Prelab - Experiment 3 Bridge Circuits

Read the lab instruction sheet and Appendix A thoroughly, then

1 Question 1

Derive the "null" conditions described in Step 1 for both the DC and AC bridge sections of the experiment.

Hint: The reduction methods used for DC circuits work with fixed-frequency AC circuits, but reactive impedances are complex quantities, $Z_{L}=j \omega L$ and $Z_{C}=1 / j \omega C$, while $Z_{R}=R$ is real. You must manipulate them as complex numbers.

2 Question 2

Derive Eq. 4 in Appendix A starting from Eq. 2. Use the result to evaluate the percentage uncertainty in $R=R_{1} \| R_{2}$ when R_{1} is $10 \mathrm{k} \Omega(\pm 0.5 \%)$ and R_{2} is $1 \mathrm{M} \Omega(\pm 10 \%)$.

Now note that if you had solved the parallel combination by adding conductances, you wouldn't have the "correlated error" problem. You could also immediately note that 10% of 1 microsiemens is a five times smaller uncertainty than 0.5% of 100 microsiemens and can be ignored. (Taking a reciprocal is a division and the " 1 " has no uncertainty, so the $\%$ error remains the same.) Since the total conductance is only 1% larger than than the 100 microsiemens part, it will have about the same percentage error, and the uncertainty in the parallel combination is just 0.5%, or 50 ohms. (If you work the equation for this error out exactly, you get the same answer as equation 4.)

