Physics 202, Lecture 21

Today’s Topics

- Electromagnetic Waves (EM Waves)
 - Review: Maxwell’s equations and EM waves
 - Propagation of E and B
 - Properties of EM Wave
 - Energy Carried by EM Wave, Poynting Vector
 - Momentum Carried by EM Wave

- About Exam 3
Maxwell’s Equations and EM Waves

Maxwell equations when there is no charge and current:

\[\oint E \cdot dA = 0 \]

\[\oint B \cdot dA = 0 \]

differential forms: (single polarization)

\[\frac{\partial E_y}{\partial x} = -\frac{\partial B_z}{\partial t} \]

\[\frac{\partial B_z}{\partial x} = -\mu_0 \varepsilon_0 \frac{\partial E_y}{\partial t} \]

\[\frac{\partial^2 E_y}{\partial x^2} = \mu_0 \varepsilon_0 \frac{\partial^2 E_y}{\partial t^2} \]

\[\frac{\partial^2 B_z}{\partial x^2} = \mu_0 \varepsilon_0 \frac{\partial^2 B_z}{\partial t^2} \]
Electromagnetic Waves

- **EM wave equations:**
 \[
 \frac{\partial^2 E_y}{\partial x^2} = \mu_0 \varepsilon_0 \frac{\partial^2 E_y}{\partial t^2}
 \]
 \[
 \frac{\partial^2 B_z}{\partial x^2} = \mu_0 \varepsilon_0 \frac{\partial^2 B_z}{\partial t^2}
 \]

- **Plane wave solutions:**
 \[
 E = E_{\text{max}} \sin(kx - \omega t + \phi) \quad B = B_{\text{max}} \sin(kx - \omega t + \phi)
 \]

- **Properties:**
 - No medium is necessary.
 - E and B are normal to each other.
 - E and B are in phase.
 - Direction of wave is normal to both E and B (EM waves are transverse waves).
 - Speed of EM wave: \(c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 2.9972 \times 10^8 \text{ m/s} \)
 - \(E/B = E_{\text{max}}/B_{\text{max}} = c \)
 - Transverse wave: two polarizations possible

\(\)
The EM Wave

Two polarizations possible
Energy Carried By EM Waves

- Recall: energy densities \(u_E = \frac{1}{2} \varepsilon_0 E^2 \), \(u_B = \frac{1}{2} \frac{B^2}{\mu_0} \)

- For an EM wave, at any time/location,
 \(u_E = \frac{1}{2} \varepsilon_0 E^2 = \frac{1}{2} \frac{B^2}{\mu_0} = u_B \) (using \(E/B = c \))
 - In an electromagnetic wave, the energies carried by electric field and magnetic field are always the same.

- Total energy stored (per unit of volume):
 \(u = u_E + u_B = \varepsilon_0 E^2 = \frac{B^2}{\mu_0} \)

- Power transmitted per unit of area (flux) is equal to \(uc \) in the direction of wave

- Poynting vector: \(S = \frac{1}{\mu_0} E \times B \), \(S = \frac{1}{\mu_0} EB = uc \)
 - Averaging over time:
 \(u_{av} = \frac{1}{2} \varepsilon_0 E_{max}^2 = \frac{1}{2} \frac{B_{max}^2}{\mu_0} \), \(S_{av} = u_{av} c = I \)
 (intensity, flux)
Momentum Carried By EM Waves

- EM waves: momentum = energy/c

Change of momentum in 100% absorption

\[\Delta p = \frac{\Delta U}{c} = \frac{uA c \Delta t}{c} = uA \Delta t \]

Change of momentum in 100% reflection

\[\Delta p = 2 \frac{\Delta U}{c} = 2 \frac{uA c \Delta t}{c} = 2uA \Delta t \]

Radiation Pressure (P):

\[P = \frac{F}{A} = \frac{\Delta p}{\Delta t} = \frac{S}{c} \]

100% absorption

\[\Delta p = p \rightarrow P = \frac{S}{c} \]

100% reflection

\[\Delta p = 2p \rightarrow P = \frac{2S}{c} \]

Mariner 10: “Sail on sunlight”
Example: Solar Radiation (Sun Lights)

The average intensity of the EM radiation from the Sun on Earth is $S \sim 10^3 \text{ W/m}^2$

- What is the average radiation pressure for 100% absorption:

$$P = \frac{S}{c} = \frac{10^3 \text{ W/m}^2}{3 \cdot 10^8 \text{ m/s}} = 3.3 \cdot 10^{-6} \text{ N/m}^2$$

- What is the force exerted by EM radiation by the Sun on a surface of 1 m2 (with 100% absorption)

$$F = PA = 3.3 \cdot 10^{-6} \text{ N/m}^2 \cdot 1 \text{ m}^2 = 3.3 \cdot 10^{-6} \text{ N}$$
Solar Energy

- Sun transmit its energy to the Earth in the form of EM wave (lights, visible or invisible)
- All activities on earth are powered by energy from the Sun, directly or indirectly.
- Solar energy is HUGE: 1 hour of solar energy to earth is sufficient to supply our energy consumption in 1 year! (a ratio of 1:10000)

- Solar to electricity: high tech in renewable energy
 - Solar thermal.
 - Solar energy heats up water/oil/etc → conventional generator
 - Photovoltaic.
 - light to electricity directly (needs quantum theory to understand)
Spherical Waves and Plane Waves

- Spherical EM waves: Radiation from a point source.
 - By laws of energy conservation, intensity (flux) of spherical EM waves goes as \(\sim 1/r^2 \).
 (why? see drawing and board)

- Plane waves: Beams are in parallel.
 - Intensity (flux) of plane EM waves remains as a constant.
About Exam 3

- **When and where**
 - Monday Nov. 23rd 5:30-7:00 pm
 - 125 Ag. Hall and 2103 Ch. (same as exam 1 and 2)

- **Format**
 - Closed book
 - One 8x11 formula sheet allowed, must be self prepared.
 - Four full problems.
 - Bring a calculator (but no computer). Only basic calculation functionality can be used.

- **Special needs:**
 - Please talk to me asap.
 - No early test before Monday Nov 23rd possible.
 - There will be 1 alternative sessions: 4:00pm in our lab rooms, only for approved requests.
Chapters Covered

- Chapter 31: Electromagnetic Induction and Faraday’s Law
 - All sections covered.

- Chapter 32: Inductance
 - All sections covered.

- Chapter 33: AC Circuits
 - Section 33.1-33.7

- Chapter 34: EM Waves
 - All sections covered
 - Displacement Current (34.1) only conceptual level.
 - Solving differential equations (for Maxwell’s eqs.) not required

- Chapter 16: Wave Motion. Not directly, but knowledge helps Ch. 34
- Section 28.4 (RC circuit) will be covered in w.r.t. time constant
Review Sessions

- Two (identical) review sessions are scheduled:
 - Friday, Nov 20th, 5-7pm 2103 Chamberlin
 - Saturday, Nov 21st, 1-3 pm 2103 Chamberlin

- You are free to attend the session that best fit your time.
 - However, to avoid over-crowdedness in a particular session, I am suggesting the following soft guideline:
 - 1:20pm class → Friday session
 - 2:25pm class → Saturday session

- Review slides are to be posted online on 21st after the review session

- Please do your own review before coming to the review sessions.
Sample Review Exercise From My Spring Teaching
(Ampere’s Law will not be tested in exam 3)

- An infinite straight thin wire is at the center of two concentric conducting cylinders of radius R and 2R.

 The currents are \(I \) (into the page), \(2I \) (out), and \(I \) (in), respectively for the center wire and the two cylinders. (as color coded).

Use Ampere's Law, find \(B \) as function of \(r \).

- **Solution:**

 \[
 \oint \mathbf{B} \cdot d\mathbf{s} = 2\pi r B = \mu_0 I_{\text{enclosed}}
 \]

 \[
 \Rightarrow B = \frac{\mu_0 I_{\text{enclosed}}}{2\pi r}
 \]

Answers:

- \(r < R \), \(B = \mu_0 I/2\pi r \) (Clockwise)
- \(R < r < 2R \), \(B = \mu_0 I/2\pi r \) (counter-clockwise)
- \(r > 2R \), \(B = 0 \)