CHAPTER 14 | THE IDEAL GAS LAW AND KINETIC THEORY

PROBLEMS

1. **REASONING AND SOLUTION** Since hemoglobin has a molecular mass of 64,500 u, one mole of hemoglobin has a mass of 64,500 g. One mole of hemoglobin contains Avogadro's number or \(6.022 \times 10^{23}\) molecules. Therefore, one molecule of hemoglobin has a mass (in kg) of

\[
(64,500 \text{ g/mol}) \left(\frac{1 \text{ mol}}{6.022 \times 10^{23}}\right) \left(\frac{1.00 \text{ kg}}{1.0 \times 10^{3} \text{ g}}\right) = 1.07 \times 10^{-22} \text{ kg}
\]

10. **REASONING AND SOLUTION** PV = nRT; therefore, \(n = \frac{PV}{RT} = 9.6 \times 10^{-11}\) mol, and the number of molecules is

\[
N = nN_A = (9.6 \times 10^{-11} \text{ mol})(6.022 \times 10^{23} \text{ mol}) = 5.8 \times 10^{13}
\]

26. **REASONING AND SOLUTION**

a. Since the heat gained by the gas in one tank is equal to the heat lost by the gas in the other tank, \(Q_1 = Q_2\), or (letting the subscript 1 correspond to the neon in the left tank, and letting 2 correspond to the neon in the right tank) \(cm_1 \Delta T_1 = cm_2 \Delta T_2\),

\[
cm_1(T - T_1) = cm_2(T_2 - T)
\]

\[
m_1(T - T_1) = m_2(T_2 - T)
\]

Solving for \(T\) gives

\[
T = \frac{m_2 T_2 + m_1 T_1}{m_2 + m_1}
\]

(1)

The masses \(m_1\) and \(m_2\) can be found by first finding the number of moles \(n_1\) and \(n_2\). From the ideal gas law, \(PV = nRT\), so

\[
n_1 = \frac{PV_1}{RT_1} = \frac{(5.0 \times 10^{-5} \text{ Pa})(2.0 \text{ m}^3)}{(8.31 \text{ J/(mol} \cdot \text{K})/(220 \text{ K})} = 5.5 \times 10^{-2} \text{ mol}
\]

This corresponds to a mass \(m_1 = (5.5 \times 10^{-2} \text{ mol})(\frac{20.179 \text{ g}}{1 \text{ mol}}) = 1.1 \times 10^4 \text{ g} = 1.1 \times 10^1 \text{ kg}\). Similarly, \(n_2 = 2.4 \times 10^2 \text{ mol}\) and \(m_2 = 4.9 \times 10^3 \text{ g} = 4.9 \text{ kg}\). Substituting these mass values into Equation (1) yields

\[
T = \frac{(4.9 \text{ kg})(580 \text{ K}) + (1.1 \times 10^1 \text{ kg})(220 \text{ K})}{(4.9 \text{ kg}) + (1.1 \times 10^1 \text{ kg})} = 3.3 \times 10^2 \text{ K}
\]

b. From the ideal gas law,

\[
P = \frac{nRT}{V} = \frac{[(5.5 \times 10^2 \text{ mol})(2.4 \times 10^2 \text{ mol})][8.31 \text{ J/(mol} \cdot \text{K})]3.3 \times 10^2 \text{ K}}{(2.0 \text{ m}^3 + 5.8 \text{ m}^3)} = 2.8 \times 10^5 \text{Pa}
\]
30. **REASONING AND SOLUTION** Using $\overline{KE} = \frac{1}{2} m v_{\text{rms}}^2 = \frac{3}{2} kT$, we can solve for v_{rms}.

\[
v_{\text{rms}} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3(1.38 \times 10^{-23} \text{ J/K})(6.0 \times 10^3 \text{ K})}{1.67 \times 10^{-27} \text{ kg}}} = 1.2 \times 10^4 \text{ m/s}
\]

37. **SSM REASONING** The internal energy of the neon at any Kelvin temperature T is given by Equation 14.7, $U = \frac{2}{3} nRT$. Therefore, when the temperature of the neon increases from an initial temperature T_i to a final temperature T_f, the internal energy of the neon increases by an amount

\[
\Delta U = U_f - U_i = \frac{3}{2} nR \left(\frac{T_f}{T_i} - 1 \right)
\]

In order to use this equation, we must first determine n. Since the neon is confined to a tank, the number of moles n is constant, and we can use the information given concerning the initial conditions to determine an expression for the quantity nR. According to the ideal gas law (Equation 14.1),

\[
nR = \frac{PV_i}{T_i}
\]

These two expressions can be combined to obtain an equation in terms of the variables that correspond to the data given in the problem statement.

SOLUTION Combining the two expressions and substituting the given values yields

\[
\Delta U = \frac{3}{2} \left(\frac{PV_i}{T_i} \right) \left(\frac{T_f}{T_i} - 1 \right)
\]

\[
= \frac{3}{2} \left[\frac{(1.01 \times 10^5 \text{ Pa})(680 \text{ m}^3)}{(293.2 \text{ K})} \right] (294.3 \text{ K} - 293.2 \text{ K}) = 3.9 \times 10^5 \text{ J}
\]