
Fig. 1 Scheme of the setup for taking a Laue diagram of a mono-
crystal
a X-ray tube
b Collimator
c Crystal
d X-ray film
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Laue diagrams:
investigating the lattice structure of
monocrystals

Objects of the experiment
Evaluating the Laue diagrams of an NaCl and an LiF monocrystal.

Investigating the symmetry and lattice structure of both crystals.

Principles

In 1912, Max von Laue proposed to provide evidence for the
supposed wave character of X-rays by diffraction at crystals.
Friedrich and Knipping took up his proposal and exposed a
crystal to a collimated ray from an X-ray tube. On a photo-
graphic plate behind the crystal they observed – as expected
– discrete reflections. For the first time they also confirmed the
spatial lattice structure of crystalline substances with this
experiment.

Laue condition:

In his interpretation of these findings, von Laue considered the
crystal to be a lattice built up of three groups of one-dimen-
sional equidistant rows of points. When an X-ray is diffracted
at a row of points,

� = �1 − �2 = a0 ⋅ cos �1 − a0 ⋅ cos �2 (I)
a0: distance between the points
�1: angle between the incoming X-ray and the row of points
�2: angle between the diffracted X-ray and the row of points 

is the difference of path of partial rays scattered at two neigh-
bouring points (lattice elements, see Fig. 2). There is construc-
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Fig. 2 Two-dimensional representation for calculating the differ-
ence of path ∆ = ∆1 − ∆2 between two neighbouring X-rays
which are diffracted at a row of points in a cubic crystal.

tive interference between the partial rays if � in an integer
multiple of the wavelength �. This condition has to be fulfilled
in all three spatial directions.

In a cubic crystal, the rows of points associated with the three
spatial directions are all perpendicular to each other the dis-
tance a0 between the points always being the same. The Laue
condition for constructive interference therefore reads:

a0 ⋅ cos �1 − a0 ⋅ cos �2 = h ⋅ �
a0 ⋅ cos �1 − a0 ⋅ cos �2 = k ⋅ �
a0 ⋅ cos �1 − a0 ⋅ cos �2 = l ⋅ � (II)
with integer values of h, k, l

Here �1, �1 and �1 are the angles between the incoming ray
and the rows of points whereas �2, �2 and �2 are the angles
between the diffracted ray and the rows of points. The quanti-
ties h, k, l are called Laue or extended Miller indices. As they
are small integer numbers, the Laue condition cannot be
fulfilled for arbitrary wavelengths �, but only for particular
(“appropriate”) ones.
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The unit vectors

s1 = 

cos �1,cos �1,cos �1


and

s2 = 

cos �2,cos �2,cos �2


(III)

are frequently introduced. They point in the direction of the
incoming X-ray and the outgoing X-ray, respectively. The Laue
condition (II) then takes the form

s1 − s2 = � ⋅ G with G = (h, k, l) ⋅ 1
a0

(IV).

G is called the vector of the reciprocal lattice. The Laue
condition is fulfilled if h, k and l are integers.

Bragg condition:

As s1 and s2 are unit vectors, they have equal magnitudes.
Therefore the vector G is perpendicular to the bisectrix S

between the incoming and the diffracted X-ray (see Fig. 3).
From this

� ⋅ | G | = | s1 − s2 | = 2 ⋅ sin �

follows and after inserting the magnitude of G

� = 2 ⋅ sin � ⋅ 
a0

√h2 + k2 + l2
(V).

Eq. (V) is identical with Bragg’s law if the spacing of the lattice
planes is

d = 
a0

√h2 + k2 + l2
(VI).

From Bragg’s point of view the crystal lattice thus consists of
a set of lattice planes that have the spacing d (see Fig. 4 and
experiment P6.3.3.1). These lattice planes are parallel to the
bisectrix S and perpendicular to the vector G of the reciprocal
lattice.

The conditional equation of the set of lattice planes in the
co-ordinate system spanned by the crystal axes reads

x ⋅ h + y ⋅ k + z ⋅ l = m ⋅ a0 (VII),
m: running number in a set of lattice planes 

h–1, k–1 and l–1 are the axis sections of the first lattice plane
(m = 1) measured in units of the lattice constant (see Fig. 5).
As the indices h, k, l represent the set of lattice planes uniquely,
the set is assigned the symbol (h k l).

Apparatus
1 X-ray apparatus  .  .  .  .  .  .  .  .  .  .  .  .  .  . 554 811
or
1 X-ray apparatus  .  .  .  .  .  .  .  .  .  .  .  .  .  . 554 812

1 X-ray film holder  .  .  .  .  .  .  .  .  .  .  .  .  . 554 838
1 filmpack 2 (X-ray film)  .  .  .  .  .  .  .  .  .  .  . 554 892

1 LiF crystal for Laue diagrams .  .  .  .  .  .  . 554 87
1 NaCl crystal for Laue diagrams .  .  .  .  .  . 554 88

Safety notes

The X-ray apparatus fulfils all regulations governing an
X-ray apparatus and fully protected device for instructional
use and is type approved for school use in Germany (NW
807 / 97 Rö).

The built-in protection and screening measures reduce the
local dose rate outside of the X-ray apparatus to less than
1 �Sv/h, a value which is on the order of magnitude of the
natural background radiation.

Before putting the X-ray apparatus into operation, in-
spect it for damage and make sure that the high voltage
is shut off when the sliding doors are opened (see
instruction sheet for X-ray apparatus).
Keep the X-ray apparatus secure from access by un-
authorized persons.

Do not allow the anode of the X-ray tube Mo to overheat.

When switching on the X-ray apparatus, check to make
sure that the ventilator in the tube chamber is turning.

Fig. 3 Geometric connection between the unit vectors s1 and s2
and the vector g = �G.

Fig. 4 Two-dimensional representation of Bragg reflection 
of X-rays at a set of lattice planes in a cubic crystal. The
lattice planes are parallel to the bisectrix S between 
the incoming and the diffracted X-ray.
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Crystals with NaCl structure:

In the case of crystals with NaCl structure, the condition for
constructive interference turns out to be more complicated
than in simple cubic crystals because alkali atoms (e.g. Na)
and halogenide atoms (e.g. Cl) take turns in a cubic lattice. The
spatial lattice is no longer built up of rows of points with the
distance a0, but it is a series of cubic unit cells with an edge
length a0 (see Fig. 6). Every unit cell contains four alkali atoms
with the co-ordinates

r1 = (0,0,0), r2 = 




a0

2
, 

a0

2
, 0




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


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2
, 0, 

a0

2



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0, 
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2




and four halogenide atoms with the co-ordinates

r5 = 




a0

2
, 0, 0




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.

At each atom of the unit cell the incoming X-ray is scattered,
whereby the amplitudes of the scattered partial waves depend
on the atomic number of the atom. The differences of path �i
of the partial waves can be calculated from the co-ordinates ri
of the atoms:

�i = 

s1 − s2


 ⋅ ri (VIII).

The partial waves scattered at the alkali atoms A and the
halogenide atoms H interfere to form a common wave that is

“scattered at the unit cell”. The amplitude of this wave has the
form

A = AA + AH (IX)
with

AA = fA 



cos 


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
2�

�
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


 + cos 
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and

AH = fH ⋅ 

cos




2�

�
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

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
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


All waves that start from the unit cells interfere constructively
if the Laue condition (IV) is fulfilled. By inserting (IV) and (VIII)
in (IX) one obtains

AA = fA ⋅ (1 + cos((h + k) ⋅ �) + cos((h + l) ⋅ �) + cos((k + l) ⋅ �))

and

AH = fH ⋅ (cos(h ⋅ �) + cos(k ⋅ �) + cos(l ⋅ �) + cos((h+k+l) ⋅ �)).

A short calculation shows that

4 ⋅ fA + 4 ⋅ fH, if h, k and l even

A = 4 ⋅ fA − 4 ⋅ fH, if h, k and l odd (X)

0, if h, k and l mixed

The amplitudes A of the waves starting from the unit cells thus
only are different form zero if all indices h, k, l are even or if they
are all odd.

Evaluating a Laue diagram:

The object of the evaluation of a Laue diagram is to assign the
set of lattice planes that causes the scattering to one of the
reflections observed on the X-ray film. For this the co-ordinate
system is chosen so that its origin O corresponds to the space
point of the incoming X-ray on the X-ray film. The X-ray film is
perpendicular to the ray, i.e., it lies in the x-y-plane (see Fig. 7).
The orientation of the z-axis is opposite to the propagation
direction of the X-ray. The X-ray penetrates the flat crystal at
the point K; its undiffracted part impinges on the X-ray film at
the point O. The part of the X-ray which is scattered at K and
which fulfils the Laue condition (II) leaves the crystal with an

Fig. 5 Two-dimensional representation of the set of lattice planes
(1 3 0) in a cubic crystal.

Fig. 6 Unit cell of an NaCl crystal

Fig. 7 Geometrical description of an X-ray that is diffracted at a
point K of the crystal and that penetrates the film plane in
the point P 




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angle 2� relative to the direction of the primary ray and im-
pinges on the X-ray film at the point P = (xP, yP, 0). Therefore:

tan 2 � = 
√x P

2 + y P
2

L
(XI)

L: distance between crystal and X-ray film

The direction of the set of lattice planes (h k l), which leads to
the reflection, is given by the bisectrix of the angle 2� (see
Fig. 3). The angle between the perpendicular on the bisectrix
which passes O and the straight line OP is �. This perpendic-
ular intersects a parallel to the z-axis through P in the point Q.
The vector OQ has the co-ordinates (xQ, yQ, zQ) with

tan � = 
zQ

√xQ
2  + y Q

2
(XII)

and is parallel to the vector G of the reciprocal lattice. Because
of xP = xQ, yP = yQ and Eq. (XI),

zQ = √x Q
2 + y Q

2 + L2  − L (XIII).

The crystals used in this experiment are cut parallel to the (1 0
0) plane. Their crystal axes thus coincide with the laboratory
co-ordinate system. From the fact that the vectors G and OQ
are parallel, it therefore follows that

h : k : l = xQ : yQ : zQ (XIV)

The indices h, k, l which are looked for therefore are the
smallest unmixed triple of integers which fulfil Eq. (XIV). They
allow all parameters of the diffraction that leads to the reflec-
tion to be calculated: the spacing of lattice planes d is obtained
from Eq. (VI), the wavelength � from Eq. (V) and the Bragg angle
� is, according to Eqs. (XII) and (XIV),

� = arctan 




l

√ h2 + k2





(XV).

Setup and carrying out the experiment

The experimental setup is illustrated in Fig. 8.

– If necessary, remove the goniometer or the plate capacitor
X-ray.

Remark:

NaCl and LiF crystals are hygroscopic and brittle:
keep the crystals in a place as dry as possible, avoid mechani-
cal stress to the crystals, and only touch the front side of a
crystal.

a) Laue diagram at NaCl:

– Carefully attach the NaCl crystal for Laue diagrams (b) to
the pinhole diaphragm (a) (from the scope of supply of the
X-ray film holder) with transparent adhesive tape.

– Attach the collimator, and cautiously turn it so that the
outside edges of the crystal are aligned as horizontally (or
vertically) as possible.

– Clamp the X-ray film (c) at the film holder so that it is
centred, and see to it that the entire surface of the film is
planar.

– Clamp the film holder onto the experiment rail, and mount
the experiment rail in the experiment chamber of the X-ray
apparatus.

– Make a 15 mm long spacer from paper board and shift the
film holder so that the distance between the monocrystal
and the film is 15 mm (by varying the distance between the
crystal and the film the area covered in the diagram is
changed).

– Set the tube high voltage U = 35 kV, the emission current
I = 1.0 mA and �� = 0.0	.

– Select the measuring time �t = 1800 s, and start the expo-
sure timer with the key SCAN.

If the exposure time is longer, the reflections near the centre
are blurred by the unscattered X-rays; however structures
which are farer away from the centre become discernable.

– When the exposure time is over, take the film holder with
the experiment rail out of the experiment chamber.

– Remove the X-ray film from the holder, and develop it
according to the instruction sheet for the X-ray film.

b) Laue diagram at LiF:

– Exchange the NaCl crystal with the LiF crystal, and align
the LiF crystal.

– Clamp a new X-ray film in the film holder, and mount the
experiment rail with the film holder once more.

– Shift the film holder so that the distance L between the
monocrystal and the film is 11 mm.

– Select the measuring time �t = 1200 s, and start the expo-
sure timer with the key SCAN.

– When the exposure time is over, take the X-ray film from
the film holder and develop it.

Fig. 8 Experimental setup for taking a Laue diagram at crystals 
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Measuring example

a) Laue diagram at NaCl:

b) Laue diagram at LiF:

Evaluation
– Lay a piece of millimetre-square graph paper on the X-ray

film, read the xQ- and yQ-co-ordinates of the reflections,
and calculate the zQ-co-ordinate according to Eq. (XIII).

– Identify the indices h, k and l according to Eq. (XIV).

– Calculate the spacing of the lattice planes d according to
Eq. (VI), the Bragg angle � according to Eq. (XV) and the
wavelength � according to Eq. (V).

– Now apply Eqs. (XI) and (XIV) to calculate the co-ordinates
xP and yP or xQ and yQ, respectively, and compare them
with the measured values.

a) Laue diagram at NaCl:

Tab. 1: Coordinates and extended Miller indices of the reflec-
tions in the Laue diagram of NaCl (*: calculated)

xQ

mm
yQ

mm
zQ

mm
* h k l

x
mm

*
y

mm
*

1 17.2 8.4 9,3 4 2 2 15.0 7.5

−7.8 −15.2 7,7 −2 −4 2 −7.5 −15.0

7.8 −15.2 7,7 2 −4 2 7.5 −15.0

15.8 −8.0 8,2 4 −2 2 15.0 −7.5

2 12.6 −0.4 4,6 6 0 2 11.2 0.0

0.2 14.5 5,9 0 6 2 0.0 11.2

−13.2 −0.1 5,0 −6 0 2 −11.2 0.0

0.0 −11.2 3,7 0 −6 2 0.0 −11.2

3 11.5 3.6 4,2 6 2 2 10.0 3.3

4.2 12.4 4,9 2 6 2 3.3 10.0

−4.3 13.0 5,3 −2 6 2 −3.3 10.0

−12.2 4.0 4,7 −6 2 2 −10.0 3.3

−11.2 −3.9 4,1 −6 −2 2 −10.0 −3.3

−3.3 −10.2 3,4 −2 −6 2 −3.3 −10.0

3.2 −10.0 3,3 2 −6 2 3.3 −10.0

10.5 −3.9 3,7 6 −2 2 10.0 −3.3

4 9.0 9.2 4,8 4 4 2 8.6 8.6

−11.0 11.0 6,6 −4 4 2 −8.6 8.6

−9.0 −9.2 4,8 −4 −4 2 −8.6 −8.6

9.0 −9.0 4,7 4 −4 2 8.6 −8.6

5 9.0 5.8 3.4 6 4 2 7.5 5.0

6.3 9.2 3.7 4 6 2 5.0 7.5

−6.5 9.8 4.1 −4 6 2 −5.0 7.5

−9.5 6.2 3.8 −6 4 2 −7.5 5.0

−8.2 −5.5 3.0 −6 −4 2 −7.5 −5.0

−5.2 −8.0 2.8 −4 −6 2 −5.0 −7.5

6 6.4 6.2 2.4 3 3 1 5.3 5.3

−6.8 6.8 2.8 −3 3 1 −5.3 5.3

−5.8 −5.8 2.1 −3 −3 1 −5.3 −5.3

5.3 −5.3 1.8 3 −3 1 5.3 −5.3

7 6.8 1.3 1.5 5 1 1 6.0 1.2

1.8 7.8 2.0 1 5 1 1.2 6.0

−1.2 8.0 2.0 −1 5 1 −1.2 6.0

−7.2 1.2 1.7 −5 1 1 −6.0 1.2

−7.0 −1.5 1.6 −5 −1 1 −6.0 −1.2

Tab. 2: Spacing of lattice planes d, Bragg angle � and
wavelength � associated with the sets of lattice planes of NaCl,
a0 = 564.02 pm [1]

h k l
d

pm
 �  

�

pm
 

4 2 2 115.1 24.1	 94.0 

6 0 2 89.2 18.4	 56.3 

6 2 2 85.0 17.5	 51.1 

4 4 2 94.0 19.5	 62.8 

6 4 2 75.4 15.5	 40.3 

3 3 1 129.4 13.3	 59.5 

5 1 1 108.5 11.1	 41.8 

Fig. 9 Laue diagram at NaCl,
U = 35 kV, I = 1 mA, L = 15 mm, �t = 1800 s
(for identifying the reflections refer to Table 1)

Fig. 10 Laue diagram at LiF,
U = 35 kV, I = 1 mA, L = 11 mm, �t = 1200 s
(for identifying the reflections refer to Table 3)
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b) Laue diagram at LiF:

Results

A Laue diagram is a diffraction photograph of a monocrystal
taken with a continuous (“white”) spectrum of X-rays. From the
continuum of the X-rays only those wavelengths (cf. Tables 2
and 4) contribute to the diffraction pattern taken on a plane film
which fulfil the Bragg condition for a particular set of lattice
planes.

The symmetry of the Laue diagrams is in accordance with the
cubic structure of the NaCl and the LiF crystal.

Literature

[1]Handbook of Chemistry and Physics, 52nd Edition (1971−
72), The Chemical Rubber Company, Cleveland, Ohio, USA.

Tab. 3: Co-ordinates and extended Miller indices of the reflec-
tions in the Laue diagram of LiF (*: calculated)

xQ

mm
yQ

mm
zQ

mm
* h k l

x
mm

*
y

mm
*

1 14.2 −0.1 7.0 4 0 2 14.7 0.0

0.2 13.3 6.3 0 4 2 00 14.7

−14.2 0.0 7.0 −4 0 2 −14.7 0.0

0.1 −15.2 7.8 0 −4 2 0.0 −14.7

2 10.5 5.0 5.0 4 2 2 11.0 5.5

5.5 10.0 4.9 2 4 2 5.5 11.0

−5.8 10.3 5.2 −2 4 2 −5.5 11.0

−10.5 5.2 5.1 −4 2 2 −11.0 5.5

−11.0 −5.8 5.6 −4 −2 2 −11.0 −5.5

−5.6 −11.5 5.9 −2 −4 2 −5.5 −11.0

5.8 −11.2 5.7 2 −4 2 5.5 −11.0

11.0 −5.5 5.5 4 −2 2 11.0 −5.5

3 8.0 0.0 2.6 6 0 2 8.3 0.0

−0.5 7.2 2.2 0 6 2 0.0 8.3

−9.1 −0.3 3.3 −6 0 2 −8.3 0.0

0.5 −8.0 2.6 0 −6 2 0.0 −8.3

4 7.2 2.0 2.3 6 2 2 7.3 2.4

2.2 6.5 2.0 2 6 2 2.4 7.3

−2.0 7.4 2.4 −2 6 2 −2.4 7.3

−7.0 2.2 2.2 −6 2 2 −7.3 2.4

−7.2 −2.3 2.4 6 −2 2 −7.3 −2.4

−2.2 −7.8 2.7 2 −6 2 −2.4 −7.3

2.7 −7.6 2.6 2 −6 2 2.4 −7.3

7.2 −2.8 2.4 6 −2 2 7.3 −2.4

5 6.0 5.8 2.8 4 4 2 6.3 6.3

−6.0 6.0 2.9 −4 4 2 −6.3 6.3

−6.2 −6.3 3.1 −4 −4 2 −6.3 −6.3

6.5 −6.5 3.3 4 −4 2 6.3 −6.3

6 4.0 3.5 1.2 3 3 1 3.9 3.9

−3.5 3.6 1.1 −3 3 1 −3.9 3.9

−3.8 −4.0 1.3 −3 −3 1 −3.9 −3.9

4.2 −4.0 1.4 3 −3 1 3.9 −3.9

Tab. 4: Spacing of lattice planes d, Bragg angle � and
wavelength � associated with the sets of lattice planes of LiF,
a0 = 402.80 pm [1]

h k l
d

pm
 �  

�

pm
 

4 0 2 90.1 26.6	 80.6 

4 2 2 82.2 24.1	 67.1 

6 0 2 63.7 18.4	 40.3 

6 2 2 60.7 17.5	 36.5 

4 4 2 67.1 19.5	 44.8 

3 3 1 92.4 13.3	 42.5 
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Supplementary Remarks for Analyzing the Laue Patterns

1. From the size of the film, calculate the maximum Bragg angle θ that
can be observed.

2. Instead of trying to determine xyz coordinates of the spots, it is simpler
to just measure radii (R) or diameters. The Bragg angle θ can then be
determined from tan 2θ = R/L where L is the crystal film distance.

3. For Laue patterns the allowed Bragg angles will only depend on the
Miller indices as θ = tan−1( l√

h2+k2 ). This enables you to match up
Bragg angle predictions with the measured θ of the spots.

4. Once you match up some Miller indices with Bragg angles you should
be able to determine the absolute xy orientation of the pattern with
respect to the crystal orientation.

5. Determine the Miller indices of as many spots as you can.

6. Check your results with the Laue Applet. The Laue Applet may also
give you some guidance for steps 2-4.

7. Calculate the spacing of the lattice planes from the crystal lattice con-
stant and Miller indices. Then use the Bragg formula to calculate the
wavelength λ for each of your spots.
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