THEVENIN'S THEOREM can be generalized to any two terminal network of resistors \((Z_R = R) \), inductors \((Z_L = j\omega L) \) and capacitors \((Z_C = -\frac{1}{j\omega C}) \) is equal to a single complex impedance in series with a single signal source.

Exercise: You have a temperature sensor and controller. It stops working. Tell me what ordinary laboratory equipment you could use to replace it. Divide into terms of \(Z \) and start thinking.

Basics of Diodes:

- **Zener**
- **Tunnel**

1. Current flows (almost) only one way.
2. Voltage drop is (almost) constant.

Use slope of \(V-I \) curve (= Dynamic Impedence)

Example:

\[
\begin{align*}
V_{\text{IN}} & \quad W \quad V_{\text{OUT}} \\
R & = 300 \Omega \\
\text{Diode: in 47.33}
\end{align*}
\]

\(V_{\text{IN}} \) varies from 15 to 20 volts. How much does \(V_{\text{OUT}} \) vary?

(a) What is maximum current through diode?

- Look up Zener voltage (= 5.1 volt)
- \(I_{\text{max}} = \frac{20 - 5.1}{300} \approx 50 \text{ mA} \)

(b) What is dynamic impedance at 20V? 7.0 \(\Omega \)

\[
\Delta V = R_{\text{dyn}} \Delta I \\
\Delta I = 17 \text{ mA} \text{ between 15V and 20V.}
\]