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Abstract

In this experiment we study the scattering of light from various size small
dielectric spheres suspended in water. When the spheres have radii small com-
pared to the wavelength of the scattered light, the process is called Rayleigh
Scattering with the familiar scattering probability proportional to the inverse
fourth power of the wavelength resulting in the blueness of the daytime sky.
When the spheres have radii comparable or large compared to the wavelength,
the theory of classical optics diffraction will apply. In this experiment measure-
ments of the angular distribution and polarization dependence of small sphere
light scattering are made in the Rayleigh limit and beyond and compared to
theory. The scattering, valid for spheres of any size, is called Mie Scattering.
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1. Introduction

Scattering of light is part of our everyday experience. The blue sky, red sky at sunset,
white light from clouds, scattering from surfaces, and Thompson Scattering are all
manifestations of the scattering of light. Rayleigh scattering is the elastic scattering
of light by particles much smaller than the wavelength of the light in transparent
liquids and gases. The general case for scattering of particles of any size is called Mie
scattering. The scattering in the Rayleigh limit can be readily derived in closed form.

In 1909 Gustav Mie developed a rigorous method to calculate the intensity of light
scattered by uniform spheres of any size compared to the wavelength of the incident
light. The solution is considerably more complicated than the Rayleigh approximation
although it is simply a case of using the Maxwell equations to satisfy the boundary
conditions at the surface of the scattering spheres. The system has spherical symmetry
so the incident wave is expanded as an infinite series of vector spherical harmonics
subject to the boundary conditions at the surface of the sphere. After considerable
manipulation the scattered fields are determined and the differential and total cross
sections can be calculated. This formalism was rarely used until the 1980s when large
mainframe computers became available. However, in the present day, the calculations
can be done on personal computers and the Mie scattering code is readily available.

The term ‘light scattering’ also applies to the case of scattering from density fluc-
tuations. It is these density fluctuations which give rise to scattering in optically dense
media. Although the mathematical expressions are similar, the underlying physics
is somewhat different since scattering by fluctuations involves thermodynamic argu-
ments whereas scattering by particles does not. Scattering by density fluctuations in
ideal gases has the same functional form as scattering by dilute suspensions of parti-
cles small compared with the wavelength in an otherwise homogeneous medium. By
homogeneous is meant that the atomic or molecular heterogeneity is small compared
to the wavelength of the incident light.

We denote by Rayleigh scattering the scattering by dilute suspensions of particles
small compared with the wavelength although in the literature there are many ways
in which the term Rayleigh scattering is used and misused. There are also other light
scattering phenomena that are inelastic: the scattered light has a different frequency
than the incident light. Inelastic molecular scattering processes are usually associated
with the names Brillouin and Raman. See Ref. [1] for a very nice historical account
of Rayleigh Scattering.
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2. Cross Sections and Mean Free Path

The relevant size parameter for light scattering of wavelength λ0 from dielectric
spheres of radius a is:

x =
(

2πanmed

λ0

)
Here nmed is the index of refraction of the scattering medium. The Rayleigh limit is
when x� 1. When this condition is satisfied, the driven oscillating polarization P of
the dielectric sphere can be approximated as uniform throughout the sphere reducing
the problem to that of the classic problem of a dielectric sphere in a uniform field.

The Rayleigh unpolarized light total cross section is given by:

σ = 8/3πa2x4

(
m2 − 1

m2 + 2

)2

and the unpolarized light differential cross section is:

dσ/dΩ =
1

2
a2x4

(
m2 − 1

m2 + 2

)2

(1 + cos2 θ)

Here λ0 is the laser wavelength in vacuum, nsph is the index of refraction of the
scattering spheres, and m = (

nsph

nmed
). The dependence of the scattering on the inverse

fourth power of the wavelength is clearly seen. The polarization dependence of the
scattering is evident in the (1 + cos2 θ) term. The cos2 term is from the incident light
linearly polarized in the scattering plane while the 1 term is the contribution from
the incident light polarized perpendicular to the scattering plane.

The general case for an arbitrary value of x is called Mie scattering. However,
the cross section in the limit of x� 1 is the limiting case of classical optics and the
total cross section will be geometric tending toward σ = πa2. If the forward scattering
diffraction peak can be observed, the cross section will be become twice the geometric
limit.

The forward diffraction peak can be quantified in several respects since as x� 1
we are in the classical optics regime. The angular full width half maximum of the
forward peak approaches:

∆θ ' λ

2a
,

and secondary maxima and minima develop in the angular distribution separated by:

∆ (kda) = ∆

(
2ka sin

θ

2

)
= π.
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Here kd is the magnitude of the scattering vector difference between the incoming ~ki

and outgoing ~ks waves ~kd = (~ks − ~ki).
Given a cross section σ and a volume density of scatterers ρ, the mean free path `

is defined to be that thickness of scattering target that gives a scattering probability
of one. This condition is σρ` = 1, thus ` = 1/(ρσ). It is important to keep the
target thickness less than ` to ensure that the scattered light is due to a single scatter
in the target. Significant multiple scattering will make it very difficult to compare
measurement with theory. A comprehensive discussion of the scattering of light by
small particles may be found in the book [2].

3. Apparatus

The apparatus consists of an angular spectrometer arrangement consisting of a light
source, scattering cells containing a solution of different diameter polystyrene nanospheres
in water, and a photomultiplier detector. The general layout is shown in Fig. 1 In
order to use a Lock-In amplifier technique, the laser beam must be pulsed. the laser
beam can be run in pulsed mode internally or the laser can be run CW and pulsed by
a mechanical optical chopper. In the latter mode Fig. 1 should also show the optical
chopper after the linear polarizer. A block diagram of the detection system is shown
in Fig. 2.

Diode Laser
   440 nm

Linear Polarizer
Target Cell

Angular Photodetector

θ

Figure 1: General Layout of the Scattering Spectrometer

The laser light source

The laser is a PicoQuant pulsed diode laser (PDL 800-D) with a 440 nm wavelength
head. The repetition rate and intensity can be varied. The maximum average power
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at 10 MHz is 0.69 mW giving a peak energy per pulse of about 70 pJ. The laser light
is almost 100% linearly polarized.

The Photomultiplier Detector

The detector is a Hamamatsu R580 1.5 in photomultiplier which can be operated up
to −1500 V. The photocathode quantum efficiency peaks at a wavelength of about
420 nm, a very good match to the diode laser wavelength. The photocathode face
is masked to a 0.25 in diameter circular aperture in order to define the angular
resolution.

PreAmp and Pulse Shaping Amplifier

The photomultiplier signal is amplified in two stages. The first stage is a fast, fixed
gain X10 preamp (LeCroy) followed by a variable gain pulse shaping Ortec amplifier.
The fast photomultiplier pulse (≈ 10 ns) is shaped to about 1 µs by the Ortec amplifier
to match the input requirements of the Lock-In amplifier.

Function Generator

The Stanford Instruments function generator provides the external trigger for the
diode laser controller and the reference input for the Lock-In amplifier. The normal
settings are f = 100 kHz and a square wave output.

Optical Chopper

The Stanford Instruments Optical Chopper is a mechanically rotating wheel with
slits that chop the light beam. The beam can be chopped up to 4 kHz. A higher
beam intensity can be obtained with this technique and in certain situations provides
a better signal to noise compared to running the laser in the native pulsed mode.
The chopper controller provides a sync output to connect to the Reference-In of the
Lock-In amplifier.

Lock-In Amplifier

The amplified signal from the photomultiplier is synchronized with the repetition rate
of the laser using a Lock-In amplifier. The locked-in output signal is read directly
from the Lock-In amplifier.
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Figure 2: Block Diagram of the Detection Apparatus

Optical Components

A quarter wave plate (440 nm) is needed to provide an unpolarized beam since the
laser beam is almost 100% linearly polarized. If the incident beam polarization is
oriented at 45◦ an external linear polarizer can be used to select either horizontal or
vertical beam polarization. This technique has the advantage that the beam profile
will be identical for both polarizations. A linear polarizer is also needed to measure
the scattered beam polarization.

The Target Scattering Cells

The scattering cells are 1 cm square quartz cells containing either 60 nm, 2 µ, or
4.17 µ diameter polystyrene spheres corresponding to size parameters x = 0.574, 19.1
and 39.8 respectively. The nanospheres have a density of 1.05 g/cm3 and an index
of refraction of 1.59 @ 589 nm. The nanosphere solution densities have been chosen
to minimize multiple scattering effects by setting the scattering mean free path to
be much less than the dimensions of the target cell. The nanospheres are in a water
solution.

3. Procedure

The basic procedure consists of several well defined parts.

1. Start with samples that represent the long wavelength limit (d = 60 nm: Rayleigh
Scattering region) and the short wavelength limit (d= 2000 nm: Diffraction Scat-
tering region). Run the program MiePlot for each case to plan the angular scan.
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Figure 3: The index of refraction of water as a function of wavelength

The index of refraction of water as a function of wavelength is shown in Fig. 3.
You will find that scattering in the Rayleigh limit requires as much of a full
angular range as the apparatus permits. In the short wavelength limit the cross
section is close to zero before 90 degrees. The long wavelength limit will require
separate measurements for each polarization direction (vertical and horizontal).
The polarization dependence is not very large in the short wavelength limit. It
is useful to measure at integer angles since the mietable and snell programs
(see below) calculate at integer angles in one degree steps. The polarization
direction can be varied by simply rotating the diode laser head. If the external
linear polarizer is used, set the laser polarization (and beam profile direction)
to 45◦ and select the polarization direction with the external polarizer.

2. With the photomultiplier voltage off, set the spectrometer to 0◦ and align the
direction of the laser beam so that it is centered on the target cell and the center
of the spectrometer aperture.

3. Before starting measurements, make sure that the spectrometer is out of the
direct beam. The normal photomultipler voltage is 1500 V. The instructor will
show you how to use the Lock-In amplifier. Take measurements as a function
of angle. Do not go below 2.5◦. Use the wooden beam block to block the beam
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every time you change the spectrometer angle.

4. The photomultiplier signal is obtained from the output of the Lock-In amplifier.
The angular distribution of the measurements will be compared to geometry
corrected Mie Theory.

5. A minimal set of measurements should include:

• 60 nm: Intensity vs angle for horizontal and vertical beam polarization. A
reasonable choice is 15◦ to 135◦ in 15◦ steps.

• 60 nm: Polarization of the scattered beam for horizontal and vertical po-
larized incident beam.

• 2 and 4 micron: Intensity vs angle for either horizontal or vertical beam
polarization in 2.5◦ steps out to 60◦. The horizontal and vertical beam
polarization are almost identical but horizontal polarization results in a
more narrow beam through the sample cuvette, resulting in less scattering
from the side walls of the sample cuvette. Go as far out in scattering angle
until you no longer see the secondary maxima.

• Determine the nanosphere density ρ of each sample by measuring the sam-
ple absorption at zero degrees. To do this, a neutral density filter must
be placed in front of the detector so that the laser beam can be directly
incident on the detector obtaining a signal strength comparable to the nor-
mal scattering signals. Failure to provide suitable beam attenuation will
damage the photomultiplier. The instructor will show you how to set this
up.

The calculation for obtaining the nanosphere density depends only on the
thickness of the sample, the sample absorption, and the total cross section
according to:

I = I0e
−t/` with the mean free path ` = 1/σρ

Here t is the sample thickness, I is the measured intensity with the sample,
and I0 is the measured intensity with the water sample. The samples have
been prepared so that the sample transmissions range from about 60 to 80
percent.
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4. Analysis

0.0.1 Analysis Tools

Scattering in the Rayleigh limit leads to a simple formula readily derived [3]. The
more general case of arbitrary wavelengths (Mie Theory) is well known but is not
in a simple form since the electric fields inside and outside the scattering spheres
must be calculated subject to the appropriate boundary conditions [5]. Fortunately
there are several available programs that perform the calculation. The Windows
based program MiePlot has entry points for all the relevant parameters and plots
the scattering angular distribution.

A more detailed set of routines (Mie Scattering Utilities) calculates the Mie
theory mietable as a function of angle in the form of column lists which can be entered
into a program which provides plotting capability such as SigmaPlot or Excel. The
utilities include a routine called snell which corrects for the cuvette refraction. Two
other routines included with the utilities called fitmie and fitdist are available for
fitting refraction corrected data to the the Mie theory [5]. A User’s Guide contains
all the relevant information needed to run the utilities. The Mie Utilities run as .exe
routines in a terminal window. All the Mie routines are available on a laboratory CD.

0.0.2 Analysis Procedure

Be sure to read Ref. [5] first. the experiment described therein is similar to what
is done in this lab. Compare the refraction corrected results to theory. The 60
nm nanospheres are close to the Rayleigh regime and so can be compared to the
exact Rayleigh formulas. Since the laser intensity will be identical for both laser
polarizations, the unpolarized cross section can be obtained by combining tha data
from both polarization directions. The short wavelength data produces secondary
maxima. Comparing data to theory, the nanosphere diameter can be determined.

5. Questions

1. Give a simple argument for the incident beam polarization dependence in the
Rayleigh limit where the polarization parallel to the scattering plane gives a
cos2 θ dependence and the polarization normal to the scattering plane is inde-
pendent of scattering angle.

2. Explain the results for the polarization of the scattered beam in the Rayleigh
limit for the three cases of horizontal, vertical, and unpolarized incident beam.
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Explicitly derive an expression for the scattered polarization for an unpolarized
beam as a function of scattering angle.

3. Explain why the angular distribution becomes very forward peaked as the par-
ticle size becomes much larger than the incident light wavelength.

4. Why are there secondary maxima in the short wavelength limit?

5. What is the relation between scattering cross-section, the number of the scat-
tering spheres, and the scattering mean free path?

6. Using the Mie scattering cross sections obtained from the program Mie Cal-
culator, calculate the number density of a suspension of each of the three size
spheres to give a mean free path of 1 cm.

Appendix - Scattering by a Bound Electron

The incident electric field excites a bound electron and forces the electron to vibrate
at the frequency of incident wave. The bound electron reradiates energy at the same
frequency and the problem reduces to finding the acceleration of the electron charge
in terms of the electric field. The acceleration will then give the electron radiated
energy and the resultant scattering cross section becomes:

σ = σ0
ω4

(ω2
0 − ω2)

2
+ (γω)2 ,

where σ0 is the Thompson (free electron scattering) cross section:

σ0 =
8π

3
r0

2; r0 =
e2

4πε0mc2
.

Here r0 is the classical electron radius and γ is the spectral line width. The maximum
value of σ is when ω ' ω0, i.e. when the frequency forms a resonance with one of the
atomic spectral lines. In that case the the scattering cross section can become very
large. For strong binding, ω � ω0, γ � ω0, the cross section becomes:

σ = σ0

(
ω

ω0

)4

,

giving a cross section that depends on the inverse fourth power of the incident wave-
length. A dielectric sphere with dimensions small compared to the wavelength scat-
ters radiation with the same wavelength dependence. Rayleigh, in his investigation of
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Figure 4: The total cross for elastic scattering from electrons as a function of frequency
showing both the long and short wavelength limits

the blueness of the sky, assumed that individual molecules scatter light in a random
fashion, so that the phases are random and just the individual intensities add. The
above expression in the Rayleigh limit not only accounts for the blueness of the sky,
but with empirical values of ω0, leads to good agreement with observed atmospheric
scattering, not only in intensity, but also in the scattered polarization.

Fig. 4 shows the transition from the Rayleigh limit to the short wavelength Thomp-
son scattering limit. Thompson scattering is the non-relativistic limit to Compton
Scattering.
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