(2) Short Circuit Battery

\[R_{TH} = \frac{R_1 R_2}{R_1 + R_2} \]

(3) Put \(V_{TH} \) and \(R_{TH} \) in series:

\[I = \frac{V_{TH}}{(R_{TH} + R_L)} \]

\[V_L = I R_L = \left[\frac{VR_2 R_L}{R_1 + R_2} \right] \]

\[\left[\frac{R_1 R_2}{R_1 + R_2} + \frac{R_1}{R_L} \right] = \left[\frac{VR_2}{R_L} + (R_1 + R_2) \right] \]

Now let us combine (R), (C) and (L) components.

\[L \frac{dI}{dt} + RI + \frac{Q}{c} = V \]

Or \(L \frac{d^2I}{dt^2} + R \frac{dI}{dt} + \frac{I}{c} = \frac{dV}{dt} \)

This is analogous to a damped spring:

Mechanical

Mass \((m)\)
Damping \((a)\)
Spring Constant
External Force
Velocity
Displacement

Electrical

\(L \)
\(R \)
\(\frac{1}{c} \)
\(V \)
Current
Charge