
Appendix A

Measurement Errors and Error Propagation
Physics 321, Electric Circuits and Electronics

1 Accuracy, Uncertainty and Precision

Part of making and reporting a measurement is determining how accurate it might be. Finding that
a distance is 10.0000 cm ± 0.0001 cm can tell you something very different from 10 cm ± 1 cm. In
common speech, the words accuracy and precision are often used interchangeably. However, many
scientists like to make a distinction between the meanings of the two words. Accuracy refers to
the relationship between a measured quantity and the real value of that quantity. The accuracy
of a single measurement can be defined as the difference between the measured value and the true
value of the quantity. Since in most cases you do not know the true value, you seldom know the
true accuracy of your answer. (If you did, you wouldn’t be bothering to measure it!) Exceptions
to this occur primarily when you are testing an apparatus or new measurement method, and in
teaching-labs like 321. Since we often know true values in the 321 laboratory, or we have measured
the same quantity in different ways, you have the opportunity to compare the achieved accuracy
(the difference between the true value and your measured value) or the consistency (the difference
between your two determinations) with your independently estimated error, as described below.

The words error and uncertainty are also often used interchangeably. Nevertheless, it is im-
portant to be aware of the distinction between the actual error in a given measurement, i.e. in
the amount by which the measured value differs from the true value, and the uncertainty in a
measurement, which is an estimate of the most likely magnitude of the error. The point is
that in experiments we do not always know the true value of the quantity we are measuring, and
therefore we cannot determine the actual error in a result. However, it is still possible to make an
estimate of the uncertainty (or the “probable error”) in the measurement based on what we know
about the properties of electrical components, measuring instruments etc.

The word precision refers to the amount of scatter in a series of measurements of the same
quantity, assuming they have been recorded to enough significant figures to show the scatter.
You should try to record just enough significant figures to show this scatter in the last figure, or
possibly the last two. It is possible for a measurement to be very precise, but at the same time not
very accurate! For example, if you measure a voltage using a digital voltmeter that is incorrectly
calibrated, the measurements will be precise but inaccurate, i.e., repeated measurements will have
the same result to several decimal places, yet all of the measurements will be wrong. Just because
a measuring device has a digital reading showing many digits does not guarantee it is accurate!

2 Random and Systematic Uncertainty

Measurement uncertainties can be divided into two distinct classes: random (or statistical)
errors, and systematic errors. Systematic errors are things like the voltmeter calibration error
mentioned above, or perhaps you made all your length measurements with a metal tape measure
that had expanded because you were in a much warmer room than the one in which the tape was
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constructed. Systematic errors can be quite difficult to identify and estimate, since you have to
understand everything about how your measurement system works.

Perhaps counterintuitively, a random error is usually easier to estimate than a systematic error.
Random error is due to a combination of the limited precision to which a quantity can be read
from a ruler or meter scale and intrinsic “noise” in the measurement. For example, if a radioactive
source that gives an average of one count per second is observed for exactly 100 seconds, you will
find that you do not always get exactly 100 counts, even if your count is perfectly accurate (no
mistakes). About one-third of the time, you will get fewer than 90 or more than 110 counts, and
occasionally you will get fewer than 70 or more than 130 counts (about 0.5% of the time). If you
plot the distribution of a large number of 100-second measurements, you will observe a curve called
a Poisson distribution. Unless the number of counts is very small, this curve will be very close to
a Gaussian distribution that has a distinctive “bell shape” curve. Most random errors follow this
kind of distribution. The expected magnitude of the uncertainty in a measurement is described
by the width of the distribution. The range that contains 2/3 of the measurements (±10 in the
counting example above) is called “one-sigma” uncertainty. If the errors follow a bell curve, then
95% of the results will be within ±2σ and 99.5% within ±3σ. The meaning of σ will be become
clear below.

You can often estimate random error in a measurement empirically. If you make several indepen-
dent measurements of some quantity, you can esimate the precision of each individual measurement.
The sense of independent is important: if you measure a length with a meter stick and on your first
try estimate 113.3 mm, you are quite likely to again write down 113.3 mm on subsequent measure-
ments if you use the same approach, even if you can really only estimate to, say, ±0.2 mm. One way
to create a dataset of independent measurements is to have different people make measurements
and write them down without looking at each other’s results. Or on your own, you could start
from a random point on the ruler each time, even flipping the ruler end-for-end, and then do the
necessary subtractions afterwards.

Random (or statistical) error can be formalized. To illustrate, suppose the resistance of a
high-precision (0.01%) 1 kΩ resistor is tested by measuring V and I for several different voltage
settings using a digital voltmeter and a Simpson VOM. The results are tabulated, as in Table 1.
The average value of R for this set of measurements is 1002.4 Ω, so the measurement has an error
of 2.4 Ω. The precision of any individual measurement of R can be estimated by calculating the
standard deviation, σ, which quantifies the width of the distribution of measurements

σ =
1√
N − 1

[
N∑

n=1

(xn − x̄)2

]
(1)

where x̄ is the average value of the measurements, xn, and N is the total number of measurements.
For our resistance example, xn = Rn, and the standard deviation is σ = 5.6 Ω. Standard deviation
σ, can be used as an estimate of the uncertainty (probable error), since any individual measurement
has a reasonable probability of being in error by at least that amount. Keep in mind that standard
deviation only quantifies random error. The actual error in a measurement could be much larger
than the standard deviation if there are large systematic errors that affect all the measurements the
same way, for example an error in the calibration of the meters used to make the measurements.
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Table 1: Data for a Precision 1 kΩ Resistor

n V (V)† I (A)†† V/I = R (Ω)

1 1.000 0.99 1,010

2 2.000 1.99 1,005

3 3.000 3.00 1,000

4 4.000 4.02 995

5 5.000 4.99 1,002

Average, R̄ 1,002.4 Ω

Standard Deviation, σ 5.6 Ω

Actual Error 2.4 Ω

% Error 0.24%

† measured with a digital voltmeter; †† measured with a Simpson VOM

3 Propagation of Errors

In many experiments, some quantity, Q, may be determined from a mathematical formula that
relates two or more separately measured quantities, Q = f(x1, ..., xn, ...xN ), where xn are the
separate quantities, and f is a mathematical function. If each of the xn varies by an amount δxn,
then to first order, Q will vary as

∆Q =
N∑

n=1

∂f

∂xn
∆xn (2)

where ∂f/∂xn is the partial derivative of f with respect to xn (all xi held constant other than
i = n). Suppose we have estimated the uncertainties in all N measured quantities and would
like to estimate the overall uncertainty in Q. We know the expected magnitude of ∆xn, but we
anticipate that it is equally likely to be positive or negative, so its average value should be close to
zero. We usually try to estimate (or assume we know) the quantity σxn = 〈(∆xn)2〉1/2, namely the
square root of the average of (∆xn)2, i.e. the “root mean square” (rms) value of the expected error.
The angle brackets, 〈...〉 mean average value. The process of estimating the overall uncertainty in Q
given a formula, f , and the uncertainties in individual measurements is called error propagation.

Since 〈Q〉 = 0, we instead estimate its rms

σQ = 〈(∆Q)2〉1/2 =

〈[
N∑

n=1

∂f

∂xn
∆xn

]2〉1/2

. (3)

The square of the summation produces terms proportional to 〈∆xi∆xj〉. The cross terms with
i 6= j often vanish, since when ∆xi is positive, ∆xj is equally likely to be positive or negative,
which assumes the errors ∆xi and ∆xj are independent. The values for terms with i = j = n are
〈(∆xn)2〉, which is σ2xn

. If the measurements are not independent, cross terms must be included.
There are two cases that, in combination, cover the vast majority of the error propagation

problems you will face. Let A and B be two measured (or calculated) quantities, then from Eq. 3
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Case 1: Q = A+B or Q = A−B, σQ =
√
σ2A + σ2B

Case 2: Q = A ·B or Q = A/B,
σQ
Q

=

√(σA
A

)2
+
(σB
B

)2
.

(4)

A less common variable combination is Q = An, in which case σQ/Q = n(σA/A). Note that when
A and B are subtracted (Q = A−B), the errors add not subtract! You are encouraged to memorize
these formulas, although they are easily derived from Eq. 3. For independent errors, it might be
intuitive that separate errors combine as the square root of the sum of squares, or as we say combine
“in quadrature”. The largest individual error tends to dominate the overall uncertainty. For mixed
cases, like Q = (A + B)/(C + D), first add absolute errors for the numerator and denominator,
then convert these to % errors and then add them to get the overall error in Q. Error propagation
largely becomes an exercise in converting back and forth from absolute to percentages.

You should be mindful of correlated errors. This happens most often when the same quantity
shows up in more than one place, in which case individual errors can be perfectly correlated. Take
the trivial case of Q = 2A, which can also be written Q = A + A. Using the formulae above
treating independent errors, there are two different answers for σQ depending on which way Q is
represented. When starting natively from Eq. 3, there will be a correlated cross term that should
be included, and the result will be the same.

A more subtle (and important) example is two resistors in parallel, R1 and R2, with equivalent
resistance R = R1R2/(R1 + R2). One can calculate the errors in the numerator and denominator
of the equivalent resistance formula separately, but the results cannot be combined assuming the
errors are independent, since R1 and R2 appear in both the numerator and denominator. Using
Eq. 3 directly gives

σR
R

=

√(
R

R1

)2(σR1

R1

)2

+

(
R

R2

)2(σR2

R2

)2

(5)

Suppose R1 has a stated accuracy of σR1/R1 = 0.5% while R2 is much less accurate with σR2/R2 =
10%. It might be intuitive to expect the uncertainty in R2 will dominate the uncertainty in the
parallel combination. As a counter example, a parallel resistor combination is very often used to
make a fine adjustment to R1 by having R2 � R1. One can see that the poor accuracy of R2 will
not matter much if, for the sake of illustration, we take R2 = 10R1. The second term in Eq. 5
contributes only a small amount of uncertainty since (R/R2)

2 ≈ (R1/R2)
2 = 0.01. Look for this

in the Wheatstone Bridge experiment where you will take advantage of parallel resistors to make
a fine adjustment in the “nulling” procedure without adding significant uncertainty.

It is sometimes possible to save effort by carefully looking at the magnitude of numbers or
formulas and making approximations. In the case of parallel resistors having R2 � R1, one could
safely avoid deriving Eq. 5 by noting that the formula R = R1R2/(R1 +R2) ≈ R1 when R2 � R1,
and the overall uncertainty is therefore determined primarily by the accuracy of R1 alone.

4 Suggestions for your Lab Notebook

Whenever possible, your measured values of quantities should be compared with given or theoretical
values, and the percent error should be recorded. The error should also be compared with your
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estimates of uncertainty. If the error is less than 1 or 2 times your estimated σ, no special comment
is required other than your result is “in reasonable agreement” with the accepted value. If you have
differences that are more than 2σ off (by chance, less than one time in 20), then you are encouraged
to look for possible mistakes in your measurements and/or analysis or discuss possible systematic
errors that were not included in your estimate.

In some of the experiments you will be asked to make detailed calculations of the uncertainties
in your measurements. But usually this is not required, since the calculations are often long and
time consuming to do exactly. However, it is always important for experimenters to have an
approximate idea of the uncertainties in their results. With suitable approximations, by ignoring
variables that make insignificant contributions and using the results for independent errors, you
can do most of the error estimation in your head and record the ±σ. The usual convention is to
analyze the uncertainty and measurements in the same units and then record the absolute error.
Generally one significant figure is adequate for error analysis, and in some cases just being sure to
round your result to an appropriate number of significant figures is good enough.

Recommended Reading
A thorough discussion of errors and detailed derivations can be found in Data Reduction and Error
Analysis for the Physical Sciences, 3rd Edition by Bevington and Robinson (QA278 B48 2003).
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