
PHY 321, 2021F

Experiment 12
Digital Flip-Flop Circuits and Applications

1 Motivation
Beyond basic logic gates, there are several digital circuits that serve as building blocks for many
useful applications. You will investigate several commonly used circuits related to counting and
binary data management.

2 Background
A foundational logic circuit for a number of digital applications is the “flip-flop”. There are several
versions, the most basic being the RS flip-flop. You will construct this circuit using basic nand
gates and then explore the integrated circuit version of the JK flip-flop to make a counter and
a shift register. You will also use a universal asynchronous receiver-transmitter (UART) circuit
to process 8-bit (byte) data. For some of the procedure you will input an external clock signal
using the function generator. Please use the trigger output of the function generator, not the
function output that you have many times in other experiments. Note that the grounds of the two
circuits (logic board and generator) must be connected. The function generator’s trigger output is a
TTL-like signal that is directly compatible with the logic board circuitry. Do not input voltages
into the logic board that are in excess of 5.0 V!! You should monitor the function generator
signal using the oscilloscope to verify that you have proper voltages. Doing this will help avoid
permanent damage to the circuitry internal to the logic boards. In many applications, “external”
signals are input via interface gates that condition the waveforms to create TTL-compatible outputs.
Input the function generator via a nand gate on the logic board (or two nand gates connected in
series, if the input should not be inverted) to “clean up” the signal and help protect the board’s
circuitry.

3 Equipment
For this experiment, you will use:

• One “logic board” chassis for testing logic circuits
• One Tektronix MSO 2014B Digital Storage Oscilloscope
• One Tektronix P3010 10X scope probe
• One AFG2021 Arbitrary Function Generator

4 Procedure
All of the digital circuits needed for this experiment are mounted on a circuit board inside the “logic
board” chassis. The VCC = +5 V power supply is also located inside the chassis. Do not attempt
to open the chassis on your own. If you are interested to see the board and circuity, ask your lab
instructor to open one, if available.

• Gray colored connectors are inputs: Use banana-connector patch cables to connect
logic signals from various locations on the board (but not external sources). The input to a
gate can be the output of a different gate. This is how more complicated digital circuits are

1 Page 1/5

Exp 12: Digital Flip-Flop Circuits and Applications PHY 321, 2021F

constructed. Inputs can also come from pull-up and pull-down circuitry associated with the
switches described below.

• Green colors connectors are outputs: The outputs of the digital circuits are made
available as banana-connector terminals. You can monitor the logic level of an output using
the LED indicators described below. Outputs from one gate can be used as inputs to other
gates to build more complex logic circuits. Each output can be connected to multiple inputs
The number of inputs that can be be connected to one single output is called the fanout
capacity. To prevent damage by accidental shorting, a 47 Ω resistor is wired in series with
each output. This reduces the fanout capacity to 4.

• Light emitting diodes (LEDs) can be used to indicate the digital level at selected points in
a circuit: LED “on” is logical one, while LED “off” is logical zero.

• Push-button and toggle switches can be used to source logical one or logical zero inputs
for other circuits on the board.

• Pull-up resistors are installed internal to the chassis that connect unused inputs to
high (logical one). This means you do not have to worry about floating inputs.

Do the following exercises:

1. Use nand gates to construct the RS flip-flop circuit shown in Fig. 1(a). Experimentally
determine how it operates. There is no single standard for describing flip-flop operation in a
truth table, so you can create your own description.

2. Try applying simultaneous low-to-high transition inputs for R and S using two push-button
switch sources. Are Q and Q always the same when you repeat this?

3. Construct the D flip-flop in Fig. 1(b) using a toggle switch source for the data input, d, and a
push-button switch source for clock. Experimentally determine the circuits function. How
does the D flip-flop resolve the ambiguity of R = 1 and S = 1?

Q

Q

S

R

(a) Set-reset RS (or SR) flip-flop

Q

Q

D Clock

(b) Clocked D flip-flop

Figure 1: (a) The RS flip-flop (b) The level-triggered or “transparent” D flip-flop. The D flip-flop is
also available in an “edge-triggered” version.

4. Investigate the behavior of the JK flip-flops located on the logic boards. First determine how
the flip-flop is triggered, i.e., does the output switch (a) any time the clock pulse is positive,
(b) on the falling (negative) edge of the clock pulse, or (c) on the rising (positive) edge of the
clock pulse? Experimentally determine the truth table for the flip-flop. Be sure to observe

2 Page 2/5

Exp 12: Digital Flip-Flop Circuits and Applications PHY 321, 2021F

Q

Q

CK

K

J

Q

Q

CK

K

J

Q

Q

CK

K

J

led
D0

led
D1

led
D7

(. . .)

Figure 2: A circuit for an n-bit shift register. The case shown is 8-bit, with only the first two and
last JK flip-flops shown. The arrows represent connections to the intermediate flip-flops. Note that
unconnected inputs are wired high (logical 1) internally to the logic boards.

what final state is obtained for all possible inputs (J, K) = (0, 0), (0, 1), (1, 0), and (1, 1).
5. Construct a 4-bit shift register based on the circuit shown in Fig. 2. Use a toggle switch to

vary the input to the first stage and a push-button switch to provide the clock, ck. Write a
brief description of the circuit’s behavior in your lab notebook.

6. Create a 4-bit “circular” shift register as follows. First, load an arbitrary 4-bit word into the
register using the two switches. Disconnect the toggle switch and loop Q and Q of the last
stage over to J and K of the first stage. Use push-button ck to advance the register. Do you
see why this is “circular”? Now create a continuous ck using the trigger (TTL) output of the
function generator. Connect the generator to the logic board through a nand gate. Set the
generator’s frequency to 20 Hz and monitor both ck and Q of the output stage on the scope.
(Use a slow horizontal sweep rate.) What you see is a serial representation of the 4-bit word
stored in the register. Try a different 4-bit word by repeating the steps above.

7. Construct a 4-bit (0–15) ripple counter based on the circuit shown in Fig. 3. Use the function
generator for ck. Use the scope to measure the Q output of the first three flip flops (D0, D1,
and D2) along with the clock signal. Make a sketch of your measurements or print out a scope
screen capture. Do not disassemble this circuit (see next step).

Q

Q

CK

K

J

Q

Q

CK

K

J

Q

Q

CK

K

J

TTL In
led
D0

led
D1

led
D7

(. . .)

Figure 3: A circuit for an n-bit ripple counter. The case shown is 8-bit, with only the first two and
last JK flip-flops shown. The arrows represent connections to the intermediate flip-flops. Note that
unconnected inputs are wired high (logical 1) internally to the logic boards.

3 Page 3/5

Exp 12: Digital Flip-Flop Circuits and Applications PHY 321, 2021F

8. A universal asynchronous receiver-transmitter (UART) allows sharing binary data between
computing systems using a serial data format. A uart is bi-directional, meaning it is capable
of both sending and receiving information. One byte representing a number or letter is entered
at the uart’s parallel inputs D0-D7. To transmit this information, the strobe input is set
low, which causes the uart to transmit the binary data one bit at a time through its serial
output. The waveform for each transmitted bit has a duration of 16 clock cycles. The logic
board’s uart is set up such that the 8-bit byte word is prefaced with one 0 and appended
with two 1’s (11 bits total). In receive mode, data arriving at the serial input is decoded in
a similar manner. The data received is represented by the eight LEDs on the logic board.

CLOCK

STROBE

SERIAL IN

SERIAL OUT

D0D1D2D3D4D5D6D7
TTL In

(a) Push-button–triggered uart configuration.

CLOCK

STROBE

SERIAL IN

SERIAL OUT

D0D1D2D3D4D5D6D7

÷256

TTL In

To Scope

(b) Ripple counter–driven uart configuration. The “÷256” block represents an
8-bit counter circuit.

Figure 4: UART circuits

(a) Start by extending your ripple counter circuit in Step 7 to 8-bit (0-255).
(b) Set up the uart circuit shown in Fig. 4(a). Use toggle switches to set the input bits (D0

to D7) to either“0” or “1”. Set the clock rate to about 100 Hz and use the push-button to
strobe the uart. This causes the uart to transmit the byte data back to itself, displayed
on the LEDs.

(c) Now use your 8-bit ripple counter to cyclically strobe the byte input as shown in Fig. 4(b).
The counter produces one strobe every 256 clock pulses, and the uart will transmit the
same byte data back to itself repeatedly. Use the oscilloscope to measure the clock and
the serial output. Observe what happens as you toggle the input data, Dn, between
“0” and “1”. Record several traces of the clock and serial output and identify where the
information contained in the input bits appears in the output.

(d) Connect serial out → serial in and serial in → serial out of the uart in a
separate logic board. (Ask your lab instructor for advice on how to do this.) You need to
input the respective signals using two nand gates in series. You also need to connect the
grounds of the two boards. You can use a parallel signal from the generator as the clock
for the second board. Send a message from one board to the other using ascii encoded
data (see Table 1).

4 Page 4/5

Exp 12: Digital Flip-Flop Circuits and Applications PHY 321, 2021F

Table 1: Printable Non-Whitespace ASCII Characters

Char Hex Binary
33 ! 0x21 0010 0001
34 " 0x22 0010 0010
35 # 0x23 0010 0011
36 $ 0x24 0010 0100
37 % 0x25 0010 0101
38 & 0x26 0010 0110
39 ’ 0x27 0010 0111
40 (0x28 0010 1000
41) 0x29 0010 1001
42 * 0x2A 0010 1010
43 + 0x2B 0010 1011
44 , 0x2C 0010 1100
45 - 0x2D 0010 1101
46 . 0x2E 0010 1110
47 / 0x2F 0010 1111
48 0 0x30 0011 0000
49 1 0x31 0011 0001
50 2 0x32 0011 0010
51 3 0x33 0011 0011
52 4 0x34 0011 0100
53 5 0x35 0011 0101
54 6 0x36 0011 0110
55 7 0x37 0011 0111
56 8 0x38 0011 1000
57 9 0x39 0011 1001
58 : 0x3A 0011 1010
59 ; 0x3B 0011 1011
60 < 0x3C 0011 1100
61 = 0x3D 0011 1101
62 > 0x3E 0011 1110
63 ? 0x3F 0011 1111
64 @ 0x40 0100 0000

Char Hex Binary
65 A 0x41 0100 0001
66 B 0x42 0100 0010
67 C 0x43 0100 0011
68 D 0x44 0100 0100
69 E 0x45 0100 0101
70 F 0x46 0100 0110
71 G 0x47 0100 0111
72 H 0x48 0100 1000
73 I 0x49 0100 1001
74 J 0x4A 0100 1010
75 K 0x4B 0100 1011
76 L 0x4C 0100 1100
77 M 0x4D 0100 1101
78 N 0x4E 0100 1110
79 O 0x4F 0100 1111
80 P 0x50 0101 0000
81 Q 0x51 0101 0001
82 R 0x52 0101 0010
83 S 0x53 0101 0011
84 T 0x54 0101 0100
85 U 0x55 0101 0101
86 V 0x56 0101 0110
87 W 0x57 0101 0111
88 X 0x58 0101 1000
89 Y 0x59 0101 1001
90 Z 0x5A 0101 1010
91 [0x5B 0101 1011
92 \ 0x5C 0101 1100
93] 0x5D 0101 1101
94 ^ 0x5E 0101 1110
95 _ 0x5F 0101 1111
96 ‘ 0x60 0110 0000

Char Hex Binary
97 a 0x61 0110 0001
98 b 0x62 0110 0010
99 c 0x63 0110 0011
100 d 0x64 0110 0100
101 e 0x65 0110 0101
102 f 0x66 0110 0110
103 g 0x67 0110 0111
104 h 0x68 0110 1000
105 i 0x69 0110 1001
106 j 0x6A 0110 1010
107 k 0x6B 0110 1011
108 l 0x6C 0110 1100
109 m 0x6D 0110 1101
110 n 0x6E 0110 1110
111 o 0x6F 0110 1111
112 p 0x70 0111 0000
113 q 0x71 0111 0001
114 r 0x72 0111 0010
115 s 0x73 0111 0011
116 t 0x74 0111 0100
117 u 0x75 0111 0101
118 v 0x76 0111 0110
119 w 0x77 0111 0111
120 x 0x78 0111 1000
121 y 0x79 0111 1001
122 z 0x7A 0111 1010
123 { 0x7B 0111 1011
124 | 0x7C 0111 1100
125 } 0x7D 0111 1101
126 ~ 0x7E 0111 1110

Other ASCII characters include control codes (0x00 through 0x1F plus 0x7F) and space (0x20). If
the high bit of a byte is set (0x80 through 0xFF), its interpretation depends on which code page
is being used; the most commonly used code pages in English-speaking countries are ISO 8859-1
(International standard encoding, Western European languages), CP1252 (Microsoft Windows,
Western European languages; superset of ISO 8859-1), and UTF-8 (Unicode Consortium, all
languages, 8-bit encoding). These are all supersets of ASCII.

5 Page 5/5

	Motivation
	Background
	Equipment
	Procedure

