Ω′ sin
(

Ω′t
2

)

−ie−i
∆abt
2

ΩR
Ω′ sin

(
Ω′t
2

)
e−i

∆abt
2

(
cos

(
Ω′t
2

)
+ i ∆′

Ω′ sin
(

Ω′t
2

))





In order to get full excitation we need to have ∆′ = 0 = ∆ab +
|Ωa|2−|Ωb|2

δ which means

that the correct frequency difference for the Raman beams is not equal to the hyperfine

splitting. A correction must be made to account for the differential AC Stark shift of the

qubit states. In addition since ∆ab .= 0, this interaction gives both a rotation about the

polar axis and a rotation about an equitorial axis in the Bloch sphere picture. To show this

explicitly we assume ∆′ = 0 and then rewrite the evolution matrix as

U = e−i
|Ωa |2+|Ωb|2

4δ tei
∆abt
2 ×



 1 0

0 e−i∆abt



×



 cos
(

ΩRt
2

)
−i sin

(
ΩRt
2

)

−i sin
(

ΩRt
2

)
cos

(
ΩRt
2

)





which shows that there is a global phase shift of φglobal =
∆abt
2 − |Ωa|2+|Ωb|2

4δ t, a single qubit

phase gate with φ = −∆abt, and a rotation about an equitorial axis of θ = ΩRt
2 .

It is important to note that ∆′ = 0 only when the AC Stark shifts due to the Raman

beams have been corrected. This can be done in several ways: first the frequency differ-

ence between the two Raman beams with equal Rabi rates can be chosen to correct the

shift, a different laser with the same spatial profile but a different detuning can be used

to cancel the shift [Haffner et al., 2003], or Raman beams with unequal Rabi rates can be

used [Haze et al., 2009]. For our current implementation we have chosen the first method
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Figure 2.3 The relevant energy levels for 87Rb shown with the two photon Raman beams
we use.

which means we need to account for this phase shift when we perform single qubit gates.

This choice has further implications for when the Raman beam is off. The frequency

difference of the Raman beams only matches the qubit difference when the beams are in-

teracting with the qubits. This means that the Raman beam and qubit will accumulate a

relative phase shift when the beams are not interacting with the qubits. This fact provides

an advantage in that the implementation of a phase gate is simple, but a disadvantage

that the phase shift for every qubit must be calculated in order to perform the desired

rotations. To describe how we implement the phase gate we consider the frequency dif-

ference of the Raman beams to be the reference clock of our system then by turning the

beams off for a certain length of time the qubit will accumulate a phase shift relative to

this clock. By keeping track of this phase accumulation we can implement any phase gate

we desire. So by picking proper delays and interaction times for the Raman beams we

can perform arbitrary single qubit rotations.



23

2.2.1 Single qubit gate errors

There are several sources of error for our single qubit gates. These include: sponta-

neous emission from the intermediate state, intensity or phase noise on the Raman beams,

crosstalk errors from beams targetting neighboring sites, and errors due to atomic motion

in the Raman beams. The errors from all of these can be reduced to levels that allow for

fault tolerant quantum computing. This discussion follows that found in [Saffman and

Walker, 2005]. First we will discuss the errors due to spontaneous emission. To find the

probability for spontaneous emission we just need to evaluate

Pse (t) =
1

τ

ˆ t

0

∣∣cp
∣∣2 dt

where τ is the lifetime of the intermediate state which is 26.2 ns [Volz and Schmoranzer,

1996]. In the previous section we assumed that cp = −Ωa
δ c0 −

Ωb
δ c1 when we have

∆a,∆b , Ωa,Ωb. Using this and the expressions for c0 and c1 we found in the previ-

ous section we find that the probability of spontaneous emission for a π pulse is at most

Pse (π) =
4π

∆aτ

for the case that the initial qubit state was |0〉+|1〉√
2
. Our experiment uses ∆a = −100 GHz

giving Pse (π) = 8 × 10−4. The next largest errors are due to the intensity noise and

atomic motion. The error due to intensity noise as given in [Saffman and Walker, 2005]

is E = (1/4) (δI/I)2. The intensity noise of our Raman beams over the time for a single

pulse, ~ 1 µs, is close to the shot noise limit but over longer time periods of a few minutes

needed to make a measurement the beams have a measured intensity noise around 10−2

which gives an error of about 10−4. Similarly the atomic motion in the FORT sites leads

to intensity variations. This error is found to be E = (1/4) 〈ε〉2 where

〈ε〉2 = π2

4

(
Ta
Tm

)2(wf
w

)4

where Ta is the atom temperature, Tm is the depth of the FORT site, wf is the beam waist

of the FORT, and w is the beam waist of the Raman beams. Our typical parameters have
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Error Source Value

Spontaneous Emission 8× 10−4

Raman Beam Intensity Noise 10−4

Atomic Motion 5× 10−5

Crosstalk 3× 10−4

Total 1.2× 10−3

Table 2.1 Table of the main errors for our single qubit operations.

Ta/Tm / .05 and wf/w / .44 resulting in an error from atomic motion that is about

5× 10−5. The final significant error is due to crosstalk when addressing a neighboring

site. This has a fidelity error given by E = π2
16 e

−4 d2
w2 = 3× 10−4 for our typical parameters.

We also need to understand how well the qubit states can be stored in our apparatus.

The decoherence that limits the storage time is caused by variations in the hyperfine split-

ting of the qubit states. These variations are mainly due to magnetic field fluctuations and

atomic motion withing the FORT trapping potential. The decoherence due to the atomic

motion in the FORT was modeled in [Kuhr et al., 2005] where they found that

T∗2,ls = .97
2U0

δ0kBT

where U0 is the peak FORT potential, δ0 is the peak differential light shift of the FORT,

and T is the atom temperature. In our system we have measured T to be 200 µK and have

calculated that δo = U0 × (1.5 kHz/mK). With these values the calculated decoherence

time is T∗2,ls = 6.5 ms. The decoherence time due to magnetic field fluctuations depends

upon the qubit basis that is chosen. The hyperfine splitting for the clock states is given by

ωh f = ω0

√

1+

(
(gs − gI) µBB

h̄ω0

)2

where ω0 is the zero field hyperfine splitting, gs and gI are the electron and nuclear g

factors, µB is the Bohr magneton, and B is the magnetic field. To find the sensitivity at a

slight bias field this is expanded about a small bias field value. Doing this for our bias
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field of 3.7 G and finding the frequency shift due to a magnetic field fluctuation δB

δh f = 4.2δB+ .57 (δB)2

where δB is in gauss and the resulting δh f is in kHz. The decoherence time for this process

is given by T∗2,B = 1/δh f [Saffman and Walker, 2005]. As shown in Figure 4.4, we mea-

sured a decoherence time of 2.4 ms for single atoms in our apparatus. Using this and the

calculated decoherence time due to the FORT differential light shift, we can estimate the

decoherence time due to magnetic field fluctuations

1

T∗2,B
=

1

T∗2,ls
− 1

T∗2,exp

giving T∗2,B = 3.8 ms. This decoherence time corresponds to a magnetic field fluctuation

of .06 G. To improve this decoherence time we will need to cool the atoms further and

add circuits to reduce the magnetic field fluctuations.

2.2.2 Composite pulses and Spin echos

There are several mechanisms that can cause errors in the single qubit rotations. These

can be put into two broad categories: amplitude noise and phase noise. The amplitude

noise can be caused by intensity noise of the Raman beams, beam pointing noise, and the

random motion of the atoms in the FORT due to their non-zero temperature. Phase noise

can be caused by phase noise in the RF source used to drive the Raman laser, magnetic

or electric field fluctuations, interactions with other laser fields, or differences in optical

paths traveled by the two Raman beams. To correct for these error sources the idea of

composite pulses was introduced. These were first performed in NMR experiments and

have also been used by the ion quantum computing research groups [Haffner et al., 2008,

Khaneja et al., 2005]. The idea behind composite pulses is to convert a single desired

rotation into several different rotations designed to reduce the sensitivity to a specific

type of error. Since we have the ability to implement arbitrary rotations with our Raman

beam system, using composite pulse sequences may help to reduce our sensitivity to

some errors.
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A very simple and commonly used example of this is the spin echo technique where a

π pulse is used to swap the two qubit state set of experimental pulses. This allows errors

that are slower than the experiment time to accumulate for the first half and then cancel

back out during the second half. In this case the noise is considered phase noise that is

constant over a single experiment cycle but varies as the cycles are repeated to gather

statistics. Without using the spin echo pulse the result of an experiment can be modeled

as

ρ =



 1 0

0 eiφ







 a b

c d







 1 0

0 e−iφ



 =



 a be−iφ

ceiφ d





where φwill vary from measurement to measurement. Now if instead we apply a π Rabi

oscillation pulse to swap the qubit states half way through the experiment we find

ρ =



 1 0

0 ei
φ
2







 0 −i

−i 0







 1 0

0 ei
φ
2







 a b

c d







 1 0

0 e−i
φ
2







 0 i

i 0







 1 0

0 e−i
φ
2





=



 d c

b a





which is the original state with the states swapped but no errors. More robust pulse

sequences exist and they only require that the pulse amplitude and phase be constant for

the duration of the sequence rather than be constant over a measurement cycle like the

spin echo sequence.

2.3 Methods for multiple qubit neutral atom gates

Many different methods have been suggested for implementing two qubit gates in

neutral atoms: dipole-dipole interactions [Brennen et al., 1999], collisions [Jaksch et al.,

1999], photon mediated gates [PELLIZZARI et al., 1995], and Rydberg state interactions

[Jaksch et al., 2000]. So far only the Rydberg blockade method has produced a gate be-

tween individually addressed atoms. A method based on collisions has been used in

ensembles to demonstrate a
√
SWAP gate and entanglement [Anderlini et al., 2007]. All

of these gates have specific sources of error that must be taken into account. These errors
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Figure 2.4 Schematic representation of the photon mediated gate setup. Based on the
schematic in [PELLIZZARI et al., 1995]

also generally place a limit on the speed of the gate to achieve the necessary fidelities for

fault tolerant computation.

The collisional gate for two qubits is performed by first loading the atoms into an op-

tical lattice or array of dipole traps and cooling them into the ground motional state. Next

the atoms are initialized into the desired input states. Then the gate is performed by mov-

ing the chosen atoms so that their trapping regions overlap for a controlled length of time

and then moved apart again. During the interaction time the two qubits coherently swap

their states. By choosing the correct interaction time a SWAP operation can be performed.

To perform entanglement an interaction that only does a partial SWAP, called a
√
SWAP

gate, is performed. For the interaction time to match the desired length the motion of

the atoms must be completely controlled. This requires that the atoms be in the motional

ground state of the traps and the motion of the traps used to perform the gate must be

adiabatic in regards to the trap frequencies so the atoms are not excited out of the ground

state. These requirements limit the gate frequency to be lower than the trap oscillation

frequency. This method lends itself to generating many entangled pairs in a single oper-

ation. The
√
SWAP operation was demonstrated just this way using many atoms in an

optical lattice by the NIST group [Anderlini et al., 2007]. Collisions are also the chosen in-

teraction for several similar schemes such as spatially delocalized qubits [Mompart et al.,

2003].

The photon mediated gate is performed by using a photon to transfer information

from one qubit to another qubit. Typically this is envisioned as a chain of atoms held in a
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linear chain of dipole traps which sits in a high finesse cavity [PELLIZZARI et al., 1995].

Addressing beams come from another direction to select the atoms for the gate. The

atoms have a transition between a qubit state and an excited state strongly coupled to the

cavity and the other qubit state is coupled to the excited level by the addressing beam.

Using carefully chosen pulses of the addressing beams allows a gate to be performed

between the chosen atoms with high fidelity. Photon mediated gates need a strong cou-

pling between the atoms and a single photon in the cavity mode. To avoid errors due to

spontaneous emission and cavity decay, the pulses implement an adiabatic transfer us-

ing a cavity dark state. This choice requires that the pulses need to meet the conditions:

gT, ΩT , 1 and g, Ω , κ, Γ, where g is the coupling strength between the atoms and

the cavity, T is the pulse length, Ω is the addressing laser Rabi frequency, κ is the cavity

decay time, and Γ is the spontaneous emission rate. The value of g can be on the order of

100’s of MHz [Gehr et al., 2010] and the same is true forΩ so this method looks promising

and should be capable of MHz speed gates.

The Rydberg blockade mediated gate is performed by attempting to excite the control

qubit to the Rydberg level performing a 2π rotation on the target qubit and returning the

control qubit to the ground state. This results in the |1〉 state of the target atom getting a

π phase shift depending on the state of the control atom. This controlled phase is then

converted to a CNOT by placing a Hadamard gate on the target atom before and after

the controlled phase operation as shown in Figure 2.5. Other methods also exist to imple-

ment a CNOT and are discussed further in Section 2.5. This gate is limited by the lifetime

of the Rydberg level and the amount of blockade shift between the two qubits. The gate

speed must find a balance between running fast enough to avoid the Rydberg decay and

running slow enough to have good blockade. Using higher Rydberg levels increases the

Rydberg lifetime and blockade but also increases the sensitivity to the environment and

reduces the Rabi flopping rate. This method has demonstrated a CNOT gate with a mea-

sured population probability fidelity of .73 and gate time of 10 µs [Isenhower et al., 2010]

and recent improvement has reached F = .85 with only 6 µs needed for the gate.
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Figure 2.5 Hadamard and Cz CNOT gate pulse sequence.
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2.4 Rydberg Atoms and Blockade

We chose to pursue the Rydberg mediated two qubit gate. The higher gate speeds

and low sensitivity to the atoms’ temperature seems to offer a better platform than using

a collision mediated gate, and the scalability is more obvious than the photon mediated

method. To discuss this version in more detail first a description of the relevant Rydberg

atom properties will be given.

A Rydberg atom is one where an electron has been excited to a high energy level,

usually greater than 20. The wavefunctions and energy levels can be calculated using

quantum defect theory [Seaton, 1958]. Rydberg levels have a limited lifetime which in-

troduces errors to the gate. The lifetime is governed by the radiative lifetime, τ
(0)
nl , and an

additional term due to blackbody radiation, τ(
bb)
nl , which can photoionize or transfer the

Rydberg state to other states [Gallagher, 1994].

1

τnl
=

1

τ(0)
nl

+
1

τ(bb)
nl

The states we use are nD5/2 states in
87Rb because we use two photon excitations and

these states have higher Rabi frequencies than the nS or nD3/2 states we can access. For

this case the lifetime is given by

1

τnl
=

1

τl (n∗)
αl
+
4α3kBT

3h̄n2

where τl =2.09 ns, n∗ = n − δ = n − 1.35 is the quantum defect corrected principal

quantum number, αl =2.85, α is the fine structure constant, kB is Boltzmann’s constant,

and T is the surrounding system temperature [Gallagher, 1994]. Calculating the lifetime

for the 97D5/2 level gives a lifetime of ~300 µs.

The Rydberg interaction occurs because of either a direct dipole-dipole interaction be-

tween two different Rydberg levels or by the Forster mechanism. The Forster mechanism

involves couplings to nearby Rydberg levels. In this case a pair of Rydberg excited atoms

are coupled to different Rydberg levels by the dipole interaction. This interaction leads

to strong couplings because these nearby states have a total energy close to the initial
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Figure 2.6 a) Energy diagram for the Rydberg energy levels near n=90. From [Saffman
et al., 2010]. b) Plot of the blockade shift for 97D5/2 and double excitation probability.
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the FORT axis. The long dashed line is a calculation of the probability distribution for
y1 − y2 due to the thermal distribution of the atoms. The short dashed line is the double

excitation probability.
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pair of states. For example a pair of nd Rydberg levels are nearly degenerate to a set

of (n+ 2) p + (n− 2) f and (n+ 1) p + (n− 1) f energy levels. This interaction can be

thought of as a multiple level system being coupled by the dipole interaction.



 δ · Iχ Vdd

V†dd 0 · Iϕ







 |χ〉

|ϕ〉



 = ∆



 |χ〉

|ϕ〉





where |χ〉 represents the nearby Rydberg states with nalaja+ nblbjb and |ϕ〉 represents the

initially excited Rydberg states nlj + nlj. This problem leads to an eigenvalue problem

given by
V†ddVdd
∆ − δ

|ϕ〉 = ∆|ϕ〉

The dipole interaction has several terms that are common to all of themwhichwe separate

out. First is the matrix elements C3 = e2 〈r〉nalanl 〈r〉nblbnl and the other is the 1/R6 radial

dependence. So with these substitutions we have

V†ddVdd|ϕ〉 =
C23
R6
Dϕ|ϕ〉

where Dϕ is the remaining part of the eigenvalues which typically vary between 0 and 1.

Finally using all this we can find the energy eigenvalues

∆ (R) =
δ

2
− sign (δ)

√
δ2

4
+
C23
R6
Dϕ.

The theory behind these interactions can be very involved because of the large number

of states that must be considered in a full description of this interaction. Many of these

intricacies are covered in a recent paper [Walker and Saffman, 2008]. However, many

of the consequences of this interaction can still be discussed by just defining an average

blockade shift
1

B2
=

2

N (N− 1) ∑
ϕ,k<l

∣∣κϕkl

∣∣2

∆2ϕkl

where N is the number of atoms in the region, the ∆ϕkl are the energy eigenvalues of the

Forster Hamiltonian just given, and κϕkl =
4

h̄2Ω2
〈ϕkl|HkHl|g〉 is the overlap of the states



33

being excited with the Forster eigenstates. The blockade shift depends strongly on the

geometry of the excitation beams, atoms, and any external fields as well as the choice of

level used. A calculation of the average blockade shift after accounting for the thermal

distribution of the atoms gives B = 4.8 MHz. With this average blockade shift we can

look at the probability to excite two atoms in an ensemble to the same Rydberg state

P2 =
N − 1
N

|ΩN|2

2B2

whereΩN =
√
NΩ is the collectively enhanced Rabi frequency. For the case of our block-

ade gate between two single atoms the double excitation probabilty is

P2 =
|Ω|2

2B2
= .018.

2.5 CNOT Based on Blockade

The large Rydberg atom interactions allow for mulitple qubit gates to be implemented.

There are two regimes in which these gates are typically discussed. First is the large inter-

action regime where a single Rydberg excitation blocks completely any other attempted

Rydberg excitations. Second is the small interaction regime where two qubits are excited

to a Rydberg level and allowed to evolve for a controlled length of time before being re-

turned to the ground state. Both methods allow for controlled phase shifts of the qubits

which can be converted into a full CNOT quantum gate. The blockade regime provides

one significant advantage: low sensitivity to the strength of the blockade. This means that

the qubits can be at different distances from each other, and achieve a high fidelity gate

as long as the interaction is still strong enough. This feature allows for a large number

of directly coupled qubits and removes the need to be in the ground state of the optical

traps. These benefits plus the ability to perform gates at MHz rates is why we chose to

pursue the Rydberg blockade CNOT gate.

The Rydberg blockade CNOT gate starts with a controlled phase gate performed us-

ing the following steps: one state of the control qubit, e.g. the |1〉 state, is coupled to a

Rydberg level sending that part of the population to the Rydberg level using a π pulse,
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the target qubit receives a 2π pulse on the same Rydberg level transition, the control qubit

is returned to the ground state with a second π pulse. If the control qubit was excited to

the Rydberg level the 2π rotation is blocked and the target qubit picks up no phase shift.

If the control qubit was not excited then the target gets the 2π rotation resulting in a phase

shift. This gives a controlled phase gate which can be represented in matrix form as7

Cz =





1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1





where the state vector is written as (|00〉, |01〉, |10〉, |11〉)T with the control qubit state

given first. This controlled phase operation can be converted to a CNOT gate by adding

Hadamard single qubit gates to the target qubit before and after the controlled phase

operation as shown in Figure 2.5.

The fidelity of this gate is limited by the blockade shift and the lifetime of the Rydberg

atoms. The gate error due to these effects has been calculated in [Saffman and Walker,

2005, Saffman et al., 2010] and the leading terms are:

E / 7π

4Ωτ

(
1+

Ω2

ω2
10

+
Ω2

7B2

)
+

Ω2

8B2

(
1+

6B2

ω2
10

)

where Ω is the Rabi frequency of the Rydberg excitations, τ is the Rydberg lifetime, ω10

is the qubit computational state splitting, and B is the average blockade shift. In the limit

that ω10 , B,Ω the optimal Rabi frequency to minimize gates errors is

Ωopt = (7π)1/3
B2/3

τ1/3

which gives a minimum error in this limit of

Emin =
3 (7π)2/3

8

1

(Bτ)2/3
.

For our average blockade shift with the 97D5/2 level of 4.8 MHz and Rydberg state life-

time of ~300 µs we find the optimum Rabi frequency to be 2π × .645 MHz. The Rabi
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Error Source Value

Intrinsic Gate Error .008

Spontaneous Emission .02

Doppler Broadening .02

Other Sources 10−4

Total .048

Table 2.2 Summary of the errors for the CNOT gate due to the Rydberg excitation.

frequency used in our most recent gate measurement was .9 MHz which is very close to

the optimal frequency. The error we expect to see from blockade leakage is only .008 with

the settings we used which is well below the errors from other sources.

We also need to add in two additional errors because we use a two photon excitation

to the Rydberg level that allows for spontaneous emission from the intermediate level

and accounts for the residual doppler shift from the unequal wavelengths. To calculate

the spontaneous emission error we repeat the same steps as in Section 2.2.1 but for the

ladder system seen with the Rydberg excitation, we find

Pse (π) =
π

2∆τ

(Ω780 + Ω480)
2

Ω780Ω480

where ∆ is the intermediate state detuning, τ is the intermediate state lifetime, and Ω780

andΩ480 are the individual beamRabi rates. For the gatemeasurements we had∆ = 2π×

2.1 GHz, Ω780 = 2π × 135 MHz, and Ω480 = 2π × 32 MHz which gives a spontaneous

emission probability of 2% for a π pulse. A calculation for the excitation error from the

doppler broadening also gives a 2% excitation error.

In our system the Hadamard gates are implemented by π/2 Rabi oscillation pulses

which adds trivial single qubit phases to the qubits. If the two π/2 pulses have the same
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relative phase this results in an equivalent CNOT gate matrix given by

CNOT0 =





1 0 0 0

0 −1 0 0

0 0 0 −i

0 0 −i 0





It’s also possible to have the π/2 pulses π out of phase which also gives a CNOT gate but

with the |0〉 state acting as the state that causes the NOT operation. For our implementa-

tion this matrix is:

CNOTπ =





0 −i 0 0

i 0 0 0

0 0 −1 0

0 0 0 −1





Another method can use blockade to generate a CNOT gate directly and is based on

work in [Ohlsson et al., 2002]. This method only uses π pulses to swap the populations

between the appropriate states. This requires the ability to perform either a π pulse be-

tween the two computational states and between a computational state and a Rydberg

state or the ability to perform π pulses between a Rydberg state and both computational

states. The use of only π pulses should reduce the sensitivity to phase errors in applying

the pulses; However, the larger number of pulses and increased time spent in the Rydberg

level may override this gain.

2.5.1 CNOT gate with weak Rydberg interaction

Another method to generate a CNOT gate wasmentioned in the original paper [Jaksch

et al., 2000]. This method operates in the regime where the Blockade interaction is weak,

∆ 0 Ω. In this case both qubits are excited to the Rydberg state and allowed to evolve.

This evolution gives a different phase shift depending on whether the control atom was

excited to the Rydberg state or not. By controlling the time the target qubit spends in

the Rydberg state this phase difference can be set to π producing a controlled phase gate
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Figure 2.7 Amplitude Swap CNOT pulse diagram.

similar to the blockade case. This method requires that the interaction strength be well

known in order to get the correct phase shift and remains very sensitive to the atomic

motion. However evenwith these difficulties, this technique does look capable of creating

high fidelity gates at separations of over 100 µm [Saffman et al., 2010].

2.6 Parity Oscillations

One of the important uses for a two qubit quantum gate is to perform deterministic

entanglement of the two qubits. This also serves as a good way to verify the quantum

nature of a gate. Generating entanglement using a CNOT gate is done by placing the

control atom in a superposition state and then operating the gate. For example if the

input state is
(
|0〉+|1〉√

2

)
⊗ |0〉 for the control and target qubits respectively then the output

for a CNOT operation is |00〉+|11〉√
2

which is one of the maximally entangled Bell states.

Unfortunately just measuring the populations after performing the gate does not prove

that the state was entangled. What makes this an entangled state is the fact that it is

inseparable. This can be verified by measuring the coherences of the density matrix of

the output of the CNOT gate. There are several ways to measure these coherences. One

method is by performing a state tomography measurement which involves measuring all

projections of the two qubits onto orthoganal axes and using this information to estimate

the full density matrix [Altepeter et al., 2006, James et al., 2001]. Another method is to
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measure the parity of the state after performing a special analysis pulse and verfying

that there is enough coherence to show the state is inseparable. This second method is

discussed here as it is what we used to verify entanglement.

To see how we can measure these coherences we will work with a general density

matrix

ρgen =





P00 b1 a1 c1

b∗1 P01 c2 a2

a∗1 c∗2 P10 b2

c∗1 a∗2 b∗2 P11





The parity of this state is defined as P ≡ P00 + P11 − P01 − P10. If we apply a ground state

rotation of angle θ with a relative phase of φ to both qubits and measure the parity of the

result we find

P′ = P cos2 (θ)− 2Re
[
c1e

2iφ
]
sin2 (θ) + 2Re [c2] sin

2 (θ)

+Im
[
(a1 − a2 + b1 − b2) eiφ

]
sin (2θ)

Looking at this we can isolate c1 and c2 if we choose to use θ = π/2 and simplifying we

find

P′ = 2Re (c2)− 2 |c1| cos (2φ + ξ)

where c1 is the coherence between the |00〉 and |11〉 states, ξ is the phase of c1, and c2

is the coherence between the |01〉 and |10〉 states. This shows that to measure c1 which

is the desired coherence for the |00〉+|11〉√
2

state, we just vary the phase of the π/2 pulse

and measure the amplitude of the oscillation in the parity signal. In addition this same

experiment allows us to measure c2 to make sure it is zero as expected. A key thing to

notice with this analysis is that this curve oscillates at 2φ. In our experiment we vary

φ by using a time delay which accumulates phase at the differential AC Stark shift of

the ground state Raman beam as discussed in Section 2.2. Since we know this phase

accumulation rate, we can verify that we see this speed enhancement.

Unfortunately we do not have the ability to apply a pulse to both qubits at the same

time with our apparatus. This means that we have a slight phase difference between the
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two ground pulses applied to the two qubits due to the phase accumulation during the

different delays. If we perform the same analysis and again let the pulse area be π/2 and

define the phase difference between the two pulses to be φ2 we find

P′ = 2 |c2| cos (φ2+ ζ)− 2 |c1| cos (2φ + φ2 + ξ)

where ξ is the phase of c1 and ζ is the phase of c2. Just as in the previous case by varying

the phase φ of both pulses while keeping the phase between the two pulses φ2 constant

we still recover a signal that oscillates with an amplitude 2 |c1| and oscillates at 2φ. How-

ever in this case, any measured offset is not simply related to c2. This distinction has

implications for trying to measure this c2 coherence which is important for other states

such as a different maximally entangled Bell state |01〉+|10〉√
2

.

In order to measure c2 we need to change the ground state rotation used as an analysis

pulse. To see an oscillation we need to vary the phase between the two ground state rota-

tions, φ2. Unfortunately this means we will see oscillation if either c1 or c2 is non-zero and

this will oscillate at an unenhanced rate of φ. To measure c2 unambiguously we would

need to perform the measurement where φ is varied to measure c1 first. Performing both

of these measurements actually requires taking more data than is needed to perform a

state tomography measurement and with the data in a state tomography measurement

we can measure the entire density matrix instead of just c1 and c2.

We need to quantify what value of the coherence is necessary to prove that the state

is inseparable and therefore entangled. To find this limit we look at the most general sep-

arable state possible. This state is |ψ〉 = (A0|0〉+ A1|1〉) ⊗ (B0|0〉+ B1|1〉) which when

written as a density matrix is

ρ =





|A0|2 |B0|2 · · · · · · A0B0A
∗
1B

∗
1

· · · |A0|2 |B1|2 · · · · · ·

· · · · · · |A1|2 |B0|2 · · ·

A∗
0B

∗
0A1B1 · · · · · · |A1|2 |B1|2




.
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We can ignore the · · · terms for this analysis. By recalling that each state is normalized,

i.e. |A0|2 + |A1|2 = 1 and |B0|2 + |B1|2 = 1, we can write

|A0|2 + |A1|2 + |B0|2 + |B1|2 = 2

which can be shown to be equivalent to

(|A0|− |B0|)2 + (|A1|− |B1|)2 + 2 |A0| |B0|+ 2 |A1| |B1| = 2

after a little algebra. Now we can see that the first two terms are positive definite so this

allows us to write

|A0| |B0|+ |A1| |B1| ≤ 1

We can square this and then after grouping terms we have

|A0|2 |B0|2 + |A1|2 |B1|2 + 2 |A0| |B0| |A1| |B1| ≤ 1

These terms are equivalent to certain values in the general density matrix used earlier

allowing us to write

P00 + P11 + 2 |c1| ≤ 1

which gives the limit for a separable state. This is usually rewritten as F = 1
2 (P00 + P11) +

|c1| where a value of F larger than 1/2 is an entangled state. This technique was used in

[Turchette et al., 1998, Sackett et al., 2000]. So if we measure these three values of the

density matrix we can verify if the state we created is entangled or not. A similar analysis

can find F = 1
2 (P01 + P10) + |c2| with the same entanglement limit of 1/2.

2.7 Scalability

The final thing we need to show is that this system is scalable without placing ex-

ponential demands on resources. Scaling the number of trapping sites requires looking

at the demands placed on spacing due to the Rydberg blockade. This is well studied in

[Saffman and Molmer, 2008]. The number of fully interconnected sites was found to be

N
(2D)
max,vdW = C2DE

1/3n2/3
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N
(3D)
max,vdW = C3DE

1/2n

where C2D and C3D are constants that depend on the atom chosen, E is the error desired

from the gate, and n is the principal quantum number for the Rydberg level used. For

example this gives N
(2D,3D)
max,vdW = 460, 7600 when n = 100 and E = 10−3. Since that is the

number of fully interconnected qubits this could be scaled higher by chaining to other

areas that are further away as would be done for systems with only nearest neighbor

interactions. Unfortunately the story does not end with having the ability to operate

high fidelity gates. This large number of sites requires a technique to either accomplish

complete loading of the array or a way to know which sites have been loaded to know

which sites to use during a calculation. The use of a Mott-insulator transition in a Bose-

Einstein condensate, direct loading or removal of empty sites using a movable trap, or

Rydberg blockade techniques are examples of how complete loading of an array could be

accomplished [Saffman and Walker, 2002, Saffman et al., 2010].

Maintaining a large number of sites also becomes difficult due to losses from the sites.

This means some technique to reload a single site will probably be necessary. Detecting

the loss of an atom is possible by performing a non-destructive measurement using an an-

cilla qubit and if this measurement and subsequent loading process is done fast enough

it is possible to maintain a fully loaded array. Even assuming a very good vacuum main-

taining more than 1000 qubits looks very difficult [Saffman et al., 2010]. Other possibilities

that are not as sensitive to single atom losses have been considered such as collective en-

coding [Saffman and Molmer, 2008, Brion et al., 2007]. This technique uses an ensemble

of atoms to hold the information of many qubits encoded in the hyperfine ground states

of many atoms. By storing the information in an ensemble the loss of a single atom is not

as detrimental and is still correctable.
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Chapter 3

Experimental Apparatus

This chapter will cover the experimental apparatus we use to cool, capture, and ma-

nipulate the atoms. For many of the subsystems I will give just a basic description as the

full descriptions are available in the recent theses of Todd Johnson and Erich Urban. Sev-

eral of the subsystems have seen significant upgrades and changes and these will receive

a more detailed description. The description starts with how we cool and trap the atoms

using a Magneto Optical Trap, Section 3.1, and far off resonance dipole trap, Section 3.2.

Next I discuss how measurements of the qubit states are made in Section 3.3. And fi-

nally I cover the systems we use to control the atoms to perform initialization, Section 3.4,

state manipulation of the computational states, Section 3.5, and excitation of our atoms to

Rydberg levels, Section 3.6.

3.1 Magneto Optical Trap

The first stage in capturing our qubits is to cool them to very low temperatures so that

they may be held in a shallow and very small far off resonance dipole trap. To perform

this initial cooling we use a Magneto Optical Trap (MOT). This uses the force due to pho-

ton scattering to both cool and localize a small cloud of atoms. In a simple setup, 3 beams

are aligned alongmutually perpendicular axes and are circularly polarized. Then they are

retro-reflected with the opposite polarization. These beams are slightly red detuned from

a cycling transition, which causes the atoms to scatter more light from a beam it is moving

towards due to the doppler shift. However, with just the light there is no additional force
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to return an atom back to the center of all the beams. To get this extra spatial trapping,

a pair of coils is used in an anti-Helmholtz configuration to produce a gradient magnetic

field around a zero field point. This gradient causes the atoms to be optically pumped

into a different hyperfine state by the beams as they move from the zero field point lead-

ing to preferential scattering by one or more of the beams. If the polarization of the beams

is chosen correctly this enhanced scattering will push the atom back towards the center

of the trap. For general MOT and atomic cooling theory see [Metcalf and van der Straten,

1999]. Our MOT typically cools about 105 atoms to a temperature of 100-200 µK with a

density of about 109 atoms/cm3. For more details about our specific implementation refer

to [Urban, 2009].

3.2 Far Off Resonance Dipole Traps

In order to manipulate atoms in a controlled fashion, we must keep them well local-

ized. To do this wemake use of optical dipole traps. This is a trap based on the interaction

between an induced dipole moment of an atom and a laser’s oscillating electric field. This

trap generates a potential that depends on the gradient and detuning of the laser beam.

For a beam of red detuning, the atoms are attracted to a region of high intensity, and for

a beam of blue detuning, the atoms are repelled by a region of high intensity. The dipole

force is a conservative force, but this trap also has a non conservative force due to the

photon scattering. To minimize photon scattering, these traps are usually operated in a

far detuned regime. The parameters that are important to consider when trapping atoms

are the trap depth, trap size, and heating rate. In addition, we also care about the differ-

ential AC Stark shift of our two computational states as fluctuations in this shift will lead

to decoherence of these states limiting how long the qubits can be stored.

We call these traps dipole traps because the interaction is modeled by the dipole force.

From this we define the trap depth as

U = −α
|E |2

4
= − α

2cε0
I
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Figure 3.1 a) Diagram of the energy levels of 87Rb used for the MOT and state
measurements. b) Schematic of MOT beams and gradient coil in our experiment.
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where α is the polarizability of the atom and E is the electric field strength which we relate

to the intensity by |E |2 = 2I
cε0
. α depends on the transition strength of the nearest atomic

transitions, the detuning of the field from these transitions, and the natural linewidth of

these transitions. In the case where we have a large detuning, only a single transition

responsible for the majority of the effect, and use the rotating wave approximation, we

find

α =
3πε0c3

ω3
0

(
Γ

ω − ω0

)

where ω0 is the atomic transition frequency, ω is the frequency of the laser, and Γ is the

natural linewidth of the transition. This shows that α will change signs depending on the

detuning of the laser beam and that the trap depth goes as 1
ω−ω0

. This simplified equation

gives a polarizability for our FORT of α = −1× 10−38 s4A2/Kg when using only the D1

line of 87Rb compared to the actual value of α = −1.27× 10−38 s4A2/Kg [Saffman and

Walker, 2005] which is quite close considering all the assumptions used to derive this

equation. The difference in values is due mainly to including only one transition and

from applying the rotating wave approximation.

The size and depth of the trap depends on the geometry of the laser’s electric field.

In our case of a simple focused Gaussian beam, the trap size is on the order of the beam

waist in the transverse direction and the Rayleigh range in the axial direction. As the

atoms get hotter they will fill more of the volume of the trap until they get hot enough to

escape from the trap. The trap depth is proportional to the beam intensity. For a Gaussian

beam this intensity is

I = I0

(
w0
wz

)2
e
−2r2
w2z

with wz = w0

√
1+

(
zλ

πw20

)2
where w0 is the 1/e

2 beam waist, λ is the wavelength, I0 =

2P
πw20

is the peak intensity, which is related to the beam power P, and r and z are respec-

tively the transverse and axial coordinates. This potential can be expanded about the
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origin and results in a harmonic potential in both the transverse and axial directions. Us-

ing this expansion the characteristic trap frequency can be found.

ωr,trap =
2

w0

√
|Um|
m

ωz,trap =

√
2

zR

√
|Um|
m

where Um is the maximum trap depth, m is the mass of the atoms, and zR =
πw20

λ is

the Rayleigh length of the FORT beam. For our typical parameters of w0 = 3.4 µm and

λ = 1064 nm we find:|Um| / 4.5 mK, ωr,trap / 60 kHz, and ωz,trap / 6 kHz.

We must also be concerned with the heating rate of the atoms due to the trapping

laser. The atoms may be heated directly through photon scattering or can also be heated

indirectly though noise on the laser intensity or beam position. This noise will cause

parametric heating effects if it occurs at the correct frequencies. First we consider the

direct heating due to the residual photon scattering rate. This heating rate is given by

[Grimm et al., 2000] Based on the beam size, ~6.5 µm, and FORT site separations, ~9

µm, the theoretical amplitude of the crosstalk is .008 matching very well with what we

observe.

Ṫ =
1

3
TrecU

Γ
h̄ |ω − ω0|

where ω is the laser frequency, ω0 is the atom’s transition frequency, U is the trap depth,

and Trec = h̄2k2

m is the recoil energy. The heating rate goes as 1
ω−ω0

. Therefore, bymoving to

a larger detuning the heating rate is reduced even if you increase the intensity to maintain

a constant trap depth.

The noise on the laser intensity and beam position will also heat the atoms due to

parametric effects [Savard et al., 1997]. These effects require a matching of the frequency

in the noise and the frequency of the atom moving in the trap. Intensity fluctuations at

twice the trap frequency can add energy to the atom on every oscillation. For red detuned

FORTs the intensity noise has a heating rate given by

Rint = π2ν2trapS
(
2νtrap

)
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where S
(
2νtrap

)
is the one sided power spectrum of the fractional intensity noise evalu-

ated at twice the trap frequency νtrap. Position fluctuations at the trap frequency are also

able to add energy to the atoms as they oscillate in the trap. Similar to the intensity noise

heating the beam position noise heating rate is given by

Rpos =
π2ν2trap
〈x2〉 S

(
νtrap

)

where S
(
νtrap

)
is the one sided power spectrum of the position fluctuations evaluated at

the trap frequency and
〈
x2
〉
is the mean square position for an atom in the trap.

Another source of loss from our FORT is collisions with residual background atoms in

our vacuum chamber. The lifetime for an atom in a FORT can be written as [Saffman and

Walker, 2005]
1

τc
=

√
3kBTb
m

nbσRb−Rb

where kB is Boltzmann’s constant, Tb is the background atom temperature, nb is the back-

ground atom number density, and σRb−Rb = 2.5× 10−13 cm2 is the collisional cross section

for two Rubidium atoms [Bali et al., 1999]. We have measured a FORT lifetime of about

3.5 s which corresponds to a background pressure of 1.2× 10−9 Torr.

Finally we must address any decoherence the trapping laser may have on our chosen

computational states. The decoherence mechanism we must worry about is the differen-

tial AC Stark shift of the two hyperfine ground states. The differential shift is due to the

slightly different detunings for the F=1 and F=2 levels that we use for our computational

basis states. This shift by itself does not lead to decoherence but just to a phase accumu-

lation that could be corrected using single qubit operations. However, the atoms do not

see a constant intensity while in the FORT. This is due mainly to their residual thermal

motion but also to any intensity and position noise of the trapping laser. As discussed in

Section 2.2.1, an effective decoherence time was found to be 6.5 ms for our parameters.
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3.2.1 Modifications to our FORT

Our FORT has gone through several iterations. The early iterations may be read about

in [Urban, 2009, Johnson, 2008]. The data collected up until the CNOT gates was all done

using the setup described there. The CNOT data and all later data were taken using a

slightly modified setup that will be described here. The FORT optical train was changed

for a few reasons. First we needed to improve the consistency of the traps. The old setup

which used a calcite crystal to produce two sites required setting the polarization to bal-

ance the power in the two sites. Unfortunately this position is the most sensitive to slight

polarization drifts of the fiber output due to environmental changes. These small drifts

would cause slow fluctuations in the depth of the sites which if not carefully monitored

affected the loading and retention of atoms in these sites. The second reason to modify

our old FORT setup was to allow for more trapping sites for use in future experiments.

Finally we also slightly reduced the spacing between the sites in order to increase the

Rydberg blockade shift between the sites.

To achieve this we use a design similar to the 6 site variant of the FORT described

in detail in [Urban, 2009]. Two changes have been made to this setup shown in Figure

3.2. First the telescope used to focus the beam onto the diffractive optical element was

changed to use a 60 mm and 50 mm set of achromatic doublet lenses giving a telescope

with a magnification of .83 resulting in a slight reduction of the FORT site spacing. The

other improvement is to the mirrors used in the rest of the optical train. We improved the

mounts to reduce the clipping of the outermost sites from the diffractive element. These

two changes allow for producing 5 FORT sites in the chamber from a single beam. In

addition we can still use the calcite crystal to create a second beam before the diffractive

element, allowing us to produce a second column of 5 FORT sites giving a total of 10

useable sites. The change of the laser wavelength to 1064 nm produced beams with a

slightly larger waist than that found with the 1035 nm ELS laser used previously. The

waists are about 3.4 µm and the spacings between the sites are also slightly reduced by

the change in telescope magnification to ~8.7 µm.
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Table 3.1 Typical parameters for the FORT sites used for the CNOT data.

Seed Laser NP-Photonics Scorpio outputs over 50 mW at 1064 nm

Fiber Amplifier NuFERN SFA-PM1064-10W-2 outputs up to 10 W at 1064 nm

Beam waist (µm) 3.4

Typical Depth (mK) 4.5, 3.2, and 2.3 (center to outside)

Central Trap Frequency 60 kHz radial, 6 kHz axial

Lifetime 3.5 s

The peak intensity for each site, which corresponds to the trap depth, is still not uni-

form. The central site nearest neighbors have an intensity which is 70% of the central

site and the two outer sites have an intensity that is 50% of the central site. These differ-

ences do have slight effects on the loading and retention of atoms loaded into the sites.

Tests done at the current atom temperatures of our MOT typically show loading rates that

are reduced by about 5% compared to the central site and retention probabilities that are

usually within 5% of the central site.

3.2.1.1 Blue Detuned Bottlebeam FORT

Our dipole trap will need to be improved to allow for quantum computing with more

qubits and smaller spacings. We need to increase the retention time and reduce any deco-

herence rates induced by the dipole trap. Tomeet these goals we began working on a blue

detuned dipole trap. A dipole trap made using blue detuned light requires generating a

3D intensity minimum. With care it is possible to generate a minimum that actually has

zero intensity at the center of the trap. This provides several advantages when trying to

manipulate atoms. First the near zero intensity that the atoms see means the AC Stark

shift and photon scattering rate are greatly reduced. So the decoherence due to differen-

tial Stark shifts and the photon scattering heating rate are reduced. Another advantage is

that a blue detuned trap will also trap an atom in a Rydberg state, allowing the trap to be

left on which should reduce the probability of losing an atom during a gate operation.
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Figure 3.2 Diagram of the optical train used to generate the FORT sites. The calcite
crystal birefringence can be used to generate two beams travelling parallel and

separated in the horizontal direction (into the page). The diffractive element produces
five beams from each input beam which are collimated and reimaged into the

experiment chamber. This system allows up to 10 sites in a 2 x 5 array with a site to site
spacing of about 8.7 µm and beam waists of about 3.4 µm to be generated.
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Figure 3.3 Image and associated line profile of our 5 site FORT as used in the CNOT
datasets. From the line profile and total power in the beams we calculated the trapping
potential to give trap depths of 4.5 mK for the central site, 3.2 mK for the nearest

neighbors, and 2.3 mK for the outer pair.
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The change to trapping at a zero intensity point surrounded by light changes the heat-

ing rate due to photon scattering. As the atoms heat up they will see a higher average

intensity thus increasing their heating rate until they are lost from the trap. It was shown

in [Grimm et al., 2000] that the heating rate for a blue detuned FORT is

Ṫ =
κ

1+ κ
Trec

Γ
h̄ (ω − ω0)

kBT

where κ is a geometric factor which varies from 1 to 0 as the trap moves from a quadratic

potential towards higher power potentials, Trec = h̄2k2

m is the recoil energy, and T is the

atom temperature. The heating rates due to intensity fluctuations and position fluctua-

tions should be the same as for a red detuned trap.

We demonstrated a system that used light blue detuned of the D2 line of Cesium 133

to trap a collection of Cs atoms. To generate the 3D intensity null we took a single beam,

passed it through a Mach-Zehnder interferometer that contained telescopes of differing

magnifications in each arm, and destructively interfered the output. The difference in

magnification gave beams with different waists. Due to the different size and different

Rayleigh lengths of these two beams the interference pattern can produce a 3D intensity

null that resembles the cigar shape found in focused Gaussian beam red detuned traps.

We call this resulting beam a bottlebeam since it is a single beam that can serve to hold

atoms. See Figure 3.4 for a diagram of the optical setup and images of the resulting beam

output. This interference pattern results in a potential that is quadratic in the axial di-

rection but quartic in the radial direction when expanded about the intensity null. This

difference leads to a slight reduction of the decoherence rate compared to a trap with a

quadratic potential in all directions. This factor also can be seen in the heating rate where

κ = 2/3 for the bottlebeam but κ = 1 for the FORT we are currently using since it is

quadratic in all directions. Another important point to note is that the bottlebeam mini-

mum depth comes at an angle to the beam propagation direction where there is a saddle

point. This saddle point is roughly half the maximum depth of the trap in the radial

direction or 30% of the maximum height in the axial direction.
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Figure 3.4 a) Diagram of the optical setup needed to produce the Bottlebeam. b)
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Figure 3.6 Atom lifetime measurement for the bottlebeam trap. The fit gives an
exponential decay rate of 20 ms. The inset is an image of the trapped Cs atoms after

being held for 40 ms. These data were taken July 9, 2008.

The trap we made had beam waists of 22 µm and 12 µm, a detuning of 40 GHz, and

power of 40 mW [Isenhower et al., 2009]. This gave a trap with a 1.4 mK minimum depth.

We overlapped this beamwith a CsMOTwhich had a density of about 1010 atoms per cm3

and an atom temperature of about 50 µK. Due to the large AC Stark shift and scattering

rate the trap could not be left on while loading the MOT. In addition limited computer

controls of the trap intensity did not allow for the bottlebeam intensity to be turned on

slowly. This led to a non-adiabatic transition which caused significant heating of the

atoms. We estimated that the atom temperature after reaching thermal equilibrium was

around 500 µK. This relatively high initial temperature greatly increased the heating rate

from photon scattering resulting in a short trap lifetime. This trap held several thousand

Cs atoms with a lifetime measured to be about 20 ms. A much improved version of this

trap using light at 532 nm and much smaller beam sizes is currently being implemented,

and we expect it to achieve trapping conditions comparable to our current red detuned

FORT.
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3.3 Single Atom Readout and State Detection

To conduct our quantum computing experiments it is necessary to readout the state

of the atoms after performing some operation on them. Also because our FORT sites are

loaded stochastically wemust make ameasurement to know howmany atoms a site starts

with before any operation is performed. These measurements are made using the MOT

lasers and an Electron Multiplying Charge Coupled Device (EMCCD) camera (Andor

iXon). Most of our experiments use a measurement time of about 40ms but this time

varied from 5 ms up to 50 ms due to changes in camera and laser settings. To make

a measurement of the number of atoms loaded into a FORT site, we use the following

steps. First we set the detuning of the MOT lasers to be about 1.5Γ, and we apply a

chopping pulse scheme with a frequency of 1.25 MHz to the FORT andMOT lasers so the

intensities are out of phase as shown in Figure 3.7. This chopping is necessary because of

the large AC Stark shift, of order 200 MHz, due to the FORT potentials. Light scattered by

the atoms is then collected and imaged onto the EMCCD camera using an optical system

with a numerical aperature of about .4 that was able to capture about .53 steradians of

solid angle. This optical train also included wavelength bandpass filters so that only the

780 nm light from the atoms would be imaged.

The very high sensitivity of this camera system allows us to distinguish between dif-

fering numbers of atoms. This is done by defining a region of interest around each imaged

FORT site and summing the total counts in this region. The result of this is we see distinct

bands for each atom number up to about n=3. This banding structure allows cuts to be

set around a one atom signal with high confidence. Unfortunately this method by itself is

unable to distinguish the two computational states. In order to have a state measurement

we must add an additional phase to our experiment cycle. This phase we call a blow-

away phase. We use light near the cycling transition propagating in a single direction

without any repumping light to selectively heat atoms in the F = 2 ground state out of

our FORT. Again a chopping sequence is necessary to remove the AC Stark shift of the
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MOT light

FORT light
800 ns

20 ns

a)

b)

Figure 3.7 a) Pulse sequence used for an atom number measurement. The rise and fall
times for the MOT beams are about 25 ns and the rise and fall times for the FORT is
about 40 ns. b) Average of several images with all five sites loaded and showing the

regions of interest surrounding each FORT site.
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FORTs. However for this case the chopping frequency is set to .5 MHz to give more scat-

tering events and allow faster heating. This is then followed by a normal atom number

measurement sequence so that any atoms remaining in the F = 1 state are imaged. We

also can make a direct measurement of the F = 2 population by first applying a rotation

of the computational states to swap the F = 1 and F = 2 populations and then make a

state measurement.

We need to quantify the effect of the blow-away used during state sensitive measure-

ments on atoms in the two quantum states. This is done by preparing the atoms in either

F=1 or F=2, performing the blow-away procedure, and measuring the atom number. His-

tograms of the results of such a test are shown in Figure 3.9. We can also measure the

time it takes to perform the blow-away by stepping the length of the blow-away pulse

as shown in Figure 3.10. For a typical experiment the blow-away phase lasts for .15 ms

where we find on average that atoms in the F=2 state survive about 1% of the time and

that atoms in F=1 have the same retention as measured without the blow-away procedure

giving approximately 99% state detection fidelity without considering atom number as-

signment errors of the single atom cuts.

In the future we would prefer to make a state measurement without needing to de-

stroy a specific state by heating it out of the FORT. This should be possible using a bal-

anced pair of beams that are both σ± polarized. This is necessary because using a 3D

molasses, which does not have a well defined polarization in relation to the qubit quan-

tization axis, allows for off-resonant excitation to the F′ = 2 level which can decay to

either F = 1 or F = 2, but with a well defined polarization this off-resonant excitation is

not allowed. The off-resonant excitation limits the number of scattering events that can

occur before the atom decays to the dark F = 1 state. As long as the two σ± beams do not

heat the atoms too quickly then enough photons should be scattered to give a detectable

signal. Another possible solution is to increase the number of photons collected by the

camera optics. Our current system only captures 4% of the scattered photons. A system
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a)

b)

Figure 3.8 a) Histogram of the series shown in b) for the white and red dots. b) Sample
series of the signal from a region of interest taken from many camera images. The white
dots are the first camera shot and the red dots are the second camera shot. These show
that the signal from a single atom is easily distinguished from the signal of other
numbers of atoms. This is from a 20 ms exposure which has 9ms of time where the

cycling light is active. The light was detuned by 1.5 Γ from the cycling transition. These
data were taken Feb. 9, 2010.



59

1200 12002000 2000

150
80

50
20

1600 1600

Photoelectrons Photoelectrons

Ev
en

ts

Atom Measurement 1 Atom Measurement 2

Atom Measurement 1 Atom Measurement 2

1200 12002000 20001600 1600

Photoelectrons Photoelectrons

Ev
en

ts

120100

2020

a)

b)

Figure 3.9 Effects of the blowaway procedure on measurements of atoms in a) F=1 and
b) F=2. These data were taken Feb. 10, 2010.
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Figure 3.10 Measurements of the needed blow-away time. a) Measurement for atoms in
the F=2 state b) Measurement for atoms in the F=1 state. Note the different time scales

for the two plots. These data were taken Feb 10, 2010.
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with larger numerical aperture would greatly improve on this and possibly even reach an

efficiency where a simple 3D molasses could be used.

3.4 Optical Pumping to the Computational Basis

After performing a readout to measure the atom number the atoms in the FORT sites

will be distributed across all five states in the F = 2 manifold. Therefore a step to ini-

tialize the atoms into the computational basis is necessary. We achieve this initialization

by optically pumping the atoms into one of the computational basis states. As men-

tioned earlier we have used two different bases: first the stretched state basis where

|0〉 = |F,mF〉 = |1, 1〉 and |1〉 = |2, 2〉 and second the clock states where |0〉 = |1, 0〉

and |1〉 = |2, 0〉. In both cases we initialized the atoms into the |1〉 state. Each basis set

required a slightly different method to obtain the desired initialization.

3.4.1 Stretched state pumping

The stretched state computational basis (|0〉 = |F,mF〉 = |1, 1〉 and |1〉 = |2, 2〉) is

pumped into by first applying a bias magnetic field and then using a σ+ beam that is

tuned to the F = 2 → F′ = 3 D2 cycling transition and also using some repumping light

on the F = 1→ F′ = 2 D2 transition to repump any atoms that happen to decay to F = 1.

In this case the atoms are pumped into a bright state where they continue to scatter light

from the optical pumping beam. This choice does have the downside that there will be

additional heating of the atoms due to this continued scattering. However this scheme

is more forgiving to state mixing and poor laser polarization. When using this state we

verified that the length of the optical pumping phase was short enough that we did not

noticably heat the atoms, and typically we achieved an optical pumping efficiency of

greater than 95%.
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Figure 3.11 Diagram of the atomic levels and laser detunings used for optical pumping.
a) For the stretched state pumping using the D2 line of 87Rb. b) For the clock state

pumping after switching to the D1 line in 87Rb.
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3.4.2 Clock state pumping

To pump into the clock states (|0〉 = |1, 0〉 and |1〉 = |2, 0〉) we made use of the transi-

tion from F = 2 → F′ = 2 as shown in Figure 3.11. When using linearly polarized light

the transition from |2, 0〉 to |2′, 0〉 is forbidden by dipole selection rules making |2, 0〉,

which is our |1〉 computational state, a dark state for this light. By scattering light on

this transition atoms will accumulate in the dark state and with the appropriate settings

this technique can achieve >.99 fidelity state initialization . Initially light on the D2 tran-

sition at 780 nm was used for this pumping. However, the applied bias magnetic field

of 1.5 G needed to define our quantization axis causes slight mixing of the excited states

allowing a small leak out of the |2, 0〉 state. Unfortunately since the hyperfine splitting is

fairly small for the D2 transition there was significant mixing resulting in a limited optical

pumping efficiency of about .95. This apparently small error is actually very significant

to gate operations especially as the number of qubits used increases. To improve this we

switched to a laser tuned to the D1 line at 795 nm. The larger hyperfine splitting of the

P1/2 level allows for higher fidelity pumping of greater than .98 for our settings.

The D1 laser is a Sacher TEC 300 Littrow style external cavity diode laser designed

to give over 700 mW at 785 nm. We raise the laser temperature and use the diffraction

grating in the external cavity to operate this laser at 795 nm. This gives more than 50

mW of power at the settings we typically use. This light is then passed through a spatial

filter to help remove some of the spontaneous emission background and to give a better

beam shape. Part of the light is sent to an FM saturated absorption lock nearly identical

to that used in the master MOT laser lock described in [Johnson, 2008]. The laser is locked

to the 1-2 crossover peak from the F = 2 ground state to the P1/2 level. A double pass

AOM setup is used to shift the frequency up to resonance with the F = 2 → F′ = 2 D1

transition. The complete optical layout is shown in Figure 3.13. This light is then fiber

coupled to another board where we join this light with light from the MOT repumping

laser into another fiber going to the main experiment. This path also includes a shutter to

block any light that may leak from either setup when this beam is not needed. The final
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Figure 3.12 Geometry for optical pumping and state manipulation experiments for a)
the stretched state basis and b) the clock state basis.
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optical train focuses the light onto the atoms is shown in Figure 3.14. It contains a 780 nm

waveplate which we use to maximize the transmission through a broadband Glan-Taylor

calcite polarizer, and a telescope which magnifies the beam to a 5 mm waist. This beam

enters the chamber from the top and is perpendicular to the FORT beam axis which is

also the quantization axis as shown in Figure 3.12 b). We originally used the old optical

pumping train which had the order of the waveplate and polarizer reversed. However,

the purity of the polarization after the 780 nm waveplate was not good enough to allow

high fidelity pumping and limited the pumping efficiency to about .95 thus removing all

benefits of moving to the D1 line.

To achieve high fidelity pumping using this dark state a lot of attention has to be

given to make sure that the state stays dark. This is done by matching the bias magnetic

field to the linear polarization of the optical pumping laser and ensuring that the purity

of the polarization is very high. In order to achieve these goals we implemented new

bias field controls to allow fast control on three perpendicular axes. This allows us to

cancel any background magnetic fields that do not match the laser polarization. This

extra control of the bias fields also allows for additional benefits. We can choose different

settings for every phase of our experiment allowing us to improve the atom loading,

atom number measurement, optical pumping efficiency, and state manipulation. This is

necessary because we do not have every beam perfectly aligned to a single coordinate

system and slight misalignments can have large effects on the efficiencies of the different

experimental phases.

To align the optical pumping train we first made sure to align the polarization axis to

the FORT beam direction. This was done using a polarizing beamsplitter to send light

above the FORT train where cards were used to ensure good alignment. This method set

the polarization to match the FORT axis to within 2 degrees. Because of the use of a Glan-

Taylor polarizer the purity of the polarization should be in excess of 105. Then to align

the bias magnetic field to this laser polarization we first optically pump the atoms into

the |1〉 state and then turn on the D1 laser by itself for a set length of time and measure
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the probability of the atoms to be pumped out of this state as we scan the transverse

magnetic fields. The proper settings will decrease the probability of the D1 laser pumping

the atoms out of the |1〉 state. As shown in Figure 3.15, this method allowed us to measure

a depumping time of 20 ms which compared to the optical pumping time to the |1〉 state

of .066 ms gives a pumping efficiency of .997.

3.5 Ground State Raman Laser

To perform single qubit operations we use a two photon Raman laser to perform co-

herent Rabi oscillations between the two computational basis states. This laser is an exter-

nal cavity diode laser that has its current modulated at 3.4 GHz. This produces frequency

sidebands which are at half the ground state hyperfine splitting of 6.8 GHz. Each side-

band has about 5% of the intensity of the carrier. We then use a Fabry-Perot cavity with

a free spectral range of 6.8 GHz and a finesse of about 80 to filter out the carrier. This

gives a beam with two frequency components split by the hyperfine splitting and de-

tuned from the D2 line by ~100 GHz. The detuning from the excited state varied over

the experiments, but the most commonly used values were 55 GHz and 100 GHz. When

we switched to the clock states, the ground state Raman laser and the 780 nm Rydberg

laser were joined into the same fiber to ease the alignment process by reducing the num-

ber of beams we need to align to the FORT sites. Another improvement that was made

at the same time as the improvements to the FORT train was a change in the final lens

before joining the FORT beam to give a reduction of the beam size from 7 x 12 µm to 6.2

x 9.5 µm. This system allowed us to perform site specific two photon Rabi oscillations

with rates up to 1 MHz being demonstrated. Typically we set the detuning and power to

maintain a Rabi flopping rate around 600 kHz to allow finer control of the pulse time due

to the limited timing resolution of computer controls.
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Figure 3.13 Diagram of the 795 nm laser used for optical pumping using the D1
transition of 87Rb.
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the depumping rate due to the optical pumping beam. The fit has values of A = 1,

B = .99, and τ = 20 ms. The ratio of these times gives an optical pumping efficiency of
.997. These data were taken Dec. 3, 2009.
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3.6 Two Photon Rydberg Excitation Lasers

The laser system used to excite atoms to the Rydberg levels consisted of two lasers.

One at 780 nm and another at 960 nm which was then frequency doubled to 480 nm. The

780 and 960 nm lasers are external cavity diode lasers and both were locked to different

longitudinal modes of a high finesse Fabry-Perot cavity. This cavity was made by opti-

cally bonding two very high reflectance mirrors to an ultra low expansion glass spacer.

The cavity had a finesse in excess of 150,000, a free spectral range of 500 MHz, and was

kept in a temperature controlled vacuum chamber to keep the longitudinal modes from

drifting due to pressure or temperature changes. Through monitoring the changes of

transition frequency of a certain Rydberg level we estimate that this cavity has long term

absolute frequency stability of better than 100 kHz. The 780 and 960 nm lasers were mea-

sured to have Allan deviations of less than 100 Hz at times less than one second. The 780

nm laser was then sent through a double pass AOM setup which enabled us to scan over

the frequencies between the longitudinal modes of the high finesse cavity. More details

on the construction and stabilization of these two lasers are in [Johnson, 2008].

After passing to the experimental apparatus both beams passed through their own

optical train that contained an AOM and telescopes to focus the beams onto the FORT

sites. The AOM allows for 1D positioning of the beam. The 780 nm system could provide

up to ~1 mW of power at the atoms and the 480 nm system produced up to 20 mW

of power at the atoms. In order to better balance the individual Rabi rates of the 780

and 480 nm beams the 780 nm power was set to be around 2 µW and the blue power

was set to about 15 mW. The 480 nm laser uses an AOM based intensity noise eater to

reduce any intensity noise from the cavity locks. This system is an upgraded version of

the old design with a 3dB bandwidth of ~100 kHz. By setting the power below the peak

power the noise eater could maintain a constant power for up to two weeks to allow for

continued running without having to refind the frequency for the Rydberg transition and

the Rabi flopping rate due to changes of the 480 nm Rabi frequency. We demonstrated

Rabi flopping to Rydberg states from n=28 to n=102. The level that was chosen depended
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upon the specific goals of the experiment. The data for the CNOT gate was taken at n=97

where we could get a large blockade shift without too much loss in Rabi flopping rate.

As is done for the ground state Raman laser, we maintain a flopping rate between .5 and

1 MHz through our choice of intermediate detuning and 780 nm laser power. For the

n=97 data typical values were 2.4 µW of 780 nm light and 13 mW of 480 nm light with an

intermediate state detuning of -2.1 GHz giving a two photon Rabi frequency of ~900 kHz.

3.6.0.1 Phase locked Rydberg B laser

To increase the capabilities for the Rydberg excitation system a new laser which allows

for coupling between the Rydberg level and the other computational state is needed. This

additional laser needs to be split by the hyperfine frequency of Rb and also have good

phase coherence with the other Rydberg excitation lasers to enable well controlled Rabi

flopping. To guarantee that these requirements are met a second laser at 780 nm is phase

locked to the primary 780 nm laser already locked to the high finesse cavity. This addi-

tional laser allows for simplification of several pulse schemes for the CNOT gate or for

deterministic single atom loading. Without this laser additional ground state rotations are

needed to effectively connect the Rydberg level to the other computational state. For ex-

ample the amplitude swap CNOT would require two fewer pulses to implement which

should lead to higher fidelities due to the reduced time the control atom spends in the

Rydberg state.

A second 780 nm Littman-Metcalf style external cavity diode laser is phase locked to

the main 780 nm Rydberg excitation laser. To perform the phase lock a small portion of

each beam is joined into an optical fiber that is connected to a high speed photodiode, Fin-

isar HFD6x80-418. This allows for direct measurement of the 6.8 GHz beat note. Several

steps are needed to convert this beat note into a useable error signal to phase lock the two

lasers. First an ultra stable RF oscillator, SRS PRS10 Rb referenced 10 MHz source input

into a Miteq DSZ-6.65-6.95-1K frequency multiplier, is used to mix this 6.8 GHz signal

down to ~40 MHz to compare to another stable RF reference, HP 8662a, using a digital
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phase detector, Analog Devices 9901. The output of the phase detector is used to detect

the frequency variations between the two lasers due to the phase changes they produce.

The signal from the phase detector is then filtered using both active and passive filters

and split into two components. A fast loop component is fed back directly to the current

of the laser and a slow loop passes through additional filtering and is then connected to a

piezo controlled mirror in the external cavity. Schematic diagrams of these are shown in

figures 3.16 and 3.17.

Once these two lasers are phase locked the beat note between them can be analyzed to

see the relative linewidth of these two lasers. By activating only the slow component of

the feedback the beat note frequency would be stabilized but the linewidth would remain

at around 1 MHz. With the high speed loop enabled the short term linewidth of the

beat note is greatly reduced to be below the spectrum analyzer bandwidth limit of 100

Hz. With the lasers locked the feedback bandwidths can be measured by observing the

feedback servo bumps in the beat note. These bumps correspond to where the feedback

has switched from negative feedback to positive feedback. The high speed loop has a

bandwidth measured to be about 1.5 MHz and the slow loop has a bandwidth of about

300 Hz. The stability of the lock is limited by environmental changes in the room which

cause the main laser to hop from its cavity lock or cause the phase locked laser to mode

hop. These changes are generally rare so the two lasers can be phase locked for many

hours at a time. Relocking the phase lock is also generally very simple and can be reset in

less than five minutes.
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Chapter 4

Experimental Results

This chapter covers the results we have hadworking to demonstrate a two qubit quan-

tum gate. The results discussed follow a similar pattern to the order of the DiVincenzo

criteria. We first demonstrated a good qubit system by performing single atom readout,

coherent Rabi oscillations between the 87Rb clock states, and demonstrated gate times

significantly faster than the qubit decoherence time [Yavuz et al., 2006]. Next we demon-

strated coherent Rabi flopping to various Rydberg levels [Johnson et al., 2008]. To move

towards demonstrating a two qubit gate, we showed Rydberg blockade effects between

atoms separated by ~10 µm [Urban et al., 2009]. Finally after putting all these components

together we demonstrated the first CNOT gate between well separated, individually ad-

dressed neutral atoms [Isenhower et al., 2010]. This chapter will go into more detail about

each of these results and cover what has been done to try to improve upon these and to

continue moving towards a scalable quantum computer.

4.1 Single atom state measurement

As the first major milestone achieved in our lab, the demonstration of coherent Rabi

oscillations between the clock states of 87Rb showed that these states could be a very good

basis for a qubit [Yavuz et al., 2006]. However this initial result was based on measuring

the Rabi oscillations of an atomic ensemble of about 10 atoms. This paper also showed

that we had achieved the ability to measure single atoms even though this was not used

in demonstrating the Rabi oscillations. Single atom experiments were not used because
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we did not have the ability to measure the state of a single atom using just fluorescence.

To enable single qubit experiments we need a method to measure accurately the state of

the qubit. Currently we employ a destructive state measurement where a specific qubit

state, the state with F=2, is selectively heated out of the FORT, using light on the F=2 to

F’=3 cycling transition, and the remaining atoms are measured by scattering light from

both ground states.

To find the fidelity of our state measurement we need to look at several things. First we

need to see how well we can distinguish a single atom from other atom numbers. This is

done by fitting Gaussian peaks to each atom number peak in a histogram of many camera

shot trials where atoms are randomly loaded into the FORT sites. Our system loads atoms

in a stochastic manner with the number well described by a Poissonian distribution. So as

an added constraint we force the Gaussian peaks fitting each atom number peak to have

relative heights given by a Poisson distribution. The final fit function is

A
m

∑
n=0

e−n̄n̄n

n!

1√
2π (ns+ b)

e
− (x−x0−ns)

2

2(ns+b)

where A is a multiplier to get the needed peak amplitude, m is the maximum number

of atom peaks to use in the fit, n̄ is the average atom number, s is the number of photo-

electrons produced by a single atom, and b is the variance of the zero atom peak. A typical

histogram and corresponding fit for a 20 ms camera exposure using light that is chopped

at 1.25 MHz with a 45% duty cycle and has a detuning of 1.5Γ and intensity of ~4 Isat is

shown in Figure 4.1. In our experimental analysis we set cuts around the zero and one

atom peaks as shown by the shaded bands around those peaks in Figure 4.1. We can then

use this fit to find the probability for a certain count level to be zero, one, two, etc. atoms.

This is done by integrating the Gaussian peak for each atom number over the cut values

that we typically use. For typical settings this analysis shows that we select >98% of the

single atom loads and have <1% chance to mislabel a zero or multiple atom count as a one

atom count. However, another possibility of mislabeling a measurement as a single atom

does exist. If the trap starts with multiple atoms there is some probability that a light
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Figure 4.1 Single atom measurement with histogram fit. These measurements used a 20
ms camera exposure with light at a detuning of 1.5Γ, total intensity of ~4 Isat, and a 1.25
MHz chopping frequency with a MOT light duty cycle of .45. These data were taken

Mar. 26, 2010.

assisted collision will occur part of the way through the readout process thus ejecting one

or both of the atoms involved. If this occurs in such a way that the multiple atoms scatter

the same number of photons as a single atom it would be labeled as a single atom when

in fact it is most likely not a single atom. We limit this process by keeping the average

number of multiple loads below 15%.

We can estimate the probability of a double atom load becoming either a zero, one or

two atom measurement in the second shot by selecting cuts where two atoms are loaded

on the first shot and seeing what happens during the second shot. This analysis for the

data shown in Figure 4.1 shows that ~25% of the double atom loads are read as two atoms

in the second shot and that ~35% are labeled as a one. The rest are in the unknown bands

or labeled as zero. Through repeating this analysis on several datasets, we estimate that

on average about 1/3 of the double loads will turn into false single atom measurements.

Even though some of these double atom loads end up as a single atom in the trap, the

resulting atoms probably do not have the same thermal distribution as single atoms due

to the collision with the other atom and would thus behave differently.

It is important to know how well we can measure a single atom and what the losses

are for single atoms. During several parts of the experiment the FORT potential must be

turned off to allow atom number measurements, optical pumping, and prevent loss of
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Figure 4.2 Histogram of an atom number measurement on a set of double atom loads.
The blue band marks the zero atom cut levels and the red band marks the single atom
cut levels. Based on the data shown in Figure 4.1 and from other FORT sites in that same

dataset.
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atoms in the Rydberg state. This process plus mislabeling some double atom loads leads

to about a 5% loss of single atoms between the two atom number measurements. The

other major loss is from background gas collisions. The depth of our traps is very small

compared to the 300 K thermal energy of the background atoms therefore any collision

with a background atomwill cause a loss. At our pressure of ~1.2× 10−9 Torr, we estimate

a trap lifetime of about 3.5 s as discussed in Section 3.2. This collision loss depends upon

the time between the atom number measurements. In early experiments this time was

typically on the order of 300 ms which gives a loss probability of about 10%. In current

experiments we have improved the mechanical shutters to reduce this time to about 100

mswhich should give less than 4% loss due to this mechanism. Accounting for all of these

losses leads to a total single atom retention of about 90% in our current experiments. This

loss is measured daily to ensure good operating conditions and is normalized out of any

measurements.

4.2 Single qubit rotations

We have used the Raman laser described in Section 3.5 to drive coherent Rabi oscil-

lations at up to 4 MHz with contrast above .98 using either of the basis states |F,mF〉 =

|1, 0〉, |2, 0〉 or |1, 1〉, |2, 2〉. The mF = 0 clock states do show longer coherence times, about

2400 µs versus about 30 µs for the stretched states see Figure 4.4, as expected from their

lower magnetic field sensitivity. Typically we use a Rabi frequency between .5 and 1MHz

because of the limited timing resolution in our system. An example of typical Rabi oscil-

lations is shown in Figure 4.3a). Since the beam that we use is focused to a 1/e2 intensity

radius of about 6.5 µm in the direction of the other FORT sites we have very little crosstalk

as shown in Figure 4.3b). Based on the beam size and FORT site separations of 8.7 µm the

calculated Rabi frequency at the neighboring sites is e−2(8.7/6.5)
2
Ω = .028Ω. This can be

used to calculate the expected amplitude of the crosstalk (ΩR)
2

(ΩR)
2+∆′2 = .012 for our typical

case ΩR = .03Ω / 2π × .014 MHz and ∆′ / 2π × .125 MHz which is actually slightly

larger than the observed value of .006.



79

0.0 1.0 2.0 3.0

1.0

0.2

0.6

1.0

0.2

0.6

Time (µs) Time (µs)

Pr
ob

ab
ili

ty
 to

 b
e 

in
 F

=
1

a) b)

0.0 1.0 2.0 3.0

Targeted Region Untargeted Region

Figure 4.3 a) Ground state Rabi oscillations at the targeted site. The fit is of the form
A
(
1− cos (2π f t) e−t/τ

)
with values: A = .48, f = .50 MHz, and τ = 200 µs. b)

Crosstalk at neighboring site. Fit parameters are A = .006, f = .33 MHz, and τ = ∞.
These data were taken Feb. 26, 2010.
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Figure 4.4 Ramsey measurement for the clock states, a)-c), and for the stretched states
d). This is done by applying a π/2 ground state rotation leaving a gap and applying a
second π/2 pulse with a variable phase. As described in Section 3.5 the Raman laser
accumulates a relative phase at the AC Stark shift of 125 kHz. So by using a small time
variation we can vary the phase between the pulses. a) shows the Ramsey contrast
measured near zero pulse gap. b) shows the Ramsey contrast near a 2 ms gap time. c)
Shows the Ramsey contrast measured versus the pulse gap time. The fit gives an

exponential decay constant of 2.4 ms. d) Shows a Ramsey measurement of the stretched
states where the decay can be measured directly in a single curve due to the field

sensitivity of the qubit states. The decay time measured was 30 µs. The clock state data
were taken Apr. 21, 2010, and the stretched state data were taken Nov. 4, 2008.
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Since these Rabi oscillations are very well understood, we use them to help measure

many aspects of our apparatus. The Raman beam is used to align itself and the Rydberg

780 nm beam to the FORT since they come through the same fiber. This way we know the

780 nm Rydberg beam is aligned before trying to align the 480 nm Rydberg beam. This

was not possible for the stretched state computational basis because the Rydberg and

the Raman beams required different polarizations. We also apply a bias field to provide

a quantization axis for optical pumping and to Zeeman select a single Rydberg state to

avoid interference due to exciting multiple states. The splitting of the hyperfine ground

states can be measured precisely to give the bias field strength along the quantization axis

for the different settings used during the experiment. Finally, by monitoring changes in

the Rabi oscillation frequency and decoherence rate, we can detect small changes in beam

alignment to the FORT sites to indicate when a realignment is necessary.

During quantum computing experiments, we use this system to perform state prepa-

ration, preparation of measurement states, and for other single qubit rotations needed in

gate sequences. State preparation is performed by first using the optical pumping system

to initialize the atoms in the |1〉 state followed by pulses from the Raman laser to create

the desired input states. To measure the fidelity of this process we apply π pulses as

needed to create the basis states. For a two qubit system these are the |00〉, |01〉, |10〉, and

|11〉 states. Once one of these states is prepared we then measure the probability for the

system to be in each of these four states. These measurements serve as a baseline for any

quantum gates we want to run. The fidelity we can achieve with any quantum gate will

at best be equal to the fidelity of these measurements. When we first changed to the clock

states we were optically pumping using the D2 line which cannot reach complete pump-

ing with our settings. A calculation using these settings estimates a pumping efficiency

of about 95%. A typical two qubit state preparation measurement is shown in Figure 4.5
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a). The population matrix values for this measurement are [Isenhower et al., 2010]





.93± .07 .08± .03 0 0

.04± .02 .81± .07 0 .01± .01

.07± .03 0 .81 .04± .02

0 .01± .01 .04± .02 .77± .07





with each row a specific input state in the order: |00〉, |01〉, |10〉, and |11〉 and the columns

representing the measured output state in the same order. This matrix is an average

of about 100 measurements per point. The fidelity of this matrix can be given by F =

1
4Tr [ρidealρ] = .83. Summing each row allows us to check for losses out of our computa-

tional system. On average each row sums to a value that matches well with the expected

value of .952 = .9 due to imperfect optical pumping. To improve this we switched to op-

tical pumping with the D1 transition which theoretically achieves better than 99% optical

pumping with our settings. The results from this switch are shown in Figure 4.5 b). The

population matrix based on an average of 50 measurements per point is





.99± .07 .06± .04 0 0

0 .94± .08 0 0

0 0 .99± .07 0

0 0 .06± .04 .95± .09





which has F = .97 and an average low value of .01. The rows sum to 1.0 on average which

shows that the optical pumping efficiency is comparable to that predicted theoretically.

In addition other improvements allowing us to decrease the time between atom number

measurements reduced the atom losses enough that this newmatrix is even able to exceed

the old corrected matrix without atom loss corrections. The uncorrected matrix is




.90± .06 .06± .04 0 0

0 .86± .07 0 0

0 0 .90± .06 0

0 0 .06± .04 .86± .08




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Figure 4.5 State preparation measurement for two qubits using a) the D2 transition for
optical pumping b) the D1 transition for optical pumping. The data in a) were taken July

22, 2009, and the data in b) were taken Mar. 7, 2010.

which gives a fidelity of .88 and an average row sum of .91 which matches the measure-

ment to measurement retention of .9 we typically measure in our current system.

In order to perform the Hadamard-Controlled phase CNOT gate we need to be able

to control the phase of the Raman pulses we use to implement the Hadamard operation.

The phase of the Raman laser can be controlled in two ways. First a simple delay can

be used due to the difference in frequency between twice the laser current modulation

and the qubits when the Raman beam is off as described in Section 3.5. This difference is

measured to be ~120 kHz so a π phase shift requires a delay of ~4 µs. The other method is

to directly change the phase of the microwave source driving the current using a voltage

controlled phase shifter. This allows for changes in the phase in about 150 ns which is

fast enough that the sideband filter cavity lock does not notice the change. However

these circuits decrease the stability of the Raman laser and require computer controlled

resources we need for other systems. Therefore we have chosen to use the time delay

method.
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Figure 4.6 Measurement of the phase accumulation rate for the computational states
relative to the ground state Raman laser. The curve is a sine fit with amplitude .44 and
frequency .122 MHz. Comparing the frequency of the microwaves driving the Raman
laser to the unshifted clock state splitting of 87Rb predicts a frequency of .123 MHz.

These data were taken Apr. 6, 2010.
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In order to prepare for future work, we have implemented a basic composite pulse

scheme to show the phase control that we have using the ground state Raman beam.

This scheme is to perform some rotation and then perform the same rotation but with the

opposite phase. This effectively cancels the rotation and should demonstrate a reduced

sensitivity to amplitude errors that are slower than the pulse times. To show this im-

provement we purposely misaligned the Raman beam to give larger intensity variations

due to the atomic thermal distribution and measured the results of two types of pulses.

The first type consisted of two pulses that had the phase adjusted to have a multiple of 2π

phase shift between them. The second scheme used the same pulse lengths but adjusted

the phase so that the pulses had a π phase shift. The result of this test is shown in Figure

4.7. The in phase pulses show what looks like a normal Rabi oscillation curve but with

larger decoherence as seen by the distance of the points from the curve fit around the 2π

point at 1.2 µs. The out of phase pulses stay near zero population transfer much better

than the two in phase pulses showing the reduced sensitivity to amplitude noise.

We have also used the phase control of the Raman laser to perform single qubit state

tomography. State tomography requires making measurements of a quantum state in

three orthogonal bases. This can be performed by making a state measurement as is done

normally, making a second state measurement after first applying a π/2 Rabi pulse, and

finally by making a third state measurement after applying a π/2 pulse that is performed

with a π/2 relative phase shift. These measurements correspond to making a measure-

ment along the z, x, and y axes of the Bloch sphere. The data from these measurements

are then fit to find the most probable physically realistic density matrix. This same idea

can be scaled to higher numbers of qubits and enables the estimation of the full density

matrix for a quantum state.

4.3 Rydberg excitations and blockade

With the good control of the single qubit rotations we could start moving towards im-

plementing the Rydberg blockade CNOT gate. First we need to demonstrate the ability
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Figure 4.7 Simple composite pulse experiment where the ground state Raman beam was
purposely misaligned to increase the intensity noise due to the atom thermal
distribution in the FORT sites. The red curve shows a two pulse Rabi flopping

experiment with both pulses in phase and the blue curve shows the same pulses but
with the phase changed by π between the two pulses. Notice the significant difference
between the points at 1.2 µs where they should both return to zero. The effects of
decoherence prevent the in phase pulses from returning the atom to the |1〉 state.
However, the out of phase pulses maintain the atom in the |1〉 state very well due to

their lower sensitivity to this type of decoherence.
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Figure 4.8 Reconstructed density matrix from a quantum state tomography
measurement of the |1〉 state. The state fidelity is F = Re [Tr [ρidealρ]] =.98
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to coherently excite atoms to a Rydberg state and bring them back to the ground state.

We began by working at lower Rydberg levels due to their reduced sensitivity to environ-

mental effects and higher Rabi frequencies. However, these lower levels do not have large

enough interactions to cause a full blockade interaction, but decoherence when multiple

atoms were present in a single FORT site showed that some interaction was occurring

[Johnson et al., 2008]. To increase the Rydberg interaction we moved up to higher Ryd-

berg levels where we were able to demonstrate Rydberg blockade with the 79D5/2 and

90D5/2 states [Urban et al., 2009].

We have continued to improve our experiment as we moved towards a CNOT gate.

We now operate at the 97D5/2 Rydberg level, and we have changed to the clock states

which required a change in the geometry of the bias field and excitation beams as shown

in Figure 3.12. Figure 4.9 shows a typical Rabi oscillation curve to this level and an associ-

ated blockaded curve. The curve fits are done using the function (1− A)+A cos (2π f t) e
−t
τ ,

where A is the fitted amplitude, f is the frequency, and τ is the decoherence time. We ex-

pect to see some residual oscillation in the blockaded case due to imperfect optical pump-

ing (<2%), incomplete Rydberg excitation of the control atom (~6%), control atom loss

before the Rabi pulse (~4%), and residual blockade leakage (2%). The Rydberg Rabi oscil-

lations typically have a decoherence time measured to be about 10 µs. This short time is

responsible for the majority of the incomplete Rydberg excitation as the excitation proba-

bility for a π pulse, about 650 ns, is about e−
.65
10 = .94. We believe that the decoherence is

caused by intensity noise in the excitation lasers, by the spatial distribution of the atoms

in the FORT due to their temperature, and to a lesser degree by any bias or external field

noise. Combining these we can get an estimate of the expected amplitude of the block-

aded curve. Doing this we find .98× .94× .96× .98 = .86 giving an expected contrast of

~.14. This simple estimation is not far from the measured value of .2 for the data in Figure

4.9.

We have also tried to use the 102D5/2 state, however, the large sensitivity of Rydberg

levels was demonstrated at this level. The nearest Rydberg level to 102D5/2 is 103P3/2
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Figure 4.9 Rabi oscillations to the 97D5/2 level for a) single atoms and b) blockaded
single atoms. The blockading atom is about 8.7 µm away. The curves are fits of the form
1− A+ A cos (2π f t) e−t/τ. For a) the values are A = .46, f = .97 MHz, and τ = 5.3 µs
and for b) A = .1, f = .97 MHz, and τ = ∞ µs. These data were taken Dec. 23, 2009.
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Figure 4.10 Rabi oscillations to the 102D5/2 level. The fast loss and decoherence is due to
a nearby Rydberg level that is coupled by microwaves used by GSM cell phones. The fit
is of the modified form (1− A+ A cos (2π f t)) e−t/τ with A = .38, f = .46 MHz, and

τ = 2.8 µs. These data were taken May 13, 2009.

which is separated by 1.91 GHz which happens to be very close to the GSM cell phone

spectrum. When trying to perform Rabi oscillations to 102D5/2 we see fast decoherence

and loss of the atom as shown in Figure 4.10. This is due to microwaves emitted by GSM

cell phones causing Rabi oscillations to the 103P3/2 state where they cannot be returned

to the ground state and become photoionized by the FORT and lost. The fit gives an

exponential decay time of 2.8 µs. This is a nice example of the unexpected problems that

can occur when using highly sensitive Rydberg levels and shows that care must be taken

in choosing the Rydberg level to use.

4.4 Two qubit Rydberg blockade CNOT gate

With the demonstration of Rydberg blockade we had all the necessary components

to put together a two qubit Rydberg blockade CNOT gate. Putting all these components

together at the same time is not a trivial task. We first tried to combine these components

using the stretched states, |1, 1〉 and |2, 2〉, as the computational basis and the 90D5/2 Ry-

dberg level but soon found that the coherence time for these ground states was not long
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enough to give high enough fidelity gates. This poor coherence time is evident when try-

ing to find the correct delay time between theπ/2 pulseswhich implement theHadamard

gates in the H-Cz CNOT sequence. This measurement corresponds to a Ramsey fringe

type measurement because the delay introduces a phase shift between the ground state

Raman laser and the atoms. To measure the correct delay for the gate the Rydberg pulses

were also implemented in this measurement but detuned from a Rydberg state to avoid

any actual transition effects but keeping the phase shifts on the computational states due

to the AC Stark shifts of these beams. The experimental sequence and results are shown

in Figure 4.11. At that time we chose to use a time delay rather than use the phase control

circuitry because we had evidence that those circuits decreased the stability of the ground

state Raman laser. The delay needed for the correct phase plus the time needed for the

Rydberg pulses combined to be about 9 µs which was too long compared to the deco-

herence time of about 30 µs resulting in low contrast Ramsey fringes. Even if using the

electronic phase shifter the minimum delay was limited to about 5 µs which was needed

for the Rydberg pulses and beam pointing changes. So even in this best case the maxi-

mum contrast we would expect was e−5/30 = .85. This problem plus the additional errors

we still had due to imperfect pulses and blockade leakage combined to give too many

errors preventing the measurement of any significant gate operation.

To try to reduce our sensitivity to the poor ground coherence, we took an idea from

[Ohlsson et al., 2002] and tried the amplitude swap gate discussed in Section 2.5. This

version of the gate only uses π pulses which we thought would reduce the sensitivity

to the pulse phases enough to perform a gate operation. In addition the removal of the

need to get the proper phase matching of the pulses decreased the gate time from 8-10 µs

to about 7 µs. However, these changes did not gain enough to override the other errors

of atom loss, blockade leakage, and pulse errors we still had. At this point we decided

to switch to the clock states, |1, 0〉 and |2, 0〉, to greatly reduce the errors we had due to

the ground state coherence time and also increase the blockade shift by going to a higher

Rydberg level. These changes led to demonstrating the CNOT gate with a fidelity of
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Figure 4.11 a) The experiment sequence used when finding the correct delay for the π/2
pulses in the H-Cz CNOT gate. b) This plot shows the results of the experiment sequence

shown in a). This curve was done by detuning the Rydberg 480 nm laser from the
Rydberg transition to remove any Rydberg excitation effects while keeping any phase
shifts due to differential AC Stark shifts of the qubit states. The contrast measured here,
.46±.15 according to the fit, places an upper limit on the gate fidelity we would expect

with these settings.
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Figure 4.12 Measured population matrices for the CNOT gates: a) the amplitude swap
style gate and b) the H-Cz gate. The data in a) were taken July 21, 2009, and the data in b)

were taken Oct. 19, 2009.

.73 [Isenhower et al., 2010]. The Amplitude-Swap gate had a measured gate population

matrix of 



.05± .03 .71± .07 .03± .02 .11± .04

.75± .06 .01± .01 .02± .02 .02± .02

.02± .01 .04± .02 .72± .05 .08± .02

0 .01± .01 0 .73± .07





and the H-Cz gate was measured to give





.05± .03 .74± .09 .02± .02 .04± .03

.73± .09 .06± .03 .02± .02 .02± .02

0 .02± .02 .79± .09 .12± .05

.02± .02 .03± .03 .06± .04 .63± .09




.

Thesematrices are based on the average of about 100measurements per entry. Thesemea-

sured gate populations are shown in Figure 4.12. The fidelity is given by F = 1
4Tr [ρidealρ]

so FAS = .73 and FHCz = .72.
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These measurements showed promise because the ratio of the average peak to the

average low value is about 20 showing that fixing the atom losses should give a rapid in-

crease in gate fidelity. The errors in these measurements we attributed to several sources:

atom loss before the gate operation, imperfect optical pumping, pulse errors, and Ryd-

berg blockade leakage. The first two were the major contributors. The chance for one

of the two atoms to be lost between the first atom number measurement and the gate is

mostly due to background gas collisions. We have measured a lifetime of about 3.5 s for

atoms in our FORT sites and the time before the gate was about .13 s which leads to a

loss probability of ~4% per atom. The imperfect optical pumping from using the D2 tran-

sition also left about 5% of the atoms in the wrong state. Combined this means that the

input state matches the desired state with only about (.96× .95)2 = .84 probability due

to one of the qubits being lost or in the wrong state. These problems are also seen in the

state preparation measurements reported in Section 4.2. So assuming no other errors are

introduced these problems limit the gate fidelity to ~.84.

In the effort to improve on these measurements we changed to optical pumping using

the D1 transition as discussed in Section 3.4 and have improved the shutter setup for

the MOT beams allowing for a smaller gap between the atom number measurement and

the start of the gate. We estimate that the optical pumping efficiency is about .98 and

that the atom losses before the gate are now only 1%. So combining these the expected

probability that the gate starts with the desired state is (.99× .98)2 = .94. This significant

improvement is seen in the state preparation measurement shown in Figure 4.5 and in the

Hadamard-Cz CNOT gate which has a measured population matrix of





.06± .03 .90± .07 .02± .02 .05± .03

.94± .08 .03± .03 .02± .02 .02± .02

0 .02± .02 .66± .09 .04± .03

.02± .02 .03± .02 .08± .03 .90± .07





based on an average of 50 measurements per entry and is shown in Figure 4.13. The

fidelity of the matrix is F = .85
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The remaining errors in our gate are due to pulse errors. The pulse errors have twoma-

jor contributions. First the atom temperature causes errors due to doppler shifts of the ex-

citation beams. This error causes incomplete Rydberg excitation and is calculated to add a

2% error per π pulse. The second major component is due to spontaneous emission from

the intermediate state during the Rydberg pulses. For a π pulse it is calculated that the

probability of spontaneous emission is also 2%. Incomplete optical pumping adds about

1% error per atom. Combining the known errors from state preparation, spontaneous

emission, and doppler broadening gives a predicted fidelity of .992 × .982 × .982 = .9.

This value matches well to what we would have if we can improve the one poor peak

point (.66) to match the other three. So with improvements to these known errors we

should be able to continue to increase our gate fidelity.

4.5 Entanglement Generation

To verify the quantum nature of this gate we attempt to generate entanglement by

placing the control atom in a superposition state and then operating the gate. For example

if we use our CNOTπ gate on the input state
(
|0〉+|1〉√

2

)
⊗ |1〉 for the control and target

qubits respectively then the output is |00〉+|11〉√
2

which is one of the maximally entangled

Bell states. For our implementation we calculate the expected density matrix to be

ρ =





.5 0 0 −.5

0 0 0 0

0 0 0 0

−.5 0 0 .5




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without accounting for the qubit phase shifts due to the Rydberg excitation pulses. We

first measured the populations on the diagonal and found





|00〉

|01〉

|10〉

|11〉




=





.47± .07

0

0

.50± .06





As described in Section 2.6 we canmeasure the expected coherence by applying a variable

phase π/2 analysis pulse to both qubits after the gate and measure the resulting parity.

P
′
= 2 |c2| cos (φ2 + ζ)− 2 |c1| cos (2φ + φ2+ ξ)

where c2 is the coherence of the |01〉 and |10〉 states, φ2 is the phase difference between the

two π/2 analysis pulses, ζ is the phase of c2, c1 is the coherence of the |00〉 and |11〉 states,

φ is the phase of the analysis pulses, and ξ is the phase of c1. For this state we expect to

have an oscillating function with no offset since |c2| should be zero. Because we know

the time delay between the two pulses, .5 µs, and the phase accumulation rate, 2π × .125

MHz, we find φ2 = 2π × (.125 MHz)× (.5 µs) = .4.

This measurement for the (|00〉+ |11〉) /
√
2 state is shown in Figure 4.14. The curve

is a fit to the parity equation just given modified to set φ2 = .4 and φ = 2π (.125 MHz) t

which are known values from other measurements leaving only the coherences, c1 and

c2, and the phases of these coherences, ξ and ζ, as the free parameters. This fit resulted in

the values: c1 = .25± .02, ξ = −.77± 2× 10−4, c2 = .03± .01, and ζ = 1.8± .07. From

this value for c1 we calculate a fidelity of F = 1
2 (P00 + P11) + c1 = .73± .10 putting this

state more than two standard deviations above the threshold for entanglement.

4.6 Deterministic single atom loading

Now that we have demonstrated that a Rydberg blockade CNOT gate works, we

are focusing on the remaining quantum computer criteria: scalability and reaching the
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threshold for error correction. Scaling to many qubits will require some changes in our

current setup but some of the work using more than two qubits can be done with the cur-

rent apparatus. Our plan for scaling neutral atom quantum computing involves putting

the qubits in an optical array. This will likely be an array of blue detuned FORTs based on

the bottlebeam approach discussed in Section 3.2 with a site spacing of about 5 µm and

FORT beam sizes of .5 and 1 µm for each individual bottlebeam. A system with 49 sites is

currently being implemented in a Cs experiment. A major hurdle for this scheme is to fill

each site with a single atom. This complete loading scheme is probably not necessary for

scalability of a neutral atom quantum computer but would increase the number of qubits

a computer could have. Currently our loading procedure gives Poissonian loading which

limits the single atom loading probability to about .37. Schemes that take advantage of

light assisted collisions have demonstrated a loading probability of .5 [Schlosser et al.,

2001]. To use fractional loading for quantum computing a measurement of which sites

had been loaded would need to be made to know which qubit positions to use during the

computation, or a technique which selectively fills individual sites is needed.

To improve on this, Rydberg blockade has been suggested as a way to obtain a loading

probability of close to unity. There are several ways this can be done, but the general idea

is that a site is loaded with multiple atoms and then a pulse or series of pulses that pass

through a Rydberg state can place one atom into a different state from the remaining

atoms. Then a blow-away pulse is used to remove the unwanted atoms leaving a single

atom in the site. One version was proposed in [Saffman and Walker, 2002] and performs

this procedure by first applying a Rydberg π/
√
N pulse that takes advantage of the

√
N

enhancement provided by Rydberg blockade to excite a single atom to the Rydberg state.

Then a separate Rydberg π pulse with pulse area set for a single atom de-excites the atom

to the other ground state thus putting one atom in one ground state, for example F=1 in

87Rb, and the remaining atoms in another ground state, e.g. F=2 in 87Rb, which then gets

ejected from the trap. This method requires a fairly high number of atoms to be loaded
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initially so that the
√
N enhancement does not vary as much for small variations in atom

number in order to achieve high fidelities.

A second method which tries to avoid this problem was proposed by [Mølmer, un-

published]. This proposal uses many pulses to slowly take a few atoms down to just a

single atom again by using the faster collective Rabi frequency due to blockade. This is

done by applying a single atom 2π pulse. If more than one atom is in the trap then more

than a 2π rotation is performed leaving some probability of a single atom to be in the

Rydberg state. Next a step is performed that causes the loss of this Rydberg atom and

these two steps are repeated. One initial problem with this method is there are certain

numbers of atoms which would have zero probability to be in the Rydberg state such as

for N=4, however, this can be avoided by using pulses that are detuned slightly from the

Rydberg state which removes this degeneracy for reasonable values of N. This scheme

does require that the 2π pulses have a high fidelity so that after many applications there

is still a high probability for a single atom to be in the site.

4.7 Conclusions

The hard work of our group to understand and improve the systems we use to con-

trol the electronic states of 87Rb has lead to the first demonstration of a CNOT quantum

gate between two individually addressed qubits. This gate was used to generate entan-

glement on demand with a fidelity of .73. The techniques used scale for use in 2D arrays

of qubits and should be capable of making a quantum register with up to several hun-

dred fully interconnected qubits. Before this stage can be reached several aspects must

be improved. The ability to load every site or to know which sites have been loaded is a

key hurdle that needs to be passed. Several techniques for this look very promising. In

addition improvements need to be made to reduce pulse errors and reduce atom losses to

improve the fidelity of the gate operation. The atom losses can be significantly improved

by moving to a system with a lower background pressure. This should also enable an
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increase in data collection as the current system can only handle one measurements per

loading cycle due to the background collision losses and the destructive state readout.

The current apparatus should be able to perform operations on up to 5 qubits. This

allows for studies of Toffoli gates as well. The current plan takes advantage of the trap

geometry and the scaling of the Rydberg blockade shift to implement this gate. Future

work will also include demonstrations of composite pulse schemes to help improve the

gate fidelity, work towards achieving deterministic single atom loading using Rydberg

blockade, and non-destructive state readout. In addition our group is continuing to work

towards a larger scale apparatus which can handle up to 50 qubits in a 2D array and will

take advantage of the many discoveries from this first apparatus.
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