Physics 201 Fall 2012 Practice Test 3

1. A ladder of length \(L \) and mass \(M \) is propped against a frictionless wall at an angle \(\theta \) from horizontal. The ladder/ground interface has coefficient of static friction \(\mu_s \). Find an expression for the maximum distance \(d \) that a man of mass \(m \) can climb the ladder before it slips (assuming that it will slip).

2. An object of mass \(m \) is dropped from altitude \(h \) above the surface of a planet of mass \(M \) and radius \(R \). Find an expression for the object's speed \(v \) as it hits the ground.

3. A cylinder of height \(h \) and density \(\rho \) floats in water of density \(\rho_w \) with its long axis vertical. Find an expression for the ratio \(z/h \) of the exposed height to the total height.

4. A large water tank has a hole at height \(y \). The tank is kept full of water at height \(h \). Find an expression for the value of \(y \) at which the range of the water stream \(x \) is maximized.

5. A mass \(m \) is held by two stretched rubber bands of length \(L \) on a frictionless surface. (The diagram shows the view looking down at the surface.) At equilibrium, the bands have tension \(T \). Find an expression for the frequency \(\omega \) of small oscillations perpendicular to the bands. Assume that the magnitude of \(T \) is constant throughout the oscillations.