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Noise Voltage and Power Distributions

Noise Voltage

The voltage V  of random noise has a Gaussian probability
distribution

where P (V )dV  is the differential probability that the voltage will
be within the infinitesimal range V  toV V  and  is the root
mean square (rms) voltage.  The probability of measuring some
voltage must be unity; that is, any probability distribution must
be normalized to unity:

To confirm the normalization of our noise distribution, we
evaluate the integral
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Using the definite integral

with a 2 )  we get the desired result

The rms (root mean square)  of a normalized distribution is
defined by

V V

For the symmetric Gaussian distribution, V  so

 

Using the definite integral
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with a 2 )  yields

2  

demonstrating that  is really the rms.

Noise Power

A square-law detector multiplies the input voltage V  by itself to
yield an output voltage V  that is proportional to the input
power. What is the probability distribution P (V ) of detector
output voltage when the input voltage distribution is Gaussian? 
For simplicity, we set .  The same value of V  is produced by
both positive and negative values of V  and the probability
distribution of V  is symmetric, so

P (V )dV P (V )dV

for V .   Since dV VdV ,  and

P (V ) V (−V 2)

for 0 .  Notice that the distribution of detector output
voltages is sharply peaked near V  and has a long
exponentially decaying tail, so it looks quite different from a
Gaussian distribution.

To confirm that P  is properly normalized we evaluate
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using the definite integral

where  is the Gamma function, , and
(n ) (n).  Subsituting n 1 2 and a 2 yields the

correct result

The mean detector output voltage is

Using the definite integral above with n 2 and a 2 yields
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V 2  

The average detector output voltage is nonzero; it equals the
average input power.  Had we allowed =  we would have
gotten V .
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What is the rms  of the detector output voltage?

V V

so we must evaluate

Using the definite integral above with n 2 and a 2 yields

V  

 so

V 2

and

V V  

Thus the rms  of the detector output voltage is 
times the mean output voltage.  [If we had kept track of = ,
we would have gotten .] The rms uncertainty in each
independent sample of the measured noise power is  times
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the mean noise power.  If N  independent samples are
averaged, the fractional rms uncertainty of the averaged power is

.  This result is the heart of the radiometer equation. 
According to the central limit theorem, the distribution of these
averages approaches a Gaussian as N  becomes large.
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